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Abstract

This paper discusses the estimation of the parameters of a single input, single output (SISO)
process, modelled in first order lag plus delay (FOLPD) form, using gradient methods in the
open loop time domain. The paper considers the convergence of the process parameters to the
model parameters. The convergence of the model delay is discussed first, when the non-delay
model and process parameters are identical. The convergence of all of the model parameters is
then considered, when all of the process parameters are unknown.
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1 Introduction

Gradient methods of parameter estimation are based on updating the parameter vector
(which includes the delay) by a vector that depends on information about the cost function to be
minimised. The gradient algorithms normally involve expanding the cost function as a second
order Taylor's expansion around the estimated parameter vector. Typical gradient algorithms are
the Newton-Raphson, the Gauss-Newton and the steepest descent algorithms, which differ in
their updating vectors. The choice of gradient algorithm for an application depends on the desired
speed of tracking and the computational resources available. It is important that the error surface
in the direction of the delay (and indeed the other parameters) should be unimodal if a gradient
algorithm is to be used successfully. However, the error surface is often multimodal. In these
circumstances, strategies for locating global minima may involve multiple optimisation runs, each
initiated at a different starting point, with the starting points selected by sampling from a uniform
distribution [1]. The global minimum is then the local minimum with the lowest cost function
value among all the local minima identified.

The use of gradient algorithms to estimate the parameters of a delayed process has been
discussed in full elsewhere [2]. This paper will consider further the strategy proposed by Durbin
[3], in which the process is assumed to be modelled by a first order lag plus delay (FOLPD)
model. The process delay variation from the model delay is approximated by a rational



polynomial, and a Gauss-Newton gradient descent algorithm is used to estimate the delayed
model parameters. A previous paper [4] has shown that the first order Taylor’s series
polynomial is the most appropriate choice of rational polynomial; this paper has also provided a
proof of the convergence of the non-delay model parameters to the non-delay process
parameters, when the process and model delays are equal, in the presence of uncorrelated
measurement noise (this proof is labelled Theorem 0 and is available at
http://www.docsee.kst.ie/aodweb) [5].  Outline proofs of the convergence of the delay estimate,
and of all of the parameter estimates simultaneously, will be provided in this paper; full proofs of
the relevant theorems, and associated simulation work, are available [6]-[8].

2 Convergence of the Model Delay

2.1 The delay as an integer multiple of the sample period

Theorem 1: For a first order discrete stable system of known gain and time constant, the mean
of the product of the errors (MPE) performance surface versus model delay index is unimodal,
with a minimum value of the MPE occurring when the model delay index equals the process
delay index, under the conditions indicated below. The delay index is the delay divided by the
sample time.
(a)  The delay variation is approximated by a first order Taylor’s series approximation.
(b)  The measurement noise is uncorrelated with the process input.
(c)  The resolution on the process delay is assumed to be equal to one sample period.
(d)  The error is calculated based on using a FOLPD process model; the partial derivative of the

error with respect to the delay variation is calculated based on using the first order Taylor’s
series approximation for the delay variation.

(e) The process delay index is greater than the model delay index, as the model delay index
converges.

(f)  The input signal to the process and the model allows the fulfilment of the necessary
conditions for unimodality provided in the theorem.

Proof: The process difference equation, )n(y2 , based on using a FOLPD process model, is [6]
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with pT  (process time constant) = mT (model time constant) = T, pK (process gain) = mK (model
gain) = K and process time delay, spp Tg=τ , sT  = sample period, =pg  process delay index, u(n)

= input, w(n) = measurement noise. The model difference equation, assuming that the previous
process output is used in its calculation and mg  = model delay index, is
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Therefore, from equations (1) and (2),
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The partial derivative of the error with respect to the delay variation may then be calculated by
using a first order Taylor’s series approximation for the delay variation. The corresponding
model difference equation is [6] (assuming the previous process output is used in its calculation)
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Therefore, from equations (1) and (4), )n(y)n(y)n(e 2m22 −=  =
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The corresponding partial derivative is

[ ])1gn(u)gn(u
T

KT
)gg(

)n(e
mm

s

mp

2 −−−−=
−∂

∂      (6)



The update vector for updating the model delay, which depends on the product of )n(e3

and )gg()n(e mp2 −∂∂ , is then independent of pg . The cost function that corresponds to this
update vector is the MPE function; this function is defined as )]n(e)n(e[E 32  in this case. The
MPE performance surface, E e n e n[ ( ) ( )]2 3 , may then be calculated to be [6]
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)n(ruu  and )n(rww  being the autocorrelation functions of )n(u  and )n(w  respectively. Therefore,
=)]n(e)n(e[E 32 )0(rww  for pm gg = .

It may be shown by comparing the sizes of the individual terms in equation (7) that
>)]n(e)n(e[E 32 )0(rww  for mp gg >  only [6]. Thus, the minimum value of )]n(e)n(e[E 32  occurs at

pm gg =  (when mg  is restricted to be less than or equal to pg ) and the measurement noise has no
effect on the estimated process delay value. If mp gg > , then, from equation (7), the only
situation that arises for which =)]n(e)n(e[E 32 )0(rww  for pm gg ≠  is when the input has a flat
autocorrelation function, which corresponds to a constant level input. Thus, any input change is
sufficient for correct process delay index estimation, provided that the required condition on mg

is fulfilled, if the process delay index is estimated by determining the minimum of the MPE
performance surface.

However, if a gradient method is used to estimate pg , then an additional restriction that
the MPE function must be unimodal for mp gg > , with a minimum MPE value occurring at

pm gg = , is imposed. The unimodality of the MPE function for mp gg >  may be proved by
induction; an outline of the inductive proof (provided in full in reference [6]) is as follows:
It may be proved that the MPE function at 1gg pm −=  is greater than the MPE function at

pm gg =  (using equation (7)), provided that
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It may also be proved that the MPE function at 1ngg pm −−=  is greater than the MPE function
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Both of the conditions in equations (8) and (9) are fulfilled by many excitation signals e.g. a
white noise signal or a square wave signal [6].                                                         

       �
The behaviour of the MPE function (equation (7)) versus model delay index is confirmed

by Figures 1 and 2, in representative simulation results. For these simulations, 0.2KK mp == ,
7.0TT mp == seconds and 30g p = . The normalised MPE (= )0(r/MPE uu ) is plotted versus model

delay index; )0(rww  = 0. The plots show that the MPE surface is greater than )0(rww  for mp gg >

only, and that when the conditions in equations (8) and (9) are fulfilled, the MPE function is
unimodal for mp gg > , with a minimum MPE value occurring at pm gg = .

A representative simulation result corresponding to Theorem 1 is given in Figures 3 and
4. The starting values of the process and model delay index were both equalised; a step change
was then made to the process delay index. The process and model gain and time constant
parameters were put equal to 2.0 and 0.7 seconds, respectively (as above). The Levenberg-
Marquardt gradient algorithm [9] was used to update the model delay index; the sample time is
0.1 seconds. Coloured measurement noise, generated by low-pass filtering a white noise signal,



was added. The model delay index was limited in variation to one sample period per iteration;
such filtering was found to be desirable in simulation. Good convergence to the process delay
index is seen for mp gg > . Other supplementary simulation results show no convergence to the
process delay index when mp gg < . This verifies Theorem 1. The error, )n(e3 , in Figures 3b and
4b is non-zero due to the presence of the coloured measurement noise.

Figure 1: Normalised MPE vs. time delay Figure 2: Normalised MPE vs. time delay
index, gm  - white noise input       index, gm  - square wave input

Figure 3a: Time Delay Index Estimate-  Figure 4a: Time Delay Index Estimate-
white noise excitation   square wave excitation

Figure 3b: Process minus Model output        Figure 4b: Process minus Model output

2.2 The delay as a real multiple of the sample period

Theorem 1 dealt with the estimation of delays that are integer multiples of the sample
period. For the estimation of delays that are real multiples of the sample period (and assuming

KKK,TTT mpmp ==== ), the FOLPD process difference equation is [6]:
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with bg  = process delay minus the process delay index. The corresponding model difference
equation (assuming the previous process output is used in its calculation) is

 = gp

 -- = gm
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with ag  = model delay minus model delay index. The model difference equation for calculating
the partial derivative of the error with respect to the delay variation (and assuming that the
previous process output is used in its calculation) is [6]
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The MPE performance surface, )]n(e)n(e[E 54 , may be obtained in a similar manner to the
development outlined in equations (5) to (7), with )n(y)n(y)n(e 4m34 −=  and

)n(y)n(y)n(e 5m35 −= . It may be shown that )]n(e)n(e[E 54  = )0(rww  if mp gg =  and ab gg = [6].
Simulation results show that the MPE function versus model delay is multimodal when

the delay is a real multiple of the sample period [6]. The estimation of the real value of the
process time delay, using the approach, is impossible using gradient methods.

3 Convergence of the full parameter set

Theorem 2: For a first order discrete stable system of unknown parameters, the MPE
performance surface versus model delay index is minimised when the model delay index equals
the process delay index, under the following conditions:
(a)  The delay variation is approximated by a first order Taylor’s series approximation.
(b)  The measurement noise is uncorrelated with the process input and output.
(c)  The resolution on the process delay is assumed to be equal to one sample period.
(d)  The error is calculated based on using a FOLPD process model; the partial derivative of the

error with respect to the delay variation is calculated based on the first order Taylor’s series
approximation for the delay variation.

(e)  The conditions provided in the theorem are observed on the model parameters.
(f)  The input to the model and the process is assumed to be a white noise signal.
Proof:  The process difference equation, )n(y1 , is [7]
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The model difference equation, )n(y 1m , is
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The partial derivative of the error with respect to the delay variation may then be calculated by
using a first order Taylor’s series approximation for the delay variation. The corresponding
model difference equation is [7]
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If )n(y)n(y)n(e 1m11 −=  and )n(y)n(y)n(e 8m18 −= , the MPE performance surface, )]n(e)n(e[E 81 ,
may then be calculated to be [7]:

)]n(e)n(e[E 81  = )0(r)ee(
11

msps
yy

2TTTT −− − )g(r)ee)(e1(K2 puy
TTTTTT

p 1

mspsps −−− −−+

)0(r)]
T

T)gg(
e1)(e1(K)e1(K[ uu

m

smpTTTT2
m

2TT2
p

msmsps
−

+−−+−+ −−−

)gg(r]
T

T)gg(
)e1(2)[e1(KK mpuu

m

smpTTTT
mp

msps −
−

+−−− −− )1(r
T

T)gg(
)e1(K uu

m

smpTT2
m

ms
−

−− −

)1gg(r
T

T)gg(
)e1(KK mpuu

m

smpTT
mp

ps +−
−

−+ − )1g(r
T

T)gg(
K)ee( muy

m

smp
m

TTTT

1

msps −
−

−+ −−

)g(r}
T

T)gg(
)e1(2{K)ee( muy

m

smpTT
m

TTTT

1

msmsps
−

+−−− −−−
)0(rww+  (16)



White noise excitation: )0(r)k(r uuuu = , k = 0; 0)k(ruu =  otherwise. 0)ng(r puy 1
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By comparing the amplitudes of the individual terms in equations (16) and (17), it may be shown
that )]n(e)n(e[E 81  > opt81 )]n(e)n(e[E  for (a) mp gg >   (for all values of process and model

parameters) and (b) mp gg < , provided )ee1)(e1(K mspsps TTTTTT
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The condition in (b) is a sufficient condition, rather than a necessary condition.

However, if a gradient method is used to determine pg , then, as before, the MPE
function must be unimodal with a minimum MPE value occurring at pm gg = . The conditions for
unimodality may be proved by induction [7]; these conditions are:
(a)  mp gg > : Conditions for unimodality are fulfilled for all process and model parameters.

(b)  mp gg < : The MPE function at 1gg pm +=  is greater than the MPE function at pm gg = ,
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The nature of )]n(e)n(e[E 81  means that for a full inductive proof, it is necessary to prove that
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Similarly, it may be proved, that the MPE function at 1ngg pm ++=  is greater than that at
ngg pm += , provided the following necessary condition is fulfilled [7]:
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The theorem indicates that if pK  and pT  are unknown, then convergence of the model time
delay index to the process time delay index may only be completely guaranteed if the value of
the model delay index is always less than or equal to the process delay index. The behaviour of
the MPE function (given by equation (16)) versus delay index is confirmed, in representative
simulation results, by Figures 5, 6 and 7. In Figure 5, 0.2K p = , 0.1K m = , 7.0Tp = s and 0.1Tm = s
so that the conditions given in equations (18) and (19) (but not (20)) are fulfilled. In Figure 6,

0.2K p = , 0.3K m = , 7.0Tp = s, 5.0Tm = s, so that none of the conditions in equations (18), (19) or

(20) are fulfilled. In Figures 7a and 7b, 1000K p = , 0.1K m = , 0.2Tp = s, 0.1Tm = s so that the

conditions given in equations (18) and (19) are fulfilled; the condition given in equation (20) is
fulfilled for a large range of time delay index values greater than the process time delay index,
as Figure 7b shows (it is interesting to see that pK  must be large and pT  must be greater than

mT  if equation (20) has any chance of fulfillment). The normalised MPE is plotted versus delay
index in all figures, with )0(rww  put to zero and 30g p = . The excitation signal in both cases is a
white noise signal. The results are as expected from the theorem.

A representative simulation result corresponding to Theorem 2 is given in Figures 8 to
10, with the parameters plotted against sample number. It was also found necessary to limit the



variation of the non-time delay model parameters; for the simulations taken, 0.3K5.0 m <<  and
0.5s 0.3Tm << s were the limits. The normalised MPE curve corresponding to these simulation
results is given by Figure 5.

Figure 5: Normalised MPE vs time delay Figure 6: Normalised MPE vs time delay index
index - white noise excitation - white noise excitation

 

Figure 7a: Normalised MPE vs time delay Figure 7b: Normalised MPE vs time delay
index - white noise excitation    index -white noise excitation

        Fig. 8: Gain estimate        Fig. 9: Time constant estimate        Fig. 10: Delay index estimate

These results conform to Theorem 2.
It may also be shown, using analysis similar to that performed in Section 2.2, that the

MPE function determined when the delay is a real multiple of the sample period is also
multimodal with respect to delay [7].

For a square wave input, a theorem similar to that of Theorem 2 (labelled Theorem 3)
may be developed [8].

Model time delay index
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Model time delay index

Sample number

 = Kp

 -- = Km

 = Tp

 -- = Tm

Model time delay index Model time delay index

Sample numberSample number



4 Conclusions

A number of theorems have been developed to analytically describe the conditions under
which the model parameters may converge to the process parameters. The corresponding cost
functions may be unimodal when mp gg > ; otherwise, various conditions must be observed on the
process and model parameters to achieve unimodality, which are impossible to evaluate prior to
the implementation (as the process parameters are generally unknown). In addition, the inability
of the relevant proposed methods to estimate delays that are real multiples of the sample period
is disappointing. Both of these features are difficult to reconcile with a practical application. The
requirement that in some cases the excitation signal to the process should be of white noise form
is another difficulty, as such a signal is not realisable in practice; however, other excitation
signals may also be used, as described in the theorems. On a positive note, the fact that
unimodality does exist on the cost function for some conditions, when the delay is unknown a
priori, provides some encouragement. One possibility may be to filter the data before
identification, as this may increase the range of delay over which the cost function is unimodal,
though the speed of convergence of any gradient algorithm used tends to be reduced [10]. In
addition, if the process delay index may be estimated accurately, an estimate of a process delay
that is a real multiple of the sample period could be determined by fitting an appropriate curve to
a plot of the cost function (calculated, perhaps, in simulation) versus model delay index. The
main difficulty with the use of the gradient algorithm, as implemented, is the estimation of the
time delay term. One avenue of future work that may be fruitful would be to estimate the delay
using an alternative (non-gradient) approach, and estimate the non-delay parameters using the
gradient approach.
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