GENERATORS FOR THE CENTRE OF THE GROUP ALGEBRA
OF A SYMMETRIC GROUP

JOHN MURRAY

ABSTRACT. The ring of symmetric functions is used to obtain an explicit set
of generators for the centre of the integral group algebra of a symmetric group,
different to those given by H. K. Farahat and G. Higman. This generating set
is used to shows that the centre of the 2-modular group algebra is generated
by certain sums of 2-classes.

Proper subalgebras of the centre of the 2-modular group algebra are studied
in the context of symmetric functions. These include the algebra that is the
span of the 2-regular class sums, and the algebra that is generated by the
involution class sums. Various related subalgebras of the modular ring of
symmetric functions are shown to be polynomial algebras, and furnished with
explicit sets of algebraically independent generators.

1. INTRODUCTION

Let S, be the symmetric group on n symbols. H. K. Farahat and G. Higman [FH]
exhibited a set of generators for the centre Z(ZS,) of the integral group ring ZSy,
and introduced an infinite dimensional filtered algebra whose structure constants
are integer valued rational functions. A. -A. A. Jucys [J] used their methods to
show that Z(ZS,,) coincides with the ring A,,_; of integer symmetric polynomials
in certain elements of Z.S,. A different, and independent, proof of the same result
was given by G. E. Murphy in [Mpy]. We will refer to these generating elements
(whose definition is recalled in (6.1) below) as the JM-elements of Z.S,,. Murphy’s
proof shows that the Q-algebra generated by the JM-elements coincides with the Q-
span of a complete set of primitive idempotents for QS,,. Theorem 1.9 in [Mpy] also
furnishes Z(ZS,,) with an explicit Z-basis involving monomial symmetric functions
in the JM-elements.

The Farahat-Higman generators are the elementary symmetric polynomials in
the JM-elements. As Jucys himself mentioned, any other set of generators for the
algebra of integral symmetric functions gives a corresponding set of generators for
Z(ZSy). In this paper we give an explicit generating set that is related to the
complete symmetric polynomials.

Let F' be a field of characteristic 2. By an n-class we mean a conjugacy class
whose elements have n-power order, for n > 1. Using our generating set, we prove
in Theorem 3.8 that the centre Z(F'S,) of the group algebra F'S,, is generated by
the 2-class sums of S,,. Theorem 4.6 gives a method of finding an explicit set of 2-
class sums that generate Z(F'S,,). The only involution classes that occur in this set
are products of powers of 2 commuting transpositions. The modular representation
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theory of S,, shows that no set of p-class sums can generate the centre of the group
algebra of S, over a field of odd characteristic p > 0.

It is noteworthy that both the Farahat and Higman paper, and the Murphy
paper, include proofs of the so-called Nakayama Conjecture that gives a combina-
torial classification of the p-blocks of S,,. Our results have some consequences for
the 2-blocks of S),. Specifically, we show in Section 5 that each 2-block idempotent
can be expressed as a polynomial, with coefficients in F', in the involution class
sums of S,,.

The latter part of the paper is concerned with various proper subalgebras of
Z(FSy). The author showed in [M] that, for each each N > 0, the span of the
class sums of elements of S,, whose order is not divisible by 2V forms a subalgebra
of Z(F'S,). When N = 1, we obtain an algebra spanned by the sums of those
conjugacy classes containing elements of odd order. We give explicit generators
for this algebra in Section 7. There is a related subalgebra of the modular ring of
symmetric functions, A @ F', which we call the 2-regular class symbol algebra (an
element in a group is said to be 2-regular if it has odd order). We show that this
algebra is a polynomial algebra, and furnish it with an explicit set of algebraically
independent generators.

There has been some interest in recent times in representing the operation of
multiplication by the sum of all transpositions, by means of differential operators
acting on symmetric functions. See [LT], for instance. Here we are interested
in all involution classes of S,. In Section 8, we define and study the involution
class symbol algebra. This is a subalgebra of A ) F' that is related to the algebra
generated by all involution class sums. In Theorem 8.9 we exhibit an algebraically
independent subset of the involution class symbol algebra. We suspect, but cannot
yet prove, that this set actually generates the algebra.

The final section of the paper is devoted to showing that the 2-regular class sym-
bol algebra and the involution class symbol algebra together generate a polynomial
subalgebra of A Q) F. This algebra is the span of the symmetric functions defined
n (9.6). Although this is a theorem about the 2-modular ring of symmetric func-
tions, we suspect that the corresponding conjugacy class sums span a subalgebra
of Z(F'S,). Indeed, a central theme of this paper is that there is a closer than
expected correspondence between the 2-modular ring of symmetric functions and
the centre of the 2-modular group algebra of a symmetric group.

2. THE CLASS SYMBOL ALGEBRA

Throughout this paper, n denotes an arbitrary positive integer, and F' denotes
a field of characteristic 2.

Let S be the group of finitary permutations on N = {1,2,...} i.e. the group of
bijections on the set of positive integers that fix all but a finite number of integers.
We regard Sy, as the set of permutations in Sy that fix {n+1,n+2, ...} elementwise.
So S <S> <...,and Seo = Uy Sn-

We employ the notation and methods of I. G. Macdonald [Mac]. A partition is

a nonincreasing sequence A = [A; > Ay > ...] of nonnegative integers whose sum
Al = A1 +A2+... is finite. Call X a partition of n, and write A - n, if |A| = n. The
nonzero terms of Ai, Az, ... are called the parts of A\. Let a; be the number of parts

of X that equal ¢, for ¢ > 1. The multi-index notation A = [i%,j%,...], where ¢ is
omitted if a; = 0, will be employed throughout. We use I(\) to denote the number
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of parts of A. The number of ways of arranging the parts of X is
I(A)!
uy = ( ) .
Hz’ a;!

Two elements of S, are conjugate if and only if they are conjugate in any
subgroup S, that contains them both. The conjugacy classes of S,, and of S, are
labelled by partitions, but in different ways. If A is a partition of n, we let K(X)
be the conjugacy class of S,, whose elements have cycle type A\. The modified cycle
type of the elements of K(}) is the partition p = [\ — 1,..., Nz — 1,0,...]. If
o € S, the cycle type of o depends on n, whereas the modified cycle type of o does
not. We let ¢, denote the set of elements of S, that have modified cycle type p.
Then ¢, is a conjugacy class of S, and each conjugacy class of S arises in this
way. In particular, the identity permutation belongs to ¢, where [] is the empty
partition. For m > 1, set ¢,(m) := ¢, N Sp. Then ¢, (n) = K(A), while ¢, (m) is
the empty set, if |u| + () > m.

We identify K () or ¢,(n) with the sum of the elements of the corresponding
class of S,, in Z(ZS,,). The empty sum is, by fiat, zero. For partitions u and v we

have
cu(n)cu(n) = Y ah, cp(n),
p

where p ranges over all partitions and «af,, are integers that depend on n. Farahat
and Higman [FH] have shown that the integer af, is zero if |p| > |u| + |v], is
independent of n, if |p| = |u| + |v|, and is a rational function of n, if |p| < |p| + |v|.

A Z-order is a Z-algebra that is free as Z-module. The Macdonald class symbol
algebra G is the Z-order that is freely generated by the S..-class symbols {c,},
where the multiplication is induced from

(2.1) CuCy = Z ap, Cp-

pE(ul+v])
A typical element of G has the form g = )" a,c,, where u ranges over a finite set of
partitions, and each a) is an integer. We use g(n) to denote the element Y a,c,(n)

of Z(ZS,). For i <n,let Z(ZS,); be the Z-submodule of Z(ZS,,) that is spanned
by those nonzero cy(n) with |A| <.

Lemma 2.2. Suppose that g1,92,-.. are elements of G that generate G as a Z-
order. Then the non-zero g1(n), g2(n), ... generate Z(ZSy) as a Z-algebra.

Proof. Tt is enough to show that cx(n) € Z[g1(n),g2(n),...] for each partition A.
We prove this using induction on ¢ = |A|. If i = 0, then A is the empty partition and
cx(n) = 1. Suppose then that ¢ > 0 and that ¢, (n) € Z[g:1(n), g2(n), . .. ], whenever
u is a partition with |u| < i. By hypothesis there exists f € Z[z1,z2,...] such that
f(g1,92,...) = cx- An inductive argument using (2.1) shows that

flgi(n),g2(n),...) = ea(n) (mod Z(ZS,);).
The lemma now follows from the inductive hypothesis. O

I. G. Macdonald has shown that G is isomorphic to a polynomial ring in a
countable number of variables. Specifically, let A be the ring of symmetric functions
in the variables z1, 22, ... over Z. Then there exists a Z-basis {gx} for A such that
the map ¢ : A — @G, defined by ¢(gx) = ¢y, is a ring isomorphism. Let e, € A
denote the n-th elementary symmetric function. Then eq,es,... are algebraically
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independent over Z, and A = Z[ey, e2,...]. From now on we will not distinguish
between G and A, and we identify ¢y with the symmetric function gj.

If A\ is a partition, let m) denote the monomial symmetric function of type A.
The n-th complete symmetric function h, is }_,,,, ma. The symmetric functions
hi, ha, ... are algebraically independent and A = Z[hy, ha, ...]. Indeed, the map
T that interchanges e; and h;, for ¢ > 1, is an involutary automorphism of A. For
each partition A, set hy := [[,q ha;. The generating function H(z) = >, <o hnz™

is given (somewhat informally) by the following infinite product of power series:

H(z) = [[A—zaz) .

n>1

The power sum symmetric functions are defined as follows. Set p, := my,], and
for each partition A\, define py := [[ pa,. Then the p,, are algebraically independent,
and {px} forms a basis for A@Q (but not for A). The power series P(z) =
> pna™ ! satisfies the equation P(z) = H'(x)/H(z) (see [Mac]). In particular,

n
nhy, = Z Dihn—i-
i=1

Let <, > denote the nondegenerate symmetric bilinear form on A such that
< h,\,m“ >= 6)\H

for all partitions A and u. Let f) denote the symmetric function that is <, >-
dual to ex. The f) are sometimes called the forgotten symmetric functions. Since
7(ex) = hy, and it is known that <, > is 7-invariant, we have 7(f\) = m.

The following theorem [Mac, 1.2.24], which we restate here for the convenience
of the reader, characterizes the cy:

Theorem 2.3. Let {h}} be the Z-basis of A that is <,>-dual to {cr}. Set h}, :=
hf‘n], forn > 1. Then the map h, — h}, induces a Z-algebra involutary autmorphism
of A. In particular hy = [[; h},, for each partition . Let H*(z) = }_, 5o hpa™ be
the generating function for the h’. Then H*(x) is the Lagrange inverse of H(x)
i.e. ify:=xH*(x), then x = yH(y).

If {ax} and {8} are Z-bases of A, indexed by partitions, we let M («, ) denote
the change of basis matrix from {ay} to {8} i.e.

ax = Z M(ct, B)apu Bu-
w

Note that M (8,a) = M(a,8)"". Also if {a)\} and {8}} are the <, >-dual bases
to {ax} and {fx}, and ¢ denotes matrix transposition, then

(2.4) M(d,B") = M(B,a),

If n > 1, we use £(n) to denote the number of digits that equal 1 in the binary
expansion of n. So m is a sum of £(n) distinct nonnegative powers of 2. We use
v(n) to denote the highest power of 2 that divides n. Note that £(2n) = £(n) and
that v(n!) = n — L(n).
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3. GENERATORS FOR THE CLASS SYMBOL ALGEBRA

Catalan numbers appear frequently in the combinatorics of symmetric functions.
The n-th Catalan number C), is the integer

o= ()= (0) - ()

Lemma 3.1. C), is odd if and only if n+ 1 is a power of 2.

Proof. This follows from

v(Cp) = v((2n)!) — v((n+ 1)} — v(n!)
=2n-L(2n)) —-(n+1-L(n+1) —(n—L(n))
= L(n+1)-1.

For each partition A, set
C)\ = H C,\i.
i

Our interest in the C arises from:

Proposition 3.2.

€n = (_]—)nz CA Cx,

AFn

hn = (—l)nz C).

AFn
Proof. Let X be a partition of n. Since e, = m[;»], we have
M (e, ) x = M(m,c)pnya
= M(h*,h)\pr], using (2.4)
= [[ M~ B g p0-
i

(3.3)

Macdonald has shown in [Mac, 1.2.24] that
—1)¥0)
hy =S DT ( n+ 1) ) up hy.

AFn n+1 "
So
(3.4) M(h ,h)[n]’[ln] = —— n Upn] = (—1) Ch.-

The identity for e, follows from (3.3) and (3.4).
Since 7(en) = hy, and 7(m1»)) = fiin], we have h, = fi1»]. So

M(ha c)[n],)\ = M(fa c)[1"],A
M(h*,e)x ), using (2.4)

H M(h*’ e)[/\iL[l)\,-].

5
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We adopt Macdonald’s methods to express h), in terms of the ey. Recall from
Theorem 2.3 that if y = ©H(z), then z = yH*(y). So

dr = Z (n+1)h;y™dy.
n>0
It follows that (n + 1)h} equals the residue (coefficient of y~=!) of dz/y"+1. Let
E(x) =3 ,>0ent" be the generating function for the e,. Then H(z) = 1/E(—z).
So y = z/E(—x), whence dz/y"*! = deE(—z)"*!/z"*!. Thus (n + 1)h}, equals
the coefficient of z™ in E(—z)"*!. Since the e, are algebraically independent, we
deduce that

. -1)" n+1
(3.6) hn = % Z( l(_;) ) Ux €ex-

AFn
In particular

3.7) M(h*, €)(p),1m) = mrl n upnp = (=)™
The identity for h,, follows from (3.5) and (3.7). O

We use this to prove a result about the 2-modular group algebra of S,,.

Theorem 3.8. Let F' be a field of characteristic 2, and let £L(n) be the number of
digits that equal 1 in the binary expansion of n. Fori=1,...,n— L(n), set

K; ==Y K € Z(FS,),

where K ranges over the 2-classes of S, whose cycle decomposition contains n — i
cycles. Then Ky, ..., K,_r ) generate the F-algebra Z(FSy,).

Proof. Tt is enough to prove the result for F' = GF(2). We have A = Z[ey, €2, ...].
So the nonzero terms in ey (n),e2(n) ... generate the Z-algebra Z(ZS,,), by Lemma
2.2. Reduction modulo 2 induces an epimorphism Z(ZS,) — Z(FS,). Using
Lemma 3.1 and Proposition 3.2, we see that the image of e;(n) in Z(F'S,,) coincides
with Kj;, for ¢ > 1. Suppose that S, has a 2-class whose cycle type contains n — i
parts. Then n is a sum of n—i powers of 2. Son—1i > L(n), whencei <n—L(n). It
follows that K; = 0, for i > n— £(n). This completes the proof of the theorem. O

4. GENERATORS FOR THE MODULAR GROUP ALGEBRA

In this section we prove a more precise form of Theorem 3.8. Our first result
translates Theorem 4.3 of [FH] into the language of symmetric functions.

Proposition 4.1. Let A be a partition of n. Then

M(c,h)ym = (=1)'V ( n_nl_-'_ll()\) ) u.

Proof. We have

(4.2) M(c,h)xm = M(m, B ) x = M (P, h") )2
Recall that P(z) = H'(z)/H(z), and that if y = zH(z), then z = yH*(y). Thus
dy _ H(z) +zH'(2) 1
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It follows that p,, is the residue of dy/yz™ = dy/y"*' H*(y)", which in turn is the
coefficient of y™ in H*(y)~". Write H*(y) =1+ H} (y). Then

H*@y)™" = Z( o > H ()"

1>0

Since the h} are algebraically independent, it follows that

_ 1) n—1+l()\) *
(4.3) pn =Y (-1) ( o1 uy 3.
AFn
The proposition follows from (4.2) and (4.3). O

Next we show that each positive integer has a particular representation as a sum
of terms of the form 2¢ — 1, for i > 1. We begin with some technical results.

Let S denote the set of sequences s = ---s25159, where each s; is one of the
symbols {1,0,—1,—-2,...}, and there are only a finite number of occurrences of 1.
For each i > 0, let s»; denote the subsequence - - - s;;25;115; of s. We associate two
numerical values to s. These are

sl = I{i > 0] s =1}, and
o0 .

Zs = ngn(si)21(2‘5"| —1), a formal sum.
i=0

Lemma 4.4. Let s € S be such that for each i > 0, either
(i) si =1 or
(11) S; = _|52i|'

Then Y s = 2/l — 1.

Proof. Since |s] is finite, there is a minimal N = N(s) > 0, such that s, = 0 when
n > N. We prove the lemma using induction on N. The base case N = 0 is trivial.

Suppose that N > 0. Then N(s>;) < N. The inductive hypothesis gives
S s>1 = 2/°211 — 1, and the definition gives 35 =23 551 +sgn(so) (2% —1). If
50 = 1, then |s>1| = |s| =1, and 3" s = 2(2/*I71 —1) + (2! — 1) = 2| —1. Otherwise
50 = —|s| and |s>1| = |s|. In this case we have 3" s = 2(2/s| = 1) —(2/s| - 1) = 2ls/ —1.
This completes the proof. O

Lemma 4.5. Let s € S be such that for each i > 0, either

(i) ss =1 or

(ii) s; # 1, for some j <i, and s; = —|s>;| or
(ili) s; =1, for all j<i, and s; = —|s>;| — 1.
Then )" s = —1.

Proof. There exists i > 0 such that s; = 1 for all j < 4, and s>; has initial term
s;i = —|s>;| —1 =i—|s| — 1. Let = be the word that is obtained from s by replacing
s; by —|s>i|. Then z satisfies the criteria of Lemma 4.4, and |z| = |s|. We compute

dos =Y @422 —1) - 2@k
=20l —1 4 2lsl — 2541 yging Lemma 4.4
= —1.



Theorem 4.6. There exist nonnegative integers ei, ez, ... such that
A=[2°t —1,2°2 —1,...] is a partition of n and M (c,h)y ) is odd.

Proof. Since P(z) = H'(z)/H(z) and H(xz) = 1/E(—z), we have —P(—z) =
E'(z)/E(z). Also 7(h,) = ep. It follows that 7(p,) = (—=1)"p,. Thus from
Pn = M), and 7(my)) = fin], We get fin) = (—1)"pn. Now for p a partition, we

have . " .
M(C, e)u,[n] = (fah )[n = (_1) M(pah )u,[n]
= M(c, h)y,jn) (modulo 2), see (4.2).

The first statement of Proposition 3.2 then implies that }: M(c, h),, ) is odd,
where y runs over all partitions of n with p; +1 a power of 2, for all i. The theorem
follows immediately from this. As an alternative proof, we will explicitly construct
a partition of n with the desired properties.

Let b denote the sequence ...byb by such that n — 1 = Y b;2¢ is the binary
expansion of n — 1. As before, bs; is the truncated sequence ...b;12b;11b;. We

construct a sequence s = ... 323155 € S as follows. For ¢ > 0, set
1, if b; = 1;
S; = —|b2z'|, if b; = 0, for some j < i;

—|bsil =1, ifb;=1, for all j<i.

Then s satisfies the criteria of Lemma 4.5.
For each i > 0, set a; := > {2/ | j > 0 and s; = —i}. Lemma 4.5 shows that

ZbiZi—Zaz (28 —1) Zs—

i>0 i>0
But )" 5,21 = n — 1. It follows that

Y a2 1) =
i>0
Note that n — 1 + > a; = 2" — 1, where 2"~! < n < 2". The construction of a;
shows that
r=L(n-1 +Za,~) = Ln—-1) +Z£(ai).

Let A denote the partition of n, whose parts are all of the form 2¢ — 1, for ¢ > 1,
where the multiplicity of 2¢—1 is a;. It follows from Proposition 4.1 that M (¢, h)x [n]
is odd.

Corollary 4.7. Let F be a field of characteristic 2, and let r be the largest positive
integer such that 2" < n < 2"t1. Then there exist 2-classes Ly, ..., Lar_1 of Sy,
whose sums generate the algebra Z(F'S,). These classes can be chosen so that L;
contains n — i cycles, and L; is an involution class if and only if i is a power of 2.

Proof. For i > 1, let A! be the partition of i, constructed by the method of Theorem
4.6, such that M(c,h)y: ;) is odd. Then clearly {cy: | i > 1} form a set of alge-
braically independent generators for A. It follows that the images of the nonzero
cyi(n) generate Z(F'S,).

Let t be the largest positive integer such that 2! < i. The proof of Theorem 4.6
shows that I(\) = 2¢*! — 4. Set L; = cxi(n). Then L; is a conjugacy class of S,, if
and only if i + [(A}) = 2¢*! < n. This occurs if and only if i < 2". Now L; is an
involution class if and only if all parts of A? are 1. The construction of A\* shows
that this occurs if and only if ¢ is a power of 2. |
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The table below demonstrates the construction of the 2-classes of Sig that is
given in the proof of Theorem 4.6.

n b s A Class of Sig
11000 0[0 0 0-1]|[1] K[2,1']
2/0 00 1[0 0 -1 1]|[12 K[22,1'7]
3]0 01 0[{0 0 1 -2|3] K[4,1'2]
410 0 1 1|0 -1 1 1|[19 K[24,18]
50 1 0 00 1 -1 -2][3,1%] | K[4,2%18]
6/0 1 0 1|0 1 -2 1][3 K[42,18]
7011 0[0 1 1 3]|[7 K[8,18]
8/0 1 1 1|1 1 1 1]|[1% K[28]
9|1 0 0 0|1 -1 -1 —2/[3,19 | K[4,2°]
101 0 0 1|1 -1 =2 1][321%]|K[4%,24
111 01 0|1 - 13|[7,1Y |K[8,2Y
1201 0 1 1|1 =2 1 1][34 K[4%]
3|1 10 0|1 1 -2 -3/|[7,3?] |KI[8,4?]
41 10 1|1 13 1][[7 K[8?]
1501 1 1 0|1 1 1 —4|[15] K[16]

5. 2-BLOCKS OF SYMMETRIC GROUPS
Each finite dimensional F-algebra A # 0 has a decomposition
A=B,®---®B,

into a direct sum of a number r of nonzero indecomposable F'-algebras B;. These
are called the blocks of A. Let e; denote the multiplicative identity of the algebra
B;, for 1 < i <r. Then e¢; is called the block idempotent of B;. It is known that

ly=e +--+ e

is a decomposition of 14 into a sum of pairwise orthogonal primitive central idem-
potents. When A is a group algebra, each block of A has associated to it a family of
2-subgroups of the group, known as its defect groups. These groups can be defined
using the support of the block idempotent.

Suppose now that A is split over F'. Then the centre Z(A) decomposes into

Z(A) = No E,

as F-algebras, where N is the nilradical of Z(A), and E = Fey + --- + Fe, is the
maximal semisimple subalgebra of Z(A). The projection map p : Z(A) — E, with
respect to this decomposition, is given by

p(z) = Zwi(z)ei, for z € Z(A),

where w; : Z(A) — F is the unique irreducible F-representation of Z(A) whose
kernel does not contain B;. The map w; is called the central character of B;. It is
known that p(z) is contained in the subalgebra of Z(A) that is generated by z.
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In this section we prove two results about the block algebras of F'S,,. Our first
result is known. It is a consequence of the Nakayama Conjecture, the theorem that
classifies the p-blocks of symmetric groups using the p-cores of partitions.

Proposition 5.1. Let F be a field of characteristic 2 and let D be a 2-subgroup of
Sn. Then F'S,, has at most one block with defect group D.

Proof. We use standard block-theoretic notation. See for instance [NT]. Let G be
an arbitrary finite group, let p be a prime, and let k£ be a field of characteristic p.
Suppose that B is a block of kG, with central character wp and defect group P.
The Brauer correspondent b of B is a block of kNg(P), whose central character wp
satisfies

wp(K) = wp o Brp(K) = wp(K N Ce(P)), for all classes K of G,

where Brp denotes the Brauer homomorphsim with respect to P. A result of
J. Green implies that w; vanishes on class sums of elements whose p-parts are not
contained in P. Also wy(L™) = |L|, for each conjugacy class L of Ng(P) that is
contained in Z(P). It follows that if K is a class of p-elements of G, then

(5.2) ws(K) = |[KNZ(P)|1p.

This argument is due to G. R. Robinson.

We specialize to G = S,, and P = D. The previous section shows that the 2-class
sums generate Z(F'S,), and the previous paragraph shows that the values of wp
on the 2-class sums are determined by D. It follows that wg is determined by D.
But B is determined by wg. We conclude that B is the unique block of F'S,, that
has defect group D. O

We now present the main result of this section.

Theorem 5.3. Let F' be a field of characteristic 2. Then each idempotent in
Z(F'Sy,) lies in the algebra that is generated by the involution class sums of S,,.

Proof. Let B be a 2-block of S,,. The Nakayama Conjecture endows B with a
positive integer w < n/2 called its weight. Let w = },2% be the 2-adic decom-
position of w. Let Wy denote the cyclic group of order 2, and define W; for ¢ > 0,
inductively by W; := W;_1 1 Wy. Set D := [][, W,,. Then D is isomorphic to a
Sylow 2-subgroup of Ss,,, and each defect group of B is isomorphic to D. An in-
ductive argument shows that Z(W;) is cyclic of order 2, whence Z(D) is elementary
abelian. In fact, the centre of a defect group contains exactly one involution that is
a product of 2% commuting transpositions, for each a; # 0, and these involutions
form a basis for the centre. It follows from (5.2) that wp vanishes on the sum of
any 2-class whose elements have order divisible by 4.

Let Z(F'S,) = N@® E and p : Z(FS,) — E be as above. Suppose that
Ly,L,... are 2-classes of S,, whose sums generate the algebra Z(F'S,). Then
clearly p(Li),p(Ls),... generate the algebra E. The previous paragraph shows
that p(L;) = 0 unless L; is a class of involutions. It follows that E is contained in
the algebra generated by the involution class sums in the list Ly, Lo, .. .. |

Corollary 4.7 can be used to strengthen this theorem, in an obvious way.
10



6. MURPHY-JUCYS ELEMENTS

For positive integers ¢ # j, let (¢,5) denote the permutation in S, that trans-
poses ¢ and j. Define the JM-elements of Z S, as
(6.1) ly = Lu)+(2,u)+...+(u—1u), foru=2,...n.

If f is a polynomial in the variables x1, 22, ..., we use f(I;n) to denote the evalu-
ation of f at 1 = la,...,Zp—1 = ln,Zn = 0,241 = 0,.... So f(l;n) lies in ZS,.
A.-A. A Jucys [J] has shown the following:

Lemma 6.2. Z(Z.S,,) coincides with the ring of symmetric polynomials inls, ... 1.
In particular Z(ZS,) = Z[ei(l;n), . .., en_1(l;n)]. In terms of the class sums,

ei(l;n) = Zcx(n). fori=1,...,n—1.
A
The following result gives a connection between the ring of symmetric polyno-
mials in the Jucys elements and Macdonald’s class symbol algebra. Recall that
is an involutary automorphism of A that interchanges e; and h;, for ¢ > 1.

Theorem 6.3. Let g € A be a homogeneous symmetric function of degree i. Then
g(l;n) = (=1)'r(9)(n) (mod Z(ZSy):).

Proof. Proposition 3.2 and Lemma 6.2 imply that e;(I;n) = (—1)*h;(n), for each
i > 1. Let A be a partition. An inductive argument using (2.1) gives

ex(l;n) = (—l)mh)\(n) (mod Z(ZSy))x| )-
But hy = 7(ex). The proposition follows, as the ey form a Z-basis for A. O
Corollary 6.4. Let A\ be a partition. Then

ma(lin) = (1) fr(n)  (mod Z(ZS,)x );

ha(l;n) = (_1)\>\| ex(n) (mod Z(ZSy)z)-
In particular, if i > 1 then

hi(l;n) = ZC,\C,\(TL) (mod Z(ZS,); )-
Ak

Proof. The first statement uses the fact that 7(my) = fi. The other statements
use Proposition 3.2. O

7. THE 2-REGULAR CLASS SYMBOL ALGEBRA

Recall that F' is a field of characteristic 2. A conjugacy class of S,, is said to be
2-regular if all its elements have odd order. The author showed in [M, Corollary
5] that the F-span of the class sums of the 2-regular classes forms a subalgebra of
Z(F'S;). We call this algebra the 2-regular algebra of Z(F'S,). (More generally the
centre of the p-modular group algebra of S, has a p-regular subalgebra, for each
prime p.)

We call a partition with all parts even a 2-partition. So a class of S, is 2-regular
if and only if its modified cycle type is a 2-partition. It follows from (2.1) and the
previous paragraph that the F-span of { ¢y | A is a 2-partition } forms a subalgebra
of AQ F, which we shall call the 2-regular class symbol algebra. The purpose of
this section is to show that this is a polynomial subalgebra of A @ F. This fact
will be used to give explicit generators for the 2-regular subalgebra of Z(F'S,,).

11



We extend the notation for Catalan numbers slightly by setting C; = 0, whenever
g € Q\Z. For each pair A\/n, with A a partition and n a positive integer, define

C/\/n = H C/\i/".

Proposition 7.1. h2 = Y Cyppcx, (mod 2).
AF2n

Proof. We have e, = mi»]. So €3 = my» (mod 2). Applying the automorphism
7, we get hZ = fian) (mod 2). Now if A is a partition of 2n, then
M(h, )z n = M(f,¢)an),x, (mod 2)
= M(h*,e),\’pn], by (2.4)

(7.2) { [T M(h*, €)1, 122725 if A; is even for all ¢ > 1;

i>1
0, otherwise.

Equation (3.6) gives

. (=1 (2n+1
(7.3) M(h*, &)z = 5 n Uppn] = Ch.
The proposition follows from (7.2) and (7.3). O

Corollary 7.4. Let F be a field of characteristic 2. Then the 2-regular class symbol
algebra coincides with the polynomial algebra F[h3,h3,...].

Proof. Lemma 3.1 implies that if j > 1, then C;/5 is odd if and only if j + 2 is a
power of 2. It then follows from Proposition 7.1 that

hi = Z cx (mod 2),

for each ¢ > 1, where A ranges over the partitions of 24, with each part A; of the
form 2% — 2, for some a > 0. This shows that the subalgebra of A Q) F' generated
by the images of h?, hZ,... is contained in the 2-regular class symbol algebra.
There is an obvious bijection between the 2-partitions of 2i and the partitions of
2¢ whose parts occur with even multiplicities. It then follows from a consideration
of Z-ranks, and the previous paragraph, that the images of {h?,h3,...} form an
algebraically independent generating set for the 2-regular class symbol algebra. [

Theorem 7.5. Let F' be a field of characteristic 2. Fori=1,...,|%], set
R =Y K € Z(FS,),

where K ranges over the conjugacy classes of S, whose cycle decomposition consists
of n — 2i cycles, each of length 2° —1, for some e > 0. Then Ry, ..., R|»| generate
the 2-reqular algebra of Z(F'S,,).

Proof. The element R; coincides with the image of h2(n) in Z(F'S,). Suppose that
Sn has a conjugacy class that contains 2i cycles. Then 2i < n. So i < |Z]. Since
{h3,h3,...} generate the 2-regular class symbol subalgebra in A @ F, it follows
that {Ry,..., R =} generate the 2-regular subalgebra of Z(F'S,,). O

12



8. THE INVOLUTION CLASS SYMBOL ALGEBRA

Let t, denote the conjugacy class of Sy containing the involutions that are
products of n commuting transpositions. So t, = C[1n]- For convenience we set
to:=1,and ¢; := 0 for ¢ < 0. If X is a partition, set

ty = H ta;-
%

Also put tj := 1. Recall that F' is a field of characteristic 2. The images of
{tx | A a partition} span a subalgebra of A @Q F'. We call this algebra the involution
class symbol algebra. We do not know whether it is a polynomial algebra. In
Theorem 8.9 we exhibit a set of algebraically independent involution class symbols.
It is possible that these elements actually generate the involution class symbol
algebra. In Section 9 we will show that a slightly larger subalgebra of A@ F' is a
polynomial algebra.

Proposition 8.1. t, = (=1)" Y. Cymi.
Abn

Proof. The map that interchanges h,, and h,* is an involutary automorphism of
A. (But note that it does not preserve the bilinear form <, >.) It follows that

M(c,m) = M(h,h*)! = M(h*,h)t = M(m,c).

Thus
M@, m)p s = M(c,m)pnn = M(m,c)pmn = M(e, ¢)pn,a-
The result now follows from Proposition 3.2. |
2n—1 . . . .
Set D,, := n_1 | Our interest in D,, is partially due to the next lemma.

Lemma8.2. Let C(z) = 3 (=1)" C 2™, Then C'(2)/C(z) = 3 (=1)" Dp a1

n=0 n=1
Proof. The binomial theorem can be used to show that

-1+ +1+4+4z
2z )

So zC(x)? 4+ C(x) — 1 = 0. Differentiating, we get
C'(x) —C(x) 1-V1+4r (1+4x)'/? -1

C(z) =

C(z) 1+22C(z)  2zv/1+4z 2z
The result follows from another application of the binomial theorem. a

Let T'(z) = ¥, tnz™ and set D(z) := T'(z)/T(z) = ¥ ,~; dnz""". So {dn}
are symmetric functions that satisfy B

(8.3) nt, = Z ditn_;.
i=1

Recall that p, =m,. Our next result was inspired by Proposition 1.2 of [W].

Proposition 8.4. d,, = (—1)" D, p,.
13



Proof. Clearly T'(z) = [[;5, C(ziz). So

T'(z) _ S
T = —[lnT ;d— [In C(z;2)]
[} , [}
= ; g Z x)T;, by Lemma 8.2
= Z(—l)” D, ppx™t.
n=1

O

The above Proposition can be used to show that {¢, | n > 1} is a set of alge-
braically independent generators of A @ Q. We omit the details.
Next we determine the parity of D,,.

Lemma 8.5. Let n be a positive integer. Then D, is odd if and only if n is a
power of 2.

Proof. This follows from
v(Dy) = v((2n =1 — v((n =1))) — v(n!)
= v((2n)!) — v(2n) — v(n!) + v(n) — v(n!)
= (2n—-L(n)) — 2(n—L(n)) — 1
= £(n) -

This allows us to prove the following:

Corollary 8.6. Then the involution class symbol algebra is generated by the images
of {th In>1,nisevenorn=1} in AQ F.

Proof. Suppose that n > 0. We use induction on n to show that
tony1 = Z £ " tappo—2  (mod 2).
i>1

If n = 0 this equality is trivial. So suppose that n > 0. Equation 8.3 and Proposition
8.4 imply that
2n+1

(2n+ V) tony1 = Z (—1)* Di ps tant1—i-

i=1

It then follows from Lemma 8.5 that

lony1 = Z Poi tapqp1—2i  (mod 2).
i>0

But py» =2 (mod 2). So the inductive hypothesis gives
1

t2n+1 = Z Z t2 +21_1t2n+2_2i_2j (mOd 2)

>0 j>1
14



Let 7 # j be positive integers. The terms in the above sum arising from (7, j) and
(4,1) are the same. So they cancel. We conclude that

t2n+1 = Z t%l+2l_1t2n+2_2i_2i (mOd 2)
i>0

2i1
= Z 11 tongooi-

i>1

Next we refine our knowledge of the parity of D,,.

Lemma 8.7. Let n be a positive integer. Then (D2 — Ds,)/2 is an integer. This
integer is odd if and only if n is a power of 2 or a sum of two distinct powers of 2.

Proof. Since L(n) = £L(2n), it follows from Lemma 8.5 that D,, and D,, have the
same parity. In particular (DZ — Dy, )/2 is an integer.

Suppose that £(n) > 3. Then (D2 — Ds,,)/2 is even, since both D,, and Ds,, are
divisible by 4.

Suppose that £(n) = 2. Then D,, and Ds,, are congruent to 2 modulo 4. So D2
is divisible by 4 and (D2 — D,,)/2 is odd.

Finally, suppose that n is a power of 2. Then D,, is odd. So D2 is congruent
to 1 modulo 4. We prove that D, is congruent to 3 modulo 4 by induction. The
base case is Dy = 3. The inductive step follows from

(4n—1)(4n—-3)...(4n— (2n - 1)) D

Dy, = 2n—-1)2n—-3)...2n—(2n—-1)) "
(D).t
- (—1)(=3)...(=2n+1) D, = D, (mod4).
We conclude that (D2 — D,,)/2 is odd in this case. O

If a and B are partitions, let @ U 3 denote the partition that is formed by
arranging the parts of @ and f in nonincreasing order.

If || = |B] = n, write a < B if () > I(B) or l(a) = I(B) and a precedes § in
the reverse lexocographic order. Then < is a total order and

(i) Every partition of n precedes [n];

8.8
(88) (ii) [n?] is the immediate predecessor of [2n].

Moreover, if a, 3,7, 0 are partitions with a < v and § < 4, then aU 3 < yUJ.
Suppose that n is 1 or an even integer. Define the partition

€

[n], if nis a power of 2;
(n) := a1 e
[(n/2)?], if n is not a power of 2.

For )\ a partition with each part even or equal to 1, set
e(A) == U e(N)-
i>1

Then the map A — €(\) is injective.
We now prove the main result of this section.
15



Theorem 8.9. Let F' be a field of characteristic 2. Then
{tn | n is a power of 2 or a sum of two distinct even powers of 2}

is algebraically independent, when considered as a subset of A F.

Proof. Let n > 1. Then M (t, h)[n),(n] = M (¢, h)[in],[n] = (—1)" Dy, using Proposi-
tion 4.1. It then follows from Lemma 8.5, and (i) of (8.8), that, modulo 2,

_ [ hn+ > {certain h, with u < [n]}, if n is a power of 2;

(8.10) tn = { > {certain h, with u < [n]},  otherwise.

Now suppose that n is not a power of 2. We have m,2) = (p[n2] — Pj2n])/2- So
M(t, h)j2n),[n2] = M(c, h)p2n)m2) = M(m, h™)[p2)12e) by (2.4)
= (M(p, )21, p2m) = M (s )2, 12my) /2
= (D} — D3,)/2, using (4.3).
It then follows from Lemma 8.7, (ii) of (8.8), and (8.10), that, modulo 2,

h[(n/2)2] + > {certain h, with p < [(n/2)2]},
(8.11) t, = if n is a sum of two distinct even powers of 2;
>~ {certain h, with u < [(n/2)?]}, otherwise.

Let X be a partition, such that each part A; is a power of 2 or a sum of two even
powers of 2. It follows from (8.10) and (8.11) that

tx = hery + Z {certain h, with 4 < A} (mod 2).

The theorem now follows from the injectivity of e. d

9. A POLYNOMIAL SUBALGEBRA OF THE CLASS SYMBOL ALGEBRA

Recall that F' is a field of characteristic 2. In this the final section we show that
the smallest subalgebra of A F' that contains both the involution class symbol
algebra and the 2-regular class symbol algebra is a polynomial algebra. We furnish
it with a set of algebraically independent generators in Theorem 9.8. In view of
Theorem 8.9, Corollary 9.10 provides evidence that the involution class symbol
algebra is itself a polynomial algebra.

For any o € S, we may write ¢ = 0209 = 09,02, where g5 has order a power
of 2 and oo has odd order. We call o5 the 2-part of o, and oo the 2-reqular part
of 0. The 2-regular parts of the elements of a class of Sy, form a single 2-regular
conjugacy class. We call the set of classes whose 2-regular parts lie in a given
2-regular class K the 2-regular section of Sy, that contains K.

Let A be a partition and let N > 1. Extending the notion of a 2-partition, we
call a partition A a 2N -partition if

N -1 (mod2V), foralli> 1.

Then {cy | X is a 2N -partition} are the conjugacy classes of S, whose elements have
order not divisible by 2. Tt follows from (2.1), and the remark after Corollary 5
in [M], that these symbols form an F-basis for a subalgebra of A @ F. We call this
algebra the 2~ -reqular class symbol algebra.
Let = be the equivalence relation generated on the set of partitions by:
(i) Ifn > 1 then [2n + 1] = [n?,1];
(ii) If o, 8,7, are partitions, with o &~y and 8 =~ §, then a U § = y U 4.
16



Both of the following Lemmas are fairly obvious consequences of the definition
of =.

Lemma 9.1. FEach =~ equivalence classes contains a unique partition with all odd
parts equal to 1.

Lemma 9.2. Let A, u be partitions of n. Then A = p if and only if cx and ¢, are
contained in the same 2-reqular section of S -

Following Farahat and Higman, we define
m(o) := Y (IN| = 1), foro € Su,

where N runs over all orbits of o on N. We call any expression ¢ = o3 . .. 0,,, where
Oly--y0m € Seo, and Y_ m(o;) = m(o), a minimal factorization of o. Every o has
a minimal factorization into transpositions. If N is an orbit of ¢ on N, we will use
oV for the element of Sy, that agrees with o on N, and fixes all element of N\N.

So oV € Sy, where M = max i.
The next two lemmas can be deduced from Lemma 3.5 of [FH].

Lemma 9.3. Let 0 = 01 ...0y, be a minimal factorization of 0. Then each orbit
of o is a union of orbits of the o;.

Lemma 9.4. Let 0 = 01 ...0, be a minimal factorization of o. Suppose that N

is a union of orbits of o. Then o = o ..ol is a minimal factorization of o™

We also need a technical lemma that concerns the multiplication of the class
symbols ¢,. Let {u'} be a sequence of partitions with ) [u*| = n. We may write

H Cpi = Z|P({Cw’};6)\)|0)\,

Abn

where, for ¢ a fixed element of ¢y,

P({cyi};en) = {(01,02,...) €cpr X ¢y X -+ | Hai =o}.
Lemma 9.5. Suppose that A = a U 3, where a and 3 are partitions. Then
IP({euitien)l = Y [PHepidsca)l X [P({eni}ica)l,
where ({p*}; {v*}) range over all pairs of sequences of partitions for which puvt =
', for all i > 1, and 3 |p'| = |a| and 3 |v*[ = |B].

Proof. We demonstrate a bijection

P({ep}ien) «—= | P{ep}ica) x P({esi};cp).

Let 0 € c¢). Then there exists a partition N = N U M, with N = N and
M? = M, such that o™ € ¢, and o™ € cg. Suppose that (0;) € P({c,i};cn)-
Then o; = oNoM for i > 1, and o™ =[[o and o™ = [[oM, using Lemma 9.4.
Now 0¥ € ¢, and oM € ¢,:, for some partitions p?,vi. Clearly p' Uvt = pf and
(alN) € P({cpi};ca) and (UZM) € P({cy,i};c3). The map

(01) — (@), (@)

is reversible. This establishes the required bijection, and completes the proof. [
17



We now concentrate on 4-partitions. Let v be a 4-partition. Set
(9.6) k, = Z{ ¢y | p is a 4-partition of |v| and p =~ v }.

The first example where k, # ¢, occurs with v = [5]. Then k5] = c[5) + ¢[22,1]-

Proposition 9.7. Let F' be a field of characteristic 2. Let A be a partition and let
w be a 2-partition. Then the product ty c, lies in the F-span of

{ky | v is a 4-partition of |A| + |p|}.

Proof. Since [1"] and p are 4-regular, it follows that ¢y ¢, is contained in the 4-
regular class symbol algebra. Also, if a and § are partitions with aU g = [1"], then
a =[1™] and g = [1"~™], for some m. Similarly, if « U § = u, then both a and j
are 2-regular. Using Lemma 9.5, and the definition of =, it is enough to show that

|P(t)\,CH;C[4n+1])| = |P(t)\,C“;C[(2n)2,1])| (mod 2),

whenever |A| + |u| = 4n + 1, for some n > 0. This follows from Claim 1 and Claim
2 below. O

Claim 1. Let ||+ |u| = 4n+1. We claim that either P(tx, ¢,; Cjan+1]) has even
cardinality or there is a unique j > 1 such that A; is odd, in which case

|P(tkacu;c[4n+1])| = |P(t)\17'"7t)\j—17-"7cu};c[(2n)2])| (modZ)

Proof. Let 0 € So have modified cycle type [4n + 1]. We may assume that o €
San+2. Then o has a single orbit on {1,...,4n+2}. Now |u| is even, since all parts
of p are even, while 4n + 1 is odd. It follows that A; is odd, for some j > 1. By a
slight abuse of notation, we may assume that A; is odd.

Let a = 0®™*!. Then a € t[3,,1] is an involution. Moreover, a generates a Sylow
2-subgroup of the centralizer of o in Sypy2. There exists b € #[5,) that inverts o.
Clearly K =< a,b > is elementary abelian of order 4. Assume that 4n + 1,4n + 2
are the unique symbols fixed by b. Then K acts without fixed points on {1,...,4n}.

Let ({03}, h) € P(tx, cu; Clant1))- For i > 1, set b; := 0y 1042 ...0201b. Define

({oi},h)* = ({07}, h)
({oil, h)? = ({or}, (k)0

A long but routine check establishes that both ({o;},h)® and ({0;},h)" are el-
ements of P(tk,cu;c[4n+1]), and that this induces an action of the group K on
P(tx, cu; cant1))- This generalization of the Brauer homomorphism was discovered
by R. Gow. See [G] for further details.

Since K is a 2-group, the cardinality of the set P(tA,c,L;c[4n+1]) is equivalent,
modulo 2, to the number of ordered tuples ({03}, h) € P(tx,cy; Clan+1]) such that
bi — g;, for all i > 1, and h* = h and hb® = h~1.

o — g
o} =0y, 0;

Assume that there is such a tuple ({o;},h). Then oy € ty,, and o¢ = oy and
o = o = gy. The 4-group K has n orbits on {1,...,4n}, and it acts regularly
on each orbit. Let x be one of these orbits. Since oy € C(K), either oy fixes each
element of z, or o; fixed no element of z. We deduce that the number of elements

of {1,...,4n} that are fixed by o7 is divisible by 4. But
A1 = (4n + 2 — #{fixed points of o1})/2.

Since Ay is odd, it follows that o1 contains the transposition (4n + 1,4n + 2) in
its cycle decomposition. Now [Jo;h = o is a minimal factorization of o. So
18



(4n + 1,4n 4 2) can only occur in the cycle decomposition of 1. We deduce that
\; is even for i > 2. Also (4n + 1,4n + 2)o has modified cycle type [(2n)?], and
(4n +1,4n + 2)o; € ty,—1. Claim 1 follows easily from this. O

Claim 2. Let |A| + |u| = 4n + 1. We claim that either P(tx,cy;cj(2n)2,1]) has
even cardinality or there is a unique j > 1 such that A; is odd, and that

[P (tx cus ciany2 )| = [Ptays---sta—15- -5 CutiCanyz))|  (mod?2).

Proof. As in Claim 1, we may assume that \; is odd. Let o € S, have modified
cycle type [(2n)?,1]. We may assume that 0 € Sy(n41) and that z = {1,...,2n+1},
y={2n+2,...,4n+2} and z = {4n+3,4n+4} are the 3 orbits of 0. Let a € tap41
be an involution that centralizes o. So a interchanges the elements of x and y, and
fixes both elements of z.

Suppose that P(tx,cu;cj(2n)2,1)) has odd cardinality. By an argument simpler
than that used in Claim 1, there exists ({o;},h) € [[tx; X ¢, with [[o;h = o,
and of = oy, for all 4 > 1, and h* = h. Let j € z. Set k = a(j). Suppose that
01(j) # j. Then o1(k) = a(o1(j)) # k. Also k € y. We deduce that the cycle
decomposition of o; contains the pair of transpositions (4,01 (5))(k,o1(k)). As o1
has an odd number A; of transpositions in its cycle decomposition, it follows that
o1 contains the transposition (4n + 3,4n + 4). The proof of Claim 2 now proceeds
along the same lines as that of Claim 1. |

We now prove the main result of this section.
Theorem 9.8. Let F' be a field of characteristic 2. Then the smallest subalgebra
of AQ F that contains the involution class algebra and the 2-regular class algebra
coincides with the F-span of { k, | v is a 4-partition}. This algebra is a polynomial
algebra with algebraically independent generating set

{tn | n>1is a power of 2} U {h2 | n > 1 is not a power of 2}.

Proof. Tt follows from (8.10) that the images of the elements of {t, | L(n) =
1} U {hZ | £L(n) > 1} form an algebraically independent set in A @ F.

Let A be the subalgebra of A ® F' generated by the involution class symbol
algebra and the 2-regular class symbol algebra. Let A,, be the Z-span of {c) | A F
n}. For A a partition, and i > 1, recall that a;(A) denotes the multiplicity of i as
a part of X\. The first paragraph shows that dimg(A4 N A,,) is not smaller than the
cardinality of the set

{AFn| L) =1 or a;(A) is even, for each i > 1}.
There is an obvious bijection between this set and the set
{v F n| all odd parts of v equal 1}.
This bijection sends A — v, where

a;(A), if 4 is a power of 2;
a;(v) = 0, if 4 > 1 is odd;
a;/2(A)/2, otherwise.
It now follows from Proposition 9.7 and Lemma 9.1 that A coincides with the F'-

span of {k, | v is a 4-partition }. Moreover, A is generated by the elements of
{tn | L(n) =1} U {hZ | L(n) > 1}. This completes the proof of the theorem. O
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Note 9.9. A similar argument shows that
{tan |7 >0} U {tanqam |n>m >0} U {h2 | n>1,L(n) > 2}

also form a set of algebraically independent generators for the F-algebra spanned
by {k, | v is a 4-partition}.
Corollary 9.10. ty4 lies in the F-algebra generated by t1,t2,t4, 16, ts, t10,t12-

Proof. We have £(14) = 2. Note 9.9 implies that ¢14 can be written as an F-
polynomial in {tl, to, t4, tg} U {te, t10, t12} U {h72}. However (8.10) and (8.11) show
that M(t, h)x 72] = 0, for each partition X of 14. The result follows immediately
from this. O
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