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Abstract

We present a simplified model of a network of TCP-like sources that compete for
a shared bandwidth. We show that: (i) networks of communicating devices operating
AIMD congestion control algorithms may be modelled as a positive linear system; (ii)
that such networks possess a unique stationary point; and (iii) that this stationary point
is globally exponentially stable. Using these results we establish conditions for the fair
co-existence of traffic in networks employing heterogeneous AIMD algorithms. A new
protocol for operation over high-speed links is proposed and its dynamic properties
discussed as a positive linear system.

1 Introduction

A basic problem in the design of networks is the development of congestion control algo-
rithms. Conventional congestion control algorithms were deployed for two principal reasons:
(a) to ensure avoidance of network congestion collapse [1, 2] ; and (b) to ensure a degree of
network fairness. Roughly speaking, network fairness refers to the situation whereby a data
source receives a fair share of available bandwidth, whereas congestion collapse refers to the
situation whereby an increase in network load results in a decrease of useful work done by
the network (usually due to retransmission of data). Attempts to deal with network conges-
tion have resulted in the widely applied Transmission Control Protocol (TCP) [3]. While
the current TCP congestion control algorithm has proved remarkably durable, it is likely to
be less effective on next generation networks featuring gigabit-speed connectivity and het-
erogeneous traffic and sources. These considerations have led to widespread acceptance that
new congestion control algorithms must be developed to accompany the realization of next
generation systems (and perhaps also to better exploit the resources of existing networks)
[3, 4, 5].

The task of developing such algorithms is non-trivial. In addition to the requirement of
avoiding congestion collapse, fundamental requirements of congestion control algorithms
include: efficient use of bandwidth; fair allocation of bandwidth among sources; and respon-
siveness (the network should rapidly reallocate bandwidth as required). These requirements
must be met while respecting key constraints including: decentralised design (TCP sources
have restricted information available to them); scalability (the qualitative properties of net-
works employing congestion control algorithms should be independent of the size of the
network and of a wide variety of network conditions); and suitable backward compatibility
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with conventional TCP sources. We argue that tools from the design of feedback systems,
systems theory and hybrid systems, based upon appropriate mathematical models, may pro-
vide a framework, and an enabling technology, for the principled design of such protocols.

In this paper we consider a framework for the design and analysis of networks of devices
that compete for available bandwidth (or more generally a shared resource). Under cer-
tain simplifying assumptions, we show that: (i) networks of communicating devices operat-
ing additive-increase multiplicative-decrease (AIMD) congestion control algorithms may be
modelled as a positive linear system; (ii) such networks possess a unique stationary point;
and (iii) this stationary point is globally exponentially stable. Using these results we also
establish conditions for fair co-existence of traffic in networks employing a mix of AIMD
algorithms.

2 Definitions and mathematical preliminaries

Throughout, the following notation is adopted: IR denotes the real numbers; Z denotes the
integers; IRn denotes the n-dimensional real Euclidean space; IRn×n denotes the space of
n × n matrices with real entries; xi denotes the ith component of the vector x in IRn; aij

denotes the entry in the (i, j) position of the matrix A in IRn×n. We use the symbol � to
denote that the entries of a matrix (vector) are greater than zero. We say that the matrix
A is strictly positive if all entries of the matrix are positive; namely, A � 0.

Strictly positive matrices will play an important role in developing the results in this paper.
We note the following important theorem for strictly positive matrices.

Theorem 2.1 [6, 7, 8] Let A ∈ IRn×n be a strictly positive matrix. Then: (i) there is an
eigenvalue ρ(A) that is simple and whose magnitude is greater that any other eigenvalue;
(ii) A has a positive eigenvector xp corresponding to ρ(A) and any non-negative eigenvector
of A is a multiple of xp; and (iii) limN→∞( 1

ρ(A)A)N = xpy
T
p where AT yp = ρ(A)yp, xp �

0, yp � 0, and xT
p yp = 1.

Corollary 2.1 Let A ∈ IRn×n with A � 0. There exists a unique vector xp such that
Axp = ρ(A)xp, xp � 0 and

∑n
i=1 xp = 1. We refer to xp as the Perron eigenvector of the

matrix A and ρ(A) as the Perron eigenvalue of the matrix A.

3 A network model

A network consists of sources and sinks connected together via links and routers.

3.1 Links

The path between source-sink pairs consists of wireline or wireless links. We focus here on
wireline links, which can be modelled as a constant propagation delay together with a queue
to buffer traffic. This is typically a FIFO queue which simply drops packets that arrive when
the queue is full. This is the so-called drop-tail queueing discipline.

3.2 TCP Sources

The TCP standard defines a variable cwnd called the congestion window. This variable
determines the number of unacknowledged packets that can be in transit at any time, i.e.
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the number of packets in the ‘pipe’ formed by the links and buffers in a transmission path.
When the window size is exhausted, the source must wait for an acknowledgement (ACK)
before sending a new packet. Congestion control is achieved by dynamically adapting the
window size according to an additive-increase multiplicative-decrease (AIMD) law. The
basic idea is for a source to gently probe the network for spare capacity and rapidly back-off
its send rate when congestion is detected.

In the congestion avoidance phase, when a source i receives an ACK packet it increments
its window size cwndi according to the additive increase law

cwndi → cwndi + αi/cwndi (1)

where αi = 1 for standard TCP. Consequently, the source gradually ramps up its send rate as
the number of packets successfully transmitted grows. By keeping track of the ACK packets
received, the source can infer when packets have been lost en route to the destination. On
detecting a loss in this way, the source enters the fast recovery phase. The lost packets are
retransmitted and the window size cwndi of source i is reduced according to

cwndi → βicwndi (2)

where βi = 0.5 for standard TCP . It is assumed that multiple drops within a single round-
trip time lead to a single back-off action. When receipt of the retransmitted lost packets
is eventually confirmed by the destination, the source re-enters the congestion avoidance
phase, adjusting its window size according to (1). In summary, on detecting a dropped
packet (which the algorithm assumes is an indication of congestion on the network), the
TCP source reduces its send rate. It then begins to gradually increase the send rate again,
probing for available bandwidth. A typical window evolution is depicted in Figure 1 (cwndi

at the time of detecting congestion is denoted by wi in this figure).
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Figure 1: Evolution of window size

Over the kth congestion epoch three important events can be discerned: indicated by
ta(k), tb(k) and tc(k) in Figure 1. The time ta(k) is the time at which the number of
unacknowledged packets in the pipe equals βiwi(k); tb(k) is the time at which the pipe is
full so that any packets subsequently added will be dropped at the congested queue; tc(k)
is the time at which packet drop is detected by the sources. Note that we measure time in
units of round-trip time (RTT). RTT is the time taken between a source sending a packet
and receiving the corresponding acknowledgement, assuming no packet drop. The update
law (1) corresponds to an increase in cwndi of αi packets per RTT.
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3.3 Network model under synchronisation

We consider a network of n AIMD sources. Each source is parameterized by an additive
increase parameter and a multiplicative decrease factor, denoted αi and βi respectively.
These parameters satisfy αi > 0 and 0 < βi < 1 ∀i ∈ {1, ..., n}. We assume that the
event times ta, tb and tc indicated in Figure 1 are the same for every source i.e. that the
sources are synchronised. This synchronisation condition is valid, for example, when sources
are constrained by a shared congested link, the round-trip propagation delay between each
source and destination is identical and each source transmits at least one extra packet per
round-trip time (i.e. αi ≥ 1).

Let wi(k) denote the congestion window size of source i immediately before the kth network
congestion event is detected by the sources, see Figure 1. It follows from the definition of the
AIMD algorithm that the window evolution is completely defined over all time instants by
knowledge of the wi(k) and the event times ta(k), tb(k) and tc(k) of each congestion epoch.
We therefore only need to investigate the behaviour of these quantities.

We have that tc(k) − tb(k) = 1; namely, each source is informed of congestion exactly one
RTT after the first dropped packet was transmitted. Also,

wi ≥ 0,
n

∑

i=1

wi = P +
n

∑

i=1

αi (3)

where P is the maximum number of packets which can be held in the ‘pipe’; this is usually
equal to qmax +BT where qmax is the maximum queue length of the congested link, B is the
service rate in packets per second and T is the round-trip time. At the (k +1)th congestion
event

wi(k + 1) = βiwi(k) + αi[tc(k) − ta(k)]. (4)

and

tc(k) − ta(k) =
1

∑n
i=1 αi

[P −
n

∑

i=1

βiwi(k)] + 1 (5)

Substituting into (5) from (3) yields

tc(k) − ta(k) =
1

∑n
i=1 αi

[

n
∑

i=1

(1 − βi)wi(k)] (6)

Hence,

wi(k + 1) = βiwi(k) +
αi

∑n
j=1 αi

[

n
∑

i=1

(1 − βi)wi(k)] (7)

The dynamics of the entire network can be described by writing all n equations in matrix
form:

W (k + 1) = AW (k) (8)

where WT (k) = [w1(k), · · · , wn(k)], and

A =











β1 0 · · · 0
0 β2 0 0
... 0

. . . 0
0 0 · · · βn











+
1

∑n
j=1 αi









α1

α2

· · ·
αn









[

1 − β1 1 − β2 · · · 1 − βn

]

= diag[βi] +
1

∑n
j=1 αi

gT h, (9)
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with gT = [α1, α2, · · · , αn] and hT = [1−β1, 1−β2, · · · , 1−βn]. Note that the initial condition
W (0) is subject to constraint (3) (this simply ensures that the window sizes specified by
W (0) are non-negative and correspond to a congestion event).

It follows that the synchronised network (8) is a positive linear system and that the matrix
A is strictly positive: A � 0 since αi > 0, 0 < βi < 1, ∀ i ∈ {1, ..., n}.

Comment : We note that this model incorporates a number of key features of real networks:
the hybrid nature of AIMD algorithms (e.g. [9], [10]); time-varying communication delays
on links; and drop-tail queueing. The model also encompasses a network ‘ecosystem’ where
sources employ AIMD algorithms with different increase and decrease parameters.

Comment (High-speed TCP) : The foregoing model is derived for AIMD sources where the
increase and decrease parameters, αi and βi, are constant (although they may differ for each
source). A number of recent proposals for high-speed networks envisage varying the rate of
increase and decrease as functions of window size etc. The synchronisation model is readily
extended to these protocols by extending the model to include time varying parameters
αi(k) and βi(k) and defining the model increase parameter to be an effective value i.e. such
that αi(k) = (wi(k + 1) − βiwi(k))/(tc(k) − ta(k)).

4 Convergence and Stability

We now present the main mathematical results of the paper.

Theorem 4.1 Let A be defined as in Equation (9). Then: (i) the Perron eigenvalue of A
is given by ρ(A) = 1; (ii) the Perron eigenvector of A is given by xT

p = γ[ α1

1−β1

, ..., αn

1−βn
],

where
∑n

i=1 γxpi = 1; (iii) the associated eigenvector yT
p of AT is [1, 1, ..., 1].

Proof : Since A is a positive matrix, the Perron eigenvector is the only positive eigenvector.
It follows by inspection that xp is the Perron eigenvector, ρ(A) = 1 and yT

p = [1, 1, ..., 1].

Corollary 4.1 For a network of synchronised time-invariant AIMD sources: (i) the net-
work has a Perron eigenvector xT

p = γ[ α1

1−β1

, ..., αn

1−βn
]; and (ii) the Perron eigenvalue is

ρ(A) = 1. It follows from Theorem 2.1 that all other eigenvalues of A satisfy |λi(A)| < ρ(A)
and therefore the network possesses a stationary point to which it converges asymptotically.
The rate of convergence of the network to Wss depends upon the second largest eigenvalue
of A.

Proof : We are interested in the evolution of the system

W (k + 1) = AW (k), (10)

where A is defined by (9). The convergence of this system is determined by

lim
k→∞

W (k) = lim
k→∞

AkW (0),

From Theorem (2.1) we have

lim
k→∞

(
1

ρ(A)
A)k = xpy

T
p ,

where xp is the Perron eigenvector of A, and yp is the associated eigenvector of AT . Hence,
it follows that

lim
k→∞

W (k) = lim
k→∞

AkW (0)
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= xpy
T
p W (0),

= Θxp, Θ = yT
p W (0) =

n
∑

i=1

wi(0).

The rate of convergence of Ak depends on the second largest eigenvalue of A (see item (j)
on page 498 in [7]).

Q.E.D.

Theorem 4.2 Consider a network of synchronised time-invariant AIMD sources (8) subject
to constraint (3). Then: (i) the network dynamics may be written

W (k + 1) = ĀW (k) + Wss (11)

where Ā = A−xpy
T
p and Wss is the unique stationary point of (11); (ii) the stationary point

Wss is globally exponentially stable.

Proof :

Part (i) : We have,

W (k + 1) − Wss = AW (k) − Wss. (12)

with Wss = xpy
T
p W (0). Recall that Axp = xp since xp is an eigenvector of A corresponding

to the Perron eigenvalue (ρ(A) = 1). Also, yT
p W (0) = yT

p W (k) = Θ is constant owing to
constraint (3). Hence, AWss = Wss and

W (k + 1) = ĀW (k) + Wss (13)

as claimed. It follows that the stationary point Wss is unique since yT
p W (0) = yT

p W (k) for
all k ∈ Z, k > 0.

Part (ii) : Let J = M−1AM denote the real Jordan matrix similar to A, with M the
associated modal matrix. The Perron eigenvalue is real (ρ(A) = 1) and simple and so the
associated Jordan block is scalar. Assume that the rows of J are ordered such that this
Jordan block is the (1,1) element of J . Letting xp denote the Perron eigenvector of A and
yp the associated eigenvector of AT , we have that M−1xp = [1, 0, · · · , 0]T and yT

p M is of the

form yT
p M = [1, ∗, · · · , ∗]T where the ∗’s denote suitable values. Hence,

J̄ = M−1(A − xpy
T
p )M = J −











1 ∗ · · · ∗
0 0 · · · 0
... · · · · · ·

...
0 0 · · · 0











(14)

Evidently, the matrix J̄ is identical to the J apart from the first row, in which element (1,1)
is 0. Since J is upper triangular, J̄ has the same eigenvalues as J apart from the Perron
eigenvalue which is replaced by a zero eigenvalue in J̄ . That is, the eigenvalues of J̄ all lie
within the unit circle. Hence, the eigenvalues of Ā also lie within the unit circle and the
network dynamics are globally exponentially stable with fixed point Wss.

Q.E.D.

Comment (Fair allocation of network bandwidth) : Let αi = λ(1−βi) ∀i and for some λ > 0.

Then W T
ss = Θ/n [1, 1, ..., 1] i.e. w1 = w2 = ... = wn. For networks where the queueing

delay is small relative to the propagation delay, the send rate is essentially proportional to
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the window size. In this case, it can be seen that αi = λ(1 − β)∀i ∈ {1, .., n} is a condition
for a fair allocation of network bandwidth. For the standard TCP choices of α = 1 and
β = 0.5, we have λ = 2 and the condition for other AIMD flows to co-exist fairly with TCP
is that they satisfy αi = 2(1 − βi); see Figure 2 for an example. We can see from Figure 2
that the concepts of fairness and efficient utilization of network bandwidth are distinct.
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Figure 2: Example of co-existence of two TCP sources with different increase and decrease
parameters. (NS simulation, network parameters: 10Mb bottleneck link, 100ms delay, queue
40 packets).

Comment (Convergence) : We note the two following cases where convergence, measured in
number of congestion epochs, does not depend on the network αi.

(i) All of the sources share the same increase parameter: α1 = α2 = · · ·αn = α, and

A = diag[βi] +
1

n

[

1 1 · · · 1
]

h (15)

Under these conditions the network dynamics (and so the rate of convergence) depends
solely on the decrease parameters βi.

(ii) All of the sources share the same decrease parameter (the αi need not be the same for
all sources): β1 = β2 = · · · = βn = β, and the eigenvalues of A (other than the Perron
eigenvalue) have value β. Thus, the rate of convergence to a fixed point is βk where k
is the congestion epoch and using this it follows, for example, that the 95% rise time
is log 0.05/ log β (giving a rise time of 4 congestion epochs when β = 0.5). Note that
the ratio of the αi to β determines the duration of the congestion epochs according to
the relation (6).

5 High-speed networks

While the current TCP congestion control algorithm has proved remarkably durable, it is
often inefficient on modern high-speed networks [11, 12]. On such links the window sizes
can be very large (perhaps tens of thousands of packets). Following a congestion event,
the window size is halved and subsequently only increased by one packet per round-trip
time. Thus, it can take a substantial time for the window size to recover, during which
time the send rate is well below that of the link. One possible solution is to simply make
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the TCP increase parameter α larger, thereby decreasing the time to recover following a
congestion event and improving the responsiveness of the TCP flow. Unfortunately, this
direct solution is inadmissable because of the requirement on lower speed networks for
backward compatibility and fairness with existing TCP traffic (this requirement is relaxed
in high-speed networks [12]). The requirement is thus for α to be large in high-speed
networks but unity in low-speed ones, naturally leading to consideration of some form of
mode switch. However, mode switching creates the potential for introducing undesirable
dynamic behaviours in otherwise well behaved systems and any re-design of TCP therefore
needs to be carried out with due regard to such issues.

In this section we consider amending TCP to include a high-speed and a low-speed mode.
In the high-speed mode the increase parameter of source i is αH

i and in the low-speed
mode αL

i . On congestion, we back-off to βwi(k) − δi, with δi = 0 in low-speed mode and
δi = β(αH

i − αL
i ) in high-speed mode1. The mode switch is governed by:

αi =

{

αL
i cwndi − (βwi(k) − δi) ≤ ∆L

αH
i cwndi − (βwi(k) − δi) > ∆L (16)

where cwndi is the current congestion window size of the ith TCP source, βwi(k)− δi is the
size of the congestion window immediately after the last congestion event, αL

i is the increase
parameter for the low-speed regime (unity for backward compatibility), αH

i is the increase
parameter for the high-speed regime, β is the decrease parameter as usual and ∆L is the
threshold for switching from the low to high speed regimes2. We refer to this strategy as
H-TCP and a typical congestion epoch is illustrated in Figure 3.

Comment : This switching strategy differs from that proposed in [11, 12] in two key respects.
Firstly, for high-speed networks a mode switch takes place in every congestion epoch. Sec-
ondly, the strategy (16) leads to a symmetric network; that is, one where the effective αi

and βi are the same for all H-TCP sources experiencing the same duration of congestion
epoch.

Our strategy is motivated by the following design criteria.

(i) Sources deploying H-TCP should behave as a normal TCP-source when operating on
low-speed communication links. Such behaviour is guaranteed by (16) since it tests
the low/high speed status of the network every congestion epoch.

(ii) Normal AIMD sources competing for bandwidth should be guaranteed some (small)
share of the available bandwidth.

(iii) H-TCP sources competing against each other should receive a fair share of the band-
width. This is guaranteed using symmetry and Theorem 4.1.

(iv) H-TCP sources should be responsive. Again, this is guaranteed using symmetry and
an appropriate value of β combined with a value of α that ensures that the congestion
epochs are of suitably short duration.

A model for the dynamics of this high-speed variant of TCP is derived, under the assumption
of synchronisation, as follows. Consider n flows, with the ith flow having window increase
parameters αL

i and αH
i (with αH

i ≥ αL
i > 0), decrease parameter 0 < β < 1 and high-speed

threshold ∆L. Note that when αH
i = αL

i we recover the standard AIMD algorithm for the
ith flow. The window sizes evolve according to

wi(k + 1) = βwi(k) − δi + αL
i (tb(k) − ta(k)) + αH

i (td(k) − tb(k)) (17)

1This ensures that the combined initial window size
∑

n

i=1
(βwi(k) − δi) following a congestion event is

the same regardless of the source modes before congestion

2This strategy can be developed to include several mode switches

8



Time (RTT)


w
i
 w
i
(k)

w
i
(k+1)


t
a
(k)
 t
c
(k)
t
b
(k)
 t
d
(k)


∆
L


Figure 3: Evolution of window size with high-speed H-TCP algorithm

with

tb(k) − ta(k) = min[∆L,
1

∑n
i=1 αL

i

n
∑

i=1

(1 − β)wi(k) − δi] (18)

and

td(k) − tb(k) =

{

0 tb(k) − ta(k) ≤ ∆L

1
∑

n
i=1

αH
i

∑n
i=1[(1 − β)wi(k) − δi − αL

i ∆L] otherwise (19)

As usual the initial condition is subject to the constraint that
∑n

i=1 wi(0) = P +
∑n

i=1 αH
i

to ensure that the window sizes specified correspond to a congestion event.

While the dynamics involve a mode switch, it is straightforward to verify that switching
sequences with more than a single switch do not exist as solutions to these dynamics. That
is, repeated switching is not possible. We proceed as follows. When the sources operate in
high-speed mode, the dynamics of the network can be described in the matrix form

W (k + 1) = ĀW (k) + Wss + V (20)

where Ā and Wss are defined as in Theorem 4.2 and

A = βI +
1

∑n
1 αH

i

ghT (21)

with gT = [αH
1 , ..., αH

n ], hT = [1 − β, ..., 1 − β], and V is an n-vector whose jth element is

given by vj = αL
j ∆L − δj −

αH
j

∑

n
i=1

αH
i

∑n
i=1[δi + αL

i ∆L].

The convergence, fairness and stability results of the previous section apply directly. That
is, any network possesses a unique stationary point and this point is globally exponentially
stable; and the stationary point is fair for sources with matching increase and decrease
parameters.

The performance of this high-speed algorithm is illustrated in Figure 4 using an NS packet-
level simulation. Two high-speed flows with the same increase and decrease parameters are
shown. As expected, the stationary solution is fair. It can be seen that convergence is rapid,
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Figure 4: Example of two H-TCP flows illustrating rapid convergence to fairness - the second
flow experiences a drop early in slow-start focussing attention on the responsiveness of the
congestion avoidance algorithm (NS simulation, network parameters: 500Mb bottleneck
link, 100ms delay, queue 500 packets; TCP parameters: αL = 1, αH = 20, β = 0.5,∆L = 19
corresponding to a window size threshold of 38 packets).

taking approximately 4 congestion epochs which is in agreement with the rise time analysis
for β = 0.5.

An important consideration in the design of H-TCP is backward compatibility; namely
when deployed in low-speed networks H-TCP sources should co-exist fairly with sources
deploying standard TCP (α = 1, β = 0.5). This requirement introduces the constraint that
αL = 1, β = 0.5. When the duration of the congestion epochs is less than ∆L, the effective
increase parameter for high-speed sources is unity and the fixed point is fair when a mixture
of standard and high-speed flows co-exist. When the duration of the congestion epochs
exceeds ∆L, the network stationary point may be unfair. The degree of unfairness depends
on the amount by which the congestion epochs exceeds ∆L, with a gradual degradation of
network fairness as the congestion epoch increases; see, for example, Figure 5.

For comparison, the behaviour of the High-Speed TCP (HS-TCP) algorithm proposed in [12]
is shown in Figure 6. The rate of convergence is evidently rather slow. In this simulation,
the second flow experiences a packet drop early in slow-start and this focuses attention
on the responsiveness of the congestion avoidance algorithm. While slow-start might be
amended to improve start-up performance in this particular case, this does not remove the
difficulties associated with the unresponsiveness of the congestion avoidance algorithm. A
second simulation is shown in Figure 7 where a cross-flow disturbs two HS-TCP flows. Slow
convergence back to fairness is evident and this would be unaffected by changes to slow-
start. For comparison, the corresponding time histories for H-TCP are shown in Figure
8
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Figure 5: Example of standard TCP and H-TCP flows co-existing on a low speed link
(NS simulation, network parameters: 5Mb bottleneck link, 100ms delay, queue 44 packets;
H-TCP parameters: αL = 1, αH = 20, β = 0.5,∆L = 19).
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Figure 6: Example of two HS-TCP flows - the second flow experiences a drop early in slow-
start focussing attention on the responsiveness of the congestion avoidance algorithm (NS
simulation, network parameters: 500Mb bottleneck link, 100ms delay, queue 500 packets)
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(a) Window evolution
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(b) Network topology

Figure 7: Example of two HS-TCP flows with a cross-flow active between 150-200 seconds.
The sluggish response of the HS-TCP flows is evident (NS simulation, bottleneck link is
between nodes 3 and 5: 500Mb, 100ms delay, queue 500 packets; HS-TCP cross-flow is
between nodes 1 and 2).
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Figure 8: Example of two H-TCP flows with a cross-flow active between 150-200 seconds.
(NS simulation, bottleneck link is between nodes 3 and 5: 500Mb, 100ms delay, queue 500
packets; H-TCP parameters: αL = 1, αH = 20, β = 0.5,∆L = 19).
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6 Concluding remarks

In this paper we present a simple model of a network of sources competing for a shared
bandwidth. This model incorporates the hybrid nature of the TCP algorithm, time-varying
delays on links, and drop-tail queueing (all features of networks of TCP sources). We show
that networks satisfying our assumptions are very well behaved; namely, such networks
always have a unique, globally exponentially stable stationary point. Using this model,
conditions are established for a fair allocation of network bandwidth in networks employing
a mix of AIMD algorithms, and for the convergence of the global network to its stationary
point. Finally, these ideas are extended to develop and study an example protocol for
high-speed networks. This protocol is demonstrated to possess an attractive combination of
responsiveness and fairness on high-speed networks as well as fairness with standard TCP in
low-speed environments. Future work will include the extension of the model and analysis
to situations where the synchronisation assumption is relaxed.
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