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This paper presents a theoretical framework for nonregular feedback lineariza-

tion and stabilization of second-order nonholonomic chained systems. By giv-

ing a new criterion for the problem of nonsmooth nonregular feedback lineariza-

tion, it is proved that second-order chained systems are nonregular static state

feedback linearizable. A discontinuous control law is obtained based on linear

system theory and the inversion technique. The design mechanism is gener-

alised to higher-order nonholonomic chained systems. Simulation studies are

carried out to show the effectiveness of the approach.

1 Introduction

The problem of controlling nonholonomic systems has attracted much attention in

the last decade. These studies were primarily limited to first-order nonholonomic

systems which undergo non-integrable kinematic constraints (Kolmanovsky and

McClamroch 1995, Canudas de Wit, Siciliano, Bastin 1996, Luo and Tsiotras 2000).

There are only a few publications which address the problem of controlling nonholo-

nomic systems satisfying non-integrable acceleration or dynamic relationships. This

class of systems is referred to as second-order or high-order nonholonomic systems

(Oriolo and Nakamura 1991, Laiou and Astolfi 1999).

Second-order and high-order nonholonomic systems arise very often in the study of

mechanical systems. Typical examples include redundant manipulators (De Luca,

Mattone and Oriolo 1996, 1998) and underactuated systems (Oriolo and Nakamura

1991, Egeland and Berglund 1994, Seto and Baillieul 1994, Spong 1995, Reyhanoglu
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et al. 1999). Although the dynamics are well understood and many techniques have

been investigated for these systems, controller design of these systems remains a

challenging problem. Attempts were made to stabilize second-order or high-order

nonholonomic systems recently. Among them, the most notable contribution is due

to Laiou and Astolfi (1999), who successfully generalise the idea proposed in Astolfi

(1996) to a class of high-order nonholonomic systems with two inputs. In this paper,

a class of discontinuous state feedback laws was presented to exponentially stabilize

the systems. Some research works have also been presented for specific classes of

systems in the literature. Controllability and stabilizability have been investigated

for a special class of underactuated systems in Reyhanoglu et al. (1999). In Su

and Stepanenko (1999), variable structure control has been applied to the control of

underactuated robots. Homogeneous design technique is exploited in M’Closkey and

Morin (1998) to obtain time-varying homogeneous feedback for a class of nonlinear

systems with drifts which includes some underactuated mechanical systems. Based

on a novel design technique proposed in Sordalen (1993), a time-varying controller

was obtained for a second-order chained form in Egeland and Berglund (1994) to

achieve asymptotic stability with exponential convergence.

It has been proven that several classes of second-order nonholonomic systems are

transformable into the following chained form by smooth state and input transfor-

mations 



ÿ1 = u1

ÿ2 = u2

ÿ3 = y2u1

(1)

Typical examples include a three-link planar manipulator with the third joint unac-

tuated (Arai, Tanie and Shiroma 1997), an (underactuated) underwater vehicle with

nonholonomic acceleration constraints (Egeland and Berglund 1994), an underactu-

ated surface vessel with two independent propellers (Reyhanoglu et al. 1999, Wich-

lund, Sordalen and Egeland 1995), and a kinematic redundant planar PPR manip-

ulator with all joints passive and steered by the forces imposed at the end-effector

(De Luca, Mattone and Oriolo 1996, 1998).

In this paper, the problem of feedback stabilization is addressed for second-order
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nonholonomic chained system (1) in the framework of nonregular feedback lineariza-

tion. In Section 2, a new sufficient condition for nonsmooth nonregular feedback

linearization is presented, and the second-order nonholonomic chained systems are

then proved to be nonregular feedback linearizable. In Section 3, a discontinuous

feedback control law is designed based on linear system theory and the inversion

technique. The design mechanism is extended to general high-order nonholonomic

chained systems in Section 4. The effectiveness of the proposed control law is illus-

trated through simulation study in Section 5. The last section presents concluding

remarks.

2 Mathematical preliminaries

Feedback linearization is a standard technique for control of many nonlinear systems,

for example, robotic systems (Spong and Vidyasagar 1989, Ge, Lee and Harris 1998),

motor drives (Taylor 1994, Chiasson 1998) and among others. For nonholonomic

systems, however, it is known that they are not regular static state feedback lin-

earizable. Accordingly, the classical approach of feedback linearization cannot be

applied. To cope with this difficulty, more general classes of feedback should be

introduced. One candidate is dynamic feedback, but it means that the original sys-

tems must be augmented to include additional dynamics. Another possible choice

is nonregular static state feedback, which does not introduce additional dynamics.

It happens that the latter is applicable to the second-order nonholonomic chained

systems as illustrated below.

Consider the multi-input affine nonlinear system given by

ẋ = f(x) +
m∑

i=1

uigi(x) = f(x) + G(x)u (2)

where x ∈ <n are the states, u ∈ <m are the inputs, entries of f(x) and G(x) are

analytic functions of x, and rank G(x) = m, ∀x ∈ <n.

Nonlinear control system (2) is said to be (nonsmooth) nonregular (static state)
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feedback linearizable, if there exist a discontinuous state transformation

z = T (x), z ∈ <n (3)

and a nonregular state feedback

u(t) = α(x) + β(x)v(t), v ∈ <m0 ,m0 ≤ m (4)

such that the transformed system with state z and input v reads as a controllable

linear system.

Note that state transformation (3) is not necessarily of diffeomorphism as required

in Definition 2.1 of Sun and Xia (1997). However, its inverse transformation should

be well defined everywhere except for on a lower-dimensional submanifold of <n.

The term discontinuous is used to denote functions which are unbounded and hence

undefined on a certain set (Astolfi 1996).

Remark 1. The problem of linearizing a nonlinear system via nonregular state feed-

back arises naturally and was proposed as an open problem in Charlet, Levine and

Marino (1989). Though the concept is rather simple, it is very difficult to judge

whether a system is nonregular feedback linearizable. Even if the answer is affirma-

tive, it is also very hard to find a linearizing feedback and the corresponding state

coordinate transformation. Until now, only some preliminary results were reported

in Sun and Xia (1997) and no extensive studies have been found in the literature.

The following lemma presents a new criterion for nonregular static state feedback

linearizability.

Lemma 1. For a two-input affine nonlinear system

ẋ = f(x) + g1(x)u1 + g2(x)u2, x ∈ <n (5)

suppose there exist a natural number µ ≥ 1 and a set of integer 1 ≤ κ1 < κ2 < · · · <
κµ ≤ n− 1, such that the nested distributions defined by

∆0 = span{g2}
∆i = ∆i−1 + adg1∆i−1, i = κ1, · · · , κµ−1

∆κµ = ∆κµ−1 + span{g1}
∆i = ∆i−1 + adf∆i−1, i ≥ 1, i 6= κ1, · · · , κµ

(6)
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satisfy

(i) ∆i is involutive and of constant rank for 0 ≤ i ≤ n− 1;

(ii) rank ∆n−1 = n;

(iii) [f, ∆κj−1] ∈ ∆κj−1 for j = 1, · · · , µ; and

(iv) [g1, ∆i] ∈ ∆i+1 for 0 ≤ i ≤ n− 3

then system (5) is nonregular feedback linearizable.

Proof. By the Frobenius Theorem, there exist real-valued functions φ(x) and h(x) :

<n → <, such that

dφ ⊥ ∆κµ−2, dφ 6⊥ ∆κµ−1, dh ⊥ ∆n−2, and L
ad

n−κµ−1

f g1
h = 1 (7)

Let

u1 = φ(x), f0(x) = f(x) + φ(x)g1(x)

System (5) can be rewritten as

ẋ = f0(x) + u2g2(x) (8)

It follows from (6) that, if Li
fg1 ∈ ∆j for some i and j, then Li+1

f g2 ∈ ∆j. This

condition is repeatedly used in the following derivation.

Compute the following quantities

Lg2h = 0, Lf0h = Lfh + φLg1h = Lfh

The derivative of h along system (8) is given by

dh

dt
= Lf0h + (Lg2h)u2 = Lfh (9)

Its higher derivatives are given by

d2h

dt2
= L2

f0
h + (Lg2Lf0h)u2 = L2

fh

...

dn−κµ−1h

dtn−κµ−1
= L

n−κµ−1
f0

h + (Lg2L
n−κµ−1
f0

h)u2 = L
n−κµ−2
f h

dn−κµh

dtn−κµ
= L

n−κµ

f0
h + (Lg2L

n−κµ−1
f0

h)u2 = L
n−κµ

f h + φL
ad

n−κµ−1

f g1
h = L

n−κµ

f h + φ
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From assumptions (iii) (iv) and conditions (7), it follows that

Lg2L
i
fh = 0, i = 0, 1, · · ·

Lg2L
i
fφ = 0, i = 0, 1, · · ·

Lg2L
j
fLg1L

κl−κl−1−1
f · · ·Lg1L

κµ+1−κµ−1
f h = 0, l = µ, · · · , 2, j = 0, 1, · · · , ξl−1

Lg2L
j
fLg1L

κl−κl−1−1
f · · ·Lg1L

κµ−κµ−1−1
f Lg1φ = 0, l = µ, · · · , 2, j = 0, 1, · · · , ξl−1

Lg2L
κ1−1
f Lg1L

κ2−κ1−1
f · · ·Lg1L

κµ−κµ−1−1
f Lg1φ 6= 0

where κ0 = 1, κµ+1 = n + 1, ξl = κl − κl−1 − 1, l = 1, · · · , µ.

Keeping these in mind, we can further compute higher order derivatives of h along

system (8) as follows

dn−κµ+1h

dtn−κµ+1
= L

n−κµ+1
f0

h + (Lg2L
n−κµ

f0
h)u2 = Lf0L

n−κµ

f h + Lf0φ

...

dn−2h

dtn−2
= Ln−2

f0
h + (Lg2L

n−3
f0

h)u2 = L
κµ

f0
L

n−κµ

f h + L
κµ

f0
φ

dn−1h

dtn−1
= Ln−1

f0
h + (Lg2L

n−2
f0

h)u2 = L
κµ+1

f0
L

n−κµ

f h + L
κµ+1

f0
φ

+(Lg2L
κ1−1
f Lg1L

κ2−κ1−1
f · · ·Lg1L

κµ−κµ−1−1
f Lg1φ)u2

Define new coordinates z and new input v respectively as follows

z =[h, Lfh, · · · , L
n−κµ

f h, Lf0L
n−κµ

f h + Lf0φ, · · · , L
κµ+1

f0
L

n−κµ

f h + L
κµ

f0
φ]T (10)

v=L
κµ+1

f0
L

n−κµ

f h+L
κµ+1

f0
φ + (Lg2L

κ1−1
f Lg1L

κ2−κ1−1
f · · ·Lg1L

κµ−κµ−1−1
f Lg1φ)u2 (11)

The state space description of system (8) in the z coordinates is then given by

ż = [z2, z3, · · · , zn, v]T (12)

which is exactly the single-input Brunovsky canonical system.

The above analysis shows that, under the state feedback

u1 = φ(x) (13)

u2 = (Lg2L
κ1−1
f Lg1L

κ2−κ1−1
f · · ·Lg1L

κµ−κµ−1−1
f Lg1φ)−1(v−L

κµ+1

f0
L

n−κµ

f h+L
κµ+1

f0
φ)
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and the coordinate transformation (10), system (5) changes into the single-input

controllable system (12). Because the input channel u1 is pure state feedback, the

overall input transformation (13) is nonregular. ♦

Remark 2. Note that the above analysis is essentially nonsmooth analysis in that

the functions involved are not limited to continuous functions. State transformation

(10) is not necessarily of diffeomorphism, whereas input transformations (11) and

(13) may not be well defined on a lower-dimensional submanifold of <n.

As a direct application of Lemma 1, we claim that the high-order nonlinear system




y1
(r1) = ξ1(x

1, u1)

y2
(r2) = ξ2(x, u2)

yi
(ri) = ξi(x

1, yi−1, x
i, · · · , xl, u1), i = 3, · · · , l

(14)

is nonregular feedback linearizable, where l ≥ 3, ri ≥ 1, xi = [yi, · · · , yi
(ri−1)]T ,

i = 1, · · · , l, x = [x1T
, · · · , xlT ]T , and ξi, i = 1, · · · , l are analytic functions vanishing

at the origin with

∂ξ1

∂u1

6= 0,
∂ξ2

∂u2

6= 0,
∂2ξi

∂yi−1∂u1

6= 0, i = 3, · · · , l

The linearizing output h(x) and the real-valued function φ(x) in the proof of Lemma

1 could be explicitly constructed, say

h(x) = x1

φ(x) = φ1(y1, · · · , y
(r1)
1 , yl) with

∂φ1

∂yl

6= 0 (15)

Note that the above model includes the high order single chained systems




y
(r1)
1 = u1

y
(r2)
2 = u2

y
(r3)
3 = y2u1

...

y
(rl)
l = yl−1u1

as special cases. In general, system (14) and the generalised chained system (1) in

Laiou and Astolfi (1999) are not special cases of each other. For example, the simple
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system 



ÿ1 = u1

ÿ2 = u2

ÿ3 = y2u1 + y2
3u1

is in form (14) but is not in form (1) of Laiou and Astolfi (1999).

Remark 3. As the restriction imposed on φ(x) by (15) is not very restrictive, we

can fully explore the freedom in controller design in practice. Different choices of

φ(x) will result in different linearizing feedback transformations.

3 Controller design

For second-order nonholonomic chained system (1), a stabilizing strategy in the

framework of nonregular feedback linearization is proposed in this section. The

resulting control laws render the system exponentially convergent to the origin.

Let x = [x1, · · · , x6]
T = [y1, ẏ1, y2, ẏ2, y3, ẏ3]

T . System (1) can be rewritten in the

state space description 



ẋ1 = x2

ẋ2 = u1

ẋ3 = x4

ẋ4 = u2

ẋ5 = x6

ẋ6 = x3u1

(16)

Let function φ(x) = y3
1
3 = x5

1
3 which satisfies relationship (15). From Lemma 1, we

have

u1 = x5

1
3 (17)

Let h(x) = x1. From (10), we have the state and input transformations

z = [x1, x2, x5

1
3 ,

1

3

x6

x5
2
3

,
1

3

x3

x5
1
3

− 2

9

x2
6

x5
5
3

,
1

3

x4

x5
1
3

− 5

9

x3x6

x5
4
3

+
10

27

x3
6

x5
8
3

]T (18)

v = −5

9

x2
3

x5

+
50

27

x3x
2
6

x5
7
3

− 2

3

x4x6

x5
4
3

− 80

81

x4
6

x5
11
3

+
1

3

u2

x5
1
3

(19)
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which are discontinuous at the discontinuous surface so defined by

SD = {x : x5 = 0} = {z : z3 = 0}. (20)

The inverses of the state and input transformations are

x = [z1, z2, 3z3z5 + 6z2
4 , 3z3z6 + 15z4z5, z3

3 , 3z2
3z4]

T (21)

u = [z3, 3z3v + 18z4z6 + 45z2
5 ]

T (22)

which are well-define and smooth on <6.

The corresponding transformed linear system is of sixth-order Brunovsky canonical

form

ż = [z2, z3, z4, z5, z6, v]T (23)

For linear system (23), controller design can be carried out easily. The desired

closed-loop poles can be assigned in different ways. In fact it can be assigned to

any arbitrary (symmetric) set. For completeness and simplicity of the paper, let us

assign all the poles at −λ with λ > 0. Accordingly, the controller is given by

v = −
6∑

i=1

kizi (24)

where

k1 = λ6, k2 = 6λ5, k3 = 15λ4, k4 = 20λ3, k5 = 15λ2, k6 = 6λ.

Define an unbounded and open subset of <6:

D = {x ∈ <6 : x5(3λ + x6) > 0, 9λ2x2
5 + 6λx5x6 + 3x3x

4
3
5 − 2x2

6 > 0,

λ3x2
5 + λ2x5x6 + λx3x5

4
3 − 2

3
λx2

6 + 1
2
x4x5

4
3 − 5

9
x3x5

1
3 x6 + 10

27

x3
6

x5
> 0,

(λ5x1 + 5λ4x2)x5
5
3 + 10λ3x5

2 + 10
3

λ2x5x6 + ( 5
3
λx3 + 1

3
x4)x5

4
3

− 10
9

λx2
6 − 5

9
x3x5

1
3 x6 + 10

27

x3
6

x5
> 0, (λ5x1 + 6λ4x2)x5

5
3 + 14λ3x2

5

+ 16
3

λ2x5x6 + (3λx3 + 2
3
x4)x5

4
3 − 2λx2

6 − 10
9

x3x5
1
3 x6 + 20

27

x3
6

x5
< 0}

The closed-loop stability is summarised in Theorem 1.

Theorem 1. If x(0) ∈ D, then the feedback control law



u1 = x5
1
3

u2 = −k5x3 − k6x4 − 3k1x1x5
1
3 − 3k2x2x5

1
3 − 3k3x5

2
3 − k4

x6

x5
1
3

+
5

3

x2
3

x5
2
3

+
5

3
k6

x3x6

x5

+ 2
x4x6

x5

+
2

3
k5

x2
6

x5
4
3

− 50

9

x3x
2
6

x5
2
− 10

9
k6

x3
6

x5
7
3

+
80

27

x4
6

x5
10
3

(25)
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drives the second-order nonholonomic chained system (16) to the origin at an expo-

nential rate with bounded input.

Proof. Due to the smooth nature of state transformation (21), exponential con-

vergence of z(t) implies exponential convergence of x(t). The linearizing transfor-

mations (18) and (19) are well-defined if the trajectory of z(t) do not cross the

discontinuous surface (20). As a consequence, if z3(0)z3(t) > 0 for all t > 0 , then

x(t) exponentially converge to the origin.

For the closed-loop system of (23) and (24), it is straightforward to calculate that

z3(t) = e−λt

6∑
i=1

ait
i−1 (26)

where

a1 = z3(0)

a2 = λz3(0) + z4(0)

a3 =
1

2
(λ2z3(0) + 2λz4(0) + z5(0))

a4 =
1

6
(λ3z3(0) + 3λ2z4(0) + 3λz5(0) + z6(0))

a5 = − 1

24
(λ6z1(0) + 6λ5z2(0) + 14λ4z3(0) + 16λ3z4(0) + 9λ2z5(0) + 2λz6(0))

a6 =
1

120
(λ7z1(0) + 5λ6z2(0) + 10λ5z3(0) + 10λ4z4(0) + 5λ3z5(0) + λ2z6(0))

Note that to guarantee z3(0)z3(t) > 0,∀t > 0, a sufficient condition is z3(0)ai >

0, i = 1, 2, · · · , 6, which is equivalent to the assumption x(0) ∈ D. Accordingly,

state x(t) is bounded and converges to the origin at an exponential rate. By (22),

the input u(t) also exponentially converges to zero, and is bounded. ¦

To make chained system (16) globally attractive, we only need to drive any ini-

tial configuration into set D by an appropriate control input. For completeness, a

switching strategy is outlined below.

Firstly, if x3(0) = 0, then apply u2(t) = k1 in duration [0, t1] to steer x3 away

form zero. Secondly, starting from t1, apply u1(t) = −k2sgn(x3x6) till x5(t2) 6=
0 and x6(t2) = 0. It can be verified that any k2 6= sgn(x3x6)

x3(t1)x
2
6(0)

2x5(0)
with

10



t2 = t1 +
|x3(t1)x6(0)|

k2

will do. Thirdly, apply the finite-time-stabilizing feedback

controller (Bhat and Bernstein 1998)

u2(t) = −k3[x
1
3
4 + (x3 +

3

5
x

5
3
4 )

1
5 ]

to achieve x3(t3) = x4(t3) = 0 in finite time t3 > t2. Fourthly, let

u1(t) = −k4sgn(x1 − 21

λ2
x

1
3
5 )− k5sgn(x2 +

6

λ
x

1
3
5 )

which steers the state trajectory into D in finite time t4. Finally, the feedback con-

trol law (25) steers chained system (16) approaching the origin at an exponentially

convergent rate. All the ki’s are positive numbers which can be assigned freely.

Denote the respective control laws as

u1 =


 0

k1




u2 =


 −k2sgn(x3x6)

0




u3 =


 0

−k3[x
1
3
4 + (x3 +

3

5
x

5
3
4 )

1
5 ]




u4 =


 −k4sgn(x1 − 6

λ2
x

1
3
5 )− k5sgn(x2 +

3

λ
x

1
3
5 )

0




u5 =




x5
1
3

−k5x3 − k6x4 − 3k1x1x5
1
3 − 3k2x2x5

1
3 − 3k3x5

2
3 − k4

x6

x5
1
3

+
5

3

x2
3

x5
2
3

+
5

3
k6

x3x6

x5

+ 2
x4x6

x5

+
2

3
k5

x2
6

x5
4
3

− 50

9

x3x
2
6

x5
2
− 10

9
k6

x3
6

x5
7
3

+
80

27

x4
6

x5
10
3




Define a logic-based switching controller

u =





u5 if x ∈ D

u4 if x 6∈ D and x2
3 + x2

4 + x2
6 = 0 6= x5

u3 if x 6∈ D and (x2
3 + x2

4)x5 6= 0 = x6

u2 if x 6∈ D and x3 6= 0 and (x6 6= 0 or x5 = 0)

u1 else

(27)
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This controller steers system (16) globally approaching with an exponential rate of

convergence. The total number of switching is less or equal to four.

Remark 4. Note that in the switching strategy (27), the numerically non-detectable

criterion x2
3 + x2

4 + x2
6 = 0 can be relaxed to x2

3 + x2
4 + x2

6 < ε which are numerically

detectable, where ε is an appropriate small positive constant. The resulting state

configuration (before applying u5) is

x∗ = [
21

λ2
x

1
3
5 ,
−6

λ
x

1
3
5 , x3, x4, x5, x6]

with xi, i = 3, 4, 6 close to zero. Simple computation shows that, if

6λ
|x6|
|x5| + 5λ2 |x3|

x5
2
3

+ 2λ3 |x4|
x5

2
3

< 1

then x∗ ∈ D. Accordingly, ε can be selected as

ε =
1

6max{λ 1
2 , λ

3
2}max{|x5| 12 , |x5| 13}

which is not very restrictive.

Remark 5. As discussed in Remark 3, there might be many different choices for

φ(x) satisfying relationship (15). Besides the choice made in the paper above, other

candidates are also feasible. Indeed, it can be verified that any choice of the form

φ(x) = x
1

2i+1

5 with i ≥ 1 will lead to (different) controllers for system (16). Generally

speaking, the larger i is, the more computations are involved, and the slower the

convergence of the resulting controller is.

Remark 6. Note that feedback controllers for linear system (23) are not limited to

form (24). Other choices could also be made, and accordingly, different controllers

for chained system (16) could be obtained by following the same procedure discussed

above.

Remark 7. In Laiou and Astolfi (1999), the system is divided into the ‘base’ subsys-

tem and the ‘extended’ subsystem. The base subsystem is linear and time-invariant,

accordingly, linear feedback control laws can stabilize this subsystem. The resulting

extended subsystem is linear and time-varying, and a time-varying design technique

12



is utilised to present stabilizing feedback laws for it. The proposed controllers yield

exponential convergence of the state to the origin. Similar ‘base-extended’ decom-

position technique has also been used in Egeland and Berglund (1994) to develop a

time-varying control strategy for system (1) to guarantee asymptotic stability with

exponential convergence. In this paper, a new approach is based on nonregular feed-

back linearization of the whole system, thus it involves neither system division nor

time-varying design technique. As the approaches are essentially different, the re-

sulted controllers differ from each other accordingly.

4 Stabilization of high-order general chained systems

The design mechanism presented in Section 3 can be extended to the more general

class of nonholonomic systems (14). The design procedure is outlined as follows.

Let the first control be

u1 = φ(x) =





yl
1
n if n is odd

yl

1
n+1 if n is even

(28)

Denote the first-order state-space description of system (14) as

ẋ = f(x) + g1(x)u1 + g2(x)u2, x ∈ <n.

Let f0(x) = f(x) + g1(x)φ(x), and g0(x) = g2(x).

Define a real-valued function h(x) = x1, and new coordinates z and input v as

z = T (x) = [h, Lf0h, L2
f0

h, · · · , Ln−1
f0

h]T

v = Ln
f0

h + u2Lg0L
n−1
f0

h

The explicit expressions for z and v can be calculated routinely, though they become

more and more tedious as n increasing. Note that T (x) is discontinuous on the

surface Sn
D = {x ∈ <n : yl = 0}.

It may be verified that the inverse of z = T (x), denoted by x = T−1(z), is a vector

function with polynomial components. Therefore, exponential convergence of z(t)

implies exponential convergence of x(t) = T−1(z(t)).

13



Consider the Brunovsky canonical system (12). It is standard that we may find a

linear feedback control

v = −Kv = −
n∑

i=1

kizi

to exponentially stabilize this system. Let W denote the subset of <n such that every

trajectory of the closed-loop system started from W will never cross the surface Sn
D.

Define Dn = {x ∈ <n : T (x) ∈ W}. For nonholonomic system (14) with control law





u1 = φ(x)

u2 = −(Lg0L
n−1
f0

h)−1(Ln
f0

h(x) + KT (x))
(29)

every trajectory of the closed-loop system started within Dn will exponentially ap-

proach to the origin.

To achieve global stabilization, before applying control law (29), a control strategy

must be exploited to drive an arbitrary configuration outside Dn into Dn in finite

time. This strategy may depend on the parameters ki, i = 1, · · · , n and could be

determined accordingly.

5 Simulation studies

In this section, simulation studies are carried out to demonstrate the effectiveness

and procedure of the proposed approach.

Consider a PPR robot moving on a horizontal plain. All the three joints are passive

and the only available inputs are forces acting on the end-effector. Let mi be the

mass of the ith link, d3 the distance between the center of mass of the third link

and the third joint axis, l3 the length of the third link, and I3 the central moment

of inertia of the third link.

The dynamic model of the robot is (De Luca, Mattone and Oriolo 1998)

M(q3)q̈ + H(q3, q̇3) = JT (q3)F (30)

where qi, i = 1, 2, 3 are the generalised coordinates, F = [Fx, Fy]
T are the Cartesian

14



forces acting on the end-effector, and

M(q3) =




a1 0 a4 cos q3

0 a2 −a4 sin q3

a4 cos q3 −a4 sin q3 −a3




H(q3, q̇3) = −a4q̇
2
3




sin q3

cos q3

0




J(q3) =


 0 1 −l3 sin q3

1 0 l3 cos q3




with

a1 = m1 + m2 + m3

a2 = m2 + m3

a3 = I3 + m3d
2
3

a4 = m3d3

Under the condition that q3 6= π
2

+ kπ, k = 0,±1,±2, · · · , the dynamic equations

can be transformed into the second-order Caplygin form (De Luca, Mattone and

Oriolo 1998)

q̈2 = v1

q̈3 = v2 (31)

q̈1 = a5 tan q3v1 + a6 sec q3v2

where

v1 =
(a2

4 − a1a3)a4c3q̇
2
3

ρ1

+
a4a1l3s

2
3 + a2

4c
2
3 − a1a3

ρ1

Fx +
(a4 − a1l3)a4s3c3

ρ1

Fy

v2 =
a2 − a1)a

2
4s3c3q̇

2
3

ρ2

+
(a2l3 − a4)a1s3

ρ2

Fx +
(a4 − a1l3)a2c3

ρ2

Fy

a5 =
a4 − a2l3
a4 − a1l3

, a6 =
a4l3 − a3

a4 − a1l3
, s3 = sin q3, c3 = cos q3

ρ1 =−a1a2a3 + a1a
2
4 − a1a

2
4c

2
3 + a2

4a2c
2
3, ρ2 = −a1a2a3 + a1a

2
4s

2
3 + a2a

2
4c

2
3

15



System (31) can be converted to form (1) by the following state and input transfor-

mations




y1 = q2 − a6

a5

(cos q3 − 1)

y2 = a5 tan q3

y3 = q1 − a6 sin q3

(32)





u1 = v1 +
a6

a5

sin q3v2 +
a6

a5

cos q3q̇
2
3

u2 = a5 sec2 q3v2 + 2a5 sec2 q3 tan q3q̇
2
3

(33)

In summary, the original PPR robot model (30) can be transformed into system (1)

by state transformation (32) and input transformation





u1 =
(a2

4 − a1a3)a7c3q̇
2
3

a5ρ2

+
(a2

4c
2
3 − a1a3)a5 + a1a9s

2
3

a5ρ2

Fx +
s3c3a7a4 − a1l3

a5ρ2

Fy

u2 =
sec2 q3a5a

2
4c3s3(a2 − a1)q̇

2
3

ρ2

+ 2a5 sec2 q3 tan q3q̇
2
3 +

a1a5a8s3

ρ2

Fx +
a2c3

ρ2

Fy

where

a7 = a2a6 + a4a5, a8 = sec2 q3(a2l3 − a4), a9 = (a2a6l3 + a4a5l3 − a4a6)

The values of the parameters mi, i = 1, 2, 3 and I, l in this simulation are shown in

Table 1.

Table 1. Parameters used for simulation

[m1,m2,m3] [0.5, 0.5, 1.0] kg

I3 1 kg m2

[d3, l3] [1, 2] m

Suppose the joint configuration is initially at

q0 = (0.93, 5.43,−0.40π)[m, m, rad], q̇0 = (0, 2.50, 0)[m/s, m/s, rad/s]

The final desired state is the equilibrium

qd = q̇d = [0, 0, 0]T
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The corresponding initial state for system (1) is computed to be

x0 = [5.50,−2.50,−2.20, 0.00, 1.00, 0.00]T ∈ D

Accordingly, pure state feedback controller (25) can be used. Let λ = 1. Figures

1 and 2 show the convergence of the generalised coordinates and velocities, while

figure 3 demonstrates the boundedness of the applied forces. As shown in figure 1,

the angle q3 never crosses the singular points ±π
2
.

If the joint configuration is initially at

q0 = (5, 0,
π

4
)[m, m, rad], q̇0 = (0, 0, 0)[m/s, m/s, rad/s]

Then the corresponding initial state for system (1) is

x0 = [0.029, 0, 0.714, 0, 4.949, 0]T 6∈ D

Because the initial state is outside set D, appropriate control laws have to be con-

ducted to drive the system into D in a finite time, then the discontinuous controller

is applicable. Figures 4 and 5 shows the converging trajectories of the generalised

coordinates and velocities, respectively. Figure 6 demonstrates the boundedness of

the applied forces. Due to the switching of the control signals, the trajectories are

not smooth as shown in figures 4 and 5.

6 Conclusion

In this paper, a new nonregular feedback linearization mechanism has been proposed

to steer the second-order nonholonomic chained systems approaching the origin with

an exponential rate of convergence. A sufficient condition for nonsmooth nonregular

feedback linearization was presented for affine nonlinear systems with two inputs. It

has been proven that the second-order nonholonomic chained systems are nonregular

static state feedback linearizable. A discontinuous control law was designed based on

linear system theory and the inversion technique. To globally stabilize the systems,

a logic-based switching strategy among different control schemes was developed. A

simulation study has also been provided to show the effectiveness of the control

scheme.
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Figure 1: The generalised coordinates with continuous forces
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Figure 2: The generalised velocities with continuous forces
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Figure 3: The applied forces
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Figure 4: The generalised coordinates with discontinuous forces
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Figure 5: The generalised velocities with discontinuous forces
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Figure 6: Trajectories of discontinuous forces
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