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Abstract: This paper examines a simple model of an idealised point-absorber wave
energy device. The objective of the research is to examine how the device can be
optimised in order to extract maximum energy from incident waves. This applies
to both the broad design parameters of the buoy and also to the synthesis of
the damping function, in which the wave energy is converted. The issue of the
adjustment of the phase of the velocity evolution with respect to the incident force
(known as phase control) is dealt with in detail, with the intention of optimising
the damping force over the wave cycle. The research ultimately attempts to
parameterise the optimal damping force in terms of incident wave frequency and
device parameters. Copyright c© 2004 IFAC
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1. INTRODUCTION

Many researchers and practitioners have con-
sider point absorber devices over the last two
decades, including Budal and Falnes (Budal and
Falnes, 1975), Wright et al (Wright et al., 2003)
and Dick (Dick, 2003). Much of the literature
has focussed on the issue of device optimisation
through both basic device design (shape, mass
distribution and buoyancy) and also the power
take-off system used to extract the wave energy.
The latter is the principal focus of interest in the
current study and a number of researchers have
addressed this point, with a particularly extensive
study by Falnes (Falnes, 2002). Falnes makes a
number of important conclusions:

(1) Energy conversion is maximised if the device
velocity is in phase with the excitation force,
and

1 This author would like to acknowledge the fruitful dis-

cussions with Prof. Bill Leithead of the Hamilton Institute

at NUI Maynooth

(2) The velocity amplitude, |u| should equal Fe

2Ri
,

where Fe is the excitation force and Ri is a
device resistance.

Condition 2 above has a number of difficulties:

• It requires that the wave excitation force, Fe,
be measured,

• Ri turns out to be a non-causal function, and
• The power take-off (PTO) machinery must

supply energy during part of the wave cycle
in order to achieve the optimum |u|.

The need to supply energy may be considered
strange, but this can be likened to a person on a
swing, who uses body and leg motion to increase
the amplitude of the swinging, by appropriate
timing of the effort. Nevertheless, the need to
supply energy requires a very complex PTO sys-
tem and to the best of this author’s knowledge,
such a system has not yet been realised. However,
Condition 1, representing a passive requirement,
has received considerable attention and several re-
searchers have addressed the problem. In particu-
lar, a method used to delay the velocity evolution,
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called latching, has been employed by a variety of
researchers (Falnes and Lillebekken, 2003; Babarit
et al., 2003; Korde, 2002; Wright et al., 2003;
Greenhow and White, 1997).

Note that Conditions 1 and 2 above can be alter-
natively formulated in terms of complex conjugate
(Nebel, 1992) (or reactive) control, which consid-
ers the complex impedance of the device.

Mass M

Damping BBuoyancy K

Wave motion

�
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�

Fig. 1. Conceptual point absorber

A conceptual diagram of the device under ex-
amination is depicted in Fig.1. It consists of a
cylindrical device which is constrained to move
in the vertical direction (heave motion) only. The
damping is notional and could be provided either
internally in the device (as in (Korde, 2002)) or
external to it (as in (Wright et al., 2003)). One
other assumption in the concept device is that the
diameter of the body is very small compared with
the sea wavelength, so that the sea displacement
is co-incident with the wave’s heave force on the
device.

2. PRELIMINARY CALCULATIONS

2.1 System Model

The dynamics of the devices described in Section
1 can be described, under some mild assumptions,
by the differential equation:

Mẍ(t) + Bẋ(t) + Kx(t) = F (t) (1)

where:

x represents the displacement of the body from
rest,

M represents the mass (inertia) of the body,
B represents the viscous friction, characteristic of

hydraulic resistance used in PTO devices,
K represents the buoyancy/gravity forces experi-

enced by the body, and
F (t) represents the heave force experienced by

the wave-energy device.

There are a number of important assumptions
inherent in the description in (1) above. In par-
ticular:

• Added mass, which affects both inertia and
damping terms and is related to the inertia
of the water surrounding the device, is largely
ignored in the damping term in (1). However.
it can be contained (notionally, at least) in
M .

• Radiation damping, resulting from the en-
ergy carried away by surface waves generated
by the device, is largely ignored. Some com-
ponent of this can (notionally) be included
as a linear term within B, though radia-
tion damping is normally a nonlinear func-
tion of velocity. The linear damping compo-
nent can represent skin friction, in particular
(Fossen, 2002).

• The buoyancy/gravity restoring force is con-
sidered to be proportional to displacement
from rest. In general, this is a small-signal
approximation, since the restoring force is
normally a nonlinear function of displace-
ment.

The heave force due to incident waves will, in the
first incidence, be assumed to be monochromatic,
of the form:

F (t) = Asin(ωwt) (2)

The choice of monochromatic waves and the
model in (1), is chosen for simplicity, since intro-
duction of latching is a highly nonlinear interven-
tion and quickly adds complexity. Equation (1)
can also be easily recast in transfer function form
as:

X(s)
F (s)

= G(s) =
1

Ms2 + Bs + K
(3)

or, in terms of transient response parameters, as:

G(s) =
1
K

ω2
n

s2 + 2ζωns + ω2
n

(4)

with

ωn =

√
K

M
, ζ =

B

2

√
1

MK

Equation (1) can also be conveniently expressed
in state-space (companion) form, as:

A =

[
0 1

−K

M
− B

M

]
B =

[
0
1
M

]
D = [0] (5)

with a state vector of:

X(t) =
[

x(t)
ẋ(t)

]
(6)
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2.2 Power and Energy

For a mechanical system, the power (P ) is the
product of force and velocity. In wave energy
systems, the PTO device is normally represented
by the damper, giving the power developed in the
damper as:

Pd = force x velocity = Bẋ ẋ = Bẋ2 (7)

The energy developed by the action on the damper
over a period of time t1 is:

Ed(t1) =

t1∫
0

Pddt =

t1∫
0

Bẋ2dt (8)

Maximum power is transferred to the damper
when Equation (8) is maximised over a period of
the wave force. This results in the condition:

ωn =

√
K

M
= ωw (9)

Under this maximum condition (ωn = ωw), the
velocity profile of the device is in phase with
the wave force, consistent with Condition 1 in
Section 1. Note that some adjustment of the
device to achieve (9) may be possible through the
use of appropriate quantity and position of water
ballast.

The phase of the velocity profile (relative to the
force profile) is evaluated as:

� G(jω)
s

=
π

2
− tan−1

(
ωB

K − Mω2

)
(10)

Clearly, if K = Mω2, then velocity is in phase
with force or, indeed, if B = ∞. One further con-
sideration here is that the force lags the velocity
when:

ωw < ωn or Mωw < K (11)

This places an upper bound on the device mass
relative to the buoyancy. In addition, if a device is
designed to be optimal for a given wave frequency,
ω∗

w, the wave force will only lag the velocity when
the wave frequency, ωw decreases below this value.
This has important implications for the possibility
of using latching to ‘delay’ the velocity profile in
order to get it in phase with the force profile.

3. LATCHING BASICS

Latching can be achieved by means of a mechan-
ical brake (applied at the appropriate latching
points) or open close valves on the hydraulic lines
of the PTO system. In simulation, latching can be
achieved in two ways:

• The latching point is determined as the point
where the device velocity goes to zero. At this
point, the first and subsequent derivatives of
displacement go to zero in (1) and if the wave
force is replaced by a force equal and opposite
to the restoring force (Kx), then ‘latching’
is achieved. This mechanism is illustrated in
Fig.3.

• The closing of valve) can easily be imple-
mented in simulation by setting the damping
coefficient, B, to ∞.

Taking, for example, the case where 0.5ωn = ωw

(with ωw = 0.5, corresponding to a wave period of
just over 12 seconds), the response with latching
(with M = K = B = 1) is shown in Fig.3.

Fig. 2. Simulation configuration
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Fig. 3. Variations in Ed and T opt
L with B and ωw

A number of features can be observed from Fig.3:

• The amplitude of the position response is
greater then for the unlatched case,

• The velocity response, though highly nonlin-
ear, is now in phase with the force profile,
and

• The overall energy captured from the system,
via the damper, has increased from 1.94 Ws
(unlatched) to 4.62 (latched) Ws per period
of the incident wave.

Interestingly, the energy figure in the latching case
is even greater than that achieved when ωn =

CAMS 2004 157



ωw = 1 (at 3.14 Ws), but this is accounted for
by the fact that the wave energy is proportional
to wave period (Falnes, 2002) as:

J =
ρg2

32π
TH2 (12)

where T is the wave period in seconds, H is the
wave height (trough to crest) in meters, and ρ is
the water density (= 1020 kg/m3 for sea water.

4. SOLUTION TO LATCHING SYSTEM
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Fig. 4. Latching calculations

A solution to the latched system can be had by
considering Fig.4. One period, or cycle, of the
stimulus and response is given by:

t5 − t1 =
2π
ω

(13)

Given that each of the latching periods occurs
consistently for TL seconds, this gives the dynamic
response period as:

t3 − t2 = t5 − t4 =
π

ω
− TL (14)

For the (linear) system as given, the solution
over the periods t2 → t3 and t4 → t5 is equal
and opposite (assuming the transient response
has died down). Therefore, the solution need only
be evaluated over a half period. The solution for
t1 → t2 is:

X(t) =
[

p
0

]
(15)

The solution for the period t2 → t3 may be
determined from the solution to (5), assuming a
reference point of t2 = 0, as:

X(t) = eAt

[
p
0

]
+

t∫
0

eA(t−τ)Ba sin(ωτ + φ)dτ(16)

Though equations (15) and (16) can be used to
give an expression for the state (position and
velocity) over the entire cycle, there are two un-
knowns:

φ , the phase offset between the force, F (t), and
the position response, and

p , the height of the position response

However, since the response has zero mean, and
the transient response has died down, we know
that:

X(t3) =
[−p

0

]
(17)

Inserting this in (16) gives:

[−p
0

]
= eA( π

ω −TL)

[
p
0

]
+

a

π
ω −TL∫
0

eA( π
ω −TL−τ)B sin(ωτ + φ)dτ

Equation (18) represents 2 equations in 2 un-
knowns and can, in concept at least, be solved
for φ and p. This type of solution procedure is
followed in (Babarit et al., 2003), using a transfer
function system description.

5. LATCHING RESULTS

Figs.5 and 6 summarise the variations in the con-
verted energy and optimal latching period (re-
spectively) for variations in B and ωw. Some com-
ments are noteworthy:

• Converted energy decreases with increasing
ωw at smaller values of B, while it increases
with ωw at larger values of B.

• There is a clear optimal value for B, though
this does seem to vary a little with ωw.

• At low B values, the converted energy in-
creases with ωw, as ωw approaches ωn.

• The optimal latching period, T opt
L , goes to

zero as ωw → ωn (in this case ωn = 1.
• As stated above, there is little sensitivity of

T opt
L to variation in B, particularly for the

range of B shown.
• There is a clear 1

ωw
relation with T opt

L for
all values of B. Re-plotting T opt

L against
1

ωw
for (as an example) B = 0.1 shows a

linear relationship between T opt
L and the wave

period (slope 0.5065, intercept -3.2022). As
might be expected, T opt

L does not appear as
a consistent ‘proportion’ of the wave period,
Tw, but rather is an affine function of Tw,
with an offset of 2π in the current example
(= ωn).

6. THE OPTIMALITY OF LATCHING

This paper focusses on latching as a solution to
force the velocity profile to be in phase with
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Fig. 5. Variations in Ed with B and ωw
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Fig. 6. Variations in T opt
L with B and ωw

the applied wave force. However, since the wave
energy is converted in the damping term (see
equation (8)) one can concieve of a multitude of
loading possibilities, where the damping term is
varied over the wave cycle, or scheduled with de-
vice velocity. Indeed, some researchers have looked
at the possibility of having a very low damping
‘load’ at the beginning of the cycle (beginning at a
point of zero velocity) and increasing the damping
only after a preset velocity is reached. Such a
‘freewheeling’ strategy is in strong contrast to
latching, where the damping is effectively infinite
for the latching period i.e. a short period following
the point of zero velocity.

To determine, in a limited way, the optimal load-
ing regime, the damping term was parameterised
in terms of a general sigmoid function (see Fig.7)
as follows:

B(t) =
Bmax − Bmin

1 + e−β(t−t∗) + Bmin (18)

This provides for many possible damping func-
tions, including latching, freewheeling and uni-
form (linear) damping, as illustrated in Fig.8.

The parameters of the sigmoid in equation(18)
were adapted, using a genetic algorithm (Goldberg,
1989), in order to maximise the energy function
(equation (8), Fig.??) over a wave period, where
ωw = 0.5 (corresponding to a wave period of
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Fig. 7. Sigmoidal parameterisation of damping
functions
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Fig. 8. Possible damping functions

Parameter Value

Chromosome coding Binary

Population size 70

Number of generations 30

Generation gap 0.7

Recombination probability 0.7

Mutation probability (per bit) 0.035

Selection Roulette wheel

Table 1. GA parameters

Range Bmin Bmax t∗ β

Max 0 0 -20 0

Min 50 1090 +20 3000

Table 2. Range for sigmoid parameters

12.56 secs.). The default values of M = K = 1
were used, as before. A genetic algorithm (GA),
with elitism, was employed since the performance
surface to be searched is non-convex with respect
to the sigmoid parameters. Briefly, the parameters
of the GA are given in Table 1.

The ranges allowed for the sigmoid parameters are
given in Table 2.
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Parameter Bmin Bmax t∗ β

Final value 0.0546 1090 2.7 -2530

Table 3. Final sigmoid parameter values

The final values attained following maximisation
of the energy per wave period are as given in Table
3.

These values clearly indicate the optimality of a
latching strategy. Firstly, the value for β is neg-
ative, indicating that a ‘high then low’ strategy
(characteristic of latching) is preferable for B(t).
The height of the initial damping is at the upper
limit of the allowed range, indicating effectively
infinite initial damping (or complete ‘latching’).
The magnitude of the slope parameter, β is very
large, indicating an almost instantaneous transi-
tion from latching to a subsequent finite value for
B. The final value for B, Bmin, is very close to
the optimal damping value indicated in Fig.5, for
a wave frequency of ωw = 0.5. Finally, the time for
which B(t) is held high (the latching time) is very
close to the optimal value (for ωw = 0.5) indicated
in Fig.6.

7. CONCLUSIONS

Optimal extraction of wave energy requires a
number of device aspects to be considered. In
the first instance, it is required that the resonant
frequency of the device be placed in the region
of dominant wave frequency. Further to this, ad-
justments to optimise the power absorbed by the
device in the damping element can be made by at-
tempting to get the velocity profile in phase with
the incident wave force. Latching provides one
mechanism of achieving this and it can be shown
that latching provides the optimum adjustment of
the device damping over the wave period. Given
that latching is employed, some further care needs
to be taken in setting the appropriate (unlatched)
damping level, since the energy take depends on
this damping value, with the optimal damping
also dependent on the dominant wave frequency.
While the analysis in this paper has assumed a
simplified device model, it focusses on the salient
issues in wave energy device design and should be
extendible to more realistic sea/device models for
heaving buoys and could also be extended to more
complicated structures, such as the McCabe Wave
Pump (MWP) (McCormick et al., 1998).
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