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Abstract

Gliotoxin, and other related molecules, are encoded by multi-gene clusters and biosynthesized by fungi using non-
ribosomal biosynthetic mechanisms. Almost universally described in terms of its toxicity towards mammalian cells, gliotoxin
has come to be considered as a component of the virulence arsenal of Aspergillus fumigatus. Here we show that deletion of
a single gene, gliT, in the gliotoxin biosynthetic cluster of two A. fumigatus strains, rendered the organism highly sensitive to
exogenous gliotoxin and completely disrupted gliotoxin secretion. Addition of glutathione to both A. fumigatus DgliT strains
relieved gliotoxin inhibition. Moreover, expression of gliT appears to be independently regulated compared to all other
cluster components and is up-regulated by exogenous gliotoxin presence, at both the transcript and protein level. Upon
gliotoxin exposure, gliT is also expressed in A. fumigatus DgliZ, which cannot express any other genes in the gliotoxin
biosynthetic cluster, indicating that gliT is primarily responsible for protecting this strain against exogenous gliotoxin. GliT
exhibits a gliotoxin reductase activity up to 9 mM gliotoxin and appears to prevent irreversible depletion of intracellular
glutathione stores by reduction of the oxidized form of gliotoxin. Cross-species resistance to exogenous gliotoxin is
acquired by A. nidulans and Saccharomyces cerevisiae, respectively, when transformed with gliT. We hypothesise that the
primary role of gliotoxin may be as an antioxidant and that in addition to GliT functionality, gliotoxin secretion may be a
component of an auto-protective mechanism, deployed by A. fumigatus to protect itself against this potent biomolecule.
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Introduction

Gliotoxin, which has a molecular mass of 326 Da and is an

epipolythiodioxopiperazine (ETP), contains a disulphide bridge of

unknown origin and has been shown to play a significant role in

enabling the virulence of Aspergillus fumigatus [1–3]. The cytotoxic

activity of gliotoxin is generally mediated by direct inactivation of

essential protein thiols [4] and by inhibition of the respiratory burst

in neutrophils by disrupting NADPH oxidase assembly, thereby

facilitating in vivo fungal dissemination [5,6]. The enzymatic

machinery responsible for gliotoxin biosynthesis, and metabolism,

is encoded by a multi-gene cluster in A. fumigatus which is

coordinately expressed during gliotoxin biosynthesis [7,8]. This

cluster encodes gliP, a bimodular nonribosomal peptide synthetase

(NRPS) which has been conclusively shown to be responsible for the

biosynthesis of a Phe-Ser dipeptide, a gliotoxin precursor, by gene

disruption (DgliP mutant) [9–12]. In fact, disruption of gliP within

the gliotoxin biosynthetic cluster has resulted in the effective

inhibition of all cluster gene expression in a DgliP mutant [9]. A

putative transporter, encoded by gliA, has been shown to facilitate

gliotoxin efflux, and increased tolerance to exogenous gliotoxin,

when expressed in Leptosphaeria maculans [13]. sirA is a gliA ortholog in

this organism and L. maculans DsirA was more sensitive to exogenous

gliotoxin and sirodesmin than wild-type, however restoration of sirA

in the mutant led to greater tolerance towards these metabolites

[13]. Bok et al. [14] have demonstrated that disruption of a fungal

Zn(II)2-Cys(6) binuclear cluster domain transcription factor (gliZ)

results in the complete inhibition of all gliotoxin cluster gene

expression and effective diminution of gliotoxin production [14].

Although GliP has been shown to activate and condense L-Phe and

L-Ser to form a precursor diketopiperazine moiety, no information

relating to subsequent modification (e.g., thiolation) is available [9–

12,15] and it is also unclear if A. fumigatus might need to protect itself

against potential gliotoxin cytotoxicity [13].

Interestingly, addition of gliotoxin (up to 5 mg/ml) to A. fumigatus

DgliP resulted in the up-regulation of selected gene expression (gliI,
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J, T and N) within the gli cluster and Cramer et al. [9] noted

complete activation of the gene cluster (except gliP) following

gliotoxin exposure (20 mg/ml). However, exposure of wild-type A.

fumigatus Af293 to gliotoxin (20 mg/ml), for 24 h, did not result in

any significant alteration in gliotoxin cluster expression [9]. The

biological significance of these observations is unclear, apart from

implying a role for gliotoxin in the regulation of the gli cluster in

the absence of gliotoxin production.

It has recently been demonstrated that gliotoxin and spor-

idesmin, also an ETP toxin containing a disulphide bridge, are

both substrates and inactivators of glutaredoxin (Grx1) [16]. These

authors also confirmed that the intact disulphide form of these

ETP moieties was essential for Grx1 inactivation and that prior

reduction of sporidesmin, using glutathione, prevented subsequent

Grx1 inactivation. Oxygen presence was also required for Grx1

inactivation by sporidesmin and mass spectrometric analysis

confirmed the formation of mixed disulphides between one

molecule of Grx1 and either gliotoxin or sporidesmin, respectively.

Combined, these data suggest interplay between oxygen availabil-

ity and selective protein inactivation in the presence of oxidised

ETP-type molecules. This indirectly suggests either a protective, or

neutral, involvement of the oxidised forms of gliotoxin or

sporidesmin in protecting against the deleterious effects of oxygen

by selective protein inactivation.

In mammalian cells it has been demonstrated that the oxidized

form of gliotoxin is actively concentrated in a glutathione-

dependent manner and that it then exists within the cell almost

exclusively in the reduced form [17]. As glutathione levels fall due

to apoptosis, the oxidized form of gliotoxin effluxes from the cell

where the cytocidal effects of gliotoxin are perpetuated in a

pseudocatalytic manner. Conversely, it has been shown that

gliotoxin may substitute for 2-cys peroxiredoxin activity in HeLa

cells by accepting electrons from NADPH via the thioredoxin

reductase–thioredoxin redox system to reduce H2O2 to H2O. In

this way, nanomolar levels of gliotoxin may actually protect

against intracellular oxidative stress [18].

Although the cytotoxic effects of gliotoxin on mammalian cells

have been extensively investigated, and yeast have been deployed

as a model system to study this interaction [19], no direct

investigation of any self-protective mechanism used by A. fumigatus

against this intriguing molecule has been undertaken. Here, we

demonstrate that deletion of gliT results in transformants which

cannot grow in the presence of even modest levels of exogenous

gliotoxin and that exogenous gliotoxin up-regulates gene expres-

sion within the gliotoxin cluster, especially that of gliT. We propose

that GliT is the key cellular defence against gliotoxin in A. fumigatus

and that this finding yields a new selection marker system for

detecting transformation.

Results

Deletion and complementation of gliT in A. fumigatus
DgliT mutants were generated by transformation of A. fumigatus

strains ATCC46645 and ATCC26933, respectively, as described

in Materials and Methods, using the bipartite marker technique

and pyrithiamine selection, with modifications [20,21] (Figure S1).

Deposition number: IMI CC 396691 (CABI Bioscience Centre,

Egham, Surrey, UK). These two strains were chosen because

ATCC26933 is a gliotoxin producer, whereas ATCC46645 lacks

significant gliotoxin production using the Minimal Media

described in Materials and Methods (see below). Complementa-

tion of gliT mutant strains was carried out as described in

Materials and Methods and Figure S1). Complemented strains

(gliTC) (Deposition number: IMI CC 396692) exhibited wild-type

like features in all subsequent experiments, demonstrating that the

occurrence of a single ectopic integration of a gliT fragment is

insignificant in the A. fumigatus ATCC26933 background.

Gliotoxin prevents growth of DgliT strains
DgliT protoplasts grew and regenerated mycelia perfectly in the

absence of gliotoxin (Figure 1A). The DgliT strain grew at identical

rates to wild-type (data not shown). However, DgliT protoplasts

were unable to grow in the presence of gliotoxin (10 mg/ml)

(Figure 1A) whereas exogenous gliotoxin had no effect on wild-

type growth. Subsequent phenotypic analysis of A. fumigatus

ATCC46645, ATCC26933, and respective DgliT conidia

(DgliT46645 and DgliT26933) demonstrated that gliotoxin (5 mg/ml)

significantly inhibited DgliT growth on minimal medium and

completely inhibited DgliT growth on both AMM and Sabouraud

medium (gliotoxin, 10 mg/ml) (Figure 1B & C; p,0.0001 and

Figure S2). Moreover, germination rates of DgliT strains were

comparable to those of wild-type A. fumigatus, even in the presence

of gliotoxin up to 10 mg/ml. These results clearly indicated that

DgliT was highly sensitive to exogenous gliotoxin. Consequently,

DgliT46645 and DgliT26933 mutant complementation was carried

out by introducing gliT only (no antibiotic resistance gene) to

complement DgliT with selection in the presence of gliotoxin

(10 mg/ml). Transformants, which had recovered resistance to

exogenous gliotoxin, were confirmed by Southern analysis to have

an intact and functional copy of gliT present (Figure S1). This

result confirms that gliT confers resistance to gliotoxin in A.

fumigatus and that DgliT mutants have significant potential for

future functional genomic studies involving A. fumigatus since gene

deletions in this strain are selectable by gliT reintroduction, with

selection in the presence of gliotoxin.

Remarkably, addition of reduced glutathione (GSH; 20 mM)) to

test plates completely abolished the cytotoxic effects of exogenous

gliotoxin which indicated that gliT loss resulted in depletion of

intracellular GSH, when exposed to gliotoxin, or that only the

oxidized form of gliotoxin is imported into A. fumigatus (Figure 1B

& C). Prior reduction of gliotoxin, using 50 mM NaBH4, resulted

in a statistically significant inhibitory effect of gliotoxin on growth

of DgliT26933 (p,0.05) (Figure 1B & C). NaBH4 was selected as

Author Summary

The pathogenic fungus Aspergillus fumigatus causes
disease in immunocompromised individuals such as cancer
patients. The fungus makes a small molecule called
gliotoxin which helps A. fumigatus bypass the immune
system in ill people, and cause disease. Although a small
molecule, gliotoxin biosynthesis is enabled by a complex
series of enzymes, one of which is called GliT, in A.
fumigatus. Amazingly, nobody has really considered that
gliotoxin might be toxic to A. fumigatus itself. Here we
show that absence of GliT makes A. fumigatus highly
sensitive to added gliotoxin and inhibits fungal growth,
both of which can be reversed by restoring GliT. Neither
can the fungus make or release its own gliotoxin when GliT
is missing. We also show that gliotoxin sensitivity can be
totally overcome by adding glutathione, which is an
important anti-oxidant within cells. We demonstrate that
gliotoxin addition increases the production of GliT, and
that GliT breaks the disulphide bond in gliotoxin which
may be a step in the pathway for gliotoxin protection or
release from A. fumigatus. We conclude that gliotoxin may
mainly be involved in protecting A. fumigatus against
oxidative stress and that it is an accidental toxin.

GliT Function in A. fumigatus
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reductant as it avoided complications associated with the

introduction of additional thiols, or GSH, and the formation of

gliotoxin conjugates, which may have resulted from GSH, DTT or

b-mercaptoethanol-mediated reduction. It was also observed that

GSH presence (8 mM) partially alleviated the growth inhibitory

effects of gliotoxin (with or without prior reduction; p,0.01 and

p,0.005, respectively) (Figure 1C). However, wild-type levels of

growth were only achieved in the presence of 20 mM GSH

(Figure 1B). The enhanced GSH-mediated alleviation of gliotoxin-

induced cytostatic effects observed in DgliT, strongly suggest that

depletion of intracellular glutathione may be a consequence of gliT

loss. GSH-mediated relief of A. fumigatus DgliT growth inhibition,

by exogenous NaBH4-reduced gliotoxin, indicates that intracellu-

lar GSH depletion plays a role in the inhibitory effect of gliotoxin-

and not that GSH is merely acting to reduce exogenously added

gliotoxin and prevent uptake (Figure 1B & C). Exogenous gliotoxin

or reduced gliotoxin had no effect on growth of DgliZ and gliZc

(gliZ complemented strain) [14] (kind gifts from Professor Nancy

Keller, University of Wisconsin-Madison) and an identical pattern

was observed in the presence of GSH (data not shown). Moreover,

A. fumigatus DgliT did not exhibit any phenotype when exposed to

either H2O2 or phleomycin (data not shown). A. fumigatus gliTC

strains were resistant to exogenous gliotoxin (Figure 1D).

Gliotoxin induces expression of the gliotoxin gene cluster
gliZ, A and G encode the gliotoxin cluster transcription factor,

transporter and a putative glutathione s-transferase (generally a

detoxification enzyme), respectively, and all are conceivably

involved in protection against gliotoxin toxicity [3,8,22]. Northern

analysis showed that expression of these 3 genes plus gliT, from the

gliotoxin gene cluster, was induced in A. fumigatus ATCC46645

within 3 h following gliotoxin (5 mg/ml) addition at 21 h

Figure 1. Exogenous gliotoxin specifically inhibits growth of A. fumigatus DgliT. (A) Protoplasts of A. fumigatus wild-type (ATCC46645) and
DgliT were poured onto AMM plates, in the presence or absence of gliotoxin (10 mg/ml). Plates were incubated for 48 h at 37uC. (B) Conidia (A.
fumigatus ATCC26933 and DgliT; 104/spot) were dotted on AMM plates containing the indicated supplement and incubated for 48 h at 37uC. To
obtain reduced gliotoxin (rGT) free of additional thiols, 10 mg/ml GT was reduced with 50 mM NaBH4 for 60 min at room temperature. Gliotoxin (GT)
and rGT were added at a final concentration of 10 mg/ml. (C) Quantification of radial growth of A. fumigatus ATCC26933, DgliT, DgliZ and
complemented DgliZ (gliZc) [14] in the presence of gliotoxin and rGT, with and without exogenous GSH. Strains (104 conidia) were dotted on AMM
containing GT (gliotoxin; 10 mg/ml), rGT (10 mg/ml), or reduced glutathione (8 mM), respectively. Colony diameter was measured after 48 h of
incubation at 37uC and experiments were repeated in triplicate. * indicates a significance level of p,0.0001 and # indicates p,0.05. Note: For clarity,
A. fumigatus DgliZ and gliZc (gliZ complemented) data are only shown for AMM +/2 GT only, as their growth was unaffected by all conditions tested.
(D) A. fumigatus DgliH is unaffected by gliotoxin presence. 104 conidia were spotted on AMM with GT (10 mg/ml, bottom) or without GT (top). Plates
were incubated for 72 h (hence the visible background growth of DgliT). A. fumigatus DgliH did not show any sign of an altered growth phenotype in
the presence of gliotoxin.
doi:10.1371/journal.ppat.1000952.g001

GliT Function in A. fumigatus
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(Figure 2A). No gliT expression was detectable in DgliT whereas

the expression of all other genes was identical to the wild-type,

including the continued absence of expression at 24 h in the

absence of added gliotoxin (Figure 2A). Expression of gliT was

restored in pyrithiamine-resistant A. fumigatus gliTC derived from

both ATCC46645 and ATCC26933 strain backgrounds, which

unambiguously confirms restoration of gliT expression in comple-

mented strains (Figure 2B). Moreover, gliT expression was

inducible by addition of gliotoxin (5 mg/ml), as had been observed

in both wild-type strains, thereby convincingly demonstrating that

the wild-type phenotype had been entirely restored (Figure 2B). As

noted above, no significant growth inhibition of A. fumigatus DgliZ

in particular, or gliZc, was observed in the presence of gliotoxin or

reduced gliotoxin (Figure 1C). These observations further confirm

the minimal role played by any other component of the gli gene

cluster in protection against gliotoxin presence since gliZ absence

results in complete cluster attenuation [14]. Significantly, North-

ern analysis confirmed gliotoxin-induced gliT expression in DgliZ,

which indicates the independent regulation of gliT with respect to

other gli cluster components, such as gliG and gliA which are not

expressed by A. fumigatus DgliZ following exposure to gliotoxin

(Figure 2C). These observations are in complete accordance with

proteomic data which demonstrated a threefold up-regulation of

GliT expression (33% sequence coverage) in A. fumigatus

ATCC26933, and the absence of detection of any other gli cluster

component, following 3 h exposure to exogenous gliotoxin (14 mg/

ml) (Figure 2D and Figure S3).

Genes immediately adjacent to gliT in the gliotoxin gene
cluster do not mediate resistance to exogenous gliotoxin

Sequence analysis of the 59 and 39 regions adjacent to the

original gliT locus in A. fumigatus DgliT26933 confirmed that gliF was

intact but revealed two mutations (C23R and E160G) in the open

reading frame of a gene (AFUA_6G09745; identified as a

conserved hypothetical protein at http://www.cadre-genomes.

org.uk (but here termed gliH), located 39 with respect to the gliT

locus. Although expression of gliF and gliH was confirmed by RT-

PCR in A. fumigatus DgliT26933 (Figure 2E), there was concern that

the altered sequence of gliH may have resulted in a mutant

enzyme, which could possibly have also contributed to gliotoxin

sensitivity in DgliT26933. However, A. fumigatus DgliH26933 grew in

the presence of gliotoxin (10 mg/ml) (Figure 1D) which completely

eliminated the possibility that this gene, located adjacent to gliT in

the A. fumigatus genome, contributed to gliotoxin resistance and

established, beyond question, the key role of gliT in mediating

resistance to exogenous gliotoxin. A. fumigatus gliHC (Figure S1) was

also resistant to exogenous gliotoxin, as expected (Figure 1D).

Gliotoxin is not produced by A. fumigatus DgliT
Gliotoxin (580 ng/ml) was detectable in organic extracts from

A. fumigatus ATCC26933 but not DgliT26933 cultures, grown under

identical conditions, by RP-HPLC and LC-MS analysis (Figure 3).

Gliotoxin production was recovered in A. fumigatus ATCC26933

gliTC (Figure S4) Interestingly, DgliT26933 exhibited an identical

phenotype to DgliT46645 which was generated from A. fumigatus

Figure 2. gliT expression. (A) Northern analysis of the induction of gliotoxin gene cluster expression in A. fumigatus ATCC46645 and DgliT. Lanes 1,
2 and 3 correspond to A. fumigatus RNA extracts from 21 h AMM, 21 h AMM shifted to gliotoxin (5 mg/ml) for 3 h and 24 h AMM, respectively. (B)
Gliotoxin induction of gliT expression in A. fumigatus gliTC strains. Lanes 1–6 and 7–12 contain RNA from strains in the ATCC46645 and ATCC26933
backgrounds, respectively. Lanes 1 and 7: A. fumigatus DgliT 24 h AMM; Lanes 2 and 8: A. fumigatus DgliT 21 h AMM+3 h gliotoxin (5 mg/ml); Lane 3
and 9: A. fumigatus gliTC 24 h AMM; Lanes 4 and 10: A. fumigatus gliTC 21 h AMM+3 h gliotoxin (5 mg/ml); Lanes 5 and 11: A. fumigatus wt 24 h AMM;
Lane 6 and 12: A. fumigatus wt 21 h AMM+3 h gliotoxin (5 mg/ml). (C) Expression of gliT in DgliZ following exposure to gliotoxin. Cultures of A.
fumigatus ATCC46645 (lanes 1 and 2) and DgliZ (lanes 3 and 4) were grown for 24 h in AMM (Lane 1 and 3) or pulsed with gliotoxin (5 mg/ml) after
21 h and cultured for a further 3 h (Lane 2 and 4). Although gliotoxin induced expression of gliA and gliG in wild-type, neither gliA or gliG are
expressed in DgliZ. All Northern analyses were performed with 10 mg of total RNA isolated from strains grown in AMM for 24 h with or without
gliotoxin. (D) A. fumigatus GliT expression and identification. Quantitative 2D-PAGE analysis confirmed increased expression (threefold) of GliT
following exogenous gliotoxin (GT) addition to A. fumigatus cultures (GliT appears to exist as two isoforms of different pI (5.5–5.6) and Mr). Peptides
identified by MALDI-ToF mass spectrometry are highlighted in bold (33% sequence coverage) and mass spectrum is given in Figure S3. (E) Semi-
quantitative RT-PCR of gliT adjacent genes in A. fumigatus wild-type (wt) (ATCC26933) and isogenic mutant strains. Expression of gliF and
AFUA_6g09745 (gliH) was examined. As a control tubA expression was monitored. As a negative control genomic DNA (gDNA) was used as template.
Lane 1: A. fumigatus DgliT26933 24 h AMM. Lane 2: A. fumigatus DgliT26933 21 h AMM+3 h gliotoxin (5 mg/ml). Lane 3: A. fumigatus gliTC 24 h AMM.
Lane 4: A. fumigatus gliTC 21 h AMM+3 h gliotoxin (5 mg/ml). Lane 5: A. fumigatus wt 24 h AMM. Lane 6: A. fumigatus wt 21 h AMM+3 h gliotoxin
(5 mg/ml).
doi:10.1371/journal.ppat.1000952.g002

GliT Function in A. fumigatus
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ATCC46645, yet gliotoxin production was undetectable, under

the culture conditions employed, in both A. fumigatus ATCC46645

and DgliT46645 indicating that sensitivity to exogenous gliotoxin is

not associated with a de novo gliotoxin biosynthetic capacity. A

metabolite with retention time (Rt) = 11.7 min (A220 nm) was

apparent in DgliT26933 extracts which was absent in wild-type

extracts (Figure 3). This material was purified to assess any growth

inhibitory effect, however when added to AMM cultures of DgliT

or wild-type no alteration of growth rates was observed (data not

shown). High resolution LC-ToF MS analysis of the metabolite

(from Figure 3B) confirmed the presence of a molecular ion with a

mass of 279.0796 m/z ((M+H)+) (Figure S4). This accurate mass

value (279.0796 m/z) corresponded to a predicted molecular

formula of C13H15N2O3S for the ion whereby the calculated exact

mass for C13H15N2O3S + H+ was 279.0798 Da using Agilent

Technologies Masshunter workstation software. This result

suggests that a monothiol form of gliotoxin could have been

secreted from A. fumigatus DgliT26933. A molecular species of m/z

279, which yielded daughter ions of m/z 261.1, 231.0 and 203.1,

upon MS2 analysis, was also detected by LC-MS analysis of the

purified gliotoxin-related metabolite from A. fumigatus DgliT26933

(Figure S4). Gliotoxin was not produced by A. fumigatus DgliH26933

(Figure S4) which strongly supports a role for this gene in gliotoxin

biosynthesis or secretion, but not protection against exogenous

gliotoxin. This result was further consolidated whereby no

gliotoxin production was detectable, by HPLC-DAD or LC-MS,

in A. fumigatus DgliT26933gliH (data not shown), which was generated

by restoration of the fully intact gliH in gliT-deficient A. fumigatus

(Figure S1).

GliT exhibits a gliotoxin reductase activity
Recombinant GliT was expressed in, and purified by differential

extraction from, E.coli with a yield of approximately 5.7 mg per

gram of cells. However the protein was completely insoluble and

was refractory to any attempts at refolding for activity analysis

(data not shown). SDS-PAGE analysis confirmed a subunit

molecular mass of 38 kDa for recombinant GliT (Figure S5),

which appears to migrate as a dimer under non-reducing

conditions (Figure S5), and protein identity was unambiguously

confirmed by MALDI-ToF MS whereby peptides (following

tryptic digestion) were identified yielding 21% sequence coverage

(Figure S6). Immunoaffinity purification of GliT-specific human

IgG was achieved by incubation of human sera with Sepharose-

coupled recombinant GliT. The specificity of this GliT-specific

human IgG was confirmed by the successful detection of native

GliT in both A. fumigatus cell lysates, and partially-purified extracts

of A. fumigatus (Protocol S1; Figure 4). Notably, GliT was not

detectable in A. fumigatus DgliT (Figure 4).

Previous hypotheses have suggested that GliT may only exhibit

gliotoxin oxidase activity (responsible to disulphide bridge closure

during biosynthesis) (3, 8, 22). However, following gliotoxin

induction of A. fumigatus ATCC46645, enhanced GliT activity was

evident in cell lysates and native GliT was partially purified by

ammonium sulphate precipitation and ion-exchange chromatog-

raphy (Figure S7). Data presented in Figure 5A confirm that

partially-purified native GliT specifically catalyses the NADPH-

mediated reduction of oxidized gliotoxin, whereby NADPH

oxidation is only evident in the presence of both gliotoxin

(9 mM) and GliT-containing lysates. Hence, GliT appears to

exhibit gliotoxin reductase activity which can catalyse disulphide

bridge cleavage, at concentrations up to 9 mM gliotoxin

(Figure 5B). This activity is inhibited at higher gliotoxin

concentrations (.12 mM). Not unexpectedly, A. fumigatus cell

extracts appear to contain basal NADPH oxidase activity which

yields background, non-specific NADPH oxidation (Figure 5A).

Thus, A. fumigatus ATCC46645 and DgliT lysates, generated

without prior gliotoxin induction of GliT expression, exhibit near-

identical activity. However, significantly greater gliotoxin reduc-

tase activity (2:1) was apparent in A. fumigatus ATCC46645, than

DgliT, cell lysates following gliotoxin exposure (Figure 5C).

Figure 3. Gliotoxin is not produced by A. fumigatus DgliT. (A) HPLC chromatogram of an organic extract from A. fumigatus ATCC26933
indicating gliotoxin presence with Rt = 14.5 min. (B) HPLC chromatogram of organic extracts from A. fumigatus DgliT26933 indicating gliotoxin absence
but a new metabolite with Rt = 11.7 min. (C) LC-MS analysis of an organic extract from A. fumigatus ATCC26933 indicating gliotoxin presence. (D) LC-
MS analysis of A. fumigatus DgliT26933 confirms absence of secreted gliotoxin. (E) MS2 of gliotoxin present in wild-type A. fumigatus indicating
expected sub-fragments as noted previously [10].
doi:10.1371/journal.ppat.1000952.g003

GliT Function in A. fumigatus
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Immunoprecipitation of GliT from partially purified A. fumigatus

cell lysates (Figure S7) using human IgG [anti-GliT] resulted in a

51% reduction of gliotoxin reductase (NADPH oxidase) activity

(Figure 5D), in complete accordance with data in Figure 5C,

further confirming enzyme specificity. Interestingly, GliT activity

was not enhanced in the presence of thioredoxin from Spirulina sp.,

in activity assays, which indicates that GliT is specific for gliotoxin

reduction and that it may operate independently of cellular

thioredoxin reductase/thioredoxin systems.

Expression of GliT in A. fumigatus was further explored by

fluorescence confocal microscopy. Data in Figure S8A-C confirm

transformation of A. fumigatus DgliT46645 and that gliT-gfp

expression is enhanced by gliotoxin addition. As shown in Figure

S8A, it appears that low-level GliT expression is evident

throughout mycelia without gliotoxin addition. However, follow-

ing mycelial exposure to gliotoxin (5 mg/ml), an enhancement of

GliT expression in the cytoplasm, and in nuclei, as shown by

fluorescence intensities (Figure S8B & C), is observed - which is in

Figure 4. Immunoaffinity purified human IgG detects native GliT in A. fumigatus. (A) SDS-PAGE and (B/C): Western blot analysis of A.
fumigatus cell lysates. Immuno-affinity purified human IgG[anti-GliT] was used for Western analysis followed by anti-human IgG-HRP conjugate with
visualization by either (B) diaminobenzidine or (C) ECL detection. Lane M: Mr marker: Lane 1: A. fumigatus ATCC26933 lysate (72 h culture); Lane 2: A.
fumigatus ATCC46645 lysate (24 h culture); Lane 3: A. fumigatus ATCC46645 DgliT lysate (24 h culture) and Lane 4: Recombinant GliT (2 mg).
Immunoaffinity purified human IgG to GliT identified GliT in all except A. fumigatus DgliT, however ECL substrate was required to detect low level GliT
expression in A. fumigatus ATCC46645 (lane C.2).
doi:10.1371/journal.ppat.1000952.g004
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complete agreement with proteomic, molecular and enzyme

activity observations. Expression of GliT-GFP fusion protein

completely restored gliotoxin resistance (10 mg/ml), although

colonies appeared white (Figure S9).

The concordance of these data lead us to conclude that a GliT-

mediated gliotoxin reductase activity is induced by exposure of A.

fumigatus to gliotoxin.

GliT is not required for A. fumigatus virulence in Galleria
mellonella

A prerequisite for testing A. fumigatus DgliT virulence was to

evaluate the utility of our G. mellonella infection model. To this end,

assessment of the relative virulence of A. fumigatus DgliZ and

corresponding wild-type in G. mellonella, in either the presence or

absence of added gliotoxin, was assessed (Figure S10). Here, all

Galleria exposed to A. fumigatus DgliZ were alive at 24 h and the

wild-type strain exhibited greater virulence than DgliZ (60% (12/

20) versus 20% (4/20) mortality, respectively), at 48 h post-

inoculation, thereby confirming the utility of the model system for

detection of alteration in virulence associated with gliotoxin

production. To assess now the relative contribution of gliT to

virulence of A. fumigatus we compared the survival of larvae of the

greater wax moth G. mellonella following infection with 106

conidia/larvae of A. fumigatus ATCC26933 and gliTC to that of

larvae (n = 20) infected with the same dose of DgliT26933 (Figure

S10). For all groups of infected larvae, 100% mortality was

recorded after 72 h and the degree of melanisation was not

distinguishable between these groups. Also, pretreatment of larvae

with gliotoxin (0.5 mg/larva in 20 ml) did not lead to an

attenuation of virulence of DgliT (Figure S10). Notably, similar

results were obtained using ATCC46645 and DgliT46645 strains

(data not shown). These results clearly show that, gliT has a

minimal, if any, role to play in the virulence of A. fumigatus

employing a Galleria model.

GliT confers protection against exogenous gliotoxin in
Aspergillus nidulans and Saccharomyces cerevisiae

Reintroduction of gliT into A. fumigatus DgliT was selected for in

the presence of gliotoxin and no additional selection marker was

required (Figure S1 and Figure 1D). To further test the ability of

gliT to confer resistance to gliotoxin, and its future potential as a

selection marker gene, we introduced gliT into A. nidulans which

does not produce gliotoxin and neither does it contain any genes

involved in gliotoxin biosynthesis [22,23]. The absence of gliT, and

cognate gene expression, in A. nidulans was confirmed by Southern

and Northern analysis (Figure 6A & B). Subsequent transforma-

tion of A. nidulans with A. fumigatus-derived gliT resulted in the

generation of three transformants (AngliT 1, 2 and 3) (Deposition

number: IMI CC 396693), which were shown by Northern

analysis to express gliT to different extents (Figure 6B). This led to

acquisition of resistance to high levels of exogenous gliotoxin

(50 mg/ml) (Figure 6C) thereby confirming the key role of gliT in

protection against gliotoxin toxicity in gliotoxin-naı̈ve fungi. The

gliT coding sequence was also transformed into the genetically

distant yeast, S. cerevisiae BY4741, under control of the constitutive

SSA2 promoter [24] in plasmid pC210. As can be seen in

Figure 6D, yeast transformed with plasmid-encoded gliT were

capable of growth in the presence of gliotoxin (16 and 64 mg/ml,

respectively) depending on whether minimal or rich media was

used to support growth, while those transformed with empty

vector were unable to grow, irrespective of what media conditions

were used. These observations further confirm the pivotal role of

Figure 5. GliT exhibits a gliotoxin reductase activity. (A) No GliT activity (gliotoxin reductase) is detectable in the absence of gliotoxin or GliT (1
& 2). Background NADPH oxidase activity is detectable in semi-purified A. fumigatus cell extracts (3) (Figure S5), however, GliT-mediated gliotoxin
reductase activity is detectable upon addition of gliotoxin (4). (B) In vitro, optimal GliT gliotoxin reductase activity is observed up to 9 mM gliotoxin.
This activity is inhibited at higher gliotoxin concentrations (.12 mM). (C) Relative gliotoxin reductase activity in cell lysates from DgliT compared to A.
fumigatus ATCC46645 with gliotoxin addition during culture. Wild-type lysates exhibit enhanced gliotoxin reductase activity (47%) consequent to
elevated GliT expression. (D) Immunodepletion of GliT from semi-purified A. fumigatus cell extracts (Figure S5), using immunoaffinity purified human
IgG [anti-GliT], results in a 51% decrease in gliotoxin reductase activity.
doi:10.1371/journal.ppat.1000952.g005
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gliT in mediating resistance to gliotoxin, even in fungal species

which do not normally contain the gene or biosynthesise gliotoxin.

Discussion

Studies into the biosynthesis and pathogenicity of gliotoxin have

attracted significant recent attention, stimulated in part by the

plethora of fungal genome data now emerging [3,22]. Here, we

demonstrate for the first time that disruption of gliT, found within

the gliotoxin biosynthetic cluster, but subject to differential

regulation, completely sensitizes A. fumigatus to exogenous

gliotoxin, and abolishes gliotoxin secretion. The possibility that

genes adjacent to gliT in the gliotoxin gene cluster (gliF or gliH)

play a role in auto-protection is excluded. Thus, we have

elucidated a key cellular protective mechanism against the hitherto

unknown, potent auto-toxicity of gliotoxin in A. fumigatus.

Exposure of A. fumigatus DgliT to gliotoxin appears to result in

depletion of intracellular GSH since the inhibitory phenotype can

be completely relieved by GSH supplementation. Furthermore, we

demonstrate the enzymatic functionality of GliT as a gliotoxin

reductase and that GliT reactivity is evident in human sera. We

demonstrate that gliT confers resistance to exogenous gliotoxin,

independently of the extent of gliT expression, following

transformation in naı̈ve hosts, A. nidulans and S. cerevisiae. Finally,

identification of gliT complementation in A. fumigatus DgliT46645

and 26933, respectively, was selected for in the presence of gliotoxin

which supports a selection marker role for gliT in A. fumigatus

transformation experimentation.

To date, the potential requirements for self-protection against

gliotoxin, in A. fumigatus, have not been studied. The ETP toxin,

sirodesmin, is produced by the fungus Leptosphaeria maculans with

biosynthesis encoded by a multigene cluster similar to that

responsible for gliotoxin production in A. fumigatus [13]. Deletion

of the sirodesmin transporter gene, sirA, in L. maculans led to

increased sensitivity to exogenous sirodesmin and gliotoxin,

however the A. fumigatus gliotoxin transporter, GliA, was shown

to confer resistance to exogenous gliotoxin (10 mM), but not

sirodesmin, in L. maculans DsirA. Interestingly, production and

secretion of sirodesmin was actually increased by 39% in L.

maculans DsirA compared to wild-type and resulted in speculation

as to the presence of alternative toxin efflux mechanisms [13].

Based on our observations, we hypothesise that in addition to the

likely role of gliA in gliotoxin efflux in A. fumigatus, GliT may play

an essential role in the auto-protective strategy against the

deleterious effects of the ETP toxin. Moreover, we predict that

gliT orthologs in other fungi [22] may play similar, if not identical

roles.

Our results indicate that absence of GliT may lead to

accumulation of intracellular gliotoxin which is reduced, non-

enzymatically, by GSH, analogous to the situation in animal cells

as demonstrated by Bernardo et al. [17]. The concomitant

depletion of intracellular GSH levels, allied to the cytotoxicity of

reduced gliotoxin, results in strong growth inhibition, possibly

mediated by disruption of the cellular redox status and significant

protein modification by gliotoxin. This conclusion is strongly

supported by the observation that addition of GSH, during

exposure of A. fumigatus DgliT to gliotoxin, effectively completely

reverses the cytostatic effects of gliotoxin. While we cannot exclude

the possibility that added GSH is merely reducing exogenously

added gliotoxin and preventing import of the reduced form, it is

Figure 6. Transformation of A. nidulans and S. cerevisiae with gliT facilitates resistance to exogenous gliotoxin. (A) Southern analysis
confirms that two A. nidulans transformants contain gliT (AngliT 7 and 8) compared to A. nidulans wild-type (An-wt). wt: A. fumigatus (positive control
for gliT). Genomic DNA was digested with PstI and probed for the presence of A. fumigatus gliT. (B) Northern analysis of gliT in An-wt, AngliT (7 and 8)
and A. fumigatus wild-type (wt). RNA was isolated using TRI-reagent and 10 mg of total RNA were probed with a gliT-specific probe. (C) Plate assay of
A. nidulans wild-type and A. nidulans expressing gliT (AngliT 7 and 8). A. nidulans wild-type and AngliT (104) conidia were dotted on AMM and on AMM
containing gliotoxin (50 mg/ml). Growth was monitored over a period of 72 h at 37uC. Genotypes of strains are described in Table 1. (D) GliT confers
gliotoxin resistance on S. cerevisiae. Spots represent equal numbers of yeast cells plated onto medium containing gliotoxin at the concentrations
indicated. Plates were incubated at 30uC for two days followed by a further three days at room temperature.
doi:10.1371/journal.ppat.1000952.g006
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clear from Figure 1 that addition of NaBH4-reduced gliotoxin

results in significant growth inhibition of A. fumigatus DgliT

(p,0.05). The observed alleviation of this inhibition (by NaBH4-

reduced gliotoxin), in the presence of added GSH, supports the

proposal that intracellular GSH depletion is a consequence of gliT

disruption, when growth occurs in the presence of exogenous

gliotoxin.

Addition of gliotoxin (up to 20 mg/ml) for 24 h resulted in the

complete up-regulation of the gene cluster (except gliP) in A.

fumigatus DgliP, but not in A. fumigatus wild-type [9]. We

demonstrate that exposure to exogenous gliotoxin for 3 h does

induce GliT expression in A. fumigatus wild-type at the transcript

and protein level, in fact these data also represent the first

confirmed identification of a protein encoded by the gliotoxin

biosynthetic cluster. The discrepancy, possibly due to 3 versus

24 h experimental windows, nonetheless, indicates differential

GliT expression relative to other gli genes. Disruption of gliZ, the

transcriptional regulator of the gliotoxin biosynthetic cluster, has

been shown to result in abolition of gliotoxin production and loss

of gliotoxin cluster gene expression [14]. Our data demonstrate

that although growth of A. fumigatus DgliZ and gliZc is unaffected by

exogenous gliotoxin, gliZ expression is up-regulated in response to

exogenous gliotoxin exposure in A. fumigatus ATCC46645, but to a

lesser extent than that of gliT (Figure 2). In addition, we have

shown that gliT expression is induced by gliotoxin addition to

liquid cultures of A. fumigatus DgliZ thereby confirming the

independent regulation of gliT expression to other cluster

components (e.g., gliA and gliG). In combination, these observa-

tions further confirm the minimal role played by any other

component of the gli gene cluster in protection against gliotoxin

presence since gliZ absence results in complete cluster attenuation

[14], except for gliT.

A thioredoxin system in A. nidulans has recently been described

whereby a thioredoxin mutant exhibited decreased growth,

impaired reproductive function and altered catalase activity [25].

These authors also identified a thioredoxin reductase (termed

AnTrxR) which functions to regenerate reduced thioredoxin in A.

nidulans. Our BLAST analysis indicates minimal identity between

GliT and AnTrxR as well as between GliT and a second putative

thioredoxin reductase in A. fumigatus (Genbank accession number:

EAL85952; 30% identity). This strongly indicates distinct

functionality of gliT and confirms that alternative thioredoxin

reductase activities cannot compensate for loss of gliT in A.

fumigatus. It further appears unlikely that thioredoxin is involved in

mediating GliT activity since no thioredoxin reductase present in

A. fumigatus cell lysates appears capable of compensating for GliT

absence. Consequent to its bioinformatic classification as a

thioredoxin reductase, GliT has been predicted by many authors

to encode disulphide bond formation in gliotoxin and to play a

role in gliotoxin biosynthesis [3,8,22]. While this ‘gliotoxin

oxidase’ activity cannot be ruled out completely, our demonstra-

tion that GliT exhibits gliotoxin reductase activity (Figure 5)

suggests that direct gliotoxin reduction is a pre-requisite for

secretion from A. fumigatus via a GliT-mediated pathway or as a

component of the auto-protective mechanism deployed against

exogenous gliotoxin secreted by adjacent fungi in the environment

(Figure 7). This hypothesis is firmly supported by the absence of

gliotoxin secretion in A. fumigatus DgliT26933. Given the potential of

reduced gliotoxin to thiolate cellular proteins, we speculate that

reduced gliotoxin may be sequestered into intracellular vesicles

where it is converted to the oxidized form, by an unidentified

activity, prior to release from the cell by an exocytotic mechanism

complementary to GliA-mediated efflux (Figure 7). It remains

possible that GliT-mediated gliotoxin oxidase activity may be

associated with disulfide bridge closure during gliotoxin biosyn-

thesis when intracellular levels of gliotoxin can be regulated more

precisely by the organism. Thus, GliT could be necessary to

maintain a balance between reduced and oxidised gliotoxin in A.

Figure 7. A proposed model for GliT functionality in A. fumigatus based on experimental observations. Exogenous gliotoxin enters A.
fumigatus (1) and is converted to the reduced form intracellularly by GliT (gliotoxin reductase activity (2)). GliT may also be necessary to oxidize reduced
gliotoxin during biosynthesis in A. fumigatus. Given the toxicity of the intracellular form of reduced gliotoxin, we predict that it may be imported into
intracellular vesicles, possibly with concomitant oxidation for storage (3). GliA function to facilitate gliotoxin efflux (4) is extrapolated from the
observation in L. maculans that this protein confers resistance to exogenous gliotoxin [13]. In the absence of GliT, gliotoxin may be alternately reduced
by intracellular GSH (5) leading to a depletion in GSH and cell death/growth arrest and also modification of other cellular proteins leading to inactivation
or activity modification (6). In this model, absence of GliT would lead to the build up of gliotoxin within the cell and also the inability to reduce
exogenously added gliotoxin. Reduced gliotoxin may not enter but converts to the oxidized form in a time-dependent manner (7, 7A).
doi:10.1371/journal.ppat.1000952.g007
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fumigatus. The detection of a molecular ion, with a molecular mass

corresponding to a monothiol form of gliotoxin, in culture

supernatants from A. fumigatus DgliT is interesting, and we

hypothesize that this metabolite may represent a breakdown

product of gliotoxin. Future work will involve purification and

complete characterization of this molecule. The observation that

GliT-specific IgG was present in human sera was unexpected and

implies that GliT is either present in inhaled conidia or is

expressed during abortive conidial germination in immunocom-

petent individuals. However, our observation suggests that the

option of using normal human sera as a source of immunoaffinity

antibodies, following Ig isolation and purification using a

recombinant antigen (e.g., GliT), represents a novel approach

for readily obtaining monospecific antisera against antigenic A.

fumigatus proteins.

The animal model system deployed herein appears to distinguish

between virulence diminution associated with lack of gliotoxin

production, since inoculation with A. fumigatus DgliZ resulted in

reduced Gallerial mortality than exposure to wild-type A. fumigatus.

This result extends previous observations with respect to the potential

avirulence of A. fumigatus DgliZ [14]. However, the relatively

equivalent virulence observed for A. fumigatus wild-type and DgliT,

whereby the latter does not produce gliotoxin is somewhat at variance

with the A. fumigatus DgliZ findings. We suggest that alterations in the

levels of additional metabolites in A. fumigatus DgliZ, as noted in [14],

or a possible cytotoxic role in G. mellonella for the putative monothiol

form of gliotoxin secreted by A. fumigatus DgliT may account for this

dichotomy. Our demonstration that gliT is expressed independently

of other cluster components implies that previous virulence model

experimentation, involving gliP- and gliZ –deficient mutants [9–12],

may require interpretation in light of the possibility of independently

regulated gliT expression, or GliT functionality. Indeed, if it is ever

demonstrated that gliT expression occurs in the absence of gli cluster

expression/gliotoxin biosynthesis (as has been demonstrated herein

for A. fumigatus DgliZ), or is regulated by factors other than exposure to

exogenous gliotoxin, then consideration may need to be given to this

phenomenon in future studies. This consideration is based on the fact

that independent regulation of gliT may have enabled acquisition of

functionality beyond a role in gliotoxin biosynthesis or auto-

protection.

Genetic modification of filamentous fungi for the improved

production of food additives, industrial enzymes or pharmaceu-

ticals is an ongoing requirement of the biotechnological industry

[26,27]. Antibiotic-producing fungi are continually subjected to

strain improvement, with a concomitant requirement for new

selection markers, to increase product yield and decrease the level

of unwanted side-products [28]. Our observation that gliT

complementation in A. fumigatus can be selected for in the presence

of gliotoxin, without the use of conventional selection markers, and

that transformation of A. nidulans and S. cerevisiae with gliT confers

enhanced resistance to gliotoxin offers the possibility of using the

gliT/gliotoxin combination to select for fungal transformation.

Moreover, acquired gliotoxin resistance in A. nidulans and S.

cerevisiae resulting from gliT presence, underpins the important role

played by this gene in mediating resistance to exogenous gliotoxin.

Gliotoxin isolated from cultures of a marine fungus from the genus

Pseudallescheria has been shown to possess both anti-bacterial and

free-radical scavenging capability whereby an MIC50 of 1 mg/ml

was observed against methicillin-resistant Staphylococcus aureus [29].

Gliotoxin may also provide a competitive advantage for A.

fumigatus when grown in the presence of other fungi [30]. In this

regard, gliotoxin production has been detected when A. fumigatus

was co-cultured, at both 30 and 37uC, with a range of other

Aspergillus spp., leading the authors to speculate that co-expression

of resistance genes may allow toxin producers to resist the effects of

their own biological arsenal in competitive co-culture situations

[30]. The parallel between this supposition, and our observation of

GliT-mediated resistance to exogenous gliotoxin, is vivid.

The vast majority of literature surrounding the role of gliotoxin

in A. fumigatus focuses on its function as a cytotoxic molecule which

has deleterious effects on cells within infected individuals and

exhibits anti-microbial activity [5,6,9–12,29,30]. However, based

on our observations and significant other literature [16,18,31], a

credible alternative hypothesis is that gliotoxin may actually be

part of the intracellular antioxidant defense system within A.

fumigatus, and is a molecule, analogous to thioredoxin or 2-cys

peroxiredoxin, which may undergo rapid changes in redox status

to buffer against specific exogenous or endogenous oxidants. In

other words, the cytotoxic effects of gliotoxin in infected host cells

may actually be an indirect consequence of its role within A.

fumigatus. This alternative hypothesis is not without support. Firstly,

Watanabe et al. [31] have shown that the cytotoxicity of A. fumigatus

culture filtrates was significantly attenuated, or absent, when

cultures were grown under reduced aerobic or anaerobic

conditions. Interestingly, gliotoxin production was detectable by

GC-MS analysis from aerobic but not in reduced aerobic culture

supernatants. Although Watanabe et al. concluded that their results

indicated that gliotoxin production is increased to facilitate fungal

pathogenicity (mimicking the aerobic lung environment), an

alternative conclusion, which is in accordance with our thinking,

is that gliotoxin production is actually elevated to cope with

increased oxygen levels and that secretion of gliotoxin forms part

of the gliotoxin homeostasis control mechanism within A. fumigatus

to prevent the side-effect of intracellular oxidative stress. As noted

earlier, in animal cells it has been shown that gliotoxin may

substitute for 2-cys peroxiredoxin activity in HeLa cells by

accepting electrons from NADPH via the thioredoxin reductase–

thioredoxin redox system to reduce H2O2 to H2O. In this way,

nanomolar levels of gliotoxin may actually protect against

intracellular oxidative stress [18]. Additionally, as demonstrated

by Srinivasan et al. [16], oxidized gliotoxin facilitates selective

protein inactivation in the presence of molecular oxygen which,

we hypothesise, could prevent global intracellular damage due to

resultant reactive oxygen species. Moreover, a protective role for

gliotoxin against environmental stress in A. fumigatus has been

considered [2,13]. Our observations and consequent hypothesis

now provide a vehicle to explore this proposal.

In summary, we have demonstrated that GliT plays a major auto-

protective role against gliotoxin toxicity in A. fumigatus which points

to alternative gliotoxin functionality in A. fumigatus. From a

utilitarian viewpoint, gliT/gliotoxin sensitivity represents a potential

new selection marker strategy for fungal transformation. The trans-

fungal implications of our observations remain to be explored.

Materials and Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. Ethical permission was obtained

from The Ethics Committee of NUI Maynooth for the use of

human serum specimens. Anonymous serum specimens were

obtained with the signed agreement of the Irish Blood Transfusion

Service.

Strains, growth conditions, and general DNA
manipulation

In general, A. fumigatus strains (Table 1) were grown at 37uC in

Aspergillus minimal media (AMM). AMM contained 1% (w/v)
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glucose as carbon-source, 5 mM ammonium tartarate as nitrogen-

source, and trace elements according to Pontecorvo et al. [32].

Liquid cultures were performed with 200 ml AMM in 500 ml

Erlenmeyer flasks inoculated with 108 conidia. For growth assays,

104 conidia of the respective strains were point inoculated on

AMM plates, containing the relevant supplements and incubated

for 48 h at 37uC.

TOPO TA cloning system (Invitrogen) and TOP10 E. coli cells

(F-mcrA D(mrr-hsdRMS-mcrBC) w80lacZDM15 DlacX74 recA1

araD139 galU galK D (ara-leu)7697 rpsL (StrR) endA1 nupG) were

used for general plasmid DNA propagation and A. fumigatus

genomic DNA was purified using a ZR Fungal/Bacterial DNA Kit

(Zymoresearch).

Generation of A. fumigatus mutant strains
For generating DgliT mutant strains, the bipartite marker

technique was used [20]. Briefly, A. fumigatus strains ATCC46645

and ATCC26933 were co-transformed with two DNA constructs,

each containing an incomplete fragment of a pyrithiamine

resistance gene (ptrA) [21] fused to 1.2 kb, and 1.3 kb of gliT

flanking sequences, respectively. These marker fragments shared a

557 bp overlap within the ptrA cassette, which served as a potential

recombination site during transformation. During transformation,

homologous integration of each fragment into the genome flanking

gliT allows recombination of the ptrA fragments and generation of

the intact resistance gene at the site of recombination. Two rounds

of PCR generated each fragment. First, each flanking region was

amplified from ATCC46645 genomic DNA using primer ogliT1

and ogliT4 for flanking region A (1.3 kb), and ogliT-2 and ogliT-3

for flanking region B (1.2 kb). Subsequent to gel-purification, the

fragments were digested with SpeI and HindIII, respectively. The

ptrA selection marker was released from plasmid pSK275 (a kind gift

from Sven Krappmann, Goettingen, Germany) by digestion with

SpeI and HindIII, and ligated with the two flanking regions A and B

described above. For generation of DgliT, two overlapping

fragments were amplified from the ligation products using primers

ogliT-5 and optrA-2 for fragment C (2.6 kb) and primers ogliT-6

and optrA-1 for fragment D (2.2 kb). Subsequently ATCC46645

and ATCC26933 were transformed simultaneously with the

overlapping fragments C and D. In the generated mutant allele of

DgliT-ptrA the deleted region comprises amino acids 1–325 of gliT.

For reconstitution of the DgliT strain with a functional gliT copy,

a 3.2 kb PCR fragment, amplified using primers ogliT-5 and

ogliT-6, was subcloned into pCR2.1-TOPO (Invitrogen). The

resulting 7.1 kb pgliT was linearised with AatII and used to

transform A. fumigatus DgliT protoplasts. Taking advantage of the

decreased resistance of the DgliT mutant to exogenous added

gliotoxin DgliT protoplasts were transformed with pgliT and

screened for wild-type resistance to gliotoxin for genetic comple-

mentation. Positive deletion- and reconstituted- strains were

screened by Southern analysis (Figure S1) and DIG-hybridisation

probes were generated using primers ogliT-5 and ogliT-4.

To obtain knock-out constructs for the deletion of gliH a 59

flanking region with oligos ogliH1 and ogliH4 was amplified. For

the 39 flanking region a PCR with oligos ogliH2 and ogliH3 was

performed. Amplicons were digested with SpeI and HindIII,

respectively. Resulting fragments were ligated to a ptrA cassette,

released from pSK275 via SpeI and HindIII digest. Final PCRs

were obtained using oligos ogliH5/optrA2 and ogliH6/optrA1

and used for transformation.

To complement DgliH and DgliT26933 with a functional copy of

gliH, oligos ogliT7 and M13 were used to amplify a PCR-fragment

using pgliT as template. This fragment digested with EcoRI and

SacII was cloned into pBS-KS (Stratagene), resulting in pgliH.

Together with pAN7-1 [33], pgliH was used to complement A.

fumigatus DgliH and DgliT26933.

GliT was C-terminally fused in frame to gfp (green fluorescent

protein) to determine its subcellular localisation. To this end, a

fragment containing gliT was amplified using oligos ogliT-5-SphI

and ogliT-16. The resulting 2.2 kb fragment was sub-cloned into

pCR2.1-TOPO (Invitrogen) and sequenced. Via SphI digest a

fragment containing the gliT promoter region and the coding

sequence was released and cloned into the corresponding SphI site

of pgfp, resulting in pgliTgfp. To obtain pgfp, a gfp containing

fragment was released from pUCG-H [34] via SmaI and SacI and

subcloned into the corresponding EcoRV and SacI sites of

pGEM5zf+ (Promega). The plasmid pgliTgfp was used to

transform DgliT protoplasts via co-transformation using a

phleomycin resistance gene. Phleomycin resistant transformants

carrying an in-frame gliT-gfp fusion were used to localize GliT

using fluorescence microscopy. Positive, GliT-GFP harbouring

strains were screened by Southern analysis and hybridization

probes were generated using oligos ogliT-7 and ogliT-8. A.

fumigatus transformation was carried out according to Tilburn et al.

[35]. In order to obtain homokaryotic transformants, colonies

from single homokaryotic spores were picked and single genomic

integration was confirmed by PCR (data not shown) and Southern

blot analysis.

Northern analysis
RNA was isolated using TRI-Reagent (Sigma-Aldrich). Equal

concentrations of total RNA (10 mg) were size-separated on 1.2%

agarose-2.2 M formaldehyde gels and blotted onto Hybond N+
membranes (Amersham Biosciences). The hybridisation probes

used in this study were generated by PCR using primers ogliA1

and ogliA2 for AFUA_6G09710, ogliG7 and ogliG8 for

AFUA_6G09690, ogliT7 and ogliT8 for AFUA_6G09740, and

ogliZ1 and ogliZ2 for AFUA_6G09630. All primers used in this

study are listed in Table 2.

Proteomic analysis of GliT expression
A. fumigatus ATCC26933 was cultured (n = 3) for 21 h in

Sabouraud media followed by gliotoxin addition for 3 h (final

Table 1. A. fumigatus and A. nidulans strains used in this
study.

Strain Genotype Reference

ATCC46645 Wild-type Hearn et al. [43]

ATCC26933 Wild-type Taylor et al. [44]

DgliZ DgliZ::pyrG Bok et al. [14]

gliZc DgliZ::gliZ::hygB Bok et al. [14]

DgliT46645 ATCC46645; gliT::ptrA This study

DgliT26933 ATCC26933; gliT::ptrA This study

gliTC DgliT; DgliT::gliT This study

gliTgfp DgliT46645; (p)gliTgfp This study

A. nidulans WGTRAN Wild-type Oberegger et al. [45]

AngliT TRAN; (p)gliT This study

DgliH ATCC26933; gliH::ptrA This study

DgliT26933gliH ATCC26933; gliT::ptrA; This study

(p)gliH; (p)AN7-1

gliHC DgliH; (p)gliH; (p)AN7-1 This study

doi:10.1371/journal.ppat.1000952.t001
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concentration: 14 mg/ml). Control cultures (n = 3), where gliotoxin

was not added, were also performed. Mycelia were harvested,

lysed and subject to MALDI-ToF mass spectrometric analysis as

previously described [36] and Imagemaster analysis (GE

Healthcare).

Analysis of gliotoxin production
To analyze gliotoxin, or related metabolite production, A.

fumigatus wild-type and mutant strains were grown up at 37uC for

72 h in Czapeks-Dox. Supernatants were chloroform extracted

overnight and fractions were lyophilized to complete dryness.

Samples were resolubilised in MeOH and analysed using a

reversed phase HPLC as described in [37] and LC-MS (Agilent

6340 ETD LC-MS system). Samples (1 ml) were loaded onto a

Zorbax 300SB C-18 Nano-HPLC Chip (150 mm675 mm,

Agilent) with 0.1%(v/v) formic acid (0.6 ml/min), and compounds

eluted by an increasing 0.1%(v/v) formic acid, acetonitrile

gradient (90%(v/v) final). Eluted compounds were directly ionised

and analysed by ion trap mass spectrometer (Agilent). For each

round of MS the two most abundant compounds were

automatically selected for MSn analysis. Gliotoxin was identified

by its whole mass of 326.4 m/z and its characteristic MSn

fragmentation pattern (263, 245 and 227 m/z). LC-ToF analysis

was performed using an Agilent HPLC 1200 series using

electrospray ionisation inputted into a ToF (Agilent). LC

separation was via an XDB C18 column (4.66150 mm) using a

water/acetonitrile (both containing 0.1% (v/v) formic acid)

gradient at a flow rate of 0.5 ml/min. The gradient was started

at 50% (v/v) acetonitrile, which was increased to 100%

acetonitrile in 10 min; 100% acetonitrile was maintained for

5 min before the gradient was returned to starting conditions.

Spectra were collected at 0.99 spectra per second.

Cloning and expression of gliT
The gliT sequence was amplified from cDNA using primers

incorporating terminal XhoI and HindIII sites to facilitate downstream

cloning. PCR products were cloned into the pCR2.1 cloning vector

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s

instructions. gliT was subsequently cloned into the pProEX-Htb

expression vector (Invitrogen). Ligations were performed using

Quickstick ligase (Bioline, London, UK) according to the manufac-

turer’s instructions. pPXAgliT, the resultant expression vector was

transformed into E. coli strain BL21 by standard protocols. Expression

of GliT was induced by the addition of isopropyl b-D-thiogalactoside

(IPTG; to 0.6 mM) and monitored by SDS-PAGE and Western blot

analysis. Recombinant GliT purification was undertaken by

differential extraction. Protein concentrations were determined using

the Bradford method [38] with bovine serum albumin as a standard.

Purification of native GliT from A. fumigatus by ion-
exchange chromatography

A. fumigatus ATCC46645 mycelia were ground in liquid nitrogen

and lysed in ice-cold lysis buffer as described [36] following

incubation with gliotoxin (10 mg/ml) for 3 h). Following centrifu-

gation (12,000 g; 30 min), the lysate supernatant (176 ml) was

ammonium sulphate precipitated (10, 20, 50 and 70% ammonium

sulphate). The 50% pellet was resuspended in 20 mM Bis-Tris

propane pH 7.6 and dialysed three times against 50 volumes of the

same buffer at 4uC. The dialysate was centrifuged (12,000 g;

20 min) and filtered (0.45 mm) to remove particulates. The dialysate

was loaded onto an equilibrated Q-Sepharose ion-exchange (IEX)

column (4 ml) at a flow rate of 1 ml/min. The column was washed

with 20 mM Bis-Tris propane pH 7.6 before bound protein was

eluted using an NaCl gradient (0.5 M final). Absorbance detection

was at 280 nm and 454 nm. Collected fractions were subjected to

SDS-PAGE, Western blot and activity analysis for GliT.

Immunoaffinity purification of human IgG [anti-GliT]
Serum specimens (provided by the Irish Blood Transfusion

Service, Dublin, Ireland according to institutional guidelines)

containing high titer IgG [anti-GliT] were pooled, diluted 1 in 4 in

PBS, and applied to a GliT-Sepharose affinity column (0.5 ml),

prepared as per manufacturer’s instructions. After removal of

unbound proteins by PBS washing, immobilised IgG [anti-GliT]

was eluted using 100 mM glycine pH 2.8, followed by immediate

neutralization using 100 mM Trizma base pH 8.3. Resultant

immunoaffinity purified (IAP) IgG [anti-GliT] was used to detect

native GliT by Western analysis.

GliT activity assay and removal of native GliT from A.
fumigatus by IAP pulldown

A. fumigatus ATCC46645 mycelia were ground in liquid nitrogen

and lysed in ice-cold lysis buffer and bead-beating as described

Table 2. Primers used in this study.

Primer Sequence (59–39)

ogliA-1 TGG ATC GTT GAT CTG CGC

ogliA-2 ATG GCC TGG TAT CCG ATC

ogliG-7 GAC CCT CCG ATC TTG TAG

ogliG-8 TTC TCG CCA TGG CCA AAC

ogliT-1 AGC GCA TTG GAC AGG TTG TAG

ogliT-2 GGA CAC GTC TAG CAT GGA CTG G

ogliT-3 GCT AAG CTT TTG CCG GAG TTT CGT CTC

ogliT-4 GGA CTA GTT ATG CGC GAG AGT AGT GG

ogliT-5 TCT GCG CTT CTT GAT CGG

ogliT-6 ACG GTG CTG GGA ATG ATC

ogliT-7 GTC GAC GTG CTC ATC ATC

ogliT-8 GCC AAA GAT CCC ATC GAC

ogliT-5-SphI CGG CAT GCT CTG CGC TTC TTG ATC GG

ogliT-16 AAA GCA TGC TAG CTCCTG ATC GAG ACG

ogliZ-1 GCT ATG CAG GAT GTG TCG

ogliZ-2 CGG CCA TGC TAA TAC TGC

optrA1 GAG GAC CTG GAC AAG TAC

optrA2 CAT CGT GAC CAG TGG TAC

ogliT-BglII CCA GAT CTA TGT CGA TCG GCA AAC TAC

ogliT-NotI ATA GCG GCC GCC TAT AGC TCC TGA TCG AGA

ogliH1 CAT GCA CAA CGT CCT CGG ATG

ogliH2 GCT CCT GGG GAT TCT GAG CGC

ogliH3 AAC AAG CTT AGA ATG GGC AGT TGG ACG

ogliH4 GCT ACT AGT GAA GAT CTG TCT GCC GTC

ogliH5 TCC ACC ATC CAG TTC CAG

ogliH6 GCG GTG CAG TGA ACT AAC

M13 GTAAAACGACGGCCAGT

M13rev AACAGCTATGACCATG

Sc-gliT-F CCCGGGCATATGTCGATCGGCAAACTACTCTCAAC

Sc-gliT-R CCCGGGGCATGCCTATAGCTCCTGATCGAGACGAAAC

Added restriction enzyme sites are underlined.
doi:10.1371/journal.ppat.1000952.t002
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elsewhere [36]. Following centrifugation (12,000 g; 30 min), the

lysate supernatants were used to determine gliotoxin reductase

activity (DA340 nm) in the presence of gliotoxin (9 mM) and

NADPH (200 mM) at pH 7.2 (a modified version of Hill et al.

[39]). A. fumigatus cell lysates were also subjected to ion-exchange

chromatography and a pooled IEX fractions (250 ml) incubated

with IAP human IgG [anti-GliT] (100 ml) followed by Protein A-

Sepharose addition and centrifugation (10,000 g; 10 min). Super-

natant activity analysis as described above.

GliT-GFP confocal microscopy
A. fumigatus gliTgfp and ATCC46645 mycelia were grown in cell

culture six well plates (Corning Inc.) for 21 h before induction with

(or without) gliotoxin (5 mg/ml). Mycelia were removed from the

wells and centrifuged (12,000 g; 5 min). Supernatants were stored

while pellets were resuspended in DAPI staining solution and

incubated (5 min) at room temperature. The stained mycelia were

centrifuged and washed with deionised H2O before resuspension

in the original supernatant. Aliquots of these preparations were

analysed for GliT-GFP presence and DAPI fluorescence on an

Olympus Fluoview 1000 confocal microscope.

Virulence model
G. mellonella larvae (n = 10) were inoculated into the hind pro-leg

with 106 A. fumigatus conidia in 20 ml (per larva) [37]. In addition,

one cohort of larvae was pre-treated with gliotoxin (0.5 mg/larva

in 20 ml). Control treatments were included to ensure that neither

the injection procedure, or the incubation period, were responsible

for any mortality observed. These controls involved G. mellonella

larvae injected with 20 ml of sterile PBS or gliotoxin alone. G.

mellonella larvae were placed in Petri-dishes and incubated in the

dark at 30uC. Mortality rates were recorded for 72 h post-

injection. Mortality was assessed based on lack of movement in

response to stimulation and discolouration (melanisation) of the

cuticle.

Generation of gliT-encoding Aspergillus nidulans and
Saccharomyces cerevisiae

To introduce gliT in A. nidulans TRAN, a plasmid containing

gliT coding sequence under the control of a constitutive otef [40]

promoter was used. Therefore, a 1.1 kb fragment containing gliT

was amplified using ogliT-BglII and ogliT-NotI and subcloned into

pCR2.1-TOPO (Invitrogen). A 0.9 kb fragment containing an otef

promoter was released via BamHI/KpnI digest from plasmid

pUCG-H [34] and cloned into the respective sites into pGliT-

BglII-NotI. Transformation was performed as described for A.

fumigatus.

The S. cerevisiae strain used in this study was BY4741 (MATa

his3D1 leu2D0 met15D0 ura3D0) and was purchased from Euroscarf.

Rich and minimal yeast medium was as described in [41], and

gliotoxin was added to the desired concentration to cooled molten

agar. To monitor the effects of GliT expression in S. cerevisiae gliT

was amplified from A. fumigatus (ATCC46645) using PCR with

primers Sc-gliT-F and Sc-gliT-R (Table 2), and cloned into the

yeast shuttle vector pC210 [42]. Plasmids pC210 harbors the SSA1

coding sequence under control of the constitutive SSA2 promoter.

Following digestion of pC210 with NdeI and SphI to remove the

SSA1 coding sequence, similarly digested gliT PCR product was

ligated into pC210 to create pC-GliT. Thus, pC-GliT harbors A.

fumigatus gliT under control of the strong constitutive S. cerevisiae SSA2

promoter. The integrity of pC-GliT was confirmed by sequencing.

To test the sensitivity of yeast to gliotoxin, BY4741 harboring

either vector alone (pRS315) or pC-GliT was grown to mid-

exponential phase (36106 cells/ml). Cells were harvested and

resuspended in rich medium to a concentration of 56106 cells/ml.

Cells were serially diluted and were plated onto rich or minimal

medium containing the desired concentration of gliotoxin, using a

multi-pronged replicator. Plates were incubated at 30uC for 48 h

with further monitoring of plates at room temperature for 72 h.

Accession numbers
The proteins named herein are available at Genbank under the

following Accession numbers: GliA (AAW03302); GliF

(AAW03300); GliG (AAW03304); GliH/AFUA_6G09745

(EAL88826); GliT (AAW03299) and GliZ (AAW03310).

Supporting Information

Protocol S1 Supplementary data.

Found at: doi:10.1371/journal.ppat.1000952.s001 (0.03 MB

DOC)

Figure S1 (A) Deletion of gliT and gliH in A. fumigatus

ATCC46645 and 26933, respectively. Southern analysis of DgliT

mutant versus wild-type DNA for A. fumigatus ATCC46645 and

ATCC26933, respectively. Here, a DIG-labelled probe was used

to detect the predicted presence of 3.3 and 6.4 kb fragments in

XbaI restricted DgliT and wild-type DNA, respectively. (B)

Southern Blot analysis of DgliT complemented strains (gliTC).

Genomic DNA of wild-type and complemented strains was

digested with NarI (ATCC46645) and ApaI (ATCC26933),

respectively and probed using a DIG-labelled probe amplified

using oligos ogliT-4 and ogliT-5. (C) Southern Blot analysis of

DgliH, DgliH-complemented strains (gliHC) and DgliT-complement-

ed with gliH (DgliT26933gliH). Genomic DNA of wild-type and

respective mutant strains was digested with NdeI (ATCC26933)

and probed using a DIG-labelled probe amplified using oligos

ogliH-4 and ogliH-5. (1) A. fumigatus ATCC26993, (2) DgliH, (3)

gliHC, (4) DgliT, (5) DgliT26933gliH.

Found at: doi:10.1371/journal.ppat.1000952.s002 (1.30 MB

DOC)

Figure S2 Phenotypic analysis of A. fumigatus ATCC46645 (wild-

type) and DgliT strains in the presence of gliotoxin (GT).

Compared to wild-type, gliotoxin (5 mg/ml) significantly inhibits

DgliT growth in minimal medium (MM) and completely inhibits

DgliT growth in both MM and Sabouraud medium (10 mg/ml).

Found at: doi:10.1371/journal.ppat.1000952.s003 (0.04 MB

DOC)

Figure S3 Peptide mass spectrum of GliT from A. fumigatus

ATCC26933, a component of the gliotoxin biosynthetic cluster

(33% sequence coverage). This MALDI-ToF identification

represents the first proteomic confirmation of the expression of a

component of the gliotoxin biosynthetic cluster.

Found at: doi:10.1371/journal.ppat.1000952.s004 (0.11 MB

DOC)

Figure S4 Analysis of gliotoxin, and related metabolite,

production in A. fumigatus mutant strains. (A) Gliotoxin was

detectable by RP-HPLC (data not shown) and LC-MS in A.

fumigatus ATCC26933 gliTc with identical molecular mass and

fragmentation pattern to commercially available gliotoxin and as

reported in [10]. (B) LC-ToF analysis of RP-HPLC purified

gliotoxin-related metabolite (Figure 3B) from Aspergillus fumigatus

DgliT26933. MS spectrum shows the presence of a high abundance

molecular ion (Retention time = 9.153 min) with m/z 279.0796

(M+H)+ (557.1497 (2M+H)+) which corresponds precisely to a

predicted molecular formula of C13 H14 N2 O3 S - a putative

GliT Function in A. fumigatus
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monothiol form of gliotoxin. (C) LC-MS analysis analysis of RP-

HPLC purified gliotoxin-related metabolite (Figure 3B) from

Aspergillus fumigatus DgliT26933. Using a manual approach, LC-MS

software identified five molecular species with m/z 279.0. The

most intense peaks (1 and 5) were subjected to MS2 analysis and

both yielded identical fragments ions of m/z 261.1, 231.0 and

203.1. Notably, peak 1 eluted from LC-MS and LC-ToF with an

identical retention time (9.1 min) (D) Gliotoxin production was

undetectable in A. fumigatus DgliH26933, by RP-HPLC and LC-MS

(data not shown), thereby indicating a role for this gene in either

gliotoxin biosynthesis or secretion.

Found at: doi:10.1371/journal.ppat.1000952.s005 (0.43 MB

DOC)

Figure S5 Recombinant GliT expression. (A) SDS-PAGE and

(B) Western blot analysis of recombinant GliT expression and

solubility. Lane 1 contains non-transformed BL21 (DE3) cells.

Lane 2 contains non-induced cell extract and lanes 3–5 contain

induced cell extracts taken 1–3 h post-induction with 0.6 mM

IPTG. Lane 6 and 7 contain soluble and insoluble cell extracts

respectively. Lane 8 contains His-tag positive control and lane 9

contains non-reducing cell extract- monomeric (m) and dimeric (d)

forms of GliT are evident. Lane M contains molecular mass

marker.

Found at: doi:10.1371/journal.ppat.1000952.s006 (2.29 MB

DOC)

Figure S6 Confirmation of recombinant GliT identity by

MALDI-ToF mass spectrometry (21% sequence coverage).

Found at: doi:10.1371/journal.ppat.1000952.s007 (0.03 MB

DOC)

Figure S7 (A) Partial purification and immunological identifica-

tion of GliT. Absorbance (A280 nm and A454 nm) versus elution

volume (ml) for a Q-Sepharose ion-exchange fractionation of GliT

dialysate (post-ammonium sulphate precipitation). (B) SDS-PAGE

analysis of Q-Sepharose ion-exchange chromatography (IEX)

fractions. (C) Western blot analysis of Q-Sepharose IEX fractions

using human IgG[anti-GliT] and anti-human IgG-HRP conjugate

with ECL detection. These fractions were pooled and used for

activity and immunological analysis as shown in Figures 4 and 5.

Found at: doi:10.1371/journal.ppat.1000952.s008 (0.29 MB

DOC)

Figure S8 Gliotoxin induces expression of GliT-GFP expression

in A. fumigatus. (A) Basal expression of GliT-GFP expression,

determined by confocal fluorescence microscopy in A. fumigatus in

the absence of added gliotoxin. Panel I: GliT-GFP fluorescence,

panel II: DAPI nuclear staining and panel III: Image merge. (B)

Enhanced expression of GliT-GFP throughout mycelia following

exposure to gliotoxin (5 mg/ml). Panel I: GliT-GFP fluorescence,

panel II: DAPI nuclear staining and panel III: image merge. (C)

Fluorescence intensity for DAPI (blue) and GFP (green) are shown.

Yellow line corresponds to the fluorescence intensities depicted

with a red arrow. Intensities demonstrate localisation of GliT-GFP

in cytoplasm and nuclei.

Found at: doi:10.1371/journal.ppat.1000952.s009 (1.42 MB

DOC)

Figure S9 Expression of GliT-GFP restores resistance to

exogenous gliotoxin. Phenotypes of A. fumigatus ATCC46645

(WT), DgliT46645, gliTC and gliTgfp. Conidia of the respective strain

were point inoculated on AMM plates in the absence and presence

of gliotoxin (5 and 10 mg/ml. respectively) and incubated for 40 h

at 37uC.

Found at: doi:10.1371/journal.ppat.1000952.s010 (0.62 MB

DOC)

Figure S10 Virulence assay of A. fumigatus wild-type, DgliZ, DgliT

and gliTc. (A and B) G. mellonella challenged with A. fumigatus DgliZ

[14], corresponding wild-type, DgliT26933 and gliTc in the presence

(A) (6 ng, pre-incubation 2 hr prior to conidial challenge) and

absence (B) of gliotoxin.

Found at: doi:10.1371/journal.ppat.1000952.s011 (0.24 MB

DOC)
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