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Abstract

Evaluating investments with long-term consequences using discount rates that decline with

the time horizon, (Declining Discount Rates or DDRs) means that future welfare changes are

of greater consequence in present value terms. Recent work in this area has turned towards

operationalising the theory and establishing a schedule of DDRs for use in cost benefit analysis.

Using US data we make the following points concerning this transition: i) model selection has

important implications for operationalising a theory of DDRs that depends upon uncertainty;

ii) misspecification testing naturally leads to employing models that account for changes in the

interest rate generating mechanism. Lastly, we provide an analysis of the policy implications of

DDRs in the context of climate change for the US and show that the use of a state space model

can increase valuations by 150% compared to conventional constant discounting.
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1 Introduction

The dramatic effects of conventional exponential discounting on present values of costs and

benefits that accrue in the distant future along with the issues of intergenerational equity

that arise are well documented (see e.g. Portney and Weyant 1999, Pearce et al. 2003).

The emergence of a long-term policy arena containing issues as diverse as climate change,

nuclear build and decommission, biodiversity conservation, groundwater pollution, and

the use of social Cost Benefit Analysis (CBA) to guide decision-makers in this arena has

brought the discussion of long-run discounting to the fore. Discount rates that decline

with the time horizon (Declining Discount Rates or DDRs) have often been touted as

an appropriate resolution to what Pigou (1932) described as the ‘defective telescopic

faculty’ of conventional discounting, and there has been much discussion about the moral

and theoretical justification for such a strategy (see e.g. Dybvig et al. 1996, Sozou

1998, Weitzman 1998, 2001, Portney and Weyant 1999, Gollier 2002a). Of particular

interest are the declining yet socially efficient discount rates resulting from the analysis

of Weitzman (1998, 2004) and Gollier (2002a, 2002b, 2004) both of which appear to offer

a theoretical path through the ‘dark jungles of the second best’ (Baumol 1968) and the

intergenerational equity-efficiency trade-off contained therein.

If these theoretical solutions offer even a partial resolution of the problems of con-

ventional discounting then it is clearly important that they can be operationalised and a

schedule of DDRs can be determined. In the case of Gollier (2002a) and Weitzman (1998)

it is uncertainty that drives DDRs, with regard to future growth of consumption and the

discount rate respectively, thus the question of implementation is one of characterising

the uncertainty of these primals in some coherent way. However, of these two approaches

it is Weitzman (1998) that has proven to be more amenable to implementation mainly

because the informational requirements stop at the characterisation of uncertainty, and

do not extend to specific attributes of future generations’ risk preferences as would be

unavoidable in the case of Gollier (2002a, 2002b).1

1Weitzman (1998) assumes risk neutral agents for exposition, but this represents a special case of
his general point. For realistic scenarios, determination of DDRs a la Gollier (2002a, 2002b) requires
knowledge of the 4th and 5th derivatives of utility functions, something that he admits is very far from
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Weitzman’s Certainty Equivalent Discount Rate (CER) is derived from the expected

discount factor and is therefore a summary statistic of the distribution of the discount rate.

The level and behaviour over time of this statistic is clearly dependent upon the manner

in which uncertainty is characterised and the two applications that exist have taken differ-

ent approaches stemming from different interpretations of uncertainty. Weitzman (2001)

defines uncertainty by the current lack of consensus on the appropriate discount rate for

the very long term. His survey of professional economists results in a Gamma probabil-

ity distribution for the discount rate which leads to the so-called ‘Gamma discounting’

approach, a version of which can also be seen in Sozou (1998). Apart from uncertainty

his model has persistence in-built, the assumption being that each individual discounts

the future at their preferred constant rate, that is each of the responses that make up the

probability distribution remain constant over time.

More recently, Newell and Pizer (2003) (N&P, henceforth) suggest that while we are

relatively certain about the current level of discount rates, there is considerable uncer-

tainty in future. From this standpoint they assume that the past is informative about the

future and characterise interest rate uncertainty by the parameter uncertainty typically

found in any econometric model. They choose to describe the behaviour of the US long-

term real interest rate with a reduced-form model. Their model is the direct analogue of

the Vasicek (1977) model for the term structure of interest rates in the sense that only

the conditional mean equation is specified and the conditional variance is held constant.

In this respect, the authors get a working definition of the CER based upon an econo-

metric model and estimation of the CER schedule comes from a forecasting simulation.

Weitzman (2004) goes one step further and builds a “statistical optimal growth model” by

combining a neoclassical economic model of optimal growth under uncertainty with a fully

integrated Bayesian statistical model of estimating, updating and predicting the outcome

of this uncertainty. His model is able to produce persistent uncertainty in the interest rate

and as a result DDRs stemming mainly from the uncertainty over future technological

progress. From a different point of view, mainly driven by the existing finance literature

being accomplished.
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on the term structure of interest rates, Gollier (2004) reaches similar conclusions. He,

specifically, finds that a positively correlated growth process leads to a decreasing yield

curve in the case of a prudent representative agent due to increased uncertainty for the

distant future. He also links his model with second order stochastic correlation and as a

result to the Cox, Ingersoll and Ross model (1985) (CIR, henceforth) of the finance litera-

ture, introducing the analogue of heteroscedasticity in his process for the interest rate. In

two simulation experiments, one including discrete jumps in the growth of consumption

and the other parameter uncertainty, he provides evidence of DDRs and suggests that the

discount rate should be as low as 1% for periods exceeding 400 years.

The aforementioned studies bring to light some interesting issues concerning the char-

acterisation of the future path of interest rates. It is mainly persistence combined with

uncertainty that leads to decline in discount rates over time. In the theoretical studies of

Gollier and Weitzman, persistence is generated by the economy itself, while in N&P, the

existence of persistence is an empirical question and it is the degree of persistence in the

series that determines the rate of decline of the CER. In particular, N&P specify a simple

AR(p) model of interest rate uncertainty, which limits the characterisation of uncertainty

to a process in which the distribution of the permanent and temporary stochastic com-

ponents is constant for all time. Such a process guarantees declining CERs, but it takes

into account only the evolution of the mean of the process. As already mentioned their

model is a discrete time version of the Vasicek (1977) continuous-time model in which

the drift of the process is linear and mean-reverting, while the diffusion function is held

constant. Since the seminal contribution of Vasicek (1977), an immense literature on the

term structure of interest rates has produced interesting insights as to what drives efficient

discount rates. The basic extensions mainly come from the specification of the variance of

the process, namely the diffusion function. For example, CIR model the diffusion function

as a linear function of the level of the interest rate, while Chan et al. (1992) allow the

diffusion function to be any power function of the level of the interest rate. However, the

aforementioned one-factor models display time-homogeneity, i.e. their parameters remain

constant over time. It is reasonable to expect that the instantaneous return and volatil-
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ity slowly evolve over time. In this respect, various efforts have been made to produce

time-dependent models, such those of Ho and Lee (1986), Black et al. (1990), Hull and

White (1990) and Black and Karasinski (1991). These models specify both the drift and

the diffusion process of the instantaneous stochastic rate via time-varying functions of the

level of interest rates.

The empirical issues stemming from the environmental literature on declining discount

rates along with the development of an econometric model, versatile enough to reproduce

the empirical regularities typically encountered in interest rate data are the main con-

cern of this paper and we build upon the following points. Firstly, it is clear that if we

believe that the past is informative about the future, it is important to characterise the

past as accurately as possible. Indeed, the selection of the econometric model is of con-

siderable moment in operationalising a theory of DDRs that depends upon uncertainty

and defines the CER in statistical terms. Each specification differs in the assumptions

made concerning the time series process, hence the forecasts of the interest rate and the

attributes of the resulting schedule of the CER will differ accordingly. Secondly, the pre-

scription of CBA will differ markedly depending upon the empirical schedule of discount

rates employed, particularly for projects with a long time horizon such as climate change

prevention. Moreover, model selection is also an empirical question. Typical misspec-

ification testing and comparisons among various econometric models based upon their

out-of-sample forecasting performance should guide model selection for the practitioner.

We revisit these issues for US interest rate data and show that misspecification testing

generates a natural progression away from the simple AR(p) specification towards models

which account for second-order dependence and explicitly consider changes in the time

series process over time. We employ, for comparison purposes, the same data set of the

US interest rates with N&P and show the policy implications of interest rate uncertainty

and model selection in the value of carbon damages or sequestration.

The paper is organised as follows. In Section 2, we introduce the theory of the CER

offered by Weitzman (1998), our methodology for model selection and the econometric

models employed to replicate the stochastic nature of US interest rates. The results of
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the estimation and the simulations are presented in Section 3. Section 4 draws policy

implications for model selection in the case of the value of carbon mitigation and Section

5 concludes the paper.

2 From Theory to Practice

2.1 The Certainty Equivalent Discount Factor and Rate

Discounting future consequences in period t back to the present is typically calculated

using the discount factor Pt, where Pt = exp(−
tP

i=1
ri). When r is stochastic, the expected

discounted value of a dollar delivered after t years is:

E(Pt) = E

Ã
exp(−

tX
i=1

ri)

!
(1)

Following Weitzman (1998) we define (1) as the certainty equivalent discount factor, and

the corresponding certainty-equivalent forward rate for discounting between adjacent pe-

riods at time t as equal to the rate of change of the expected discount factor:

E(Pt)

E(Pt+1)
− 1 = ert (2)

where ert is the forward rate from period t to period t + 1 at time t in the future, or

the marginal discount rate. Gollier (2002a) shows that the certainty equivalent rate is

the socially efficient discount rate in a risk neutral world − risk neutral agents are only
concerned with the expected value of the discount factor rather than higher order moments

− by showing that an arbitrage exists if this is not the case.2 In effect this represents

the economic theory underlying Weitzman’s definition, however the behaviour of r̃t over

time is dependent upon the nature of the uncertainty surrounding the discount rate.

Weitzman (1998) and N&P show that ert as defined in (2) is a declining function of time
provided that there is sufficient persistence in the series over time.3 This makes it clear

2Strictly, Gollier deals with the average certainty equivalent rate, however the same arguments hold as
t→∞. His proof follows Dybvig et al. (1996).

3Weitzman (1998) gives a proof for a general but time invariant distribution function of rt. Weitzman
(2001) estimates this distribution empirically as a Gamma distribution. Pearce et al. (2003) provide a
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that operationalising this theory is an empirical question, requiring the determination of

the stochastic nature of ert.
2.2 Parameterisation of Real Interest Rates

N&P employed a simulation method to forecast discount rates in the distant future,

which was properly designed to account for uncertainty in the future path of interest

rates and was mainly based on the estimation results of two econometric models, namely

an autoregressive Mean-Reverting (MR) model and a Random Walk (RW) model. They

estimated the following AR(p) model for rt:

rt = η + et (3)

et =

pX
i=1

aiet−i + ξt

where ξt ∼ N(0, σ2ξ), η ∼ N
¡
η, σ2η

¢
and

pP
i=1

ai < 1 for the MR model, while
pP

i=1
ai = 1 for

the RW model. The authors prove that in the case of an AR(1) model, the CER takes

the following form:

ert = η − tσ2η − σ2ξf (ρ, t) (4)

where η is the unconditional mean discount rate, ρ is the autoregressive coefficient,

f (ρ, t) =
1−ρ2−2 log(ρ)ρt+1(1+ρ−ρt+1)

2(1−ρ)3(1+ρ) for MR and f (ρ, t) = 1
12(1 + 6t + 6t

2) for RW. It

is straightforward to see that (4) is a declining function of t (See N&P for details).

This model, although simple, is successful in capturing the basic features of the un-

derlying Data Generation Process (DGP) which lead to DDRs, namely persistence and

uncertainty. However, given the abundance of models already designed to capture the

dynamics of the interest rate data either in discrete or continuous time, it is hard to

believe that simply modelling the mean of such a process is an adequate parameterisation

of reality. As early as 1985, CIR introduce second-order dependence in the stochastic

process of the interest rate by letting the conditional variance vary with the level of the

numerical example of the decline of the certainty equivalent discount rate for a uniform distribution.
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interest rate.4 The simpler discretised diffusion model motivated by the CIR model is the

GARCH (1,1) model, in which the conditional variance depends on its own lag as well as

the lag of squared innovations. However, when fitting a GARCH model to interest rates,

one often finds that the parameter estimates imply that the conditional variance process

is either integrated or explosive. Engle et al. (1987, 1990), Hong (1988), Harvey (1993)

and Kees et al. (1997) document such a behaviour mainly for the US short term interest

rates. In such cases, proper statistical testing usually cannot reject the hypothesis that

the conditional variance of the process follows an integrated GARCH process (IGARCH).

In our study, we employ the AR(p) - GARCH(l,m) model to account for both mean and

volatility effects in the US interest rate process. Specifically our model is as follows:

rt = η + et

et =

pX
i=1

aiet−i + ξt

ξt = h
1/2
t zt (5)

ht = c+
mX
i=1

βiξ
2
t−i +

lX
i=1

γiht−i

where ht is the conditional volatility of ξt (given all available information at time t−1) and
zt ∼ IIDN(0, 1). In the case that

mP
i=1

βi+
lP

i=1
γi = 1, we have an AR(p) - IGARCH(l,m)

model.

Both the AR(p) and AR(p) - GARCH(l,m) models assume that the parameters

driving the stochastic process are constant over the sample period, i.e. they are time-

homogenous. This is likely to be an unrealistic assumption for a period of 200 years

and certainly for forecasting the CER over the long-term policy horizon in hand which,

following N&P, extends for 400 years. It is well known that the behaviour of interest

rates is strongly affected by the economic cycles as well as shocks destabilising them, i.e.

periods of economic crisis. For example, in the US, during the period 1979 through 1982,

the Federal Reserve Bank (FED) stopped its usual practice of targeting interest rates and

decided to use non-borrowed reserves as a target instrument for monetary policy. As a

4Chan et al. (1992) extend the CIR model to include any power function for the diffusion function.
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result, the volatility of US interest rates increased dramatically during that period. Other

periods of high volatility of the US interest rates were the OPEC oil crisis (1973-1975),

the October 1987 stock market crash and wars involving the US. Such turbulent periods

are likely to induce persistence in volatility, which is often an artifact of the changes in

the economic mechanism generating the interest rate (see Gray 1996). Lamourex and

Lastrapes (1990) show that any structural shift in the unconditional variance is likely to

lead to unreliable estimates of the GARCH parameters such that they imply too much

persistence in volatility. In this sense, regime shifts are mistaken for periods of volatility

clustering. Consequently, studies in the term structure literature have modelled discrete

regime shifts in the spot interest rate process (Hamilton 1988, Das 1994, Gray 1996 and

Naik and Lee 1997). These models typically posit a spot interest rate process that can

shift randomly between two or more regimes (for example a low-mean and a high-mean

regime). The diffusion and drift functions are kept the same but the specific parameter

values are different in each regime. This makes the process time-heterogeneous. Each

regime incorporates a different speed of mean-reversion to a different long-run mean and

a different unconditional variance. Specifically, in our study we consider the following

Regime-Switching (RS) model with two states:

rt = ηk + et (6)

et =

pX
i=1

aki et−i + ξt

where ξt ∼ IIDN(0, σ2k), k = 1, 2 for the first and second regime, respectively. At any

particular point in time there is uncertainty as to which regime we are in. The probability

of being in each regime at time t is specified as a Markov 1 process, i.e. it depends only

on the regime at time t − 1. We define the probability that the process remains at the
first regime as P, while the probability that the process remains at the second regime is

Q. The matrix of the transition probabilities is assumed to be constant.5

5We define the following matrix of transition probabilities:

Pr ob(Rt = 1 | Rt−1 = 1) = P, Pr ob(Rt = 2 | Rt−1 = 2) = Q

Pr ob(Rt = 2 | Rt−1 = 1) = 1− P, Pr ob(Rt = 1 | Rt−1 = 2) = 1−Q

9



The parameterisation of an RS model allows us to define a finite number of states

that the economy goes through, which consequently affect the interest rate. However,

it does not allow for cases that both the level and the variance of the process slowly

evolve over time. Such an evolution can be captured by models with time-dependent

parameters. In the continuous time literature, various models have been proposed in an

effort to capture this time-dependence of parameters. These include the models of Ho

and Lee (1986), Black et al. (1990), Hull and White (1990) and Black and Karasinski

(1991). Fan et al. (2003) compare various specifications of both time-dependent and

time-independent models and propose a time-varying coefficient model which captures

better the time-variation of short-term dynamics of the interest rate. This finding, along

with a similar conclusion of Ait-Sahalia (1996) who finds strong non-linearity of the drift

for the US interest rate, leads us to introduce a time varying parameter model. We model

the interest rate as a State Space (SS) process. More in detail, we specify an AR(1)

process with an AR(p) coefficient as follows:

rt = η + αtrt−1 + et (7)

αt =

pX
i=1

ηiαt−i + ut

where et and ut are serially independent, zero-mean normal disturbances such that: et

ut

 ∼ N


 0
0

 ,
 σ2e 0

0 σ2u


 . (8)

This specification is able to capture non-linearities in the mean of the interest rate

and accommodates changes in the conditional variance of the series under consideration.

Tsay (1987) shows that the ARCH models can be regarded as special cases of Random

Coefficient Autoregressive models (RCA), which are nested in the class of theAR(1)model

with an AR(p) coefficient. A simple RCA model allows for the conditional variance to

evolve with previous observations, accommodating in this way the high volatility observed

where Rt refers to the regime at time t.
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in periods of high interest rates. With the addition of an AR(p) structure to the coefficient

of our model, we are able to capture both the volatility dynamics and the observed non-

linearity in the drift of the interest rate process. This time-varying coefficient model can

be thought of as an infinite regime-switching model which allows for a rather elevated

degree of time-heterogeneity compared with the previous models.

Given the abundance of econometric models, our aim is to select the model that

captures the dynamics of the data generating process in order to achieve an adequate

description of the series under scrutiny. The complexity of the model and the restric-

tions it imposes should correspond to the level of uncertainty of the true data generating

process. Otherwise, inference can be misleading and the forecasting performance of the

model may be very poor. Common misspecification tests, such as tests for stationarity,

autocorrelation, heteroscedasticity or parameter instability, will provide a benchmark to

our selection procedure in conjunction with an out-of-sample forecasting exercise.

3 Empirical Results

3.1 Data

We use the US data employed by N&P for comparison purposes. More specifically, we

use annual US market interest rates for long-term government bonds for the period 1798

to 1999. Starting in 1955, the nominal interest rates are converted to real interest rates

by subtracting a ten-year moving average of the expected inflation rate of the CPI, as

measured by the Livingston Survey of professional economists. For the previous years,

expected inflation is assumed to equal zero and thus nominal and real interest rates

coincide. The real interest rates are then converted to their continuously compounded

equivalents. Finally, the estimation is based on a three-year moving average of the real

interest rates series to smooth any short-term fluctuations, since we focus on the long-term

behaviour of the series.6 Following N&P, we estimate our models based on the logarithms

of the series. This logarithmic transformation precludes negative rates and makes interest

6More details about the data can be found in N&P.
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rate volatility more sensitive to the level of interest rates.7

3.2 Results

First of all, we test the stationarity of the US real interest rates. The results of a variety of

unit-root tests are reported in Table A.1 of Appendix A.8 These results generally favour

the existence of a unit-root in the series, in line with the results of N&P. However, it

is well-known that unit-root tests often lack the power to reject a false hypothesis of

a unit-root for alternatives that lie in the neighbourhood of unity. Furthermore, mean

shifts and non-linearities are often mistaken for unit-root behaviour (see, for example,

Perron 1990 and Nelson et al. 2001). More importantly, it is difficult to believe that

real interest rates become potentially unbounded with no economic forces at work to

bring them back to some equilibrium, especially with two centuries of data. Albeit,

for completeness, we estimate both a Random Walk (RW) and a Mean-Reverting (MR)

model. Three lags are included in both models (p = 3).9 Our estimates are identical

to N&P and we do not discuss them extensively, for brevity. The MR model suggests

conversion to a long-run mean of 3.69% at a very low speed though, as the sum of the

autoregressive coefficients is as high as 0.976. Furthermore, tests for serial correlation

in the residuals of the regression model suggest that mean dependence is sufficiently

captured by this AR(3) model. Not surprisingly though, this constant-variance model

does a poor job in modelling the conditional volatility of interest rates as there is remaining

autocorrelation in the squared residuals. Specifically, the Lagrange Multiplier (LM) test

for autoregressive conditional heteroscedasticity (ARCH) in the residuals rejects the null

hypothesis of homoscedasticity. In this respect, we estimate an AR(3) − GARCH(1, 1)

model. In line with other empirical studies employing GARCH models to estimate the

volatility of interest rates, we find that β1 + γ1 = 1.007, implying that the unconditional

7See N&P, footnote 15, pp.60 for a detailed discussion on this issue.
8We use the following unit root tests: the Augmented Dickey-Fuller test (Dickey and Fuller 1979), the

Dickey-Fuller test with GLS detrending (Elliott et al. 1996), the Elliott-Rothenberg-Stock Point Optimal
test (Elliott et al. 1996), the Phillips-Perron test (Phillips and Perron 1988), the KPSS test (Kwiatkowski
et al. 1992) and the Ng-Perron test (Ng and Perron 2001).

9Throughout this paper, we use the Schwarz Information Criterion (SIC) to select the lag-length of
the alternative models.

12



variance of the process is unbounded.10 However, statistical tests indicate that β1 and

γ1 sum up to unity, implying that the process of the conditional variance of the interest

rate follows an integrated GARCH process. In this respect, we estimate an AR(3) −
IGARCH(1, 1) model. The estimation results are reported in Table A.2 (Appendix A,

Panel A). The estimates for the conditional mean remain the same in this setting, while

the estimates for the conditional variance indicate that any shock is persistent in the sense

that it remains important for future forecasts of all horizons.

However, as discussed above, this strong persistence in the volatility of the estimated

GARCH model is an indication of a regime-switching mechanism in the generating process

of the interest rate. In this mode, we estimate a two-regime model, where each regime

is an AR(2) process. Table A.2 (Appendix A, Panel B) reports the estimates of this

model. Both regimes are fairly persistent as indicated by the probabilities P and Q of

the transition matrix which approach or even exceed 0.9. However, these regimes are

distinct, as they display different characteristics. The first regime can be characterised as

a “low-mean” regime, while the second as a “high-mean” one. The unconditional means

for the two regimes are 3.28% and 5.55%, respectively. Different degrees of mean reversion

are implied by the two regimes, as well. The “low-mean” regime mean-reverts quicker

than the “high-mean” one as indicated by the sum of the autoregressive coefficients. The

respective figures are 0.929 and 0.987, implying that our process is stationary in each

regime. Moreover, the estimated transition matrix in combination with the estimated

coefficients satisfy the condition for global second-order stationarity of the process, which

is a desirable property as far as modelling the real interest rate is concerned.11 Since such

a type of model can just draw probabilistic assumptions about the state of the interest

rate we are in, our estimates suggest that the probability (unconditional) of being in the

“low-mean” regime is more than double the probability of being in the “high-mean” one

(68% as opposed to 32%).12 As a result, the estimated duration of the regimes is 7.5 years

and 12 years for the low-mean and the high-mean regime, respectively. Furthermore, the

10Engle et al. (1990) report β1 + γ1 = 1.0096 for a portfolio of US securities, Kees et al. (1997) report
β1 + γ1 = 1.10 for the one-month T-bills and Hong (1988) reports β1 + γ1 = 1.073.
11See Francq and Zakoian (2001) for the stationarity conditions.
12See Figure 1 for the estimated states over time.
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first regime is more volatile than the second as indicated by the higher variance of the

error term. Specifically, the estimated variance of the “low-mean” regime is 10 times

greater than the variance of the “high-mean” one. This finding along with the estimated

duration of the regimes leads us to assume that these regimes incorporate a business

cycle effect over this 200-year period. As a result, periods with low real interest rates

correspond to periods of slow growth or high inflation inducing uncertainty to the overall

economy, while periods of high real interest rates correspond to periods of high growth

and consequently confidence about the future state of the economy.

This business cycle effect or, more generally, the evolution of economic fundamentals

might not be abrupt, switching from one state to the other. A gradual change in the

evolution of the economy and interest rates as well might be captured better with a state

space model. We specifically model the interest rate process as an AR(1) process with

an AR(1) coefficient. The parameter estimates for this model are presented in Table

A.2 (Appendix A, Panel C). The constant in our model suggests a minimum for the real

interest rate, rather than a mean value, which is estimated at 1.67%. Furthermore, the

autoregressive coefficient is strongly persistent.13 This finding cannot in itself suggest any

degree of mean reversion for the process as a whole, since the degree of mean reversion of

the process changes over time. At the end of our sample the process of the interest rate

displays a relatively quick mean reversion as suggested by a value of 0.47 of the relevant

coefficient. Figure 2 in Appendix B shows the states of the estimated coefficient over

time.
13Stability conditions for this process have been derived by Weiss (1985). Specifically, for a univariate

AR(1) process with an AR(1) coefficient, i.e.

xt = µ+ ρtxt−1 + et,

ρt = φρt−1 + vt, V ar(vt) = q

Weiss (1985) provides the following condition:

R+ S2(∞) : = µ2 +
q

1− φ2
(1 + 4µ2 + 8µ2 lim

n→∞

n−1

j=1

n− j

n
φj) +

2q2

(1− φ2)2
(1 + lim

n→∞

n−1

j=1

n− j

n
φ2j) < 1

This condition is satisfied for our process.

14



3.3 Certainty-equivalent Discount Rates and Discount Factors

We follow N&P and simulate 100.000 possible future discount rate paths for each model

starting in 2000 and extending 400 years into the future. For each model presented and

estimated in the previous section the simulations are based on the estimates presented in

Table A.2 (Appendix A, Panels A to C).14 The initial value of the real interest rate is set at

4%, which as N&P argue reflects the best comparison with a constant rate. In Appendix

C, we briefly describe the simulation method for each estimated model. We then calculate

the certainty-equivalent discount rate employing equation (2). The simulated expected

discount factors and the corresponding CERs are reported in Tables 1 and 2, respectively

for the various models into consideration.

The first column of Table 1 displays the discount factors based on a constant 4%

rate with the remaining columns corresponding to the estimated models. As expected,

the models produce considerably different discount factors and the differences between

them are evident even from the first 60 years. For example, for a 60 year horizon the SS

model produces substantially higher valuations than the rest of the models (the difference

is over 50 % in some cases). Overall, the higher valuations come from either the SS or the

RW model. The present value of $1 delivered after 100 years is $0.05 and $0.08 according

to RW and SS respectively. The corresponding value for the rest of the models is about

$0.02. At the end of the period under examination, the RW model is the one that retains

the higher value followed by the AR-IGARCH and the SS models.

{INSERT TABLE 1 HERE: 1: Discount Factors}

Naturally, the differences among discount factor projections relevant to each model are

reflected in the projected schedule of the CERs. All the models accommodate declining

interest rates mainly stemming from the persistence and uncertainty built in them. They

differ, however, at the path they follow and the terminal values they attain. For example,

SS and RW produce the lower rates for the first 100 years, reaching a CER of around 2%

(half the initial value). During the same period, the MR and the AR-IGARCH models

follow similar paths yielding a reduction of just 50 basis points. In the case of RS, the

14The reader is referred to N&P for the estimates of the RW and the MR models (Table 1, page 63).
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CER increases slightly due to some overshooting during the first 40 years. Except for

this overshooting, the RS model regains its quick declining path for the rest of the period

reaching a rate of 0.7% after 400 years. The highest terminal rate is produced by the SS

model, which projects a rate of 1.6%, followed by MR at 1.4%.

{INSERT TABLE 2 HERE: 2: CERs}

In summary, the forecasts of the alternative models differ substantially. In this re-

spect, we need to evaluate the models with respect to their predictive ability. Typical

misspecification testing has shown that a constant coefficient model may not be able to

fully capture the dynamics of the US interest rates over the period examined. Along

this line of reasoning, we suggested two time-varying coefficient models (RS and SS), one

accommodating abrupt changes and the other allowing for a gradual change over time

in the generating mechanism of the interest rates. These two models seem eminently

preferable to the constant coefficient models. In the following subsection, we perform an

out-of-sample forecast exercise to select among the various models.

3.4 Model Selection

Evaluating the out-of-sample forecasting performance of the models under consideration

for the long run is impossible due to limitation of data, as forward rates exist for a

maximum period of 30 years. However, we attempt to discriminate between these models

on the grounds of their forecasting performance over a 30-year horizon using available real

data. We specifically make use of annual forward rates suggested by the term structure of

the inflation-indexed US government bonds. Then, we calculate the commonly-used Mean

Square Forecast Error (MSFE) and judge the models by this criterion. Alternatively,

we calculate four modified MSFE criteria by incorporating four kernels15 which weigh

observations by their relevant proximity to the present. The results are presented in

Table 3.

{INSERT TABLE 3: Average MSFEs}

Interestingly, the various specifications of the MSFE criterion unanimously rank the

15The Bartlett(B), the Parzen(P), the Quadratic-Spectral (QS) and the Tukey-Hanning (TK) kernels
are the weighting functions used in our evaluation.
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SS model first followed by the RS model in most of the cases. The AR-IGARCH model

ranks third followed by MR and then RW.

In sum, if we select a model on the basis of its ability to characterise the past and

its accuracy concerning forecasts of the future, we are inclined to accept the SS model as

the best model (among the estimated models) to describe the US real interest rates. Our

second best choice would be the RS model.

4 Policy Implications of Model Selection

The foregoing has established the importance of model selection in determining a schedule

of declining discount rates for use in CBA. The differences that arise from alternative

specifications of the time series process have been revealed and a method for selecting one

model over another has been proposed. In this section we highlight the policy implications

of declining discount rates and the impact of model misspecification by considering the

same case study as N&P, that is, climate change and the value of carbon sequestration.16

We establish the present value of the removal of 1 ton of carbon from the atmosphere, and

hence the present value of the benefits of the avoidance of climate change damages for each

of the specified models. To understand what follows it is important to be familiar with

the profile of benefits resulting from the removal of 1 ton of carbon from the atmosphere.

We use the estimates taken from the DICE model of Nordhaus and Boyer (2000) shown

in Figure 3 (Appendix B). Table 4 shows the present value per ton of carbon emissions

when evaluated using the schedule of discount rates associated with each of the models

described in Section 3.2.

{INSERT TABLE 4 HERE}

The RS model gives the lower valuations followed by the conventional 4% discounting.

Interestingly, the SS model gives the higher valuation followed by the RW model. For

example, the present value of carbon emissions reduction is over 150 % larger in the case of

the SS model compared to the case of constant discounting at 4 %. On the other hand, the

present value of the removal of 1 ton of carbon emissions from the atmosphere increases

16See N&P for the assumptions concerning the modeling of carbon emissions damages.
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by only 12 % based on the MR’s forecasts compared to the constant rate discounting

approach.

The preceding discussion has argued that the RS and SS models are to be preferred

over the others since they allow for changes in the interest rate generating process and

have desirable properties. From the policy perspective we have established that both

these models provide well specified representations of the interest rate series. However,

the RS model provides roughly equivalent values of carbon to the constant discounting

rate values (there is a 9% difference), while the SS model produces values that are up to

150% higher than those of the constant rate.

The disparity between the RS and the SS models, and the proximity of the carbon

values generated by the former to those generated by conventional constant discounting

represents a clear signal of the policy relevance of model selection in determining the

CER. It is crucial from a policy perspective to make a clear judgment as to which of

the two models (RS and SS) is most appropriate to the case in hand. Our forecasting

exercise reveals that the SS model is preferable to the RS model due to its lower MSFE

for the 30-year horizon. Hence in the context of SS the carbon values are increased by

150% compared to conventional discounting and 40% compared to N&P’s approach. In

short, in the US context, the selection of econometric models on the basis of forecasting

performance, and the preferred schedule of discount rates makes climate change prevention

a more desirable investment.

5 Conclusions

In response to the need to appraise projects over very long time horizons, a number of

theoretical discussions have arisen concerning the appropriateness of discount rates that

fall with the time horizon considered. Such Declining Discount Rates (DDRs) would add

greater weight to the costs and benefits that accrue to future generations and thereby at

least partially address the issue of inter-generational equity that so often besets the long

term policy arena.

Weitzman’s (Weitzman 1998) theoretical justification for DDRs depends upon un-

18



certainty of the discount rate and therefore the operationalising of this theory is highly

dependent upon the manner in which one interprets and characterises uncertainty. Weitz-

man (2001) suggested that it was the lack of consensus about the correct discount rate

to employ in the far distant future that was the source of uncertainty and his estimated

Gamma distribution provided the means of operationalising this theory and determining

the declining Certainty Equivalent Rate (CER). Newell and Pizer (2003) (N&P) took

an alternative view, accounting for the uncertainty through an econometric forecasting

approach.

This paper builds on N&P’s approach in determining DDRs and it makes the following

points concerning the model selection and the use of DDRs in general. Firstly, N&P’s

approach is predicated upon the assumption that the past is informative about the future

and therefore characterizing uncertainty in the past can assist us in forecasting the future

and determining the path of CERs. We have argued that if one subscribes to this view it

is important to characterise the past as well as possible by correctly specifying the model

of the time series process. This is particularly so when dealing with lengthy time horizons

where the accuracy of forecasts is important. Indeed the selection of the econometric

model is of considerable moment in operationalising a theory of DDRs that depends upon

uncertainty, because econometric models contain different assumptions concerning the

probability distribution of the object of interest. We have shown that when modelling

the US interest rate data, the econometric model should allow for changes over time in

the data generating process and that state space and regime switching models are likely

to be appropriate.

Our estimations, simulations and case study bear out this assertion. The path of the

CER differs considerably from one model to another and therefore each places a different

weight upon the future. The policy implications of these estimates is revealed in the

context of a case study that calculates the present value of carbon emissions reduction.

The utilisation of a state space model to estimate the discount factors results in an increase

of 150% in the present value of carbon emissions reduction compared to a constant rate

discounting approach.
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Table 1. Certainty Equivalent Discount Factors
Model 4% Mean Random AR Regime State
Year Constant Reverting Walk IGARCH Switching Space

1 0.96154 0.96154 0.96154 0.96154 0.96154 0.96154
20 0.45639 0.45906 0.46177 0.45876 0.45390 0.56424
40 0.20829 0.21661 0.22917 0.21250 0.19576 0.33136
60 0.09506 0.10471 0.12480 0.10062 0.08458 0.20296
80 0.04338 0.05150 0.07777 0.04894 0.03700 0.12889
100 0.01980 0.02567 0.05082 0.02455 0.01647 0.08408
150 0.00279 0.00476 0.02333 0.00529 0.00238 0.03132
200 0.00039 0.00095 0.01830 0.00178 0.00041 0.01255
250 0.00006 0.00022 0.01119 0.00104 0.00010 0.00526
300 0.00001 0.00006 0.00890 0.00086 0.00003 0.00227
350 0.00000 0.00002 0.00715 0.00080 0.00002 0.00100
400 0.00000 0.00001 0.00669 0.00078 0.00001 0.00044

Table 2. Certainty Equivalent Discount Rates
Model Mean Random AR Regime State
Year Reverting Walk IGARCH Switching Space

1 4.00 4.00 4.00 4.00 4.00
20 3.91 3.85 3.96 4.22 2.79
40 3.76 3.46 3.88 4.31 2.59
60 3.65 3.08 3.74 4.26 2.38
80 3.58 2.60 3.60 4.18 2.23
100 3.51 2.17 3.42 4.09 2.10
150 3.36 1.39 2.75 3.79 1.91
200 3.16 0.94 1.62 3.31 1.79
250 2.87 0.75 0.65 2.46 1.72
300 2.43 0.56 0.23 1.83 1.67
350 1.87 0.43 0.09 0.95 1.64
400 1.41 0.34 0.04 0.70 1.61
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Table 3. Average MSFEs
Model Mean Random AR Regime State
Criterion Reverting Walk IGARCH Switching Space

AMSFE 2.058 2.171 2.102 2.323 1.832
AMSFE (B) 1.692 1.724 1.692 1.687 1.499
AMSFE (P) 1.725 1.746 1.720 1.683 1.426
AMSFE (QS) 0.842 0.870 0.848 0.879 0.760
AMSFE (TH) 1.769 1.797 1.765 1.738 1.550

Notes: The weighting functions are as follows: Bartlett(B), Parzen(P), Quadratic-
Spectral (QS) and Tukey-Hanning (TK).

Table 4. Value of Carbon Damages
Carbon Values Relative to Relative to Relative to

Model ($/tc) Constant Rate Mean Reverting Random Walk

Regime-Switching 5.22 -9.0% -18.8% -49.4%
Constant (4.0%) 5.74 – -10.7% -44.4%
AR-IGARCH 6.37 11.0% -0.9% -38.3%
Mean Reverting 6.43 12.0% – -37.7%
Random Walk 10.32 79.8% 60.5% –
State Space 14.44 151.6% 124.6% 39.9%
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Appendix A: Tables
Table A.1: Unit Root Tests

Test Lags /Bandwidth t-stat. 5% critical value Decision

ADF 13 -2.314 -2.877 non-stationary
Phillips-Perron 12 -2.016 -2.876 non-stationary
DF-GLS 13 -0.473 -1.942 stationary
ERS Point-Optimal 12 19.733 3.170 non-stationary
Ng-Perron 12 -0.824 -8.100 non-stationary
KPSS 15 1.158 0.463 non-stationary
Notes: SIC is employed to determine the lag-length of the series. The kernel sum-of-

covariances estimator with Parzen weights is used, while the bandwidth is determined based on
the Newey-West bandwidth selection method.

Table A.2: Estimation Results
Panel A: AR(3)-IGARCH(1,1) model

Coefficient Estimate Std. Error t-stat.
n 1.330 0.104 12.811
a1 1.951 0.085 23.033
a2 -1.322 0.156 -8.472
a3 0.355 0.080 4.441
c 0.000 0.000 3.236
β1 0.442 0.092 4.805

Panel B: Regime Switching model

Coefficient Estimate Std. Error t-stat.
n1 1.189 0.128 9.327
a11 1.589 0.078 20.36
a12 -0.660 0.086 -7.630
n2 1.714 0.238 7.206
a21 1.787 0.050 35.55
a22 -0.800 0.049 -16.395
σ21 0.004 0.001 5.651
σ22 0.000 0.000 6.070
P 0.867 0.058 14.934
Q 0.917 0.035 25.976

Panel C: State Space model

Coefficient Estimate Std. Error t-stat.
n 0.510 0.082 6.185
n1 0.990 0.002 494.9
ln(σ2e) -9.158 1.324 -6.917
ln(σ2u) -6.730 0.144 -46.63
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Appendix B: Figures
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Figure 1: Filter Probabilities of the Regime Switching Model
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Figure 2: Evolution of the AR(1) Coefficient in the State-Space Model.
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Appendix C. Simulation Methodology

Mean Reverting Model: We employ a multivariate normal distribution to draw

random values for the coefficients of (3) taking into account the estimated variance-

covariance matrix of the coefficients. Another draw from a normal distribution is em-

ployed for the estimated variance. Given this set of random parameters, we generate

a future path of the interest rate. We repeat the same procedure to generate 100.000

random paths of the interest rates.

Random Walk Model: As previous.

AR(3)-IGARCH (1,1): The simulation methodology is similar to the MR model.

However, in this case we use the multivariate normal distribution to obtain random draws

for both the conditional mean and conditional variance parameters.

Regime Switching: The RS model offers the most computationally intensive simu-

lation and is conducted as follows. First, we generate random values for the probabilities

P and Q from a Beta(k, j) distribution. The values of the parameters k and j of the

Beta distribution are properly chosen in order to correspond to a Beta distribution with

mean and standard deviation equal to the ones estimated. Specifically, in the case of

P we set k and j equal to 28.8 and 4.42 respectively. The corresponding values for Q

are 55.17 and 5, respectively. Using the random values of P and Q, we calculate the

probability of being in each regime for each of the future 400 years, namely Pt and Qt.

A univariate normal distribution is used to get random draws for σ21 and σ22 separately

according to the estimates presented in Table A.2 (Panel B). Similarly to our previous

simulations, the random values for the coefficient estimates, n1, n2, a11, a
1
2, a

2
1 and a22 are

drawn from a multivariate normal distribution. Then, we simulate the future interest rate

path 100.000 times on the grounds of the probabilities Pt and Qt and the random draws

of the coefficients.

State Space: The simulation design for the SS model is straightforward as we ran-

domly draw the coefficient values from univariate normal distributions according to the

estimated values (Table A.2 (Panel C)). We then simulate the future path of interest rates

in a similar way to the other models.
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