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 Abstract – This paper describes a novel software application 
that assists in understanding the process of estimating the state of a 
linear dynamic system based on noisy output signal measurements.  
An interactive Java tool, based on the Kalman Filter, is described.  
This consists of two main parts, a simple one-dimensional filter and 
a multi-dimensional filter tool.  The user can set all input 
parameters through a single interface or by following a series of 
guided steps.  Raw measurement data can be generated 
automatically or inserted manually by the user and the results of 
estimating the true system state are then presented as a series of 
graphs in real-time.  The application is described through the use of 
two simple examples.  Such an application could be used to teach 
signal and systems engineering. 
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I INTRODUCTION 
 
Formal engineering education appeared for the first 
time around the middle of the 18th century [1].  As 
the discipline evolved, various inventions set the 
standards for ‘modern’ engineering.  These 
inventions called into existence new industries and 
new standards for education and training [2].  Prior 
to World War II the typical electrical/electronic 
engineer studied very little fundamental science and 
mathematics, with the emphasis resting on the 
acquisition of experience [3, 4].  By the end of 
World War II all this had changed as it was realised 
that fundamental knowledge of science led directly 
to new applications in the military domain, with 
consequential effects on engineering curricula [5] 
[1].  During the past decade the World Wide Web 
and computer-assisted learning has again posed 
interesting challenges and possibilities for 
approaching the education of electrical and 
electronic engineers [6 -9]. 
 
Fundamental understanding of key concepts in 
signals and systems is often difficult to teach 
successfully.  In dynamic linear systems, the concept 
of estimating the state variables from a series of 
noisy measurements is one such example.  The most 
widely accepted algorithm for performing an 
estimation of this kind is the Kalman Filter.  This 
algorithm is deceptively simple and its thorough 

understanding encapsulates a number of engineering 
topics such as statistical modelling, engineering 
computation, linear system dynamics, measurement 
science and digital signal processing [10].  Studying 
the operation of the Kalman filter therefore leads to 
an appreciation of the inter-disciplinary nature of 
electronic engineering.  However, a deeper 
understanding of the theory, and awareness of 
practical implementation issues, can only be 
experienced by employing the filter in practical 
situations.  A computer-based tool that allows 
experiments based on ‘what if’ scenarios would 
challenge users, motivate them to ask questions and 
facilitate the consolidation of their engineering 
knowledge. 
 
This paper describes a novel Java implementation of 
the Kalman Filter, which aims to assist users in 
understanding the effects of noise on the output 
signals generated by a linear dynamic system and on 
estimating the state of such a system.  Two distinct 
implementations are described - a two-dimensional 
and a multi-dimensional Kalman Filter – and two 
illustrative examples are provided. 
 
In section II we briefly examine the origins of the 
Kalman Filter and describe the theory underlying its 
operation.  Sections III and IV describe the two-
dimensional and multi-dimensional Java 
implementations respectively together with examples 
that illustrate their use.  Inspiration for the 
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application derived from one of the authors’ 
industrial experience in seismic exploration and from 
experience in teaching electronic engineering 
students. 
 
 
II THE KALMAN FILTER 
 
The first method for forming an optimal estimate 
from noisy data is the method of least squares, a 
discovery attributed to Carl Friedrich Gauss in 1795 
[10].  During World War II Norbert Wiener worked 
on the problem of automatically controlling the 
direction of anti-aircraft fire using noisy radar 
information and derived the solution for the least-
mean-squared prediction error in terms of the 
autocorrelation functions of the signal and noise.  By 
combining probability theory and the idea of state 
variables Kalman subsequently derived the Weiner 
Filter, which became known as the Kalman Filter  
 
a) What is the Kalman Filter? 
 
The Kalman Filter is named after Rudolf Kalman 
who first introduced the algorithm in 1960.  It has 
been employed in myriad applications including 
process control systems, vehicle tracking, marine 
navigation, geology, demographic estimation and 
stock price prediction.  It estimates the instantaneous 
state of a linear dynamic system perturbed by 
Gaussian white noise by using measurements that are 
linearly related to the system state but that are 
corrupted by Gaussian white noise.  The filter 
recursively minimizes the mean square estimation 
error without directly observing the system state or 
knowing the nature of the modelled system.  We 
only observe some measurements using an array of 
noisy sensors – see Figure 1. 
 

 

The system state itself evolves with time under the 
effect of random perturbations or control inputs.  The 
Kalman Filter then provides an optimal estimate of 
the unobserved system states and their uncertainties 
based on noisy measurements of the process.  The 
Kalman filter operates online so that the best estimate 
of the system state and its uncertainty can be 
computed by updating the previous estimates with 
new measurements. 

 
 

b) Kalman Filter Theory 
 
An outline description of the Kalman Filter algorithm 
is presented here in equations (1) to (7).  For a 
detailed theoretical explanation of the Kalman Filter 
refer to [10] and [11]. 
 
The Kalman Filter attempts to estimate the n-
dimensional state vector x of a first order, discrete-
time controlled process with inputs governed by a 
linear stochastic difference equation, and an m-
dimensional measurement vector: 
 

κκκκκ wBuxx ++Φ= −−− 111  (1) 
 

κκκκ vxHz +=  (2) 
 

where k is the time index, wk is the process noise, vk 
is the measurement noise, Φ is the state transition 
matrix, B is the control matrix, u is the control input 
vector, H is the sensitivity matrix and z is the 
measurement vector. 
 
Equation (1) defines the system dynamic model and 
equation (2) defines the measurement model. 
 
The Kalman Filter iteratively applies two stages of 
computations using feedback control: 
1. time update computations (the prediction) – 

equations (3) and (4); 
2. measurement update computations (the adjusted 

prediction) – equations (5) to (7) 
 

111 ˆˆ −−−
− +Φ= κκκκ Buxx  (3) 

 

1111 −−−−
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( )−− −+= kkkkkk xHzKxx ˆˆˆ  (6) 
 

( ) −−= κκκκ PHKIP  (7) 
 

 

Figure 1: The Kalman filter estimates the 
system state variables based on a 
multidimensional signal + noise as input 
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where      is the a priori state estimate at step k, κx̂  is 
the a posteriori state estimate at step k, Pk

- is the a 
priori estimate error covariance matrix, Pk-1 is the a 
posteriori estimate error covariance matrix , Kn is the 
Kalman Gain matrix. 
 
Equation (3) is the State estimation extrapolation, (4) 
is the error covariance extrapolation, (5) is the 
Kalman Gain, (6) is the state estimate observational 
update and (7) is the error covariance update.  These 
equations are implemented in the Kalman Filter 
application which we will now describe. 
 
 
III THE 2D TEACHING TOOL 
 
The Kalman Filter teaching tool is a Java application 
that can be used to verify the students’ knowledge 
and allow them explore their own understanding of 
the effects of noise on measuring a system response. 
 
The initial application window offers the user three 
paths to follow (see Figure 3): 
1. A two-dimensional version with scrolling 

graphics and with parameters that can be varied 
in real-time; 

2. A guided step-by-step version for inputting data 
that can extend to six inputs and six 
measurements; 

3. A multi-dimensional version so that the user 
can input data in any order.  There is an upper 
limit of six inputs and six measurements. 
 

We will now explore each of these versions in more 
detail through the use of two simple examples. 
 

 
The 2D version is limited to a single measurement of 
a single variable as a function of time.  For example, 
we might want to optimally estimate the temperature 
of a room over time using a sensing device.  The user 
sets the relevant parameters through an intuitive 
graphical user interface (see Figure 4).  When all 
data is entered the user starts the Kalman Filter 

process and data is plotted to screen.  The application 
can be stopped and started to experiment with the 
tuning and transient effects of the filter settings.  All 
parameters can be varied in real-time and the effects 
on the output observed simultaneously.  When the 
output window fills with data it scrolls to 
accommodate new data.  Help buttons are associated 
with each function button to provide a short 
explanation of each feature. 
 
As an example we will imagine we have a bucket of 
nominally 10-ohm resistors, accurate to 1% RMS – 
see du Plessis [12].  Imagine that we select each 
resistor in turn from the bucket and using an 
ohmmeter with an accuracy of 0.3-ohms RMS 
random error, we randomly choose a resistor from 
the bucket, measure its value using the ohmmeter and 
attempt to estimate its true value.  This example 
involves no dynamics and no matrix notation.  The 
process transition assumes that all the resistors have 
the same value and that any variation is accounted for 
by random Gaussian noise.  The measurement model 
says that we are measuring the actual state with the 
addition of noise.  The values given are inserted into 
the application as follows: 

Process Transition  1.0 
Meas./State relation 1.0 
Measurement noise variance 0.3 
Process noise variance 0.1  
True value 10 

 
The Kalman Filter is then started and the plot 
obtained is shown in Figure 4.  In this plot, we can 
see two transient periods.  The process noise is the 
same in both cases.   The data between the first and 
second transient are calculated based on the 
parameters given above.  For the second transient, 
the measurement noise has been increased so that the 
Kalman Filter will place less trust in the 
measurement model and more trust in the process 
model. 
 
IV THE MULTI-DIMENSIONAL 
TEACHING TOOL 
 
This version operates up to a maximum of six inputs, 
six states and six measurements.  The actual 
measurements can either be simulated by the 
program or inserted manually by the user.   There are 
two ways to input the Kalman Filter set-up data, by 
following a guided step-by-step procedure or viewing 
the entire Kalman Filter set-up screen at once.  The 
choice is made from the initial screen view (see 
Figure 3).  We will briefly describe each version 
before presenting a simple illustrative example. 
 
The step-by-step version guides the user through a 
logical process of entering the data.  Each step 
provides an explanation of the data being requested  

Figure 3: The initial screen view for the Kalman Filter 
teaching tool showing the three options : 2D, step-by-step 
or multiD versions. 

−
κx̂
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and outlines the theoretical prerequisites for being 
able to fully understand the step at hand.  An 
example of one of these steps is shown in Figure 5.  
When the last step is reached the full multi-
dimensional Kalman Filter tool is launched with all 
the values initialised to those the user inserted. 

 
The full multiD version can also be launched by 
choosing the third option in the initial screen.  Now 
the user can click any button on the screen in any 
order to insert the filter set-up data.  The screen 
layout is designed to be intuitive and to reflect the 

actual Kalman equations.  Data is entered starting 
from the left and working towards the right, as the 
dimensions of the matrices depends on the number 
of states, inputs and measurements.  When the data 
is inserted the user presses the 'Start' button, the 
calculations are performed and the results are 
graphically presented to the user.  Figures 6a and 
6b show two examples of the main screen for 
entering data.  In each case there is a schematic 
diagram to assist the understanding of the 
parameter currently being set.  There is a hypertext 
help file, which also explains the Kalman Filter 
theory, but it is indispensable that a novice be 
guided in the use of the multiD version of the 
application. 
 
Now we will examine a simple illustrative example 
based on an object moving in the X-Y plane at a 
constant velocity subject to random variations in its 
trajectory.  The motion is described by a fixed 
motion model.  The new position (X,Y) is the old 
position plus the velocity (∆X, ∆Y) plus noise w.  
At any time t we therefore have: 
 

�
�
�
�

�

�

�
�
�
�

�

�

+

�
�
�
�

�

�

�
�
�
�

�

�

−∆
−∆

−
−

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

∆
∆

∆

∆

Y

X

Y

X

w

w

w

w

tY

tX

tY

tX

tY

tX

tY

tX

)1(
)1(

)1(

)1(

1000
0100
1010

0101

)(
)(

)(

)(

 (8) 

Figure 4:  The 2D Kalman Filter Teaching Tool Screen Shot.   All input parameters can be varied in real time to 
view the effects of noise on the system and the measurement.   In this example the application has been stopped 
and restarted with new parameters.  The parameters can also be varied in real time. 

Scrolling Screen 

Figure 5: Step four of the step-by-step data insertion 
tool. 
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If we assume that we can only observe the position 
of the object (not its velocity), then we get the 
following measurement model equation: 
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Suppose we start out at position (0,0) moving to the 
right with velocity (4,3) and we sample a random 
trajectory of length 50.  The initial covariance 
matrix is assumed to be a diagonal matrix with 
values of 1000, indicating that we do not trust our 
initial estimate.  The measured data we use comes 
from a simple model of the system simulated using 
another application. 

 
When all the measurement data is entered and the 
Kalman Filter parameters are set up, the process 
should be started by selecting the START button.   

This produces a number of graphs as output.  The 
output graphs for the input data used are shown in 
Figures 7a and 7b.  
 

 
These plots indicate the action of the Kalman 
Filter.  We are estimating the object’s position and 
velocity as a function of time, given its position 
only.  Our input model describes the noise 
associated with the measurements and with our 
model of the actual system.  As we collect more 
data we combine these uncertainties to obtain a 
maximum likelihood estimate of the object position 
and velocity.   The covariances associated with the 
state estimates then decreases exponentially as can 
be seen in Figure 7a.   In Figure 7b we can see a 
plot of the raw measurements (input X vs input Y) 
and the estimated state (State 1 vs State 2).   The 
estimated state plot is a smoothed estimate of the 
raw measurements plot. 
 

Figure 6a : A view of the main application data input screen.  
In this case the user has selected to input the transition 
matrix.  They have already indicated that there are four states.  
The schematic assists in understanding the transition matrix 
as part of the system process. 

Figure 6b : Another view of the main application data input 
screen.  In this case the user has selected to input the 
measurement matrix.  They have already indicated that there 
are two measurements and four states.  The schematic assists 
in understanding the measurement model. 

Figure 7a : Each state and it’s covariance matrix are 
plotted as a function of time. 

Figure 7b : Each measurement is plotted together 
with its innovation. 
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V CONCLUDING REMARKS 
 
This paper described the theory and operation of 
the Kalman Filter.  It then detailed an innovative 
Java-based Kalman Filter tool that operates in two 
dimensional or multi-dimensional mode.  Such 
computer-assisted learning applications are 
essential to allow students experiment with ‘what 
if’ scenarios in the domain of signals and systems 
and thus deepen their awareness of fundamental 
engineering concepts. 
 
Our future work will extend the current application 
to include signal filtering and prediction and will 
then look at the extended Kalman filter for non-
linear systems. 
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