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Abstract — This paper presents work on the application of virtual metrology techniques
to the VAriable Specific Impulse Magnetoplasma Rocket (VASMIR) engine. The work
concentrates on the estimation of internal temperatures of the rocket using state space
models and Optical Emission Spectroscopy (OES). These estimations are useful as direct
thermal measurements will not be available in the final system design.
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I Introduction

The VASIMR engine is a relatively new technology
that uses a highly ionised plasma as a propelling
force for space travel.

The current prototype under development uses
200 kW of power during operation. The ther-
mal management of a system with such high levels
of power is a complex and essential task for the
projects success. Heat is an unfortunate byprod-
uct of the plasma production process, and this heat
must be safely disposed of to avoid damage to the
apparatus.

In order to measure temperatures on points of
the VASIMR prototypes, thermocouples are used.
This allows the temperature of critical components
to be monitored in real time. Due to design con-
straints, and issues with RF interference, thermo-
couples are not practical for temperature determi-
nation on the final engine design.

Optical emission spectrometry (OES) is an op-
tical technique often used to gather more infor-
mation on luminescent processes in a noninvasive
manner. It is hoped that the optical emission from
the VASIMR engine may provide information that
could be used to aid temperature estimation when
thermocouple data is not available.

State estimation, or virtual metrology is a
methodology involving the estimation of process
variables which are not directly measurable, but
where related signals are available. A great deal
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of research is being undertaken in semiconductor
manufacture and virtual metrology [1].

The research reported in this paper attempts
to use state estimation techniques, combined with
OES measurements, to reconstruct spatial mea-
surements of temperatures in the VASIMR rocket
engine.

This paper begins in Section II with a gen-
eral introduction to the VASIMR system. Sec-
tions III, IV and V explain the basics of Optical
Emission Spectroscopy (OES), the identification
method used to build the models, and the state
estimation techniques used, respectively. Finally,
in Sections VI and VII, the collection of data is
described, and results of the work are presented.

II VASIMR

The VASIMR plasma rocket engine is an alterna-
tive space propulsion device that uses a magneti-
cally accelerated plasma as its source of propulsion.
The engine uses the widely available gas, argon, as
fuel, and has the advantage over traditional chem-
ical rockets in that the specific impulse (Isp) and
thrust of the VASIMR engine can be varied dur-
ing flight, allowing more efficient fuel consumption
and minimum transit time [2].

The VASIMR technology can be viewed as three
linked magnetic stages. The first stage contains
a helicon antenna that ionises neutral propellant
gas. The second stage uses an Ion Cyclotron Res-
onance Heating (ICRH) antenna to further ener-
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gise the plasma, and the third stage is a magnetic
nozzle, that converts the energy of the plasma into
directed flow [3]. A schematic of the plasma engine
is shown in figure 1.

Fig. 1: Schematic of VASIMR engine [2]

The varying of the thrust and specific impulse
output of the rocket engine is achieved by varying
the total power distribution between the helicon
plasma source, and the ICRH antenna [4].

This work concerns the helicon stage of the
VASIMR. It consists of a quartz tube, with a water
cooled helicon antenna surrounding it (Figure 2).
Argon gas is passed through the tube at varying
flow rates to be ionised by the antenna, using an
RF voltage at 13.56 MHz. The tube is surrounded
by electromagnetic coils, that create a magnetic
field parallel to the flow of plasma. The plasma
flows through the quartz containment tube into a
vacuum chamber that simulates the conditions of
outer space.

Fig. 2: Schematic of helicon section [2]

The helicon section is visualised as an inde-
pendent system with three inputs; the antenna
power (W), the current in the magnetic coils sur-
rounding the helicon (A) and the flow of argon
gas used (sccm). The corresponding output mea-
surements available during experimentation are
the OES spectrum taken downstream from the
plasma exhaust and the outputs from thermocou-
ples bonded to the surface of the quartz tube. This
work aims to find and utilise the relationship be-
tween these outputs to assist temperature predic-
tion in real time.
2
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III Optical Emission Spectroscopy

Relaxation and excitation processes in an active
plasma discharge cause the plasma to luminesce.
The wavelengths of light that are emitted depend
on the electron transitions that occur within the
atoms and molecules of the plasma. As an electron
falls from a higher energy level to a lower one, a
photon is released with an energy equal to the en-
ergy difference between the levels of the transition.

OES is a technique that is frequently used to
monitor and diagnose plasma processes. OES
spectrometers can record part of the spectrum of
radiation emitted from an active discharge (usu-
ally 200-900 nm), through a window with visual
access to the plasma. Data is collected in a real
time and non-perturbing manner. OES diagnos-
tics are commonly applied in the semiconductor
industry [5] [6]. The amount of light recorded per
sample by the spectrometer is controlled using the
spectrometer integration time.

Over 2000 different wavelength signals can be
recorded in every sample of OES data. Due to
the computational difficulties associated with large
data sets, and as many of the signals are found
to be highly correlated, data reduction techniques
such as principal component analysis (PCA) are
regularly employed [6].

PCA can be seen as a method of transforming an
original set of correlated variables into new uncor-
related variables, known as principal components
(PCs). Each PC is a linear combination of the orig-
inal variables. They are arranged in order of the
variance each one explains in the original dataset
[7].

Before PCA is performed on a set of data, X,
made up of n samples (rows) and m variables
(columns), it is usual to offset each variable to
have zero mean, and sometimes to scale each to
unit variance. This is useful if the original data
has many different scales. Scaling to unit variance
also gives all variables equal importance for the
analysis. However, in the analysis of OES, many
of the variables may contain noise only, and there is
no advantage to giving these the same importance
as variables with meaningful information. PCA
performs an eigenvalue decomposition of the co-
variance or correlation matrix of X, which decom-
poses the data matrix X as the sum of the outer
product of vectors ti and pi plus a residual matrix
E. [6]:

X = t1p
T
1 + t2p

T
2 + ... + tlp

T
l + E (1)

= TPT + E (2)

where,

T = [t1, t2, ...tl] (3)
P = [p1, p2, ...pl] (4)
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and l is the number of principal components. The
vectors ti are known as the scores and T ∈ Rn×1

the score matrix; the pi vectors are the loadings
and P ∈ Rm×1 the loadings matrix. For PCA,
the decomposition of X is such that the loading
matrix P is orthonormal and the score matrix T
is orthogonal. The first PC is the linear combina-
tion of the m original variables that explains the
greatest amount of variability (t1 = Xp1). In the
m-dimensional variable space, the loading vector
p1 defines the direction of the greatest variance
[8]. Overall, loadings represent how the original
variables are combined to make the principal com-
ponents, scores represent the modelled part of the
data, and finally, E, the residual, represents the
data that is left unrepresented by the model. For
a matrix X of rank r, r principal components can
be calculated. However, the first k (k < r) of
these may be sufficient to explain the major vari-
ances in the data. If k = dim(x), then E = 0, and
the representation of the data is exact for the new
variables (principal components).

IV State Space Model Identification

Usually, state space identification is not de-
fined with respect to known state measurements.
Rather, outputs (y) and inputs (u) are specified,
with the state space representation somewhat ar-
bitrarily chosen to within a similarity transforma-
tion, where the states don’t necessarily correspond
to physical quantities [9]. In this work, we present
a method, based on simple least squares, which
allows a state space model, with provision of spe-
cific state measurements in the training set, to be
determined.

It was required to identify the parameters of a
state-space model of the form:

xk+1 = Axk + Buk (5)
yk = Cxk + Duk (6)

with x ∈ Rn representing the temperatures of the
system (n = 18), u ∈ Rm being the inputs to the
helicon (m = 3), y ∈ Rp representing the outputs
of the system, the PCs of the OES spectra (p = 3).,
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m.

Data is available, during model building, for x, u
and y for a number of different system excitations
(see Section VI). Measurements of y and u will
be available during operation and we require to
determine estimates of the state vector.

For simpler operation using the state space
model in feedback estimation form, D is set to
zero. We determine the model as by first expand-
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ing (5), as:
x1

x2

...
xn


k+1

=


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann




x1

x2

...
xn


k

. . . +


b11 b12 . . . b1m

b21 b22 . . . b2m

...
...

. . .
...

bn1 bn2 . . . bnm




u1

u2

...
um


k

(7)

We can write out the first row of Eq.(7) for each
value of k:

x1
k+1

x1
k+2
...

x1
k+N

 =


x1

k . . . xn
k . . .

x1
k+1 . . . xn

k+1 . . .
...

...
...

...
x1

k+N−1 . . . xn
k+N−1 . . .

. . .

u1
k . . . um

k

u1
k+1 . . . um

k+1
...

...
...

u1
k+N−1 . . . um

k+N−1





a11

...
a1n

b11

...
b1m


(8)

where a total of N measurement (time) points are
available. This equation is of the form:

Y = ΦΘ (9)

and has the least squares solution [10]:

Θ̂ = (ΦT Φ)−1ΦT Y (10)

A total of n least-squares problems are solved to
get all rows of A and B. A similar formulation is
required to identify C.

V State Estimation

In order to increase the accuracy and disturbance
rejection of state space models such as that de-
scribed above, it is usual to include some type of
feedback that allows the model error to be used
to correct estimations. When directly available,
state variables are used for this purpose. However,
in many cases the state information will not be
available during operation.

With the model obtained in Section IV, it is pos-
sible to estimate the evolution of the system states
in time for a known input sequence, uk. The accu-
racy of this type of estimation depends both on the
accuracy of the initial conditions (ICs) provided,
x̂0, and the accuracy of the model parameters. If
the ICs are inaccurate or the model parameters, A,
B and C, are incorrect, the estimated state may
have a continually growing error [11].
6
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To apply feedback to the state space equations,
Equation 5 is adjusted to incorporate the error be-
tween the measured system outputs and the pre-
dicted outputs.

x̂k+1 = Ax̂k + Buk + L(yk − Cx̂k) (11)

where x̂k are the estimated states and output, and
L is a proportional gain, adjusted to achieve satis-
factory error performance. This is shown in Figure
3. L can be manipulated so that x̂k converges to xk

regardless of the values of x̂0. It should be noted
that without a perfect model of the system, errors
cannot be reduced completely to zero. However,
L can typically be chosen to that errors remain
acceptably small.

Fig. 3: State Space model in with estimation feedback

The selection of L is chosen with the error dy-
namics in mind. With the error defined as ek ≡
xk − x̂k, these dynamics are found by subtracting
the estimate (Equation 11) from the state (Equa-
tion 5) to give [11]:

ek+1 = (A− LC)e (12)

which has a characteristic equation:

det[sI − (A− LC)] = 0 (13)

With this in mind, we can specify the desired loca-
tion of the estimator error poles for certain decay
speeds and noise rejection properties as:

si = β1, β2, β3, ....βn (14)

which yields are desired characteristic equation:

α(s) = (s− β1)(s− β2)(s− β3)....(s− βn) (15)

By comparing Equation 15 with Equation 13, the
desired value of L can be determined.

An alternative method of determining L for a
desired error response is the use of Ackermann’s
formula in estimator form, given by:

L = α(A)O−1


0
0
...
1

where O =


C

CA
...

CAn−1


(16)

and O is known as the observability matrix.
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VI Data Collection and
Experimentation

A large dataset is required so that parameters A, B
and C of the state space model can be determined.
A Design of Experiment (DOE) type experiment
was carried out varying the inputs over specific
regions (Table 1). The operating region was kept
to a small range, in an effort to find a relatively
linear operation region, and also due to equipment
restrictions at the time of experimentation.

Value High Mid Low
Antenna Power (W) 800 1100 1400

Magnets (A) 800 1000 1200
Gas Flow Rate (sccm) 100 - 300

Table 1: DOE Input Levels

In total, 18 experiments were run, and the tem-
peratures were allowed to reach steady state values
where possible. Temperatures were recorded from
18 thermocouples bonded to the quartz gas tube
of the helicon section using ceramic paste. Ther-
mocouples were sampled at 1Hz using a National
Instruments ADC interfaced with a LabView con-
trol system for the VASIMR. Repeats of four of the
experiments were carried out to assess repeatabil-
ity between operational setpoints. Each setpoint
appeared to have a significantly different and re-
peatable spectrum.

OES measurements were recorded downstream
from the plasma using an Ocean Optics S2000
spectrometer, recording 2047 wavelengths from
200-850 nm at a frequency of approximately 1Hz.
The integration time used for each spectrum was
200 ms, which was found to be the best choice to
avoid saturation while still capturing as many lines
as possible. The OES signals were first resampled
at the same time instants as the thermocouples,
and then represented using three PCs. These ex-
plained ∼ 97% of the OES variance. As the tran-
sients in the OES PCs were faster than that of the
thermocouples, difficulties were found in determin-
ing a satisfactory C matrix for the model. In or-
der to assist this effort, the dynamic response of
the spectral data was slowed down using an expo-
nentially weighted moving average (EWMA) filter
so that the OES (outputs) time constants were of
a similar magnitude to those of the thermocouple
(states). The equation for the EWMA was:

Sk+1 = αSk + (1− α)yk (17)

where α was set to 0.995, Sk represents the newly
slowed signal and yk is the original OES PC signal.

Thermocouple signals with erroneous values
were repaired manually where possible, and signals
representing the input changes were created. Some
thermocouple data was corrupted beyond repair
7
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and so discarded. This corruption was caused by
RF interference in some high power experiments.

The data set was used to create the state space
model which was configured in closed loop estima-
tor form as shown in Figure 3. The model has eigh-
teen states (x) representing temperatures, three
outputs (y) that are the OES PCs, and three in-
puts (u) representing the VASIMR inputs. The
estimator transient response was set to be slightly
faster than the transients found in the model’s A
matrix. This was achieved using Ackermann’s for-
mula.

VII Results

Here we examine some of the results from the state
estimation process. The diagrams in this section
display state or output predictions, and for sim-
plicity only display two randomly chosen states or
two system outputs.

a) Model validation

An important consideration for this application is
the accuracy of the model determined, so that it
can be relied on for estimation purposes. As a
first examination, Figure 4 shows two of the out-
puts of the model, when driven using the actual
temperature values. The actual output is plotted
on the same axis for comparison. We can see that
the identification technique was relatively success-
ful at determining the linear combination of states
(C matrix) that can represent the optical PC out-
puts.

Fig. 4: Real output vs. output of model.

b) Multi-step Prediction Performance

The open loop performance of the model is satis-
factory, once precise initial conditions (x̂0) are pro-
vided. The state estimates and the outputs from
the model are plotted in Figures 5 and 6 respec-
tively. We can see how with exact initial condi-
tions, the state and output estimates follow the
2
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real values with relative accuracy. The error in-
creases over time due to model inaccuracies. With
random initial conditions the estimates of temper-
ature and state are much more inaccurate, and do
not converge to the real values.

Fig. 5: Open loop behaviour of model states.

Fig. 6: Open Loop behaviour of model outputs.

c) Closed-loop Estimation

In a realistic situation, initial conditions for the
system states will be unknown. Figures 7 and 8
show the model behaviour when configured in a
closed loop estimation form. It can be clearly seen
that both the estimated outputs and the estimated
states, although starting with random initial con-
ditions, converge towards the real values over time.

VIII Conclusions

This work has demonstrated the successful appli-
cation of a state estimator to the helicon section
of the VASIMR engine. We have shown accurate
(within 10 ◦C) estimation of VASIMR tempera-
tures, using only OES measurements and the sys-
tem inputs.
8
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Fig. 7: State Estimator performance with random ICs.

Fig. 8: Output predictions for random ICs with closed
loop estimation.

This system may be used in future prototypes
and final designs of the VASIMR, allowing non in-
vasive determination of temperature, where ther-
mocouple placement is impossible. This will pro-
vide a real time estimate of internal temperatures.

One disadvantage to the proposed system is that
the full operating region needs to be explored by
experiment prior to model building, so that ex-
trapolation is avoided during operation. While
the region investigated in this work was assumed
to have a linear response, larger regions may not
demonstrate such behaviour, requiring more ad-
vanced modelling techniques.

Further directions for work include the explo-
ration of larger operating regions of the VASIMR,
and the use of alternative heat sensors. The appli-
cation of Kalman filters to improve the estimation
procedure is to be examined, aiming to achieve
faster convergence and reduce noise.

IX Acknowledgements

The authors are very grateful to the staff at the Ad
Astra Rocket Company Costa Rica for access and
use of VASIMR equipment and data. This project
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