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 Abstract -- This paper focuses on the determination of suitable 
approximations for sigmoid-type nonlinear characteristics, which are 
common to physiological systems, particularly cardiovascular 
regulatory systems. These sigmoid nonlinearities have been implicated 
in the development of limit cycle oscillations in blood pressure. 
Approximations of the sigmoid are required since the describing 
function is not calculable for the all representations of the sigmoid 
characteristic. In this paper, we present a new approximation, which 
gives a better overall approximation of the sigmoid and hence, can assist 
the use of describing functions in the diagnostic analysis of 
cardiovascular function. 
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I  INTRODUCTION 

It is well established that an oscillation exists at 0.1 
Hz in blood pressure of humans [9]. This oscillation 
is evident in other species and is shifted to 0.14 Hz in 
the dog [1], 0.3 Hz in the rabbit [7] and 0.4 Hz in the 
mouse and rat [4, 6]. Changes in the strength of this 
slow oscillation in blood pressure have previously 
been proposed to reflect changes in the mean level of 
the sympathetic nerve activity, which changes in 
heart rate and blood vessel diameter, or changes in 
the gain of the major regulating feedback loop, the 
baroreflex. Hence, it is thought that measurement of 
the strength of the oscillation may be used as a 
diagnostic measure of neural control of the 
cardiovascular system in humans [9]. 
 
Physiological experimental studies have documented 
a sigmoid-type nonlinear relationship between blood 
pressure and sympathetic nerve activity [3, 10] in the 
forward path of the baroreflex. A recent modelling 
study [12] included this nonlinear characteristic in a 
feedback loop with a transfer function representing 
the dynamics of the vasculature system 
parameterised for the rabbit. They showed that the  

 
nonlinearity was involved in the genesis of a limit 
cycle at the frequency of the oscillation in the blood 
pressure of the rabbit. 
 
Systems containing nonlinear characteristics can be 
analysed using describing function techniques. The 
describing function allows the extension of linear 
frequency-domain stability analysis techniques to the 
nonlinear case. The nonlinear element is then 
represented as a gain term, dependent on the 
amplitude of the input signal.  
 
Calculation of the describing function for the blood 
pressure regulating system enables assessment of the 
presence or absence of a limit cycle oscillation in 
blood pressure and changes in the strength of this 
oscillation when the characteristics of the 
nonlinearity change during different physiological 
conditions. Hence, an analytical expression for the 
describing function is required to allow insight into 
how changes in the parameters of the nonlinearity 
will effect changes in the strength of limit cycle 
oscillations in blood pressure. 
 



Traditional methods of describing function 
calculation using Fourier series analysis reduce to the 
problem of calculating certain integrals. For the case 
of the sigmoid-type nonlinearity a closed-form 
expression cannot be found for these integrals. A 
previous method of describing function 
approximation based on the Taylor series expansion 
was developed. This method was used by these 
authors in the prediction of limit cycle oscillations in 
blood pressure [8] as it enables accurate calculation 
of the describing function for very low values of 
input amplitude signal. However, so as to enable 
accurate calculation of the strength of the low-
frequency blood pressure oscillation and hence, 
permit the development of a diagnostic measure, a 
describing function that is accurate for a large range 
of input amplitude signals is necessary. 

 
Figure 2: The sigmoid plotted for the parameters given. 

 
 The representation used by these authors in previous 

studies [8, 12] to represent the sigmoid is This paper presents a more accurate method of 
approximation of the sigmoid, which enables 
accurate describing function calculation for a large 
range of values of the input amplitude signal. 

 * *
*

( ) ( )
( )

1 1x x x x

r rs x y
e eβ βα α− − −

= −
+ +

+  (2) 

  
Other representations of the sigmoid are common in 
the physiology literature [3, 10, 11].  II  THE DESCRIBING FUNCTION  
 

The structure of the reduced model of the baroreflex 
blood pressure regulatory mechanism presented in 
the study of Ringwood and Malpas [12] is shown in 
Figure 1. 

Describing function theory is developed by initially 
assuming a sinusoidal input to the nonlinear element 
 
 ( ) ( )M t mSin tω=  (3)  
The output of the nonlinearity may be represented by 
the Fourier series expansion 
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ω= ∫  (5) Figure 1: The reduced model of the baroreflex blood 
pressure controlling mechanism presented by Ringwood 

and Malpas [12]. 
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where, the dynamics of the vasculature are 
represented by a first-order transfer function  where, 
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Describing function theory assumes that the transfer 
function, G s , low-pass filters the ouput signal of 
the nonlinearity, hence, all except the fundamental 
are disregarded.  

( )
 
where, τ is the time constant (~1.3s). Td1 (~0.6s) and 
Td2 (~0.2s) are the efferent and afferent time delays 
of the rabbit due to the conduction along the nerves 
[12].   1 1( ) ( ) ( )N t ACos t B Sin tω ω= +  (8) 
 The describing function is defined as  The nonlinear element, NL, in the forward path is the 
sigmoid, which is shown in Figure 2.   1( , ) 1B jAN m

m
ω +

=  (9) 

The sigmoid is an odd function when centred at the 
origin, therefore, 1 0A =  



and, 
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Referring to the block diagram of Figure 1, and 
replacing the nonlinear function ( )s x

( )N m
 by its 

describing function representation, , a linear 
systems approach produces the characteristic 
equation   
 This integral may be calculated using numerical 

integration methods. However, no closed-form 
analytic expressions exist for it. Similarly, no closed-
form expressions exist for the other representations 
of the sigmoid [10, 11]. Hence, traditional methods 
of describing function analysis are not applicable for 
this example, if a closed-form expression is required. 
An alternative representation of the sigmoid must be 
found which avoids the occurrence of this problem. 

 1 ( ) ( )N m G j 0ω+ =  (11) 
or, 
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When considering a specific value of input amplitude 
, the Nyquist stability criterion is easily adapted 

to the nonlinear system analysis situation by 
considering encirclements of the point 

( )m

1
( )N m−  in 

the (G j )ω plane.  

 

III  DESCRIBING FUNCTION 
APPROXIMATIONS  

This well-known theory has already been used by 
these authors with success when predicting the 
possible occurrence of limit cycle oscillations in 
blood pressure [8]. By setting the input amplitude to 
zero the possible existence of a limit cycle oscillation 
was investigated for a range of physiological 
conditions.  

a) Describing function approximation using the 
Taylor series expansion of the sigmoid. 
 
Holohan  introduced a method of describing function 
approximation based on the Taylor series expansion 
of the sigmoid [5]. The approximation of the sigmoid 
using 6 terms of the Taylor series expanded around 
the origin is shown in Figure 2. The sigmoid is 
described for the parameters listed in Figure 1. 

 
However, when considering all oscillation 
amplitudes (0 )m< < ∞ , the representation of 

1
( )N m− generates a locus in the (G j )ω plane. If 

the (G j )ω contour in the complex plane intersects 

the 1−

( )G j

( )N m locus, the intersection satisfies the 

condition for a sustained limit cycle oscillation. The 
intersection point defines values of frequency (from 

ω ) and amplitude (from 1
( )N m− ) for this 

limit cycle oscillation. 
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Figure 3: The sigmoid (thin line) and the approximation of 
the sigmoid for 6 terms of the Taylor series expansion 

(thick line). 

 
Increasing the number of terms of the Taylor series 
expansion increases the accuracy of the 
approximation around the origin but no increase in 
the accuracy outside of this region is attained. 
 
When the input to the nonlinearity ( )s x is ( )mCos tω , 
the output is ( ( ))s mCos tω . What results for finite 
number of terms of the Taylor series expansion is an 
approximation to the Fourier series expansion of 

( ( ))s mCos tω . As in equation 9, the describing 
function  is then the coefficient of the 
fundamental divided by the amplitude of the input 
signal. 

( )N m

Figure 4: Nyquist plot showing the G j curve given by 

equation 1 and the 

( w)
1

( )N m− locus developed using the 

Taylor series expansion method. 

 
  



Using the Taylor series expansion method of sigmoid 
approximation the 1

( )N m−  curve produces 

erroneous results outside the range of accuracy of the 
sigmoid approximation. Outside this range the 

1
( )N m− curve doubles back and increases in the 

opposite direction for increasing values of the input 
amplitude signal, m. 
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Hence, the resulting values of amplitude and 
frequency of the limit cycle oscillation are not 
correct for a large range of input amplitude values. 

  
( )s x 2[ 1,1]L∈ − , the function defined in equation (2),  

is approximated by 
Considering this problem an alternative method of 
representing the sigmoid was considered. A function 
approximation method based on orthogonal 
polynomial expansion was developed.  
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b) Describing function approximation using 
Legendre polynomial approximation of the sigmoid i.e. 2 2ˆ( ) ( ) min ( ) ( )
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Functions can be approximated over different 
intervals than [ 1,1]−  through dilation and 
normalisation of the orthonormal basis and the 
accuracy of the approximation can be increased by 
increasing the number of Legendre polynomials 
used. 
  

[ ](2 , ,L a b w)  is an inner product space [2] with inner 
product  
  

  | ( ) ( ) (
b

a
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Other sets of orthogonal polynomials including 
Chebyshev polynomials of the first kind where 

12 2( ) (1 )w x x −= −  and Chebyshev polynomials of 

the second-kind where 2( ) 1w x x= −  were also 
investigated, but, the Legendre polynomials gave the 
best approximation.  

Let be an orthonormal basis for { }ne [ ](2 , ,L a b w) . 

Let  be the finite dimensional subspace of NU

[ ]( , ,L a b )2 w  spanned by { }1 , ...., Ne e .  

 
The sigmoid ( )s x  and the approximation to the 
sigmoid ˆ( )s x  are plotted in Figure 6 for 6 terms of 
Legendre polynomials.  
  

Then, given [ ](2 , ,f L a b w∈ )  the element ˆ
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Let  be the dimensional subspace of  
spanned by the first 6 Legendre polynomials.  

6U 2[ 1,1]L −
Figure 5: The sigmoid (thin line) and the approximation of 

the sigmoid for 6 terms of the Legendre polynomial 
expansion (thick line). 

 
 
 



The describing function may be developed in the 
same way as already documented for the Taylor 
series expansion method. Hence, resulting in a series 
that resembles a Fourier trigonometric series.  
 
Using this method of approximation, reliable values 
of amplitude and frequency for a large range of input 
amplitude values can be calculated from the 
intersection of the (G j )ω curve and the 

1
( )N m− curve. This is shown in Figure 6. 

 
Figure 6: Nyquist plot showing the G j curve given by 

equation 1 and the 

( w)
1

( )N m− locus developed utilising the 

Legendre polynomials. 

 

IV  COMPARISON OF THE DESCRIBING 
FUNCTION APPROXIMATION METHODS 

The describing function gains calculated for the 
sigmoid parameters given in Figure 1 and for a range 
of input amplitude values are shown in Figure 7. The 
describing function gains calculated utilising the 
Taylor series expansion and the Legendre 
polynomials, and the true value of the describing 
function given by numerical integration methods are 
compared. 

e 
sigmoid parameters given in Figure 1 and for a range 
of input amplitude values are shown in Figure 7. The 
describing function gains calculated utilising the 
Taylor series expansion and the Legendre 
polynomials, and the true value of the describing 
function given by numerical integration methods are 
compared. 
  

0.5 1 1.5 2.0

0.5
1

1.5
2

2.5

 

3N(m) 

Figure 7: The describing function gain (N(m)) for the 
Taylor series approximation method (TS), the Legendre 

polynomial approximation method (LP) and the true gain 
as calculated using numerical integration (NI) plotted 
against increasing amplitude of the input signal (m).  

 
The difference between the describing function 
approximation methods and the describing function 

calculated using numerical integration are compared 
in Figure 8.  

 
Figure 8: The difference, J, between the describing 

function calculated using numerical integration and those 
calculated using the Taylor series expansion (TS) and the 

method utilising Legendre polynomials (LP). 

 
The describing function method utilising the Taylor 
series expansion is more accurate for values of input 
amplitude up to 0.16, after this the approximation 
based on the Legendre polynomials becomes more 
accurate. Outside the range of approximation of the 
sigmoid the describing function method based on the 
Legendre polynomials loses accuracy. 
 
The methods of describing function approximation 
may also be analysed by comparing the predicted 
amplitude of the limit cycle with that of a simulated 
example in a limit cycle condition. A model with the 
structure of that shown in figure 1 was used with 
results documented in Table 1. The gain of the 
dynamic transfer function was varied so as to alter 
the amplitude of the limit cycle.  

 
K m 

Simulated 
Predicted 

m TS 
Predicted 

m OP 
1.2 0 0 0 
1.3 0.08 0.03 0 
1.4 0.238 0 0 
1.5 0.33 0 0.27 
1.6 0.41 0 0.395 
1.7 0.48 0 0.47 
2 0.65 0 0.658 

2.2 0.76 0 0.75 
2.5 0.915 0 0.88 
3 1.15 0 0 

TS 
LP 

m

NI

 
Table 1: Simulated results of limit cycle oscillation 
amplitude calculated for increasing values of K and 

predicted values of this amplitude using the 2 
approximation methods.  

 
In Table 1, 0 implies no limit cycle. The Legendre 
polynomial method of describing function 
approximation allows for good prediction of the limit 
cycle oscillation for a large range of amplitude 
values. However, the Taylor series expansion 



method allows better prediction of the amplitude of 
the limit cycle oscillation for small amplitude values.  
Hence, the Taylor series expansion offers a better 
approximation of the sigmoid around the inflection 
region for equivalent number of terms of both 
expansion methods. The inflection sets up the limit 
cycle oscillation. As a result the describing function 
calculated using the Taylor series expansion method 
allows for better detection of the presence or absence 
of the oscillation.  
 
However, outside the inflection region the 
approximation method based on the Legendre 
orthogonal polynomial expanion method is much 
better at approximating the sigmoid nonlinearity. The 
values of the describing function for input amplitude 
signals up to the full input range of the sigmoid, can 
be accurately approximated when compared with the 
results of the simulated example and those of 
numerical integration.  

 
V  CONCLUSIONS 

 
This paper presents an approximation to the sigmoid 
nonlinearity that is common in physiological 
systems. This approximation enables calculation of a 
closed-form expression for the describing function. 
Unlike the previous approximation method, utilising 
the Taylor series, the method of approximation 
presented in this paper allow an accurate calculation 
of the describing function for a large range of input 
amplitude. This enables calculation of the amplitude 
of the limit cycle oscillation. 
 
Of the two methods of approximation used in this 
study, the method based on the Taylor series 
expansion is better for detection of a limit cycle, 
while the method of approximation based on the 
orthogonal polynomials permits accurate calculation 
of the amplitude of the oscillation. 
 
These results are significant when applied to the field 
of biomedical engineering and particularly the area 
of cardiovascular control where the strength of 
oscillations in blood pressure are proposed as a 
future diagnostic test [9]. The development of an 
accurate closed–form expression for the describing 
function of the signoid allows greater insight into 
how changes in the parameters of the nonlinearity 
will effect the strength of these limit cycles 
oscillations in blood pressure. 
 

ACKNOWLEDGEMENTS 
 
We wish to thank Dr. Bernard Kelville and Dr. Sean 
McLoone for their help and generosity with their 
time.  

 

REFERENCES 

 
[1] Akselrod SD, Gordon D, Madwed JB, 

Snidman NC, Shannon DC, and Cohen RJ. 
Power spectrum analysis of heart rate 
fluctuations: a quantitative probe of beat-to-
beat cardiovascular control. Science 213: 
220-222, 1981. 

[2] Barrett C, Ramchandra, R, Guild, SJ, Lala, 
A, Budgett, DM and Malpas, SC. What sets 
the long-term level of renal sympathetic 
nerve activity, a role for angiotensin II and 
baroreflexes? Circ. Res. 92: 1330-1336, 
2003. 

[3] Brown DR, Brown LV, Patwardhan A, and 
Randall DC. Sympathetic activity and blood 
pressure are tightly coupled at 0.4 Hz in 
conscious rats. Am. J. Physiol. 267: R1378-
R1384, 1994. 

[4] Holohan A. On calculating the describing 
function. In: Irish signals and systems 
conference, Dublin, 2000. 

[5] Janssen BJA, Leenders PJA, and Smits 
JFM. Short-term and long-term blood 
pressure and heart rate variability in the 
mouse. American Journal of Physiology - 
Regulatory Integrative & Comparative 
Physiology 278(1): R215-R225, 2000. 

[6] Janssen BJA, Malpas SC, Burke SL, and 
Head GA. Frequency-dependent modulation 
of renal blood flow by renal nerve activity 
in conscious rabbits. Am J Physiol 273(2): 
R597-608, 1997. 

[7] Kinnane OP, Ringwood, J.V. and Malpas, 
S.C. Predicting the slow oscillation in blood 
pressure using nonlinear analysis. In press, 
2004. 

[8] Malliani A, Pagani M, Lombardi F, and 
Cerutti S. Cardiovascular neural regulation 
explored in the frequency domain. 
Circulation 84(2): 482-92, 1991. 

[9] Malpas SC, Bendle RD, Head GA, and 
Ricketts JH. Frequency and amplitude of 
sympathetic discharges by baroreflexes 
during hypoxia in conscious rabbits. Am J 
Physiol 271(6): H2563-H2574, 1996. 

[10] Ricketts JH and Head GA. A five-parameter 
logistic equation for investigating 
asymmetry of curvature in baroreflex 
studies. American Journal of Physiology - 
Regulatory Integrative & Comparative 
Physiology 46(2): R441-R454, 1999. 

[11] Ringwood JV and Malpas SC. Slow 
oscillations in blood pressure via a 
nonlinear feedback model. Am. J. Physiol. 
280(4): R1105-984, 2001. 

 


	Describing Function Approximation For Biomedical Engineering Applications
	NUI Maynooth,


