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Abstract

This paper discusses the estimation of the parameters of a single input, single output (SISO)
process, modelled in first order lag plus delay (FOLPD) form, using gradient methods in the
open loop time domain. The paper considers the convergence of the process parameters to the
model parameters. The convergence of the model delay is discussed first, when the non-delay
model and process parameters are identical. The convergence of al of the model parametersis
then considered, when al of the process parameters are unknown.
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1 Introduction

Gradient methods of parameter estimation are based on updating the parameter vector
(which includes the delay) by a vector that depends on information about the cost function to be
minimised. The gradient agorithms normaly involve expanding the cost function as a second
order Taylor's expansion around the estimated parameter vector. Typica gradient algorithms are
the Newton-Raphson, the Gauss-Newton and the steepest descent algorithms, which differ in
their updating vectors. The choice of gradient algorithm for an application depends on the desired
speed of tracking and the computational resources available. It isimportant that the error surface
in the direction of the delay (and indeed the other parameters) should be unimoda if a gradient
agorithm is to be used successfully. However, the error surface is often multimodal. In these
circumstances, strategies for locating global minima may involve multiple optimisation runs, each
initiated at a different starting point, with the starting points selected by sampling from a uniform
digribution [1]. The globd minimum is then the locd minimum with the lowest cost function
value among al the loca minima identified.

The use of gradient algorithms to estimate the parameters of a delayed process has been
discussed in full elsewhere [2]. This paper will consider further the strategy proposed by Durbin
[3], in which the process is assumed to be modelled by a first order lag plus delay (FOLPD)
model. The process deday variation from the model delay is approximated by a rationa
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polynomial, and a Gauss-Newton gradient descent algorithm is used to estimate the delayed
model parameters. A previous paper [4] has shown that the first order Taylor's series
polynomia is the most appropriate choice of rational polynomial; this paper has aso provided a
proof of the convergence of the non-delay model parameters to the non-delay process
parameters, when the process and model delays are equal, in the presence of uncorrelated
measurement noise (this proof is labelled Theorem 0 and is avalable a
http://www.docsee.kst.ie/aodweb) [5]. Outline proofs of the convergence of the delay estimate,
and of all of the parameter estimates simultaneoudly, will be provided in this paper; full proofs of
the relevant theorems, and associated simulation work, are available [6]-[8].

2 Conver gence of the Model Delay

2.1 The delay as an integer multiple of the sample period

Theorem 1: For afirst order discrete stable system of known gain and time constant, the mean

of the product of the errors (MPE) performance surface versus model delay index is unimodal,

with a minimum value of the MPE occurring when the modd delay index equals the process
delay index, under the conditions indicated below. The delay index is the delay divided by the
sample time.

() The delay variation is approximated by afirst order Taylor’'s series approximation.

(b) The measurement noise is uncorrelated with the process input.

(c) Theresolution on the process delay is assumed to be equa to one sample period.

(d) The error is caculated based on using a FOLPD process modd; the partial derivative of the
error with respect to the delay variation is caculated based on using the first order Taylor's
series gpproximation for the delay variation.

(e) The process delay index is greater than the model delay index, as the modd delay index
converges.

(f) The input signal to the process and the model allows the fulfilment of the necessary
conditions for unimodality provided in the theorem.

Proof: The process difference equation, y, (n), based on using a FOLPD process mode, is[6]

Y2(n)=e Ty (n- )+ K- & Mun- g, - ) +w(n) @
with T, (process time constant) =T (model time condtant) = T, K, (process gain) = K (model
gain) = K and processtime delay, t,=g,T,, T, =sample period, g, = process delay index, u(n)
= input, w(n) = measurement noise. The mode difference equation, assuming that the previous
process output is used in its calculation and g,, = moddl delay index, is

Yms(M) =€ Ty,(n- D+ K@L- € MNu(n-g,-D 2
Therefore, from egquations (1) and (2),
;N =y,(n) - Ya(n) =K(@- e *Nu(n- g,- - u(n- g, - 1] +w(n) (€©)

The partial derivative of the error with respect to the delay variation may then be calculated by
using a first order Taylor's series gpproximation for the delay variation. The corresponding
model difference equation is[6] (assuming the previous process output is used in its calculation)

Yoa(n) =& M7y, (n- 1) - Mum- 0.) - KE™ - 1- %)u(n- 6-1 @
Therefore, from equations (1) and (4), e,(n) =y,(n)- y,,(n) =
K(- € ™Mu(n- g, - 1) +Mu(m - ) +KE -1 (g"'—f’”m)u(n- g, - Dl+w(n) (O

The corresponding partid derivativeis
fle,(n)
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The update vector for updating the model delay, which depends on the product of e, (n)
andfe, (n)/1(g, - 9.), is then independent of g,. The cost function that corresponds to this
update vector is the MPE function; this function is defined as E[e,(n)e,(n)] in this case. The
MPE performance surface, Ee,(n)e,(n)], may then be calculated to be [6]

2K2(1' e TSIT)Z[ruu(O) - T (gp - gm)] +K2(1' e TS/T)(gp-—_?m)Ts[ruu(O)' o (1)+ruu(gp “On +1)]

. Kz(l_ e.Ts/T) (gp_ gm)Ts
T

[rw(@p - 9m)] + 1w (0) ),
r,,(n) and r,, (n) being the autocorrelation functions of u(n) and w(n) respectively. Therefore,
Ele,(n)e,(n)] = r,,, (0 for g, =g,.

It may be shown by comparing the sizes of the individua terms in equation (7) that
Ele, (n)e,(n)] > r,,, (0 for g, >g,, only [6]. Thus, the minimum value of E[e,(n)e,(n)] occurs at
9. =9, (When g, isrestricted to be less than or equal to g, ) and the measurement noise has no
effect on the estimated process delay value. If g, >g,,, then, from equation (7), the only
situation that arises for which Efe, (n)e,(n)] = r,,,(0) for g, * g, is when the input has a flat
autocorrelation function, which corresponds to a constant level input. Thus, any input change is
sufficient for correct process delay index estimation, provided that the required condition on g,

is fulfilled, if the process delay index is estimated by determining the minimum of the MPE
performance surface.
However, if a gradient method is used to estimate g, , then an additional restriction that

the MPE function must be unimodal for g,>g,, with a minimum MPE value occurring at
Om =9, IS imposed. The unimodality of the MPE function for g,>g, may be proved by

induction; an outline of the inductive proof (provided in full in reference [6]) is as follows:
It may be proved that the MPE function a g,, =g, - 1 is greater than the MPE function at

On =9, (using equation (7)), provided that

(gp - gm)Ts u

82(1_ € TS/T) +fl’:\] [ruu(o) - ruu(gp - gm)] > M [ruu(l) - r‘uu(gp - Om +1)] (8)
e a T

It may aso be proved that the MPE function at g,, =g, - n- 1 is greater than the MPE function

at gm :gp - n, prOVidaj tha 2(1' e-TS/T)[ruu(gp - gm) - ruu(gp = Om +1)] +%[ruu(0) - ruu(l)]

+ 220y In)u@s - In)- (By - 200+ a0y~ In +D+ Gy Gn + D@y - G +21>0 (9
Both of the conditions in equations (8) and (9) are fulfilled by many excitation signas eg. a
white noise signal or a square wave signal [6].
U
The behaviour of the MPE function (equation (7)) versus model delay index is confirmed
by Figures 1 and 2, in representative smulation results. For these smulations, K, =K, =20,

T,=T,=0.7secondsand g, =30. The normalised MPE (= MPE/r,,(0) ) is plotted versus model
delay index; r,,,(0) =0. The plots show that the MPE surface is greater than r,,(0) for g, >g,
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only, and that when the conditions in equations (8) and (9) are fulfilled, the MPE function is
unimodd for g, > g,,, with aminimum MPE vaue occurring a g, =g,.

A representative smulation result corresponding to Theorem 1 is given in Figures 3 and
4. The starting values of the process and model delay index were both equalised; a step change
was then made to the process delay index. The process and model gain and time constant
parameters were put equa to 2.0 and 0.7 seconds, respectively (as above). The Levenberg-
Marquardt gradient algorithm [9] was used to update the model delay index; the sample time is
0.1 seconds. Coloured measurement noise, generated by low-pass filtering a white noise signal,



was added. The modd delay index was limited in variaion to one sample period per iteration;
such filtering was found to be desirable in smulation. Good convergence to the process delay
index is seen for g, >g,,. Other supplementary simulation results show no convergence to the

process delay index when g, <g,, . This verifies Theorem 1. The error, e,(n), in Figures 3b and
4b is non-zero due to the presence of the coloured measurement noise.

Figure 1: Normalised MPE vs. time delay Figure 2: Normdised MPE vs. time deay
index, g,, - white noise input index, g,, - square wave input
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Figure 3b: Process minus Modd output Figure 4b: Process minus Modd output

2.2 The delay as areal multiple of the sample period

Theorem 1 dedlt with the estimation of delays that are integer multiples of the sample
period. For the estimation of delays that are real multiples of the sample period (and assuming
T,=T,=T, K,=K_,=K), the FOLPD process difference equation is [6]:

ys(n) =e ™y (n- D +K@- " Nu(n- g,) +KE"™ - e™Nu(n-g,-)+w(n) (10)
with g, = process delay minus the process delay index. The corresponding model difference
equation (assuming the previous process output is used in its calculation) is



Yma(M) =€ Ty (n- )+ K(1- e=*Mu(n- g,) + K - e MNu(n- g,- 1) (11)
with g, = modd delay minus model delay index. The mode difference equation for calculating
the partid derivative of the error with respect to the delay variation (and assuming that the
previous process output is used in its calculation) is[6]

Ys(M) =€ M7y (n-2) - K gm;gb- 9T,

U(n - gm)

(Gp- 9m + 9 - 9)Ts
—————"u(n- g, - I (12)

The MPE performance surface, E[e,(n)e,(n)], may be obtained in a smilar manner to the

development outlined in equations (5 to (7), with e, (n)=y,(n)-y,,(n) and

e;(nN) =y,(n) - y,s(n). It may be shown that E[e,(n)e,(n)] = r,,(0) if g, =g, and g, =g, [6].
Simulation results show that the MPE function versus model delay is multimoda when

the delay is a rea multiple of the sample period [6]. The estimation of the rea value of the
process time delay, using the approach, isimpossible using gradient methods.

- K[e /T - 1-

3 Convergence of the full parameter set

Theorem 2. For a first order discrete stable system of unknown parameters, the MPE
performance surface versus model delay index is minimised when the model delay index equals
the process delay index, under the following conditions:

() The delay variation is approximated by afirst order Taylor’'s series approximation.

(b) The measurement noise is uncorrelated with the process input and output.

(c) The resolution on the process delay is assumed to be equal to one sample period.

(d) The error is caculated based on using a FOLPD process moddl; the partial derivative of the
error with respect to the delay variation is calculated based on the first order Taylor's series
approximation for the delay variation.

(e) The conditions provided in the theorem are observed on the model parameters.

(f) Theinput to the model and the process is assumed to be a white noise signal.

Proof: The process difference equation, vy, (n), is[7]

v =e 7"y,(n- D+ K, - e - g, - H+w(n) (13)
The modd difference equation, vy, (n) , is
V(M) =€ My (n-D+K @- €™ ™u(n-g, -1 (14)

The partial derivative of the error with respect to the delay variation may then be calculated by

using a first order Taylor's series gpproximation for the delay variation. The corresponding

model difference equation is[7]

Km(gp - gm)Ts
T

If e(n)=y,(n)- y,(n) and e, (n)=y,(n)- y,z(n), the MPE performance surface, E[e (n)e,(n)],

may then be calculated to be [7]:

Ele(n)e,(M] = (€™ - ™), (0) + 2K (L- & )& ™ - ™™, ,(g,)

(9 - 9n) T,
T

m

u(n-g, -1 (15)

- T.
uin - g,,) - Km(e-TsITm - 1- (Q’PT&

Ymg(N) = € TelTn yi(n-1)-

m

+[K, @ €™+ K - e ) e T+ I, (0)

- K K@ e 2@ e ™)+

(gp _Tgm)Ts (gp B gm)TS r (1)

]ruu (gp - gm) - sz(l_ € TS/Tm) T uu
- T. :
(gp.r&ruu(gp © Om +1) + (e

m m

- g,)T.
%} Fyu(Gm) 1y (0) (16)

m

T, . T/ T )Km (gp - gm)Ts

+ K, K, @- &™) Nu(@m- D

(@ - @K 201 €T ™) +



White noise excitation: r, (k)=r,©0), k = 0; r, (k=0 otherwise. r, (g,+n)=0, n<l;

ry. (@, +n) =(€ /)" 'K, @- € ™), (0 otherwise[7]. At g,, =g, , using equation (16),

Ele (n)e (N =( ™™ - €T/, , (0)+[K, (- &™) - Ky (1- €7/™)?r,(0) +1,,(0) (17)
By comparing the amplitudes of the individua terms in equations (16) and (17), it may be shown
that E[e (n)e,(n)] > Ele(n)e (), for (@) g,>g, (for al values of process and model
parameters) and (b) g, <g,,, provided K, (- € */")1- & /" +e ™) > K (1- e™/™) [7].

The condition in (b) is a sufficient condition, rather than a necessary condition.
However, if a gradient method is used to determine g, then, as before, the MPE

function must be unimoda with a minimum MPE vaue occurring @ g,, =g,. The conditions for

unimodality may be proved by induction [7]; these conditions are:
(@ g,>g,: Conditions for unimodality are fulfilled for al process and model parameters.

() g,<g,: The MPE function a g,, =g, +1 is greater than the MPE function a g,,=g,,

provided K, (1- & */™)[2@- e ™/™) - %](1- e 1Ty > %(l- g ™) (18)

The nature of E[e (n)e,(n)] means that for a full inductive proof, it is necessary to prove that
Ele(n)ey(n)]g, =, - 2> Ele(n)g )]y, -, -1 (thisis because E[e (n)e,(n)] (equation (16)) depends on
rw(9, - 9 +1)). A necessary condition for thisto be trueis[7]:

- T[T,

[K,(1- € ™/%) - K- /)] 2

m

+(@E@"M" - e MK, (- € 2 e - TT—S)(l- e "/") - TT—S] >0 (19)

Smilarly, it may be proved, that the MPE function a g, =g,+n+1 is greater than that at
Om =0, + n, provided the following necessary condition is fulfilled [7]:

_ T,
Kn(1- e TS/Tm)T—S

m

Kp(l_ e-TS/TP)e-(n-Z)Ts/Tp (e'TS/TP - e'Ts/Tm)

- 2T5/Tp

%[(n +e " - 2n+0e " 4]+ 2(1- € ) (a- e M P)e T (20) O

The theorem indicates that if K, and T, are unknown, then convergence of the model time

delay index to the process time delay index may only be completely guaranteed if the value of
the model delay index is aways less than or equal to the process delay index. The behaviour of
the MPE function (given by eguation (16)) versus delay index is confirmed, in representative
smulation results, by Figures 5, 6 and 7. In Figure 5, K, =20, K =10, T,=07sand T,=10s

so that the conditions given in equations (18) and (19) (but not (20)) are fulfilled. In Figure 6,
K,=20,K_ =30,T,=07s T, =05s, 50 that none of the conditions in equations (18), (19) or
(20) are fulfilled. In Figures 7aand 7b, K,=1000, K =10, T, =20s, T, =10s so that the
conditions given in equations (18) and (19) are fulfilled; the condition given in equation (20) is
fulfilled for a large range of time delay index values greater than the process time delay index,
as Figure 7b shows (it is interesting to see that K, must be large and T, must be greater than

T, if equation (20) has any chance of fulfillment). The normalised MPE is plotted versus delay
index in all figures, with r,, (0) put to zero and g, =30. The excitation signa in both cases is a

white noise signal. The results are as expected from the theorem.
A representative smulation result corresponding to Theorem 2 is given in Figures 8 to
10, with the parameters plotted against sample number. It was aso found necessary to limit the



variation of the non-time delay model parameters; for the smulationstaken, 0.5<K _<3.0 and
0.5s < T, < 3.0s were the limits. The normalised MPE curve corresponding to these smulation
resultsis given by Figure 5.

Figure 5: Normalised MPE vs time delay Figure 6: Normalised MPE vs time delay index
index - white noise excitation - white noise excitation
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These results conform to Theorem 2.

It may aso be shown, using analysis similar to that performed in Section 2.2, that the
MPE function determined when the delay is a real multiple of the sample period is aso
multimodal with respect to delay [7].

For a sgquare wave input, a theorem similar to that of Theorem 2 (labelled Theorem 3)
may be developed [8].



4 Conclusions

A number of theorems have been developed to analytically describe the conditions under
which the model parameters may converge to the process parameters. The corresponding cost
functions may be unimodal when g, >g,, ; otherwise, various conditions must be observed on the

process and model parameters to achieve unimodality, which are impossible to evaluate prior to
the implementation (as the process parameters are generally unknown). In addition, the inability
of the relevant proposed methods to estimate delays that are real multiples of the sample period
is disappointing. Both of these features are difficult to reconcile with a practical application. The
requirement that in some cases the excitation signal to the process should be of white noise form
is another difficulty, as such a signal is not redisable in practice; however, other excitation
signals may aso be used, as described in the theorems. On a positive note, the fact that
unimodality does exist on the cost function for some conditions, when the delay is unknown a
priori, provides some encouragement. One possibility may be to filter the data before
identification, as this may increase the range of delay over which the cost function is unimodal,
though the speed of convergence of any gradient algorithm used tends to be reduced [10]. In
addition, if the process delay index may be estimated accurately, an estimate of a process delay
that is ared multiple of the sample period could be determined by fitting an appropriate curve to
a plot of the cost function (caculated, perhaps, in smulation) versus mode delay index. The
main difficulty with the use of the gradient algorithm, as implemented, is the estimation of the
time delay term. One avenue of future work that may be fruitful would be to estimate the delay
using an aternative (non-gradient) approach, and estimate the non-delay parameters using the
gradient approach.
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