
1

Load balancing vs. distributed rate limiting: an
unifying framework for cloud control

Rade Stanojević, Robert Shorten
Hamilton Institute, NUIM, Ireland

Abstract— With the expansion of cloud-based services, the
question as to how to control usage of such large distributed
systems has become increasingly important. Load balancing
(LB), and recently proposed distributed rate limiting (DRL) have
been used independently to reduce costs and to fairly allocate
distributed resources. In this paper we propose a new mechanism
for cloud control that unifies the use of LB and DRL: LB is used
to minimize the associated costs and DRL makes sure that the
resource allocation is fair. From an analytical standpoint, mod-
elling the dynamics of DRL in dynamic workloads (resulting from
LB cost-minimization scheme) is a challenging problem. Our
theoretical analysis yields a condition that ensures convergence to
the desired working regime. Analytical results are then validated
empirically through several illustrative simulations. The closed-
form nature of our result also allows simple design rules which,
together with extremely low computational and communication
overhead, makes the presented algorithm practical and easy to
deploy.

Index Terms— Rate limiting, Load balancing, CDN, Cloud
control.

I. INTRODUCTION

In the early days of the Internet, services were centric,
meaning that a user connects to the specific location that
provides the service. Recently, we have seen a trend of moving
from a centric model of providing services to a so called
cloud-based model in which a user obtains a service from a
massive network of “cloud servers”. Nowadays, many internet
services are structured in a “cloud” around a large number of
servers that are distributed worldwide to decrease the costs
and to improve content availability, robustness to faults, end-
to-end delays, and data transmission rates [8]. Examples in-
clude most of Yahoo! and Google services, Amazon’s Simple
Storage Service (S3) and Elastic Compute Cloud (EC2) as
well as Akamai’s Content-Delivery Network (CDN). Some
other applications, such as Google Docs or Microsoft Groove
Office, have integrated software-as-a-service paradigm and
allow desktop users to utilize cloud-based services in hosted
environments.

The ability to control cloud-based service usage is criti-
cal for several important functions of a cloud-based service
provider (CBSP):
(1) The pricing of service by most of the existing CBSPs is

usage-based [1], [19]. Namely, services are charged at a
rate that is an increasing function of the total resources
used. However, in the history of communications, pricing
of various services (eg. ordinary mail, the telegraph, the
telephone, and the Internet) followed similar pattern: it
started with usage-based pricing and converged to some

form of flat-fee pricing. Moreover, enterprizes tend to
prefer a fixed cost of an IT service rather than unlim-
ited/unpredictable usage-based cost, see [9] and [18].

(2) Provisioning of high quality services depends on the
nature of the service demand pattern. The ability to
regulate the usage of individual service allows CBSPs to
design networks with predictable performance bounds.

(3) Fault tolerance of large-scale distributed services is an
important performance objective that is enhanced by
resource control by means of fast fault discovery and
quick response to these faults.

The standard approach for enforcing service usage of a par-
ticular subscriber1 in the cloud would be enforcing some form
of load-balancing (LB) [8]. More recently, a new mechanism,
called distributed rate limiting (DRL) is proposed to tackle
the same problem assuming that virtually infinite capacity is
available at each server for each customer. In the following
paragraph we briefly discuss the assumption behind LB and
DRL.

A. Motivation: LB versus DRL

Load balancing is a general mechanism for allocating jobs to
different servers such that load is “equalized”. More formally,
the set of jobs D needs to be processed with N available
servers with (fixed) capacities µ1, . . . , µN . The problem of
load-balancing can be formulated as finding the partition of
D = ∪N

i=1Di, so that jobs from Di are served by server i and
the performance at all servers is (approximately) equalized.

Load balancing algorithms, in general, assume a uniform
price of allocating job j to server i (from now on we call this
uniform cost assumption); see for example [20]. However it is
often desirable (for example in the context of content delivery,
VoIP or online interactive games) to connect the users to the
“closest” server that can provide service, as this reduces cost
to the service provider, and can potentially improve the quality
of experience to the end users. As a result of this, many cloud-
based service providers chose to serve a particular user from
the nearest possible server2. Such job-server allocation might
have highly nonuniform per-server demand. The distributed
rate limiting paradigm is proposed in [19] to tackle this
nonuniform per-server demand in a manner that equalize the
performance among the servers while at the same time cap the

1The subscriber is either an enterprize, bank, corporation, or any other set
of users paying for service under one account.

2This is typically implemented through the mechanism called DNS redi-
rection, see [13].

2

aggregate bandwidth usage at a constant level. More formally,
in DRL the demand set D is partitioned in N subsets D =
∪N

i=1Di (based on the cheapest neighbor rule). Then the DRL
problem translates into computing capacities (µ1, µ2, . . . , µN)
of servers such that performance at all servers is equalized and
aggregate capacity constraint is satisfied:

N∑

i=1

µi = µ = const.

The basic assumption behind the distributed rate limiting
model is the infinite capacity assumption in which each cloud
based provider is assumed to have virtually infinite bandwidth
compared to the existing demands. This over-provisioning
assumption might be valid in some monopolized markets.
However, its validity is questionable in markets in which
service providers compete heavily for each subscriber.

In this paper we consider the problem of cloud control in a
model that does not assume infinite capacity nor uniform cost.
The resulting framework unifies load balancing and distributed
rate limiting paradigms. A practical algorithm is proposed to
solve the optimization problem arising from the framework.
The optimization problem strives to distribute the load at all
servers such that associated costs (of using certain job-server
allocation as well as cost of having certain demand level at a
server) is minimized.

Comment 1: An early DRL scheme has been proposed in
[11]. More recent work on DRL and LB includes: work on dis-
tributed threshold crossing algorithms [24]; overlay resource
control based on two-random choice [15] load balancing
[17]; distributed emulation of single best-effort and processor
sharing queues [22].

B. Problem formulation

Suppose that we have M jobs with demands d1, . . . , dM

and N processors with aggregate service rate µ, with the load

λ =

∑M
j=1 dj

µ
< 1.

Denote by Cij the cost of using one capacity-unit (say bit-per-
second) of server i by job j. Each user (job) j can allocate
its demand dj to any of the servers, and by x

(i)
j ≥ 0 we will

denote the fraction (see Section IV for more details) of dj

served by server i. Thus we have:

N∑

i=1

x
(i)
j = dj . (1)

Denote

yi =
M∑

j=1

x
(i)
j

as the total demand at server i and by Di(yi) the cost of using
server i when the demand is yi.

Each server has the capacity µi adaptable in a distributed
manner such that

N∑

i=1

µi = µ. (2)

The performance at server i is measured through the perfor-
mance indicator qi (qi can stand for any performance metric
such as “available bandwidth”, drop-rate, mean-response-time,
etc.) that is a function of the demand yi and capacity µi:

qi = f(yi, µi) = fi(µi). (3)

The problem is then to find the matrix of demand allocations
x = {x(i)

j }, and vector of server capacities µ = {µi} for which
the performance at each server is (approximately) equal and
that minimizes the aggregate cost:

V (x) =
M∑

j=1

N∑

i=1

Cijx
(i)
j +

N∑

i=1

Di(yi). (4)

We allow each server to exchange information with
some small set of neighbors in the (undirected, connected)
communication graph G. Further, we make the following
technical assumption that will allow us to use convex
programming:

Assumption 1: The cost functions Di(·) are convex.

Under above Assumption it is easy to see that V (x) is a
convex function of parameter x as well.

C. Our contributions

The main concern of this paper is the development of the
framework for usage control in cloud-base services. Briefly,
the main contributions of our work are following:

• We propose the framework for usage control of cloud-
based services that takes into account the appropriate cost
of job-server allocations and generalizes the well-known
concepts of load balancing and distributed rate limiting.

• An algorithm for solving the optimization problem of
interest is proposed. It relies on standard subgradient
method and a novel DRL scheme that adapts server
capacities in the dynamic workloads (resulting from the
subgradient algorithm for demand allocations) so that
performance at all servers is equalized.

• An analysis of the dynamical system modelling the
per-server performance evolution is performed for a
particular choice of performance metric. A sufficient
condition is derived which guarantees that the algorithm
runs system to the desired state.

• Several illustrative simulations are presented to evaluate
the behavior of the algorithm and support our analytical
findings.

3

1 DRL-UpdateCapacities()
2 Once every ∆ units of time do
3 for i = 1 : N
4 µi ← µi + η

∑
(i,j)∈E(qi − qj)

5 endfor
6 enddo

7 InitializeCapacities()
8 for i = 1 : N
9 µi ← µ

N
10 endfor

11 UpdateDemands()
12 g(k) = Subgradient of V in x(k)
13 x(k + 1) = x(k)− 1√

k
g(k)

Fig. 1. Pseudo-code of CARTON

II. CARTON: UNIFYING LOAD BALANCING AND
DISTRIBUTED RATE LIMITING

CARTON is the scheme that solves the optimization prob-
lem described in Section I-B. It has two steps. First is the
subgradient method [5] that allocates the workloads x such
that the cost function V is minimized. And second, a DRL
algorithm that allocates the server capacities (µ1, . . . , µN)
in a manner that ensures that performance levels (measured
through performance indicators qi) at all the servers are equal.
The pseudocode of the algorithm is given in Figure 1.

Subgradient methods are well established techniques for
solving the convex optimization problems; we refer the in-
terested readers to [5], [16]. The particular choice of step size
used in the CARTON: α(k) = 1√

k
ensures convergence to the

optimal point.
The DRL step updates the server capacities in discrete time

steps by using the rule: µi ← µi + η
∑

(i,j)∈E(qi − qj).
The rationale for this update step is the following. qi - the
performance indicator of the quality of service is a decreasing
function of µi. If the qi at limiter i is higher than performance
indicator qj at some neighbor j of i (in G), then this indicates
that some extra capacity should be allocated to limiter i which
should be compensated by reducing the capacity of limiter
j. Giving more capacity to limiters with high performance
indicators affects improving the performance at those limiters.
The parameter η > 0 determines responsiveness and stability
properties. While the basic algorithm makes sense intuitively,
many questions need to be answered before it can be deployed.
Paramount among these concerns under which conditions does
the algorithm CARTON converge to the desired (unique) state.

While many performance metrics can be defined (for exam-
ple: drop rate, mean response time, etc.), to ease the exposition,
in the rest of the paper we will use the simple “available-
bandwidth” performance indicator:

qi = f(yi, µi) = yi − µi. (5)

For the analysis under general performance indicator
functions, see the technical report [23]. The following
theorem gives a sufficient condition on η that ensures that
performance indicators eventually become equal.

Theorem 1: Let li be the degree of limiter i in the commu-
nication graph G. Then if η satisfies:

0 < η < min
1≤i≤N

1
li

, (6)

then for all i, j

lim
k→∞

qi(k)− qj(k) = 0.

Proof: We use the notation introduced in Section I-B.
The performance indicator qi(k) is given by

qi(k) = yi(k)− µi(k) =
M∑

j=1

x
(i)
j (k)− µi(k).

Since x(k) converges to x∗, the sequence yi(k) also converges
to an appropriate value y∗i . Further, the evolution of the vector
µ = (µ1, . . . , µN) can be written as

µi(k + 1) = µi(k) + η
∑

(i,j)∈E

(qi(k)− qj(k))

or

qi(k+1) = qi(k)−η
∑

(i,j)∈E

(qi(k)−qj(k))+yi(k+1)−yi(k).

Therefore, the evolution of the state-vector q(k) =
(q1(k), . . . , qN (k)) can be written as:

q(k + 1) = Bq(k) + u(k), (7)

where
u(k) = y(k + 1)− y(k) → 0,

and where the matrix B is given by B =

1− l1η ηe1,2 · · · ηe1,N

ηe2,1 1− l2η · · · ηe2,N

...
...

. . .
...

ηeN,1 · · · · · · 1− lNη

with ei,j being the elements of the adjacency matrix of G,
ie. if (i, j) ∈ E, then ei,j = 1 otherwise ei,j = 0. Then,
for η satisfying the condition (6) the matrix B is a primitive
nonnegative matrix [2]. In other words there is a positive
integer s such that all elements of matrix Bs are strictly
positive. Denote by δ the smallest element of the matrix Bs

and by
β(k) = max

1≤i≤N
qi(k)− min

1≤i≤N
qi(k).

Now we prove that for any ε > 0 there is K1 > 0 such that
for all k > K1: β(k) < ε.

Since limk→∞ u(k) = 0, there is a K0 such that for all
k > K0,

max
1≤i≤N

|ui(k)| < ε1 :=
εδ

2s(1 + δ)
.

Then since B is a row-stochastic matrix, max1≤i≤N qi(k) ≥
max1≤i≤N qi(k+1) and min1≤i≤N qi(k) ≤ min1≤i≤N qi(k+
1) which (together with bound max1≤i≤N |ui(k)| < ε1)
implies that for all k > K0:

β(k + 1) ≤ β(k) + 2ε1. (8)

4

On the other hand, since B is a stochastic matrix for all
positive integers r, and any k > K0, absolute values of the
maximum and minimum of components of vector Bru(k) are
not greater than ε1. If we denote by γ(k) = Bsq(k), then:

max
1≤i≤N

γi(k) ≤ (1− δ) max
1≤i≤N

qi(k) + δ min
1≤i≤N

qi(k)

and

min
1≤i≤N

γi(k) ≥ (1− δ) min
1≤i≤N

qi(k) + δ max
1≤i≤N

qi(k)

therefore

max
1≤i≤N

γi(k)− min
1≤i≤N

γi(k) ≤ (1− 2δ)β(k).

Now, from (7)

q(k + s) = Bsq(k) +
s−1∑
r=0

Bru(k + s− 1− r).

Then from above inequalities we conclude that for all k > K0:

β(k + s) ≤ (1− 2δ)β(k) + 2sε1. (9)

Note that from (9): if β(k) ≥ 2sε1/δ then

β(k + s) ≤ (1− δ)β(k),

implying that there is K1 > K0 such that

β(K1) <
2sε1

δ
. (10)

Now we prove that for all k > K1, β(k) ≤ 2sε1
δ + 2sε1 = ε.

Indeed, from (8) and (10) we have that for 0 ≤ r ≤ s:

β(K1 + r) ≤ β(K1) + 2rε1 ≤ 2sε1
δ

+ 2sε1.

Suppose now that there is k > K1 for which β(k) > ε, and
denote by m the smallest index k for which β(k) > ε. Note
that from above inequality we have that m > K1 + s. Then:

β(m− s) ≥ β(m)− 2sε1
1− 2δ

>
2sε1

δ

1− 2δ
> 2sε1

1
δ(1− δ)

>

> 2sε1
1− δ2

δ(1− δ)
= 2sε1

1 + δ

δ
= ε,

thus contradicting the assumption that m is the smallest
index greater than K1 for which β(m) > ε. This contradiction
completes the proof.

III. EVALUATION

A. Static demands

The basic setup is following. There are M = 200 jobs
serviced by N = 10 servers. Each job and each server is
located in a random point uniformly drawn in the unit square.
The price, Cij of using unit-capacity of resource i by job j
is the euclidian distance between the points corresponding to
job j and server i. The demand of each job is dj = 1 and
the aggregate capacity is such that load λ = 0.9. We run
CARTON in two cases based on the cost functions Di. The
subgradient algorithm and DRL capacity allocation algorithm
are performed independently: the first one minimizing the cost

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

k − time

JF
I(

q(
k)

)

0 100 200 300 400 500 600 700 800 900 1000
100

200

300

400

500

600

k − time

V
(x

(k
))

Fig. 2. Di ≡ 0: evolution of JFI(q(k)) and V (x(k)).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Di ≡ 0: steady-state. Each line represents a job-server pair with
thickness proportional to (x

(i)
j)∗. The diameter of each circle is µ∗i .

V (·) and the second enforcing the uniform performance among
servers. In order to measure how “equal” performance defined
by (5) (ie. the components of the vector q(k)) at servers are,
we use the Jain’s fairness index (JFI)[12] defined as:

JFI(q(k)) =

(∑N
i=1 qi(k)

)2

N
∑N

i=1 q2
i (k)

. (11)

JFI is a quantity that lies between 0 and 1, and the closer
JFI is to 1 the “more uniform” elements of the vector are.
The DRL topology graph is obtained as the minimum-cost
spanning tree (MCST) and the parameter η that determines
the responsiveness of the algorithm is chosen at the value that
guarantees the stability (6).

Case 1. Di ≡ 0. We expect that in this case all jobs
connect to the “cheapest” (nearest) resource and that the
DRL algorithm adapts the capacities to the values that ensure
uniform per-server performance. The dynamics of the cost
function V (x(k)) as well as JFI(q(k)) is depicted in Figure
2. As we can see, both quantities converge quickly to the

5

N number of servers
M number of jobs
µ the aggregate capacity
µi capacity at server i
qi performance indicator at server i
dj demand of job j

x
(i)
j fraction of job j served by server i

yi traffic intensity at server i
Cij cost of serving a unit of job j at server i

Di(y) cost of using server i with demand y
JFI Jain’s fairness index

η gain parameter
λ load

TABLE I
SYMBOL MAP

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

k − time

JF
I(

q(
k)

)

0 100 200 300 400 500 600 700 800 900 1000
200

300

400

500

600

700

800

900

k − time

V
(x

(k
))

Fig. 4. Di(y) = y(y − µ
N

)+: evolution of JFI(q(k)) and V (x(k)).

desired steady state values. Figure 3 depicts the steady-state
results: each grey circle represents a server with a diameter
proportional to its steady-state capacity. Each line represents
a job-sever allocation, with the thickness proportional to the
appropriate steady-state value of x

(i)
j .

Case 2. Di(y) = y(y − µ
N)+. This choice of cost function

enforces an increasing cost when arrival demand passes3 µ/N
(so called 1/N -rule, [19]). Then the jobs are balanced between
few (close) servers to minimize the overall cost. The dynamics
of the cost function V (x(k)) as well as JFI(q(k)) is depicted
in Figure 4. Figure 5 depicts the steady-state results. As we
can see the diameters of the circles representing the steady-
state server-capacities are approximately equal (meaning that
Di(y∗i) is very close to zero and that overall cost V is
dominated by the first part of the expression (4)). Each line
corresponds to one job-server pair with its thickness being
proportional to the steady state value of x

(i)
j .

B. Dynamic demands

In this simulation we use the same job and server locations
with the same cost of job-server allocation: Cij being the

3The notation means that Di(y) = 0 for y − µ
N

< 0 and Di(y) =
y(y − µ

N
) otherwise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Di(y) = y(y− µ
N

)+: steady-state. Each line represents a job-server
pair with thickness proportional to (x

(i)
j)∗. The diameter of each circle is µ∗i

euclidian distance between job j and server i. We vary the
per job demand-intensity depending on the position of the job.
Jobs that are located in the left half of the unit square (ie. with
x-coordinate smaller than 0.5) start with the unit demand then
slowly grow by 50% then remain constant for a while and then
drop to the 50% od the initial load and remain constant until
the end of simulation. The demand intensity of the jobs from
the right half of the square follow the complementary trend
depicted in Figure 6 (top).

We present the results for the simple demand cost functions
used in previous simulations Di(y) = y(y − µ

N)+. The JFI
evolution is depicted in Figure 6 (middle). One can notice that
after initial transient phase, JFI converges to 1 and remains
close to 1 throughout the course of simulation, indicating
that per-server performance remains approximately uniform.
The cost V (·) evolution, depicted in Figure 6 (bottom) shows
a stable behavior with small oscillations though transient
changes in the workload pattern.

Figure 7 illustrates the final configuration of the demand
distribution. Since, in the last part of the simulation, the
demand in the right half-square is approximately 3 times
bigger than the demand in the left half-square, we can see
many jobs from the right allocating the (parts of) demand to
the left-half-square servers in order to balance the load and
minimize the aggregate cost.

IV. IMPLEMENTATION ISSUES

Comment 2: In our model, we assume that a “job” can
be split in arbitrary manner. This is justified because we use
term “job” for all requests coming from one domain (say, one
autonomous system) having the same cost of using servers
(Cij). However, the extension of this fluid approximation to
more realistic discrete job-partitions is an open problem.

Comment 3: In the model presented above it is assumed
that subgradient algorithm is executed in a distributed manner
[5] and the DNS mechanism is then used as a feedback
mechanism to signal which server should be used by end-
users.

6

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

k − time

P
er

 jo
b

de
m

an
d

in
te

ns
ity

Left half−square
Right half−square

0 500 1000 1500 2000 2500
0

0.5

1

k − time

JF
I(

q(
k)

)

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

k − time

V
(x

(k
))

Fig. 6. Dynamic demands. Top: per job demand intensity. Middle: Evolution
of JFI(q(k)). Bottom: Evolution of V (x(k)).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7. Dynamic demands: final configuration. Each line represents a job-
server pair with thickness proportional to (x

(i)
j)∗. The diameter of each circle

is µ∗i

Comment 4: Communication between servers is performed
via small UDP packets. Each of those packets should contain
a field for measuring the performance at the particular server,
as well as some control overhead to ensure that if a loss
of a communication packet occurs no local limiter gains or
loses extra capacity, and that the capacity constraint (2) is not
violated.

V. SUMMARY

Issues related to service reliability, service availability, and
fault tolerance, have encouraged many service providers in the
Internet to shift from traditional centric services to cloud based
services. This trend appears to be a dominant mechanism
for ensuring robustness of internet services with many “big
players”, such as Google, Yahoo!, Akamai, Amazon, already
offering a suit of cloud-based services.

Pricing, usage control, and resource allocation of cloud
based services represent important technical challenges for the

networking community. Load balancing, standard technique
for “fair” resource control has been recently challenged by the
distributed rate limiting paradigm that strives to minimize the
cost in the infinite available bandwidth context. In this paper
we tackle the problem of usage control without infinite band-
width assumption. The proposed solution is simple, easy to
implement and has very low computation and communication
overhead.

VI. ACKNOWLEDGEMENTS

This work is supported by the Science Foundation Ireland
grant 07/IN.1/I901.

REFERENCES

[1] Amazon Simple Storage Service(S3):http://aws.amazon.com/s3.
[2] A. Berman, R. Plemmons. ”Nonnegative matrices in the mathematical

sciences”. SIAM, 1979.
[3] D. Bertsekas, R. Gallager. “Data Networks”. 1987.
[4] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah. “Gossip algorithms: Design,

analysis and applications”. In Proceedings of IEEE Infocom, 2005
[5] S. Boyd, L. Xiao, A. Mutapcic. “Subgradient methods”. Lecture notes of

EE392o, Stanford University, 2003.
[6] D. F. Carr. “How Google works”. Baseline Magazine, July 2006.
[7] G. Carraro, F. Chong. “Software as a service (SaaS): An enterprise

perspective”. MSDN Solution Architecture Center, Oct. 2006.
[8] J. Dilley et al., “Globally Distributed Content Delivery”. IEEE Internet

Computing, vol. 6(5), 2002.
[9] D. Hinchcliffe. “2007: The year enterprises open thier SOAs to the

Internet”. Enterprise Web 2.0, Jan. 2007.
[10] M. Huang. “Planetlab bandwidth limits”. Available online:

http://www.planet-lab.org/doc/BandwidthLimits.
[11] A. Jain, J. M. Hellerstein, S. Ratnasamy, D. Wetherall. “A wakeup call

for internet monitoring systems: The case for distributed triggers”. In
Proceedings of HotNets-III, 2004.

[12] R. Jain. “The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Model-
ing”. John Wiley and Sons, INC., 1991.

[13] R. Mahajan. “How Akamai works?”. Online:
http://research.microsoft.com/ ratul/akamai.html

[14] S. Meyn. “Control techniques for the complex networks”. Cambridge
University Press, Cambridge, 2008.

[15] M. Mitzenmacher. “The Power of Two Choices in Randomized Load
Balancing”. IEEE Transactions on Parallel and Distributed Systems, vol.
12(10), 2001.

[16] Y. Nesterov, A. Nemirovsky. “Interior Point Polynomial Methods in
Convex Programming”. Studies in Applied Mathematics, 1994

[17] H. X. Nguyen, D. Figueiredo, M. Grossglauser, P. Thiran. “Balanced Re-
lay Allocation on Heterogeneous Unstructured Overlays”. In Proceedings
of IEEE Infocom 2008, Phoenix, AZ, USA.

[18] A. Odlyzko. “Internet pricing and the history of communications”.
Computer Networks, vol. 36, 2001.

[19] B. Raghavan, K. Vishwanath, S. Rambhadran, K. Yocum, A. Snoeren.
“Cloud Control with Distributed Rate Limiting”.In Proceedings of ACM
SIGCOMM 2007.

[20] Z.S. Rui, N. McKeown. “Designing a Predictable Internet Backbone
with Valiant Load-Balancing”. In Proceedings of IWQoS 2005.

[21] R. Srikant. ”Internet congestion control”. Control theory, 14, Birkhäuser
Boston Inc., Boston, MA, 2004.

[22] R. Stanojevic, R. Shorten. “Fully decentralized emulation of best-effort
and processor sharing queues”. In Proceedings of ACM Sigmetrics 2008.

[23] R. Stanojevic, R. Shorten. “Distributed rate limiting in
open-loop enviorments”. Technical report. Available online:
http://www.hamilton.ie/person/rade/DRL−open.pdf

[24] F. Wuhib, M. Dam, R. Stadler. “Decentralized Detection of Global
Threshold Crossings Using Aggregation Trees”. Computer Networks, vol.
52(9), 2008.

