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Abstract

In [Da92] E.C. Dade announced the first of what was to be a series of conjectures
concerned with counting characters in the blocks of finite groups. Specifically, Dade’s
so-called Ordinary Conjecture asserts that if a finite group G has trivial p-core, and
B is a p-block of G of positive defect, then the number k(B, d) of complex irreducible
characters with fixed defect d belonging to B can be expressed as an alternating sum
over the corresponding numbers for the normalizers of the non-trivial p-chains of G.
Refined versions of this conjecture have been given in subsequent articles. See [Da94]
and [DaPr] for further details. Dade claims that the strongest form of his conjectures
is true for all finite groups if it is true for all covering groups of finite simple groups.
Thus, in order to prove his conjectures, one merely has to go through the complete list
of finite simple groups, carefully verifying that the strongest form holds for each one.
In this Thesis we prove the most general version of Dade’s Conjectures for all covering
groups of the McLaughlin group M. This is one of the 26 sporadic simple groups. So
our Thesis forms a portion of the as yet incomplete proof of Dade’s Conjectures for all

finite groups.
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Chapter 1

Introduction

In [Da92] E.C. Dade announced his “Ordinary Conjecture” which asserts that if
a finite group G has trivial p-core, and B is a p-block of G of positive defect, then the
number k(B,d) of complex irreducible characters with fixed defect d belonging to B
can be expressed as an alternating sum, as in 1.4.2; over the corresponding numbers
for the normalizers of the non-trivial p-chains of G. In subsequent articles [Da94]
and [DaPr] he gave stronger versions of this conjecture. He has announced that the
strongest form of his conjectures, the so-called “Inductive Conjecture”, will have the
property that it is true for all finite groups if it is true for all covering groups of finite
simple groups.

The aim of this thesis is to verify that the strongest form of Dade’s conjectures
holds for all covering groups of the McLaughlin Simple Group Mg, for all primes p.
We use some basic facts about M. obtained from the Atlas [Con85] to simplify our
task. The group M. has exactly two covering groups: M. and 3.M.. The outer
automorphism group Out(M.) of M. is cyclic of order 2. In this situation Dade
asserts in [DaPr] that the Inductive Conjecture for M. is equivalent to the weaker
“Invariant Conjecture” as outlined in 1.4.4. Furthermore, Dade has proved in [Da96]
that this Invariant Conjecture is true for all blocks with cyclic defect groups. The group

Out(3.Mc | A) of outer automorphisms of 3.M, centralizing A = Z(3.Mc) is trivial.
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In this situation Dade asserts in [DaPr] that the Inductive Conjecture is equivalent
to the “Projective Conjecture”, as outlined in 1.4.6. Moreover, this weak form of the
Inductive Conjecture holds for blocks with cyclic defect groups, as shown in [Da96].
From the Atlas [M| = 27 -3%.5%.7-11. For both covering groups we need therefore
only worry about the primes p = 5,3, 2.

In the Introduction we outline the theory needed to understand the conjectures and
the methods we will use. The rest of the Thesis consists of three chapters; one for each
of the primes p = 5, 3,2. We deal with p = 5 first, as it is the easiest case. It turns out
that the 3-local structure is useful for determining the 2-local structure, so we deal with
p = 3 before p = 2. In all cases our first task is to obtain enough information on the
p-local structure to be able to determine the conjugacy classes of radical p subgroups
of M. and their normalizers in M. and Mc..2. This in turn enables us to determine
the conjugacy classes of radical p-chains and to describe their normalizers. Finally we
use Clifford Theory to obtain the character degrees of the the chain normalizers. The
Invariant Conjecture for M. and p = 5 follows from Theorems 2.4.2 and 2.6.2, while
the Projective Conjecture for 3.M. and p = 5 follows from Theorem 2.7.1; for p = 3
the corresponding Theorems are 3.6.2, 3.11.2 and 3.16.2; while for p = 2 the relevant
Theorems are 4.8.3, 4.9.19 and 4.10.12. These results are enough to prove that the
Inductive Conjecture holds for all covering groups of M.

A final word. The philosophy behind Dade’s conjectures is that one can obtain
information on the global block structure of a finite group G from knowledge of the

local block structure. The group 3.M, is best viewed as a certain maximal subgroup



of Conway’s Group Co. However, it turned out that in order to obtain the information
needed to prove the results in our thesis, it was enough to consult the Atlas as well as
obtain information on the local structure of M, from [JW172] and [Fk73]. Thus the
methods of proof found here are in accord with the local-to-global approach promoted

by these conjectures.

1.1. Notation

Due to the limited number of symbols available, our notation may vary between
chapters. We will try to warn the reader whenever this occurs.

Some of our notation is nonstandard. In particular if G is a finite group and X is
a G-set, then Orb(G, X) will denote the multiset of orbit lengths of G on X, rather
than the set of orbits of G on X. We will often deal with the situation where G has
normal subgroups X and Y, with ¥ < X. Then Irr(G) will denote the set of ordinary
irreducible characters of G, while Irr(G | X') will denote those elements of Irr(G) which
have non-trivial restriction to X. The set Irr(G | G) will be denoted by the more usual
Irr(G)*. When we wish to refer to the multiset of the degrees of those irreducible
characters of G which are nontrivial on X but trivial on Y, we use Deg(G | X/Y).
If now G is embedded as a normal subgroup of some finite group E, while X and Y
are normal subgroups of E, and not just G, then Inv(G | X/Y) will stand for the
multiset of degrees of those irreducible characters of G which are invariant in F, and
non-trivial on X but trivial on Y. The group Y is omitted if it is {1}. As would be

expected, Deg(G/X) or Inv(G/X) refer to the characters of the factor group G/X. We
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use Deg(G mod X) and Inv(G mod X) to refer to the characters of G inflated from
G/X.

The p-defect of an irreducible character x € Irr(G) is the largest power of p which
divides |G|/x(1). We use Def,(G) to refer to the multiset of p-defects of the irreducible
characters of G. If the p is omitted, the context should make clear what prime we
are using. We use InvDef,(G) to refer to the multiset of p-defects of the irreducible
characters of G which are invariant in the extension E of G. The group E will be
clear from the context. We can extend these notations by using Def,(G | X/Y) and
InvDef, (G | X/Y), when referring to characters of G nontrivial on X but trivial on
Y. We use Def,(G mod X) and InvDef,(G mod X) to refer to all the characters of G
which are inflated from G/X. In particular, the defects are measured using G rather
than G/X.

In all cases, if we replace the normal subgroup X of G by an irreducible character £
of X, then we will be referring to characters of G lying over &. For instance Deg(G | €)
is the multiset of the degrees of those irreducible characters of G whose restriction
to X contains ¢ as a constituent. Here the normal subgroup X is determined by the
character &.

There is some notation specific to Dade’s Conjecture which will be explained in

Section 1.4. In addition, the following notation will be used throughout:

M., M..2 McLaughlin Simple group, extension of M, by Zo.
Qn Generalized quaternion group of order n.

D, Dihedral group of order n.




M;,

GF(q)
GL(TL, Q) = GLn(Q)

SL(”; q) = SLn (Q)

Loy, L7,

G,G#

n.G

G/N
N:G=NxG
N.G

BG

Mathieu group on 10 letters.
Almost invariably a prime number.
Finite field with ¢ elements, ¢ a power of p.
General Linear Group of dimension n over GF(q).
Special Linear subgroup of GL(n, q),
consisting of all matrices of determinant 1.
Group of permutations of the set X.
Symmetric group on n letters.
Alternating subgroup of &,,,
consisting of all permutations of sign +1.
Cyclic group of order m, direct product of n copies of Z,.
Arbitrary finite group, non-trivial elements of that group.
Central extension of a cyclic group of order n by G.
Quotient group of G by a normal subgroup N.
Semidirect product of a group N with G.
Group with normal subgroup N and quotient G = (N.G)/N.
Wreath product of a group B with a permutation group
G of degree n, giving a group of the form B" x G.
Center of G.
Frattini subgroup of G.
Largest normal p-subgroup of G, also called the p-core of G.

Group generated by x1, xa, - ,Lp-




[21, 2]

HK

[H, K]

¢ =[G,G)
Gos = G/C
H* =z 'Hgz

Z2

-1
Ty" =Ty T1Z2

Ng(X)

V* = Homg(V, %)

(nA), (nB),---

Subgroup <ac €P|aP= 1> of P, where P is a p-group.
Q(Z(P)), largest exponent p-subgroup of Z(P).

1

o7 tey tey oo, commutator of z; with zo.

Arbitrary subgroups of G.

<[h, k]| he Hk € K>, commutator subgroup of H with K.

Derived subgroup of G.

Largest abelian quotient of G.

Conjugate subgroup of H by .

Conjugate of z; by zs.

Normalizer in G of a subset X of some G-set,
where X will often be a subgroup of G.

Centralizer in G of a subset X of some G-set.

Complex character of H, character of G induced by .

Stabilizer or inertial subgroup of ¥ in G.

Complex conjugate of 1.

p-block of H containing .

If defined, the p-block of G induced,

in the sense of Brauer, from the p-block b of H.

Dual space of V', where V' is a vector space over a field §.

Atlas notation for conjugacy classes.

Notation used throughout the thesis




1.2. Representation Theory

Block Theory. Let G be a finite group. We let R be a local principal ideal
domain with field of fractions § of characteristic zero, unique maximal ideal 3 equal
to its Jacobson Radical J(R) and residue field 8 = R/ J(R) of prime characteristic p.

We have an R-order RG which is naturally embedded in the group algebra §G =
S Rn RG of G over §. We assume that FG is a split F-algebra. In these circum-
stances the center of the R-order KRG, denoted by 3, has the property that 3/ J(3) =
R --- P R as vector spaces over & by [Da92, §4].

We denote by Z(FG) the center of the group algebra FG. For our purposes a
p-block of G corresponds to a maximal ideal of 3. Thus each p-block B is associated
to an epimorphism wg : 3 — K of commutative PR-algebras. We denote by Mg the
maximal ideal of 3 which is the kernel of wg. The blocks B arise in the following way.

Let x be an irreducible complex character of G. Then

ex = % > x(g™hg

9€G

is the centrally primitive idempotent of G associated to x. This means that e, lies
in Z(FG), it is an idempotent, and the ideal FGe, of FG is a simple ideal of FG.
From Wedderburn’s Theorem and the fact that §G is split, §Ge, is a complete matrix
algebra over §. Thus if { € Z(FG), we can find f € § such that e, { = fey. The map

sending ¢ to f is x/x(1).



Now x/x(1) restricts to a map 3 — §, where the image of 3 is an JR-suborder of
§. Thus the image coincides with $R. We let K, denote the kernel in 3 of this map.

So K, is a prime ideal of 3.

LEMMA 1.2.1. Nyepra) Ky =0

PrOOF. This comes from looking at the corresponding intersection of kernels in

Z(3G). O

Since Nyerr(e)Kx C Mg and Mg is a prime ideal, there exists x € Irr(G) such
that K, C Mg. But then Mg corresponds to a maximal ideal of R = 3/K,. Hence
Mg equals the inverse image B3 + K, of P in 3. We say x lies in B if K, is contained
in Mg, or alternatively if the epimorphism wg factors through the map x/x(1). The

set of irreducible characters of G lying in the block B will be denoted by Irr(B).

Heller’s Theorem, blocks and block idempotents.

THEOREM 1.2.2 (Heller’s Theorem). Suppose R is a local PID with mazimal ideal
B = 7R, with field of fractions § of characteristic zero, and residue field R/P = R of
prime characteristic p. If A is a split semisimple §-algebra and O is a full R-order
inside A, then given an idempotent € of O/ J(D), there exists an idempotent e of O

such that € = e + J(O).

PROOF. A proof of this well known theorem can be found in [CR81, I, 30.18]. O

LEMMA 1.2.3. If R is any ring with identity, and e and f are idempotents of R

such that e = f modulo J(R) then there exists j € J(R) such that e'*J = f.
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PROOF. The proof of this lemma is standard and has been omitted. O

In our situation, since 3/J(3) = R --- P K, we have that each block B of G
corresponds to a primitive (central) idempotent eg of 3/J(3). By Heller’s Theorem
1.2.2, to each such idempotent eg there corresponds an idempotent eg of 3, such that
eg+J(3) = eg. Since 3 is commutative, Lemma 1.2.3 shows that such an idempotent is
uniquely determined. It is also clearly primitive. Hence the blocks B of G correspond
one-to-one to the primitive (central) idempotents of 3, which in turn correspond one-

to-one with the indecomposable SR-order summands of RG.

LEMMA 1.2.4. The block B of G corresponds to the idempotent e of 3 if and only
if wer(e) = dw,B for all blocks B' of G, where 6;; is zero or one depending on whether

i and j are equal or not.

Proor. This is immediate from our definition of a block B. O

LEMMA 1.2.5. eg = Y. ey. If I CIrr(G) and ) e, is in RG, then I is the
xElrr(B) x€I
union of Irr(B(x)), where x runs over the elements of I and B(x) is the p-block of G

containing x.

PROOF. The first statement is proved in [CR81, II, 56.25]. The second statement

follows from the discussion above. O

The Defect of a Block. There are many ways to define the family of defect
groups of a p-block B of G. If C is a conjugacy class of G then a defect group of C' is

a Sylow p-subgroup of Cg(o) for any o € C. The family of defect groups of C clearly
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forms a single G-orbit of p-subgroups of G. We will denote by C' the class sum o
ceC

of C. So C € Z(FG). Define

T(B) = {P |P is a defect group of some conjugacy
(1.2.6)
class C' of G satistying wg(C) # 0}.

A defect group D of B is any minimal element of Y(B). It is not immediately
obvious, but the family of all defect groups of B forms a single G-orbit, denoted Def(B),

of p-subgroups of G. See [NT89, 5.1.11(ii)].

DEFINITION 1.2.7. The defect d(B) of a p-block B of G is a non-negative integer
determined by

p¥® =|D|, where D € Def(B).

PROPOSITION 1.2.8. Let B be a p-block of G of defect d. Then d is the mazimum

integer such that

a) |G|
p or some X € Irr(B).
| ) f X € Irr(B)
Proor. This follows from [CR81, II, 56.33, 56.41]. O

We mention that the p-block By of G containing the trivial character is called
the principal block of G. Its defect groups are the Sylow p-subgroups of G. At the
other extreme, a p-block B of G of defect 0 is known to contain a single ordinary
irreducible character yg, which satisfies p ,f |G|/x8(1). Moreover, any irreducible
character satisfying this equation lies in a p-block of defect 0.

The following lemma will be used repeatedly in this thesis, usually without being

explicitly referenced.
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LEMMA 1.2.9. If G has a normal p-subgroup P such that Cg(P) < P, then the

principal p-block By is the unique p-block of G.

PROOF. See [AL93, Q2, p112] or [Ft82, V.3.11]. O

Some Clifford Theory. Clifford theory connects the representations of a finite
group to those of a normal subgroup. In the following G will denote a finite group, N

a normal subgroup of G and x an irreducible character of N.

THEOREM 1.2.10. Suppose G/N is cyclic and x is invariant in G. Then x extends

to G.

PROOF. A proof can be found in [Is76, 11.22]. O

Next we have a very useful result which says that the extendibility of a character

depends only on the Sylow subgroups of the quotient group.

THEOREM 1.2.11. Suppose x is invariant in G. Then x extends to G if and only if

it extends to every subgroup P > N of G for which P/N is a Sylow subgroup of G/N.

PROOF. A proof can be found in [Is76, 11.31]. O

We can in fact focus attention on those Sylow p-subgroups for which p | |N|. Let
V be an irreducible right G-module, and let x € Irr(G) be the irreducible character of
the corresponding representation 7 : G — End(V) of G on V. We give the following

two definitions, which can be found in [Is76, p 88].
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DEFINITION 1.2.12. The determinant character A = det(x), of x is defined by
setting A\(g) = det(T'(g)), where T'(g) is the matrix of 7(g) with respect to some choice

of basis for V, and ¢ is any element of G.

DEFINITION 1.2.13. The determinantal order o(x) = o()\) of x is the order of the

determinant character A as an element of the group of linear characters of G.
Thus o(x) = |G : ker(N)|.
THEOREM 1.2.14. Suppose x is invariant in G and

(IG: N|,o(x)x(1)) = 1.

Then there is a unique extension X of x to G with the property that o(X) = o(x). In

particular, x has such an extension if (|G : V|, |N|) =1.
PrOOF. This is a theorem due to Gallagher, and a proof can be found in [Is76,

8.16). O

Generally we will be interested in whether or not x extends to its stabilizer Ig(x)

in G. The following provides the solution when N is abelian and complemented in G.
THEOREM 1.2.15. Suppose G = N x K and N is abelian. Then every x € Irr(N)
can be extended to x € Irr(Ig(x)). Moreover Ig(x) = N x Ix(x).
PROOF. A proof can be found in [CR81, I, 11.8]. O

The next theorem gives a complete description of what happens when a character

of a normal subgroup extends to its stabilizer.
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THEOREM 1.2.16. Suppose x extends to a character X of its stabilizer S = Ig(x)
in G. Then
(1) x € Irr(S);
(2) (wxX)® € Irr(G) for each w € Trr(S mod N);
)G

(3) X = Xcter(smoa vy W)(WX) gives x¢ as a linear combination of the

distinct irreducible characters (wX)¥ of G lying over the G-orbit of x.

PROOF. A proof can be found in [CR81, I, 11.5]. O
The following is in fact a special case of this last theorem.

THEOREM 1.2.17. Suppose Cg(z) < N for all z € N*. Then

(1) For w € Trr(N)* we have Ig(w) = N and w% € Irr(G);
(2) For x € Irr(G) with N € ker(x), we have x = w%, for some w € Irr(N)*;
(3) If wy and wy € Irr(N) are conjugate by an element of G, then wi¥ = W§.

Hence there is a 1-1 correspondence between the elements of Irr(G | N) and the

G-conjugacy classes of non-trivial characters of N.

PRrOOF. This theorem is due to Frobenius. A proof can be found in [CR81, I,

11.11]. O

A group G possessing a normal subgroup N satisfying the hypothesis of the above
theorem is called a Frobenius Group. The normal subgroup N is called a Frobenius
Kernel. Tt is a fact that in these circumstances G = N x K, where the complement K

is referred to as a Frobenius Complement to N.
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If P is an extra-special group of order p'12” for p prime and n > 0, it can be
shown easily, using Clifford Theory and results on alternating bilinear forms, that P

has characters of the following degrees.

1+2n

LeMMA 1.2.18. Suppose P is an extra-special group of order p with center

Z(P) of order p. Then,
Deg(P) = {17, (") V).

Moreover the p— 1 irreducible characters of P of degree p" are zero outside Z(P) and

each lies over exactly one irreducible character of Z(P).

PROOF. A proof of this result can be found in [Hu67, 16.14]. O

In many cases we shall be dealing with a group G acting as automorphisms of
an abelian group Y. Since Clifford theory is concerned with orbits of characters, the
following lemma is useful when we are trying to compute the characters of Y x G

induced from Y.

LeMMA 1.2.19. If G is a group acting as automorphisms of an abelian group Y,

then the number of G-orbits on Y# equals the number of G-orbits on Irr(Y)#.

PROOF. The permutation characters of G afforded by the G-sets Y# and Irr(Y)#

are the same. The result now follows from [CR81, I, Ex. 10.2(ii)]. O

We also have the following:
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LEMMA 1.2.20. Let G be a group acting as linear transformations of a finite-
dimensional vector space V over a field K, and V* be the dual KG-module Homg (V, K).

Then

1. Dimg(Cy+(G)) = Dimg (V/[V,G]);
2. If K has finite prime order p and G is a finite p'-group, then Dimg (Cy (G)) =

Dimg (Cy- (G)).

ProOOF. 1. Let ¢ € V*. Then

Y € Cv+(G) <= () =¢(v), WeV,g€G

<~ Y(—v+v9)=0,YWweV,geG

< Y(lv,g9]) =0,YweV,geG

= [V,G] < ker(v)).

So Cy«(@) is isomorphic to the dual space of V/[V,G]. Hence Dimg(Cy-(G)) =
Dimg (V/[V,G)).
2. Since V is abelian, V = Cy(G) x [V, G] by [As86, 24.6]. So Dimg (V/[V,G]) =

Dimg Cy(G). The result follows using part 1. O

Finally, we present a result which we will use frequently to compute the character
degrees of “small” groups. We say N < G is subnormal in G if there is a sequence of

subgroups of G of the form
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THEOREM 1.2.21. Let N < G be subnormal and abelian. Then x(1) | |G : N| for

every x € Irr(G).

PRrOOF. This theorem is due to Ito. A proof may be found in [Is76, 11.30]. O

1.3. Radical p-Chains

The objects of our investigation will be the radical p-chains of the McLaughlin
Group.

Let G be a finite group and p any prime. A p-chain C of G is any non-empty,
strictly increasing chain

C:Ph<P<P<---<P,
of p-subgroups P; of G. The length |C| of the chain is the number n of inclusions. For
each i = 0,1,---,n, the chain C; is the initial subchain

Ci  PBh<Pi<P<---<P

of C. The family of all p-chains of G will be denoted by P. This is a G-set, with G
acting by conjugation. If C is the chain above and g € G, then the conjugate chain CY
is given by

CY:P§ <P} <Pj<---<PJ.
The stabilizer of C' in G is the set of all elements of G which conjugate C to itself.

Hence it is the intersection
Ng(C) = Ng(Po) NNg(P) N---NNg(P,).

We let P/G denote an arbitrary set of representatives of the G-orbits in P.
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LEMMA 1.3.1. If C is a p-chain and b is a p-block of Ng(C), then the induced

block b® is defined.

PRrOOF. See [KR89, 3.2]. O

We recall that a radical p-subgroup of G is a p-subgroup R satisfying

R=0, (NG (R)) :

A radical p-chain C of G is one satisfying

Py = Op(G)7 P; = Op(Ng(Ci)), fori=1,2,--- ,n.

Thus Py is the p-core of G, and P; is a radical p-subgroup of the normalizer of the
initial subchain C; | for ¢ = 1,2--- ,n. The fact that Py is a normal subgroup of G
implies that P; is a radical p-subgroup of G. In general P;, for i > 1, need not be a
radical p-subgoup of G.

We let R denote the family of all radical p-chains of G. It is clear that R is
closed under conjugation by elements of G. We let R/G denote an arbitrary set of
representatives for the orbits of G on R.

There are other natural families of p-chains of G. The normal p-chains are those
satisfying P; < P,, for 1 = 0,1,...,n, while the elementary abelian p-chains are com-
posed of elementary abelian p-groups. These two families are denoted by A and &
respectively. We let P’, N/ and &' denote the subfamilies of all p-chains C in P, N
and &, respectively, such that the first p-subgroup in C' is Py = {1}.

The following is very useful when dealing with radical p-subgroups.
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THEOREM 1.3.2. If R is a radical p-subgroup of G, and P is any p-subgroup of

G satisfying Ng(R) < Ng(P), then P < R.

PRrOOF. This proof is taken from [Da92, 1.3]. Since R normalizes P, the product
PR is a p-subgroup of G. Let x € Ng(R). Then z also normalizes P. So z normalizes
RP. Hence Ng(R) < Ng(PR). If y € Npg(R), then y* € Npgr(R) also. Hence
Ng(R) < Ng(Npgr(R)). In particular, Npg(R) is a normal p-subgroup of Ng(R)
containing R. This forces R = Npgr(R). So PR = R since PR is nilpotent. Hence

P<R. O
Interesting consequences of Theorem 1.3.2 include the following.

COROLLARY 1.3.3. O,(G) is the unique minimal radical p-subgroup of G under

inclusion.
ProOF. If R is a radical p-subgroup of G, then Ng(R) normalizes O,(G). O
COROLLARY 1.3.4. Every radical p-subgroup R of G is the intersection of the fam-
ily of all Sylow p-subgroups of G containing it.
PrOOF. It is enough to note that the intersection mentioned above contains R and

is normalized by Ng(R). O

Radical p-subgroups behave extremely well with respect to normal subgroups and

factor groups.

PROPOSITION 1.3.5. Supposen : G* — G is an epimorphism of finite groups whose

kernel K is the direct product K = Q) x Z of a normal p-subgroup QQ of G with a
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central p'-subgroup Z of G. Then if P is a p-subgroup of G, there is a unique p-
subgroup P* = 7j(P) of G* containing Q such that n(P*) = P. The resulting map
7 is an inclusion-preserving bijection of all p-subgroups of G onto all p-subgroups of
G* containing Q. Moreover 1) sends the radical p-subgroups of G one-to-one onto the
radical p-subgroups of G*. We can define 7(C), for any p-chain C of G*, as the p-
chain of G formed by the images of the constituent p-subgroups of C under 7. Then

7 sends the radical p-chains of G one-to-one onto the radical p-chains of G*.

PRrOOF. This follows from Propositions 2.2 and 2.7 of [Da94]. O

ProrosiTION 1.3.6. Say G is a finite group and N < G. Then
(1) If R is a radical p-subgroup of G then P = RN N is a radical p-subgroup of
N with Ng(P) > Ng(R) and O,(Ng(P)) < R;
(2) If P is a radical p-subgroup of N then O,(Ng(P)) is a radical p-subgroup

of G and P =0,(Ng(P))NN.

PROOF. (1) Suppose R is radical in G and P = RN N. Then Ng(P) > Ng(R

~

since N < G. Set @ = O,(Ny(P)). Then Q is characteristic in Ny (P). So Ng(Q) >
Ng (NN(P)) > Ng(R). By Theorem 1.3.2 we have Q < R. But then Q < RNN = P.
So @ = P and P is radical in N. Since Ng(P) > Ng(R), it follows from Theorem
1.3.2 that O, (Ng(P)) <R.

(2) Suppose P is radical in N. Then O,(Ng(P)) N N is a normal p-subgroup
of Ny (P) containing P. So P = 0,(Ng(P)) N N. Since N < G, it follows that
Ng (Op (Ng(P))) < Ng(P) <Ng (Op (Ng(P))). Hence O, (Ng(P)) isradicalin G. O
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Let P be a p-subgroup of G. Then P aNg(P). So P < O,(Ng(P)). More-
over Ng(P) < Ng (0p(Ng(P))). Let P, = O,(Ng(P)), and in general let Pyqq =
0,(Ng(Py,)), forn =1,2,---. Then the P,’s form a non-decreasing chain of subgroups
of G. So for some N > 1 we have Py41 = Py. Then Py is a radical p-subgroup of G,
with P < Py and Ng(P) < Ng(Py)- This radical p-subgroup is called the radical clo-
sure of P in G. This argument shows that {Ng(R) | R is a radical p-subgroup of G}

contains the set of maximal p-local subgroups of G.

REMARK 1.3.7. If R is a p-subgroup of G with center Z(R), then R is a radical
p-subgroup of G if and only if it is a radical p-subgroup of Ng (Z(R)). Thus we may
limit our search for radical p-subgroups of G to radical p-subgroups of the normalizers

of elementary abelian p-subgroups of G.

1.4. The Conjectures

The Ordinary Conjecture. Let G be an arbitrary finite group, B a p-block of

G and d an integer > 0.

DEFINITION 1.4.1. For any p-chain C of G we denote by k(C, B,d) the number of

characters ¢ € Irr(Ng(C)) satisfying

d() =d and B(y)¢ =B.

The integer k(C, B, d) depends only on the G-conjugacy class of the p-chain C.
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CONJECTURE 1.4.2. If O,(G) = {1}, and d(B) > 0 in the above situation, then
> (-1)€k(C,B,d) =0.
CeR/G
We say that this conjecture “holds for G” if it holds for all choices of blocks B and
non-negative integers d.
Knorr and Robinson have shown in [KR89] that the R/G in the above sum can

be replaced by P'/G, N'/G or £' /G, without changing the value of that sum.

The Invariant Conjecture. We now embed G as a normal subgroup of another
finite group E. We fix an epimorphism € : E —» E of finite groups with kernel G. So

we have an exact sequence

13 ESES1

of finite groups and their homomorphisms. For any p-chain C of G we define N (C) to
be €(Ng(C)). Since the kernel of the epimorphism € : Ng(C') — Ng(C) is the normal

subgroup Ng(C) of Ng(C), we have an exact sequence
1 - Ng(C) = Np(C) 5 Ng(C) —» 1

of finite groups associated with C'.
The above group Ng(C) acts by conjugation on the set Irr(Ng(C)) of all ordinary
irreducible characters ¢ of its normal subgroup Ng(C). We denote by Ng(C, ) the

stabilizer in Ng(C) of any such %, and by

Nz (C, %) = e(Ng(C,v))
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the image of that stabilizer in E. Since Ng(C) is contained in Ng(C, 1), we have an
exact sequence

1 - Ng(C) S Np(C,¢) 5 Ng(C, ) — 1

associated with any p-chain C of G and any character ¢ € Irr( Ng(C)).

From now on we fix a p-block B of G, an integer d > 0, and a subgroup F of E.

DEFINITION 1.4.3. For any p-chain C of G, we let k(C, B, d, F) denote the number

of characters 1 € Irt(Ng(C)) satisfying
d(¢)=d, b)Y =B and Nz(C,¢)=F.

The integer k(C, B, d, F) depends only on the G-conjugacy class of the p-chain C.

So the sum in the following conjecture is well defined.

CONJECTURE 1.4.4. If O,(G) = {1}, and d(B) > 0 in the above situation, then
> (-1)9k(C,B,d,F) =0.
CER/G
We say that this conjecture “holds for G” if it holds for all choices of groups F,
blocks B and non-negative integers d.
Note that Conjecture 1.4.2 follows by summing the above equation over all the

subgroups F of E.

The Projective Conjecture. Next we go back to an arbitrary finite group G.
We pick some central extension Z.G of a cyclic group Z by G. So we fix an exact
sequence

122326501
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of groups such that Z is a cyclic central subgroup of Z.G. Then any p-chain C of G
has a normalizer Nz.¢(C) in Z.G, the inverse image n~! (Ng(C)) of its normalizer in
G.

We fix a faithful linear character p of Z in addition to the non-negative integer d.
The earlier p-block B of G is now replaced by a p-block B* of Z.G lying over the block

B(p) of Z containing p.

DEFINITION 1.4.5. For any p-chain C of G we define k(C,B*,d | p) to be the
number of characters ¢ € Irr(Nz.¢(C) | p) such that d(¢)) = d and B(1)) induces the

p-block B* of Z.G.

Note that k(C,B*,d | p) depends only on the G-conjugacy class of the p-chain C.

So the sum in the following conjecture is well defined.

CONJECTURE 1.4.6. If in the above situation, O,(G) = {1}, and the Sylow p-

subgroup Z, of Z 1is not a defect group of B*, then

> (-1)/“Ik(C,B*,d | p) =0.
CeR/G

We say that this conjecture “holds for Z.G” if it holds for all choices of the above

characters p, blocks B*, and non-negative integers d.
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Chapter 2

The Prime p=1>5

2.1. The Radical 5-chains of M,

From [Con85] a Sylow 5-subgroup P of M. is of type 5?2, which indicates that it
is extra-special of order 5 and exponent 5. In particular Z(P) is cyclic of order 5. Also

from the Atlas Ny, (P) = P xD where D =2 Z3x Zg. In particular [Ny (P)| = 4x 750.

PROPOSITION 2.1.1. P is a trivial intersection subgroup of Mc. The elements of

P\ Z(P) form a single Ny, (P)-orbit.

PROOF. Let v be an element of Z(P)#. So the order |C, ()| of its centralizer is
divisible by |P| = 125. From the Atlas the centralizers of elements in (54) and (5B)
have order 750 and 25, respectively. Hence v must be a member of the class (54). Since
Z(P) = (v) is normal in Npp, (P), the subgroup Cm, (7) N Nm, (P) has index dividing
|[Aut((v))| = 4 in Nm, (P). So this subgroup has order divisible by [N, (P)|/4 = 750.
But [Ca, (7)| = 750. Thus Cm, () equals its intersection with Ny, (P), and therefore
is a subgroup of index 4 in that group. Hence Ny, (P)/ Cm. () = Aut({y)). We
conclude that Ny, (P) is all of Na, ((7)).

Choose 6 € P from the class (5B) of M. From the Atlas |Cnm_(0)] is of order

25. Thus Cm,(d) is the maximal elementary abelian subgroup of P containing §. As
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INMm, (P)| = 25120, there are 120 elements in the Ny (P)-conjugacy class of §. These
conjugates must be all the elements of P\ Z(P). This proves the second statement.
Suppose ¢ € P for some 7 € M. Then Cn, (d) is a maximal elementary abelian
subgroup of both P and P7. Hence Z(P") < P. This implies that Z(P"7) = Z(P),
since each element of Z(P")# lies in (54), and all elements of P\ Z(P) lie in (5B) by
the previous paragraph. But P is the unique Sylow p-subgroup of NMC(Z(P)). So

P7 =P. Hence P is a trivial intersection subgroup of M. (]

COROLLARY 2.1.2. D acts faithfully on P.

Proor. If § € P\ Z(P), then Cm,(d) < P. The result follows. O

From Corollary 1.3.4 any radical p-subgroup of M, is the intersection of the Sylow
p-subgroups containing it. But P is a trivial intersection subgroup of M.. Hence a
radical 5-subgroup of M, is either trivial or a conjugate of P. It follows that there are

exactly two conjugacy classes of radical 5-chains in M.

Chain C | Chain Description | Ny, (C) | Nm..2(C) | Parity

1 {1} M. M..2 +

C {1} <P PxD |PxN -

TABLE 2.1. The Radical 5-chains of M,

The description of Ny, 2(C2) comes from the following section.
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2.2. Determining the structure of Nyg, 2(P)

From the Atlas Ny, 2(P) = P x N, where we may assume D < N, and |[N : D| = 2.
We let P denote the factor group P/ Z(P).

Suppose n € N\D centralizes P = P/ &(P). From [Go80, 5.3.2] this implies that
n centralizes P. Then by Corollary 2.1.2 we have 52 = 1. Hence 7 lies in the conjugacy
class (2B) of M..2. But from the Atlas |Cnm, (1)| = 7920, which is not divisible by 5%.
This contradicts the fact that i centralizes P. Hence N acts faithfully on P. So we
may regard N as a subgroup of GL(2,5) = Aut(P).

For the rest of this chapter we fix a generator x for the subgroup X = O3(D) = Zs.
Then N < Ngp(2,5)(X). Since 3 f|GF(5)#| = 4, the centralizer Cgp (2,5 (z) of = in
GL(2,5) is isomorphic to GF(25)#. Moreover the normalizer Ngp,(2,5)(X) of X in
GL(2, 5) is isomorphic to the semi-direct product GF(25)# x Gal(GF(25)) of GF(25)#
with the group Gal(GF(25)) 2 Z, of all automorphisms of the field GF(25). Since
both Nqr,(2,5)(X) and N have order 48, it follows that the two groups are identical.

Let

v= € GL(2,5),

8

-1 1 0 1
x = = € GL(2,5).

-1 3 -1 -1

It follows from the discussion above that T = Cgp(2,5) ().
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If we set

1 0
L= € GL(2,5),

-1 -1

and T = (1), then ¢ is an involution, and

-1 -1] -1 3 |-1 -1 1 -1

Thus T x T = GF(25)# x Gal(GF(25)). Moreover T normalizes X, so N = T x T.

Let y = v® and Y = (y). So Y = Zg and

Also T =X xY. Now D = X x Z for some cyclic group Z of order 8. The 2-group
Z is X-conjugate to a subgroup of the Sylow 2-subgroup Y x T of N. Thus we may
assume that Z <Y x T. As Z is maximal in Y x T, it contains (Y x T)' = (y*). The
group D is non-abelian, as M. has no elements of order 24. Thus Z corresponds to a
maximal subgroup Z of (Y x T)ap & Z4 x Zs, such that Z is cyclic, but not contained
in Cn(X)/(y*). Let ¥ and 7 denote the images of y and ¢, respectively, in (Y x T)qp.
Then (77) is the only possibility for Z. Thus Z = (y¢). For the rest of this chapter we

let z denote the generator y: of Z. So
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2.3. The Character Degrees of P x D

Since D is non-abelian but D/X is abelian, D' = X. So D has 8 linear characters.
The subgroup (zz?) of D is abelian and of index 2 in D. Hence by Theorem 1.2.21,

all character degrees of D divide 2. We conclude that

(2.3.1) Deg(D) = {1%,2%},  Def5(P x D mod P) = {3!2}.

From Proposition 2.1.1, the elements of P\ Z(P) form a single P x D conjugacy
class. Since P = P/ Z(P) is abelian, P” forms a single orbit of D. As |ﬁ#| =24 =|D|,
the group P x D is Frobenius. By Theorem 1.2.17 it has a unique character of degree

24 induced from any non-trivial linear character of P. Thus

(23.2)  Deg(PxD |P/Z(P)) = {24},  Defs(P x D | P/ Z(P)) = {3'}.

We describe how GL(2,5) acts on Z(P). Let v1, v» be elements of P whose images

form a basis of P. If

mi1 My,
M= € GL(2,5),

m21 M2.2

mi,1_ M1,2 m2,1

M — — ma2,2
then vi" = v, v,  and vy' = v L

vy % modulo Z(P). Since P is extra-special,

commutation in P gives a non-zero alternating bilinear form P x P — Z(P). Hence
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[v1, 2] generates Z(P), and we compute

M :[ M M] — [le’l mi,2 m2,1ym2,2]

[v1,v2] LSEEY ) 1 Ve T 2

— [1/17 y2]m1,1m2,2 [Vz, Vl]m1,2m2,2

— [Vla Vz]m1,1m2,2—m1,2m2,2

— [Vla Vz]det(M) .

So any element M of GL(2,5) raises a generator of Z(P) to its det(M)*® power.
Since det(x) = 1 and det(z) = 3, the element x centralizes Z(P), while z sends

every element of Z(P) to its third power. In particular D is transitive on Z(P)#. Thus

Cp(Z(P)) has index 4 in D. But (z2*) = Zg centralizes Z(P), and is of index 4 in D.

We conclude that
(2.3.3) (zz*) = Cp (Z(P)).

By Theorem 1.2.18 the extra-special group P has 4 irreducible characters of degree
5. Let 1) be one such. Then ¢|p\ z(p) = 0. Hence Ip(¢)) = Cp (Z(P)).

By Theorem 1.2.10 the character ¢ extends to ¢ € Irr(P x (zz*)). Then by
Theorem 1.2.16 the characters of P x D lying over the orbit of ¢ are the 6 elements of

the set {(w¢)P*P | w € Irr((z2*))}. Each such character is of degree 20 = 5 - 4. Thus
(2.3.4) Deg(P x D | Z(P)) = {20°},  Defs(P x D | Z(P)) = {2°}.
From (2.3.1), (2.3.2), and (2.3.4) we have

(2.3.5)  Deg(P xD)={1%2%24,20°}, and  Defs(P x D) = {3'% 26}.
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We can now prove the following

PROPOSITION 2.3.6. The group N, (C2) = Nam, (P) has a unique 5-block, which

necessarily induces the principal 5-block, By, of M. Hence

k(C2, By, 3) =13, k(C2,Bo,2) = 6, and
(2.3.7)

k(C3,Bo,d) =0, for all other values of d.

PRrOOF. Since Cpyp(P) = Z(P), Lemma 1.2.9 implies that P x D has a unique

5-block. We obtain (2.3.7) from (2.3.5). O

2.4. The Ordinary Conjecture for the prime p=1>5

From [Con85] the group M. has 19 characters in its principal block By, and 5

blocks of defect 0. We list the characters in the principal block and their defects:

Character | x1| x2| Xx3| Xa| Xs| Xe| Xr X8 X10 | X11

Degree 1 22| 231 252 | 770| 770 | 896 896 | 3520 | 3520

5-Defect 3 3 3 3 2 2 3 3 2 2

Character | x13 X14 X15 X16 X17 X21 X22 X23 X24

Degree 4752 | 5103 | 5544 | 8019 | 8019 | 9856 | 9856 | 10395 | 10395

5-Defect 3 3 3 3 3 3 3 2 2

Thus

k(Cl, BO, 3) = 13, k(Cl, B(), 2) = 6, and
(2.4.1)

k(C1,Bg,d) =0, for all other values of d.
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THEOREM 2.4.2. The Ordinary Conjecture holds for the McLaughlin simple group

for the prime p = 5.

ProOF. From Conjecture (1.4.2) and Table 2.1 on page 25, we need to prove

(2.4.3) k(C1,Bo,d) = k(C2,Bo,d)

for all values of d.
We obtain the following terms for the equation above for various values of d from

(2.3.7) and (2.4.1):

5-Defect | C Cy
3 13 = 13
2 6 = 6

TABLE 2.2. The Ordinary Conjecture for p =5

The terms in the above equation are zero for all other values of d. This proves the

theorem. n

2.5. The Invariant Characters of P x D

Recall that Nyp, 2(P) = P x N, where N = T x T. Since T has index 2 in N,
we conclude from Theorem 1.2.21 that every character degree of Ngr(2,5)(X) divides

2. Furthermore [v,¢] = v*, so N’ = (v*) is of index 8 in N. Thus

(2.5.1) Deg(N) = {1%,2}
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We have Deg(D) = {18,2%}, by (2.3.1). So four of the linear characters of D are
invariant in N, while the remaining four fuse to give two characters of degree 2. The

four characters of D of degree 2 must all be invariant in N. Hence
(2.5.2) Inv(D) = {1%,2*}  and  InvDefs(P x D mod P) = {3%}.

The unique character of degree 24 of P x D is necessarily invariant in N. Thus
(2.5.3) Inv(P x D | P/ Z(P)) = {24} and InvDefs (P x D | P/ Z(P)) = {3}.

Finally we deal with the six characters of Irr(P x D | Z(P)). As N normalises P,
it necessarily normalises Z(P). Then since N acts transitively on Z(P)#, it also acts
transitively on Irr(Z(P))#. Moreover, the stabilizer of any non-trivial linear character
of Z(P) is of index four in N.

Recall from (2.3.3) that Cp (Z(P)) = (x2*) is cyclic of order six. Since det(z?) =
—1 and det(s) = —1, the elements 2% and ¢ invert Z(P). So 12? centralizes Z(P). Hence

Cn(Z(P)) = (w2*,12?).

Now
(2.5.4) (:1:2:4)“’2 = (:zs_lz‘i)z2 =712t = (z2h) 7,
while
(2.5.5) (122)2 = 21022 = 212 = (22%)3.

Thus T12 = (z2*,12?) is the unique nonabelian group Zj x Z 4 of order 12 distinct from

D15 and 2A,. Tt is readily established that Deg(T1a) = {14,22}.
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Let ¢ € Irr(P | Z(P)). Then In(¢)) = Ty2. By Theorem 1.2.14 the character ¢
extends to a character ¢ of P x T1». Moreover, by Theorem 1.2.16 the set {(wi))P*™N |
w € Irr(le)} gives the irreducible characters of P x N lying over the P x N-orbit of

1, and hence of (. So

(2.5.6) Deg(P x N | Z(P)) = {20%,40%}.
From (2.3.4) and (2.5.6) we have

(2.5.7) Inv(PxD|ZP)) ={20°} and  InvDefs(P x D |Z(P)) = {2°}
From (2.5.2), (2.5.3) and (2.5.7) we have

(2.5.8) Inv(P x D) = {14,24202,24}, and InvDefs(P x D) = {3° 22}
We can now prove the following

PROPOSITION 2.5.9. The group Ny, (C2) = P x D has a unique 5-block, which

necessarily induces the principal 5-block, Bg, of M.. Hence

k(C2,Bg,3,M..2) =9, k(C>,Bg,2,M..2 ) = 2,
(2.5.10)
k(C%,Bg,d,M..2)=0 for all other values of d.

Proor. This follows immediately from (2.5.8) and Proposition 2.3.6. O

2.6. The Invariant Conjecture for the prime p=5

From [Con85] the block By of M, has eleven characters which are invariant in

M..2. We list these characters and their defects:
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Character | x1 | X2 | X3 | Xa| X7 | X8| Xxwo| X1 | X13| Xua| Xi5

Degree 1] 22| 231|252 | 896 | 896 | 3520 | 3520 | 4752 | 5103 | 5544

5-Defect 31 3 3 3 3 3 2 2 3 3 3

Thus
k(C1,Bo,3,M..2) =9, k(C1,Bo,2,M..2) = 2, and
(2.6.1)
k(C1,Bg,d,M:.2) =0 for all other values of d.

THEOREM 2.6.2. The Invariant Conjecture holds for the McLaughlin simple group

and the prime p = 5.

PRrROOF. From Conjecture (1.4.4) and Table 2.1 on page 25, we need to prove

(2.6.3) k(Ch,Bo,d, Mc.2 ) = k(Ca,Bo,d, Mc.2 ),

for all values of d. We obtain the following terms for the equation above for various

values of d from (2.5.10) and (2.6.1):

5-Defect | C4 Cy
3 9 = 9
2 2 = 2

TABLE 2.3. The Invariant Conjecture for p = 5

The terms in the above equation are zero for all other values of d. This proves the

theorem. 0
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REMARK 2.6.4. G. Schneider has also computed the multiset Deg(P x N), using
the CAYLEY computer program. He used it to prove the weaker Alperin Conjecture

for the McLaughlin Group and p = 5. For further information see [BM90, P465].

2.7. The Projective Conjecture for the prime p =15

We prove in Theorem 3.12.8 that the Schur multiplier A of M, is cyclic of order
3. Hence the only covering groups of M, are M, and ﬁc = 3.M,.. By the Atlas there
is no central extension of Mc.2. So we need only show that the Projective Conjecture

holds for 1/\\/[c.

THEOREM 2.7.1. The Projective Conjecture holds for McLaughlin’s simple group

and the prime p = 5.

PROOF. Let p € Trr(A)#. Then from the Atlas the group M, has two 5-blocks
lying over the 5-block of A containing p. One of these blocks has a trivial defect
group and contains the single irreducible character xss; the other block B* has P as a
defect group and contains the remaining 19 characters of Irr(l/\\/Ic | p). We list here the

elements of Irr(B* | p):

Character | x25 | X26 | Xor | X28 | X20 | X30 X31 X32 X33 | X34

Degree 126 | 126 | 792 | 1980 | 2376 | 2376 | 2520 | 2520 | 2772 | 4752

5-Defect 3 3 3 2 3 3 2 2 3 3

Character | X35 | X36 | X37 | X39 | X0 | X4 X42 X43 X44

Degree 5103 | 6336 | 6336 | 8019 | 8019 | 8064 | 10395 | 10395 | 10395

5-Defect 3 3 3 3 3 3 2 2 2
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Thus

(272) k(Cla B*73 | p) = 137 k(Cl, B*72 | p) =6

and k(C1,B*,d | p) = 0 for all other values of d.

The group A. Ny, (P) has a Sylow 3-subgroup of order 9. From the Atlas character
table of M, the group lvlc has no elements of order 9. So a Sylow 3-subgroup of
A . Npp (P) splits over A. Hence the group A. Ny (P) itself splits over A = Zs, using
Theorem [As86, 10.4]. By (2.3.7) a cohort of characters of A.Nn, (P) = Ng; (C)
lying over p contains 19 members. Thirteen of these characters are of defect 3 and
six are of defect 2. All of these characters lie in a 5-block of A. Ny (P) inducing the

5-block B* of M.. Hence

(2.7.3) k(C2,B*, 3] p) =13,  k(C2,B*,2|p) =6

and k(Cs,B*,d | p) = 0, for all other values of d.

From Conjecture (1.4.6) and Table 2.1 on page 25, we need to prove

(274) k(Cla B*ad | P) = k(CQa B*ad | p)a

for all values of d.
From (2.7.2) and (2.7.3), we obtain the following terms for the equation above for

various values of d:
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5-Defect | C; Cy

3 13 = 13

2 6 = 6

TABLE 2.4. The Projective Conjecture for p =5

The terms in (2.7.4) are zero for all other values of d. This proves the theorem. O
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Chapter 3

The Prime p=3

3.1. The Groups ExM and F xL

For the remainder of the thesis a will denote a fixed element of the (3A) conjugacy
class of M. From the Atlas Ny, ({a)) = F x L, where F = 3?4 and L = 2.6;.
By [GL83, p55] a Sylow 2-subgroup of L is isomorphic to a generalized quaternion
group Q16 of order 2*. Thus L is an isoclinic variant of the group SL(2,5) x Zs. For
the remainder of the thesis C will denote the derived group L' 2 SL(2, 5) of L. Since

O3(L) = {1}, the group F is the 3-core of F x L. Clearly Z(F) = (). Hence

(3.1.1) F x L = Ny, (F).

LEMMA 3.1.2. Let Sy, be a Sylow 3-subgroup of L and let Ny, denote the normalizer
of Sy, in L. Then Sy, = Z3 and Ny, = Z3 % Qg. Let Q be a complement to Sy, in Nr,.
We may choose generators a and b for Q such that a € L\C, b € C and both a and b

invert St..

ProoF. This is clear from the structure of L 2 SL(2,5).2. O

We use W to denote the Sylow 3-subgroup F x St of F x L. From the Atlas it is

also a Sylow 3-subgroup of M.
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Let 7 be a generator of Z(Q) = Z(L). So a? = b?> = 7. From the Atlas the

centralizer H = Cm,(7) of 7 is isomorphic to the universal covering group 2.2s of Us.

LEMMA 3.1.3. F x C = Cp, (). Hence Si x (b) centralizes c, while a inverts a.

PrOOF. The group L acts on the group (a) = Z(F) & Z3. This action induces
a homomorphism of L into the abelian group Aut(Z(F)) = Z,. Hence C = L' is
contained in the kernel of this homomorphism i.e. it centralizes Z(F).

Since 7 € C centralizes «, the group Z(F) x L is a subgroup of H = Cp_ (7). It
follows from the structure of H 2 2.25 that Z(F) x L = Ng(Z(F)) and Z(F) x C =
Cu(a). In particular L does not centralize a. We conclude that F x C = Cag, ().

Now Sy, x (b) centralizes a because it is a subgroup of C, while a € L\C inverts

a because it acts non-trivially on Z(F). This concludes the lemma. O

We let F denote the quotient group F/ Z(F). So F is elementary abelian of order

3%. Clearly L acts on F.

PROPOSITION 3.1.4. Cw (1) = Z(F) xSy. Hence 7 inverts F. Also Cw(Q) = {1}.

A Sylow 2-subgroup of F x L acts fized-point-free on 7.

PRrROOF. The group Cw(7) = W N H is a 3-subgroup of H = Cp,_(7) containing
Z(F) x Sy,. From the Atlas a Sylow 3-subgroup of H = 2.2(3 is elementary abelian of

order 32. So Cw(7) = Z(F) x Sp.. Hence Cg(7r) = Z(F). As 7 has order relatively

prime to 3, this implies that Cx(7) = {1}. So 7 inverts F.

Since a € Q inverts Cw () = Z(F) x Sy, it follows that Cw(Q) = {1}.
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Let Q16 be a Sylow 2-subgroup of F x L. We may suppose that 7 € Q4. Since Q6
is generalized quaternion, 7 is its unique involution. Hence Q14 acts fixed-point-free

on F. 0

COROLLARY 3.1.5. The group L acts faithfully on F.

ProoOF. This follows immediately from Proposition 3.1.4 and the fact that <T> is

the unique minimal normal subgroup of L 2 SL(2,5).2. O

LEMMA 3.1.6. Z(W) = Z(F).

ProOF. As Ny (F) = F x L, we have Cy, (F) < F x L. But L acts faithfully
on F, by Corollary 3.1.5. So Cm,(F) = Z(F). Thus Z(W) < Z(F). This implies the

lemma since Z(F) has prime order 3. O

LEMMA 3.1.7. Suppose Q acts on an elementary abelian group E of order 3*, in
such a manner that 7 € Q inverts E. Then any proper non-trivial Q-invariant subgroup

F of E is a simple Q-group of order 32. Moreover Q acts regularly and transitively on

F#.

PROOF. Let F be a proper non-trivial Q-invariant subgroup of E. Then Q acts
faithfully on both F and ]:J/f‘ Hence both subgroups have order > 32. The lemma

follows. L]

PROPOSITION 3.1.8. W'/ Z(W) = [Sr, F] = Cg(Sr), and each of these groups has

index 32 in F and order 32. Let E = W'Sy,. Then W' = ENF, and E = Cw (W) is
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elementary abelian of order 3*. Moreover [W, W'] = Z(W). So the 3-group W s of

class three.

PrOOF. We have W' < F, as F is a maximal subgroup of W. Moreover Z(W) <
W', as W' contains the inverse image of the non-trivial subgroup [Sr, F] of F. Hence
W'/ Z(W) is a simple Q-subgroup of F of order 32, by Lemma 3.1.7. But [Sy,F] is a
non-trivial Q-subgroup of W'/ Z(W). So [Sy,,F] = W'/ Z(W).

Now [W,W'] # {1}, as Z(W) < W'. Since Z(W) is simple, this and [Rt95, 5.41]
imply that Z(W) < [W, W']. Hence [W,W']/Z(W) is a proper Q-subgroup of the
simple Q-space W'/ Z(W). So [W,W'] = Z(W). We conclude that W is a 3-group
of class three. In particular W' is abelian.

It follows from the previous paragraph that commutation in W gives a (7)-

invariant bilinear map

TV&I/') x Sp, = Z(W).

But 7 inverts W'/ Z(W), while centralizing Sy, and Z(W). So this map is trivial.
Hence W'Sy, is abelian. Thus W'/ Z(W) < Cg(Sy). But Cx(Sy) is a non-trivial
proper Q-subgroup of F. So W'/ Z(W) = C#(S1).

Let E = W'Sy. Then W' is a maximal subgroup of E contained in F. Since

SL NF = {1}, we conclude that ENF = W'. As W'Sy, is abelian we have
E = CW’SL(T) X [W’SL,T] = Z(W) X SL X [W’SL,T],

using Proposition 3.1.4 and [As86, 24.6]. Since F has exponent 3, this implies in

particular that E is elementary abelian of order 3*.
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Now F is a maximal subgroup of W and W' = Cg(W') is a maximal abelian

subgroup of the extra-special group F. So Cw(W’) = E. O

COROLLARY 3.1.9. F is the unique extra-special subgroup of W of order 3°.

PROOF. Suppose F! # F is an extra-special subgroup of W of order 3°. We
claim Z(W) < Fl. Otherwise Z(W) N F! = {1}, and so W = Z(W) x F!, which is
impossible. Thus Z(W) coincides with Z(F!), since the former is a central subgroup
of F! of order 3.

Now F!F = W, as F is a maximal subgroup of W. Hence F! N F has order
35156 — 3%, Moreover Z(W) < F' NF. So F = F!/Z(W) is an elementary abelian
subgroup of W = W/ Z(W) of order 3*, distinct from F.

Let St denote the subgroup St, Z(W)/Z(W) of W. Then W = F x Sg,. Pick
x € FI\F So we also have W = F x (z). Since F is abelian, the actions of Sy,
and (z) on F coincide. But Cx(Sr) = Cg(SL) = W'/ Z(W) has order 32, while
Cg((z)) > Fn F' has order > 33. This contradiction means that no such group F

exists. n

COROLLARY 3.1.10. E is the unique subgroup of W isomorphic to Z}.

PROOF. Let E! be a subgroup of W isomorphic to Z4. Then E! £ F. So E'! N F
is an abelian subgroup of F of order 3% = 3546, Since F = 3!*4, this implies that

Z(F) <E!NF.
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Let z € E'\F. Then (z) = St modulo F. Since F is abelian, this implies that the

actions of (z) and Sr, on F are identical. So
(B! NF)/ Z(F) < Cg(z) = C(St) = W/ 2(F).

Since the first and last terms have order 32, we conclude that E! N F = W'. Then

E! < Cw(W')=E. So E! =E. O

LEMMA 3.1.11. N (E) = E x M, where M = Mg can be chosen to contain Q.
Let S =MN'W and Ny = Nv(Sm). Then Swm is a Sylow 3-subgroup of M while

NM=SM><1Qand
NM.W)=WxQ=FxNL=ExNpy=FxL)Nn(E xM).

PrOOF. It follows from Lemma 3.1.6 that Ny, (W) < Ny, (Z(F)) = F x L. So
NMm, (W) =F xNL(W)=F x (S, x Q) =F x Nr.

From the Atlas Ny (E) = E x M, where M 22 M. Clearly W < Ny (E). Let
Sm = M NW. Then Sy is a Sylow 3-subgroup of M. Let Ny = Nyvi(Sm)- Then
Ny = Sm % Qt, where Q! = Qg. Clearly Q' < Ny, (W).

From the first paragraph it follows that Q and Q! are Sylow 2-subgroups of
Nm, (W). Hence (QY)* = Q, for some z € W. We replace M by M? and Sm
by (Sm)*. Then we still have Ny (E) = E x M. Also Ny = Sm % Q and
Ny (W) = E x Ny.

Finally (E x M) N (F x L) < Ny, (W), since W = EF. But the opposite in-
clusion follows from the first and third paragraphs of this proof. Hence Ny (W) =

(FxL)N(E xM). O
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Note that the Sylow 3-subgroup Syp of M 2 Mg is isomorphic to Z2.

PROPOSITION 3.1.12. E x M has two orbits on E#. One consists of 20 elements
from the class (34) of M. containing «, while the other consists of 60 elements from
the class (3B) of M. Let 8 € E come from the class (3B) of M.. Then

Cm(a) = Snm X Zgl) <SmMxQ= NM(<a>), where Zgl) > Ty,

(3.1.13)
CM(,B) =As <S4 = NM((ﬂ)) <M = Q[G, where Ay = A4 and Sy = Sy.

Furthermore

CMm.(B)=ExAs< NMC(<,8>) =E x S;.

PROOF. Since a € E, it follows from Lemmas 3.1.3 and 3.1.11 that Ngym ((@)) =
(FxL)N(ExM) =Ex(SmxQ), and Cexm(a) = (FxC)N(ExM) = E x (Snm %
Zgl)), where Zgl) < Q < M is isomorphic to Z4. So «a lies in an M-orbit of length
IM : Sy x Z{Y| = 20.

Let 3 be an element of the (3B) class of Mc. Then Ny, ((8)) = Z3 x &4, by
[GL83, p55]. Hence by Corollary 3.1.10, we may assume that Na, ((8)) = E x Sy,
where S; = &4. But E = O3(ExS,). So 8 € E. Moreover ExS; < ExM = Ny (E).
So, replacing Sy by (E % S4) N M if necessary, we may also assume that Sy < M. From
the maximal subgroups of M =2 M, listed on page 4 of the Atlas it follows that any
subgroup of M isomorphic to &, is contained in M’ = 2g. Choose an involution
t € Cm(B). Such an involution exists because Cn(f) is a subgroup of index at most

2 in Npm((8)) = &4. All 3-elements of Cn, (1) 2 2.9g are real. So f3 is real in M.
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Hence Cm, (8) = E x Ay, where Ay = S’ = 2, is the unique subgroup of index 2 in
S4. We conclude that § lies in an M-orbit of length |M : A4| = 60.

The M-orbits of o and 3 account for all elements of E#. O

For the rest of the thesis 8 will denote an element of E which is a member of the

class (3B) of M.

PROPOSITION 3.1.14. L has a single orbit on F\ Z(F), consisting of 240 elements

from the class (3B) of M.. Hence L acts transitively on .

Proor. By Proposition 3.1.12 the group E contains only 20 elements of the class
(3A) of M. But [FNE| =33 So FNE intersects the class (3B) of M.. We suppose
that the element § in Proposition 3.1.12 lies in (F N E)\ Z(F).

From the Atlas |Cm, (8)] = 972 = 3% - 22, and by Proposition 3.1.4 a Sylow 2-
subgroup of Cryxr () is trivial. Thus |Crxr(3)| < 3°. So 8 has at least |F x L|/35% =
240 distinct F x L-conjugates. But no element of Z(F) is conjugate to 8. Hence the
F x L-orbit of 3 is contained in F\ Z(F). Since this latter set is of cardinality 240, we
conclude that F\ Z(F) is the F x L-orbit of 3.

Now F is abelian. So L acts transitively on F” . O

COROLLARY 3.1.15. Let Ag = M'. Then Cg(Ag) = {1}. Hence M acts faithfully

on E. Also E is an irreducible M-group.

PRrROOF. The group Ag =2 Qg is the unique non-trivial proper normal subgroup of
M = M;g. But it follows from (3.1.13) that Cg(As) = {1}. We conclude that M acts

faithfully on E.
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From Proposition 3.1.12 the group M has orbits of length 1,20,60 on E. Hence

M acts irreducibly on E. O

3.2. The Radical 3-chains of M,

We find the radical 3-subgroups of M. using the following lemma.

LEMMA 3.2.1. If X is a ZY subgroup of Mc, for n > 1, then Ny (X) is conjugate

to a subgroup of F x L or E x M.

PrOOF. The result follows from [Fk73, 5.6, p70]. O

We can now give the radical 3-subgroups of M.

PROPOSITION 3.2.2. Let X be a radical 3-subgroup of Mc. Then X is conjugate

in M to exactly one of

{1}, E, F or W.

Furthermore any radical 3-subgroup of N, (E) is Nm, (E)-conjugate to E or W, and

any radical 3-subgroup of N, (F) is Ny, (F)-conjugate to F or W.

PROOF. Assume X # {1}. We have Na, (X) < N, (2Z(X)). So the normalizer
N, (X) is either contained in a conjugate of Ny, (E) = ExM or of Num, (F) = F %L,
by Lemma 3.2.1. Hence we may assume that X is a radical 3-subgroup of one of these
groups.

Suppose X is a radical 3-subgroup of F x L. Then X > F, since F = O3(F x L).
Now X is contained in some Sylow 3-subgroup W' of F x L. Since F is maximal in

W1, either X = F or X = W! is conjugate to W in F x L.
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Suppose on the other hand that X is a radical 3-subgroup of E x M. Then X > E,
since E = O3(ExM). If X # E, then X = E x Xy, where Xg = XNM is a non-trivial
radical 3-subgroup of M. It follows that Ng,m(X) = ExNm(X) = ExNpm(Xg). From
the Atlas, Cm(Xg) is a Sylow 3-subgroup of M. Hence Xg = O3(Nm(Xg)) = Cm(Xr)

is an M-conjugate of Sp;. Thus X = E x Xp is conjugate to W in M. O

COROLLARY 3.2.3. Every radical 3-chain of M. is conjugate to exactly one of

{1}, {1} <E, {1} <E<W, {1}<F, {1} <F<W or {1}<W.

Furthermore, each of these 3-chains is a radical 3-chain of M.

PRroOOF. This follows immediately from the previous proposition. O

Three of the radical 3-chains of M. have the same stabilizers, as we now show.

LemMA 3.2.4. The normalizer of each of the radical 3-chains

{1} < W, {1}<F<W, and {1}<E<W

in either M or Mc.2 is the same as the normalizer of W in that group.

PrOOF. The groups E and F are characteristic subgroups of W, by Corollaries
3.1.9 and 3.1.10. Thus the normalizer of W in M, or M,.2 also normalizes each of the
three given radical 3-chains. But since W occurs in each of the chains, the normalizer

of any of the chains is contained in the normalizer of W. This proves the lemma. O
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Using (3.1.1), Lemmas 3.1.11 and 3.2.4 above, and Lemmas 3.7.1 and 3.7.2 below,

we obtain the following descriptions of the normalizers of the radical 3-chains in M,

and M,.2:
Chain C | Chain Description | Na, (C) | N, 2(C) Parity
C {1} M. Me.2 +
Co {1} <E ExM |[Ex(Mx(c)| -
Cs {I}<E<W |WxQ |Wx ({d)Q) +
Cy {1} <F FxL |Fx((d)L) -
Cs {1}<F<W |WxQ | Wx ((d)Q) +
Co {1} <W WxQ |Wx(dQ) | -

TABLE 3.1. The Radical 3-chains of M,

3.3. The Character Degrees of F x L

Since L & 2.65, we have from the Atlas

Deg((F x L)/F) = {1%,4°,5,6%},
(3.3.1)
Def3(F x L mod F) = {6°,5%}.
The group L acts transitively on F by Proposition 3.1.14. So by Lemma, 1.2.19,
it also acts transitively on Irr(F)#. Hence any non-trivial linear character ¢ of F has
80 distinct L-conjugates and I, (¢) is cyclic of order 3. It follows from Theorem 1.2.10

that ¢ extends to the cyclic group Ir(¢)). Let ¢ be one such extension. Then from
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Theorem 1.2.16 we have Irr(F x L | ¢) = {(wvﬁ)F”L |we Irr(Zg)}. Each (wi))F*L is

of degree deg(w) - deg(¢)) - |L : Ir,(1)| = 80. Thus
(3.3.2) Deg(F x L | F/Z(F)) = {80°},  Defs(F x L | F/Z(F)) = {6%}.

The group F is extra-special of order 35. So by Theorem 1.2.18 it has two characters
of degree 9 which are non-trivial on Z(F). Moreover these characters are determined by
their restrictions to Z(F). By Lemma 3.1.3 this implies that they form a single F x L-
orbit. Let x be one of these characters. Then I,(x) = Cr(Z(F)) = C. Since a Sylow
3-subgroup of C is cyclic, x extends to Ir,(x) = F x C. Let X be one such extension.
Then Irr(F x L | x) = {(wx)"*" | w € Irr(C)}. Since Deg(C) = Deg(2.25) =

{1,22,3%,4%,5,6}, and Deg( (wy)F ) = deg(w) - deg(%) - 2 = 18 - deg(w), we have

Deg(F x L | Z(F)) = {18,36% 54°,72%,90, 108},
(3.3.3)
Defs (F x L | Z(F)) = {4°,3°%}.

From equations (3.3.1), (3.3.2) and (3.3.3) we obtain

Deg(F x L) = {12 4% 5% 63,18, 362, 542, 72%,80°,90, 108},
(3.3.4)
Def3(F x L) = {6'%,5%,4%,3%}.

This allows us to prove the following
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PROPOSITION 3.3.5. The group Nm_ (Ci) = F x L has a unique 3-block, which

necessarily induces the principal 3-block, Bg, of M.. Thus
k(C4,Bg,6) = 12, k(C4,Bo,5) = 3,

(3.3.6) k(Cy,Bg,4) = 6, k(Cy,Bo,3) =3,
k(C4,Bg,d) =0, for all other values of d.

ProoOF. Since Cryr(F) = Z(F) < F, the group F x L has only one 3-block, by,
which must be its principal 3-block. So by induces the principal 3-block, By, of M.

We now obtain (3.3.6) from (3.3.4). O

3.4. The Character Degrees of W x Q

Recall from Lemma 3.1.11 that W xQ = FxNy,. Since Q acts transitively on Sg,#,
by Lemma 1.2.19 it also acts transitively on Irr(Sg,)#. Let ¢ be an element of Trr(Sy,)#.
Then Iny, (¢) = Z3 x Z4. By Theorems 1.2.10 and 1.2.16 we have Deg(Ny, | S1.) = {24}

Also Deg(N1,/S1.) = Deg(Q) = {1%,2}. Hence
(3.4.1) Deg(Ng) = {1%,2°},  Def3(W x Q mod F) = {6°}.

Next we consider the group F x Nr. We identify Irr(F) with the dual group F
of F. The action of Ny, on F induces an action of Ny, on F'. Lemma 1.2.20 and
Proposition 3.1.8 imply that Cg-(St) has order 3. It then follows from Lemma 3.1.7
that Q acts regularly and transitively on Cg- (Sp)#. Hence Cg-(SL)¥ is a Nyp-orbit
of length 8. If 9 € F_, then by Proposition 3.1.4, its centralizer Cn, (¥) is a 3-group.

But Sy, is the unique non-trivial 3-subgroup of Ny,. Thus, if ¢ is not centralized by
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Sr, it must have a trivial centralizer in Ny, in which case it lies in an Ny-orbit of

length 24. We conclude that
(3.4.2) Orb(Ny,, (F)#) = {8,24%}.

By Theorem 1.2.15 each irreducible character of F extends to its stabilizer in Ny,.

Using Theorem 1.2.16 we find

Deg(W x Q| F/ Z(F)) = {8°,24°},
(3.4.3)
Def; (W x Q| F/ Z(F)) = {6°,5°}.

As noted in Section 3.3, the group F has two characters of degree 9 which are non-
trivial on Z(F). Moreover these characters are determined by their restrictions to Z(F).
By Lemma 3.1.3 this implies that they form a single W x Q-orbit. Let x be one of
these characters. Then Ing (x) = Cny (Z(F)) = Sr x (b). The character x extends to
% € Irr (F x In. (X)), as St x (b) has cyclic Sylow subgroups. So Irr (W x Q | Z(F)) =
{ (w)W*Q | w € Irr(Sy, x (b)) }. Hence Deg(F x In.(X) | X) = 9 Deg(St x (b)).
Now b inverts Sy, by Lemma 3.1.2. So Deg(F x In.(x) | x) = {9* 18%}. Then by

Clifford theory

Deg(W x Q | Z(F)) = {18,367},
(3.4.4)
Def3 (W x Q| Z(F)) = {4°}.

From equations (3.4.1), (3.4.3) and (3.4.4) we have

Deg(W x Q) = {1%,25,8% 18,243,367},
(3.4.5)
Def3(W x Q) = {6'%,5%,45}.

This allows us to prove the following
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PROPOSITION 3.4.6. The group Nm (Cs) = W X Q has a unique 3-block, which

necessarily induces the principal 3-block, Bg, of M.. Hence
k(C3,B(],6) = 12, k(Cg,Bo,5) = 3,
(347) k(c37 BO; 4) = 67 k(037 BOJ 3) = 07

k(C3,Bg,d) =0, for all other values of d.
PROOF. Since Cwxq(W) = Z(W) < W, the group W x Q has only one 3-block.
This block necessarily induces the principal block By of M.. We now obtain (3.4.7)

from (3.4.5). O

3.5. The Character Degrees of E x M

Let E* = Hom(E,GF(3)) be the dual group to E. We identify E* and Irr(E).
Both E and E* can be considered as GF(3)M-modules. By Proposition 3.1.12 the
group M has two orbits on E#, of lengths 20 and 60. So M has two orbits on (E*)#

also.

LEMMA 3.5.1. There exists an increasing chain
(352) K<A; <S4 <Ag<M

of subgroups of M, with Ag = M' 2 g, S; =2 Gy, Ay =S, = Ay and K = 0z(A4) =
Z2. The GF(3)-vector space E* is isomorphic to the regular GF(3)K-module. Hence

M acts absolutely irreducibly on E.

PRrROOF. From the Atlas the derived group Ag = g of M contains two conjugacy

classes of maximal subgroups isomorphic to &4, and these two classes fuse in M. We
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choose a member Sy of one of these conjugacy classes. We let A4 denote the derived
group S4’ = A4 of S4, and let K denote O2(A4) = Z2. The existence of (3.5.2) now
follows.

We claim that E* is the regular GF(3)K-module. Since K is an elementary abelian
2-group, E* = E; @ E; ® E; ® E; as GF(3)K-modules, where each E; is a one-
dimensional GF(3)K-submodule of E*. Let ¢ be an involution in K. Since Ag is simple
and acts faithfully on E, we can regard K as a subgroup of SL(4, 3). So ¢ inverts an
even, non-zero number of the E;. But K N Z(SL(4,3)) = {1}, as Z(Ag) = {1}. So ¢
inverts exactly two of the A;. The claim now follows easily.

By Corollary 3.1.15 the group M acts irreducibly on E. So Endgrsym(E) is a
subfield of the ring Endgp(syk (E). But from the regularity of the GF(3)K-module E,
the ring E = GF(3)K is isomorphic to a direct sum of four copies of GF(3). Any

subfield of such a direct sum is isomorphic to GF(3). The result now follows. O

We can now describe the orbits of M on E*.

LEMMA 3.5.3. There exist 11 and o in E* such that

IM(¢1) = Sm X Zf) < Sm X Q = NM(<¢1>), where Q > Zgz) > 7y,

(3.5.4)

Im(¢2) = As < Sy = Nm((¥2)), where Ay = A4 and Sy = &4.
Hence
(3.5.5) Orb(M, E*) = {1,20,60}.
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Proor. It follows from Proposition 3.1.8 that the GF(3)M-module W' = ENF
has codimension 1 in E. Since W = E x Sy, and E and Sy are abelian, it follows
that W' = [E, Sm]. So Cg+(Sm) has dimension 1, by Lemma 1.2.20.

Let ¢ be a generator of Cg+(Sm). Since Q normalizes Sy, it must stabilize (1)1 ).
But it follows easily from Proposition 3.1.12 that Cg(Q) = {1}. So Cg:(Q) = {1},
using Lemma 1.2.20. Hence In,, (¥1) = Sm % Z‘(f), where Zf) >~ Z4. But from the
Atlas Ny = Sy X Q is a maximal subgroup of M = Mj,. It follows from this and
the irreducibility of E* as a GF(3)M-module (see Corollary 3.1.15) that Ny is the
stabilizer of (11) in M. Hence In (1) = Sm % fo”. We conclude that the M-orbit of
1 contains 720/36 = 20 elements.

Lemma 3.5.1 shows that E* is isomorphic to the regular GF(3)K-module. In
particular dimgp(s)(Ce+(K)) = 1. Let ¢, be a generator of Cg+(K). Then (1)
is stabilized by S4, since K <« S4. Let Dg be a Sylow 2-subgroup of S4. Then we
see from (3.1.13) that Cg(Dg) = {1}. So Cg«(Ds) = {1} by Lemma 1.2.20. Hence
Cg~(S4) = {1}. This implies that Ig,(¢2) = A4. But Ss4, Ag and M are the only
subgroups of M containing Ss4. If Ag stabilizes (1/2), then it has an orbit of length
2 on (E*)#. This is impossible since Ag is simple. So Sy is precisely the stabilizer of
(12) in M. Hence A4 = Inm(¢2). We conclude that the E x M-orbit of 4, contains 60
elements.

The 20 M-conjugates of 1, and the 60 M-conjugates of 15 account for all non-

trivial elements of E*. O

We consider the two non-trivial orbits of M on E* in turn.
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Let p be a non-trivial linear character of Syg. All involutions in Ing(e)1) invert Syg.
So ISMfof) (u) = Sm. Hence Deg(Im(1) | p) = {4}. Since Ina(¢)1) has two orbits
on Spm™ we get Deg(In(¢1) | Sm) = {4°}. Also Deg(Tm(¥1)/Sm) = {1*}. Thus
Deg(Im(¢1)) = {1%,4%}.

Now 11 extends to E x Ing(¢01) by Theorem 1.2.15. So Deg(E x Ing(t)1) | 1) =

{1%,42}. The M-orbit of ¢; has length 20. So from Clifford theory we obtain
(3.5.6) Deg(E x M | 41) = {20%,80%},  Def3(E x M | ;) = {6°}.

Since Ing(¥2) = A4, we obtain Deg(E x Ing(t02) | 12) = Deg(A4) = {12,3}. The

M-orbit of ¥ has length 60. It follows from Clifford theory that

(3.5.7) Deg(E x M | ¢,) = {60%,180}, Def3(E x M | ¢2) = {5%,4}.
Since M = Mg, we obtain from the Atlas

(3.5.8) Deg((E x M)/E) = {1%,9%,10°,16}, Def3(E x M mod E) = {6°,4%}.

From (3.5.6), (3.5.7) and (3.5.8) we have

Deg(E x M) = {12,92,10%,16,20%,60°,80%, 180},
(3.5.9)
Def3(E x M) = {6'2,5%,4%}.

We now have enough information to prove

PROPOSITION 3.5.10. The group N, (C2) = E X M has a unique 3-block, namely

the principal 3-block. This block necessarily induces the principal 3-block, By, of Me.
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Thus

(3.5.11)

k(C2; 8076) = 127

k(CQ, B(), 4) = 3,

k(C27 BO7 d) = 07

k(C2; BOa 5) = 37

k(027 BO; 3) = 07

for all other values of d.

PRrROOF. The first statement follows from the fact that Cgxm(E) = E. Then

(3.5.11) comes from (3.5.9).

3.6. The Ordinary Conjecture for the prime p =3

O

From [Con85, p101], the group Ny, (C1) = M, has three 3-blocks of defect 0, and

the principal block Bg of defect 6, which contains the remaining 21 characters. We list

the characters of the principal block and their defects:

Character

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 | X11
Degree 1 22| 231 252 770 | 770 | 896 | 896 | 1750 | 3520 | 3520
3-Defect 6 6 5 4 6 6 6 6 6 6 6
Character | x12 | X13| X15| Xis | Xi9 | X20 | X1 | X22 X23 X24
Degree 4500 | 4752 | 5544 | 8250 | 8250 | 9625 | 9856 | 9856 | 10395 | 10395
3-Defect 4 3 4 5 5 6 6 6 3 3
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Thus
k(C4,Bo,6) = 12, k(C1,Bg,5) =3,
(3.6.1) k(Cy,Bg,4) = 3, k(C1,Bo,3) =3,
k(C1,Bg,d) =0, for all other values of d.

We now have enough information for the following theorem.

THEOREM 3.6.2. The Ordinary Conjecture holds for McLaughlin’s simple group

and the prime p = 3.

PRrROOF. From Conjecture 1.4.2 and Table 3.1 on page 48, the Ordinary Conjecture

for the prime p = 3 asserts that

(3.6.3) k(C1,Bo,d) + k(C3,Bo,d) = k(Cs,Bo,d) + k(C4,Bo,d)

for all values of d € Z.
From (3.3.6), (3.4.7), (3.5.11) and (3.6.1) we obtain the following sums for the

equation above for various values of d:

3-Defect | C} Cs Cy Cy
6 12 4+ 12 = 12 + 12
5 3 4+ 3 = 3 + 3
4 3 + 6 = 3 + 6
3 3 4+ 0 = 0 + 3

TABLE 3.2. The Ordinary Conjecture for p = 3

57



The summands in (3.6.3) are zero for all other values of d. This completes the

proof of the theorem. O

3.7. The Groups E x (M x {(c)) and F x ((d)L)

We begin with descriptions of the normalizers of E and F in M,.2.

LEMMA 3.7.1. Ny 2(E) = E % (M X <c>), where ¢ is an involution inverting E.

Hence Ny, 2(W) =W x (Q x (c)). The group M x {c) acts faithfully on E.

PROOF. From the Atlas, Ny, .2 (E) has the form E x (M X <c>) for some involution
¢ in M..2\M,. centralizing M = Mjo. From the order of Cyp, (c) in the Atlas, it
is clear that ¢ acts as a non-trivial automorphism of the GF(3)M-module E. But
Endgr(sm(E) = GF(3) by Corollary 3.5.1. So ¢ inverts E.

It is clear that ¢ normalizes W = E x Sy. So Ny, 2(W) = W x (Q x (c)).

Since Z(M) = {1}, the embedding of M in GL(4,3) = GL(E) does not contain
—L If 2 € (M x (c))\M centralizes E, then zc € M inverts E, contradicting the

previous sentence. Hence M x (c) acts faithfully on E. O

LEMMA 3.7.2. Ny, 2(F) = F x ((d)L), where d is an element of Mc.2 of order
4. The element d satisfies the equations d> = 7, [d,C] = {1} and [d,a] = 7. Hence

Nm, 2(W) =W x (<d>Q) The group <d>L acts faithfully on F.

PROOF. From [Con85] we have Ny 2(F) = F % (L.2), where L.2 & 4.655. We
denote by d a generator of the normal subgroup Z4 of L.2. Then d? is the only generator

7 of the unique normal subgroup (7) of order 2 in L £ 2.55.
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Since L normalizes the cyclic group <d>, its derived group C centralizes d. In
particular d normalizes W = F x Sp,, since Sy, is contained in C. So Ny, 2(W) =
W ((2)Q).

The Sylow 2-subgroups Q x (c¢) and (d)Q of N, 2(W) are isomorphic. But
Cax(e)(Q) = (1) x (c) has exponent 2. So the 4-element (d) is not centralized by Q.
Hence a does not centralize d. We conclude that d* = d~!.

Let z be an element of C(4yr,(F). Then 2? € L centralizes F. So 22 = 1 and =
lies in the class (2B) of Mc.2. But then z centralizes F, since z is a 3'-element and

F = F/®(F). This contradicts the fact that |F| = 3°> Cm. (). O

COROLLARY 3.7.3. Q x (¢) = (d)Q. So (d) = (cb), and d inverts Z(F).

PROOF. The Sylow 2-subgroups Q x (c) and (d)Q of N1, .2(W) are conjugate by
some w € W. Then Q = (d)QNM. = Q. But Q does not centralize any element of
W, by Proposition 3.1.4. So w = 1. Hence Q x {¢) = (d)Q.

Now d centralizes b € C. So d € Cqx(ey(b) = (b) x (c). The latter group has
exactly two cyclic subgroups (b) and (cb) of order 4. Since (d) is such a subgroup, and
is not equal to (b), it must equal (bc). The involution c inverts Z(F), since by Lemma
3.7.1 it inverts E and Z(F) = Z(W) is a subgroup of E. Also b centralizes Z(F), by

Lemma 3.1.3. We conclude that d inverts Z(F). O

3.8. The Invariant Characters of E x M

Let 91 and v be representatives of the two non-trivial orbits of M on E*, as in

Lemma 3.5.3. Then 1)y and 1, are not conjugate in M x {c) since their stabilizers in
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M are not isomorphic. Hence they are representatives of the two non-trivial orbits of
M x (c) on E*. Since c inverts E, it also inverts E*.

From (3.5.4) there exists z € Q which inverts ;. Hence zc centralizes 1;. So
Ivx (o) (V1) = (Im(¢1),zc). But ¢ centralizes M. So Ingy(ey(¥1) = Im(¥1)(z) =
Sm » Q. This group is Frobenius. It follows easily that Deg(Inix () (¥1)) = {1*,2,8}.

As E is abelian, Theorem 1.2.15 shows that 11 extends to E X Ingyc)(%1). Then

by Clifford theory
(3.8.1) Deg(E x (M x (c)) | 11) = {20%,40,160}.
We deduce from (3.5.6) and (3.8.1) that
(3.8.2) Inv(E x M | ;) = {207}, InvDef3(E x M | ¢;) = {6%}.

From (3.5.4) there exists y € S;4\A4 which inverts ¢2. Then, by an argument
analogous to that used for 1y, we find that Ingx (¢ (12) = Ss. Hence Deg(Inix ¢y (12)) =
{12, 2, 32}.

As 1y also extends to its stabilizer in E x (M x (c)), we have

(3.8.3) Deg(E x (M x {c)) | 12) = {60?, 120, 180%}.
Using (3.5.7) and (3.8.3) we obtain

(3.8.4) Inv(E » M | ) = {60,180},  InvDef3(E x M | ¢5) = {5, 4}.
All characters of M are invariant in M x (c). This and (3.5.8) imply that

(3.8.5) Inv(M) = {12,9%,10%3,16},  InvDef3(E x M mod E) = {6°,4%}.
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From (3.8.1), (3.8.3) and (3.8.5) we have
(3.8.6) Inv(E x M) = {12,9%,10%,16,202,60,180}, InvDef3(E x M) = {68,5,4%}.
We can now prove the following

PROPOSITION 3.8.7. The group Nam (C2) = E x M has a unique 3-block. This

block induces of the principal 3-block, By, of M. Moreover
k(Cs,Bg,6,M..2 ) = 8, k(C%,Bg,5,M..2) =1,
(3.8.8) k(Cy,Bg,4,M..2 ) = 3, k(Cy,Bo,3,M..2) =0,

k(C5,Bg,d,M..2) =0, for all other values of d.

ProoF. This follows immediately from (3.8.6) and Proposition 3.5.10. O

3.9. The Invariant Characters of F x L

LeEmMA 3.9.1. We have
(3.9.2) Inv(L) = {12,43 5% 6}, InvDef3(F x L mod F) = {67,5}.

PrOOF. Let pu € Trr(L). Recall that [d,C] = 1 and [d,a] = 7. Hence u?(z) = u(x)
for x € C, and p4(z) = p(rx) for x € L\C. Since 7 is central in L, there exists
v € Irr((r)) such that p(rz) = v(r)u(z) for all z € L\C. But v(r) = +1, since
(1) = Zs. So pt(z) = £p(z), depending on whether p(7) = £u(1).

From the Atlas, we see that d stabilizes all characters of L = 2.2(5.2, except the
four extensions of the characters xs, xo in the Atlas character table for 2.2(5. The

lemma now follows easily from that table. O
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Let x be one of the two characters of the extra-special 3-group F of degree 9.
Since these two characters form a single L-orbit, they also form a single L.2-orbit.
Hence I, »(x) has index 2 in L.2. Both a and d invert Z(F). So Ir2(x) = C.(ad).
But d centralizes C. Also (ad)? = 7 = a?, since a®> = d*> = [a,d] = 7. Hence
IL2(x) = C.(ad) 2 L = 2.65. A Sylow 3-Subgroup of 2.65 is cyclic. So by Theorem
1.2.10, the character x extends to F x I, »(x). Since Deg(2.65) = {12,45,52,6%}, it

follows from Theorem 1.2.16 that
(3.9.3) Deg(F x (L.2) | Z(F)) = {18%,72°,90%,108%}

Comparing (3.3.3) and (3.9.3) we have

Inv(F x L | Z(F)) = {18,72%,90, 108},
(3.9.4)
InvDef3 (F x L | Z(F)) = {4*,3}.

Let ¢ € (F')#. By Proposition 3.1.14, the group L.2 acts transitively on F”, and
hence also on (F)#. So I, »(1) has order 6. We may assume without loss of generality
that St, < Ip.2(¢).

It follows from Corollary 3.7.3 that ¢ € (d)Q normalizes F (this could also be
deduced from Corollary 3.1.9). So ¢ acts on F = F/Z(F) as well as on St < E.
Hence ¢ acts on C(S1). By Proposition 3.1.8 the group W' = ENF is the inverse
image of C&(St) in F. So cinverts C(Sw). Commutation in F induces a non-singular

c-invariant bilinear form




As c inverts Cx(S1) and Z(F), it necessarily centralizes F/[F,Sy]. But Cg-(SL)
(F/[F,S1])", by Lemma 1.2.20. So c centralizes Cg-(St.). We conclude that Ir, 5 (1)) =
S, X <C> > G;.

As F is abelian, ¢ extends to Irx1.2(1)). Then by Clifford theory

(3.9.5) Deg(F x L | F/ Z(F)) = {802,160}

Comparing (3.3.2) and (3.9.5) we see that

(3.96) Inv(F xL|F/Z(F)) = {80}, InvDefs(F x L | F mod Z(F)) = {6}.

From (3.9.2), (3.9.4), and (3.9.6), we have

Inv(F x L) = {1%,4%,5%,6, 18, 72%, 80,90, 108},
(3.9.7)
InvDefs(F x L) = {68,5,4%,3}.

We can now prove

PROPOSITION 3.9.8. The group Nam, (C4) = F XL has a unique 3-block. This block

induces the principal 3-block, Bg, of Mc. Moreover
k(Cy,Bo,6,M..2) =8, k(C4,Bo,5,Mc.2) =1,

(3.9.9) k(Cy,Bo,4,Mc.2) =4,  k(C4,Bo,3,Mc.2) =1,
k(Cy4,Bo,d,M..2) =0,  for all other values of d.

ProoF. This follows immediately from Proposition 3.3.6 and (3.9.7). O
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3.10. The Invariant Characters of W x Q

We have Nai, 2(W) = W x (Q x (c)) = F x (N, x {c)), where N, = NL,(Sp) =
St % Q. Choose a non-trivial character u € Irr(Sy). Now Cq(SL) = (ab), and both
b and c invert Sp. So Iqx(q(p) = (ab,bc) = Qs. As Sg is abelian, p extends to
Ingx(cy () = S » (ab, be). Thus Deg(Nr, x (¢) | S) = {2*,4}.

Now Deg((Nr, x {c))/S1.) = Deg(Q x (c)) = {18,2%}. So

(3.10.1) Deg(Ny, x {c¢)) = {1%,2%,4}.

Comparing (3.10.1) with (3.4.1), we see that

(3.10.2) Inv(St x Q) = {1*,2%},  InvDef3(W x Q mod F) = {6"}.

Let x be one of the two irreducible characters of F of degree 9. Both a and ¢ invert
Z(F). So ac centralizes Z(F). Hence In, x(c)(x) = St % (b,ac) = St, x Q = Ny, Using
(3.4.1), we see that Deg(Iny x(c)(x)) = Deg(Nr) = {1*,2%}.

Since x extends to W, it also extends to Iry (g x(c)) (X)- Then from Clifford theory

(3.10.3) Deg(W x (Q x {(c)) | Z(F)) = {18*,36°}.

Comparing (3.10.3) with (3.4.4), we see that

(3.104) Inv(W x Q| Z(F)) = {18%,36},  InvDef3(W x Q| Z(F)) = {4*}.

If z € Q x {c) has order 2, then Q centralizes (z) and hence stabilizes Cz+ (z). By

Proposition 3.1.4 and Lemma 3.1.7, the group Q acts regularly on each of its nontrivial
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orbits in F~. So |Q| | |Cg+(2)| — 1. Hence |Cg= ()| = 1 or 9. We conclude that the
nontrivial elements of Cg+(z) form either a single Q-orbit or the empty set.

From (3.4.2) we know that Orb(Ny,, (F )#) = {8,24%}. The Nr-orbit of length
8 must be an Ny, x <c>—orbit, while one of the three Ny-orbits of length 24 must be
an Ny, x (c)-orbit, and the other two either join to form a single Ny, x (c)-orbit of
length 48, or are both Ny, x (c)-orbits. If v € T lies in an Ny, ¥ (c)-orbit of length 24,
then Ing w(cy(¥) is isomorphic to Z,. Thus some Ny, x <c>—conjugate of Intp ey (¥) is
contained in the Sylow 2-subgroup Q x (c) of N, » {c). Since 7 inverts F, it follows
that Inp x(cy(¥) is conjugate to one of the remaining two subgroups of Q x <c> of order
2. By the previous paragraph, each of these Zj’s centralizes elements from at most
one Nr, x {c)-orbit of (F")#. Hence there are at most two N, X (c)-orbits of length
24. But then there is exactly one such orbit, coinciding with one of the Ny -orbits of

length 24. The remaining two Ny -orbits of length 24 must fuse in Ny, x <c> Thus

Orb(Ny, » {c), (F)#) = {8,24,48}.

Let v lie in the N x {(c)-orbit of length 8. Without loss of generality Sy, <
Ing i (c) (v1). We know there exists an involution x € {7, ¢, 7c} such that Iny w(cy(v1) =
St x (z). We cannot have z # 7, since 7 inverts F'. So z is either ¢ or 7¢. In both
cases z inverts Sg,, because T centralizes Sy, and ¢ inverts Sy,. Hence Ing w(ey (1) =

St % (z) = &3. Invoking Theorems 1.2.15 and 1.2.16 we see that

(3.10.5) Deg(F x (NL x (c)) | v1) = {8%,16}.
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Let v, € (F)# have N, x {c)-orbit length 24. Then Iny s(e)(v2) 2 Zs. So
(3.10.6) Deg(F x (N, x {c)) | v2) = {24°}.

Let v3 € (F )# have Ny, x (c)-orbit length 48. Then 3 induces an irreducible

character of F x (N, » (c)) of degree 48. So
(3.10.7) Deg(F x (N¢. x {c)) | v3) = {48}.
From (3.10.5), (3.10.6) and (3.10.7) we obtain
(3.10.8) Deg(W % (Q x {(c)) | F/ Z(F)) = {8°,16,24%,48}.
Comparing (3.10.8) with (3.4.3) we conclude that
(3.10.9) Inv(W x Q |F/Z(F)) = {8,24},  InvDef3(W x Q| F/Z(F)) = {6,5}.

From (3.10.2), (3.10.4) and (3.10.8) we have
Inv(W x Q) = {1%,23,8,182, 24,36},
(3.10.10)
InvDef3(W x Q) = {6%,5,4}.

We now can prove the following proposition.

PROPOSITION 3.10.11. The group Nng (C3) = W x Q has unique 3-block, which

necessarily induces the principal 3-block, Bg, of M. Hence
k(Cs3,Bg,6,M..2) = 8, k(Cs5,Bo,5,M..2) =1,
(3.10.12) k(Cs,Bo,4,Mc.2) =4,  k(C3,Bp,3,Mc.2) =0,

k(Cs5,Bo,d,M..2) =0, for all other values of d.
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ProOF. This follows immediately from Proposition 3.4.6 and (3.10.10).

From Table 3.1 on page 48 and Lemma 3.7.1, the normalizer in M..2 of each

of the chains C3, Cs and Cg coincides with Ny, 2(W) = W x ((dQ)). Hence

k( Cg, Bg,d, Mc2 ) = k( 05, Bg,d, MCQ ) = k( CG: Bo,d, Mc2 ) for all values of d.

3.11. The Invariant Conjecture for the prime p =3

We obtain the invariant characters of the principal block By of M. from [Con85,

pl00]. We list here these characters and their defects:

Character | x1 | x2 | X3 | Xxa| X7 | Xxs Xo | Xxtol| xui| xi2| Xx13| Xi5| X2
Degree 122|231 |252| 896 | 896 | 1750 | 3520 | 3520 | 4500 | 4752 | 5544 | 9625
3-Defect 6 6 5 4 6 6 6 6 6 4 3 4 6
Thus
k( Cl,Bo,ﬁ,Mc.2) = 8, k( 01,50,5,M0.2 ) = ].,
(3.11.1) k(Cy,Bg,4,M..2 ) = 3, k(Cy,Bp,3,Mc.2) =1,

We can now prove the following

k(C4,Bg,d,M..2) =0,

for all other values of d.

THEOREM 3.11.2. The Invariant Conjecture holds for the McLaughlin simple group

and the prime p = 3.
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PrOOF. From Conjecture 1.4.4 and Table 3.1 on page 48, we must prove

k(Ch,Bo,d, Mc.2 )+ k(Cs3,Bo,d, Mc.2 ) =
(3.11.3)
k( 027 807d7 h/[c-2 ) + k( 047 807d7 Mc-2 )7
for all values of d € Z.

From (3.8.8), (3.9.9), (3.10.12) and (3.11.1) we obtain the following sums for the

equation above for d € {3,4,5,6}:

3-Defect | C; Cs Cy Cy
6 8 + 8 = 8 + 8
5 1 + 1 =1 + 1
4 3 + 4 = 3 + 4
3 1 + 0 = 0 + 1

TABLE 3.3. The Invariant Conjecture for p = 3

The summands in (3.11.3) are zero for all other values of d. This completes the

proof of the theorem. O

3.12. The Schur Multiplier of M,

We let A.M. denote the universal covering group of M, by its Schur Multiplier
A. In [Gr87], R. Greiss shows that A is isomorphic to Z3. The arguments he uses are
somewhat terse. So we expound them in more detail here. We will assume only that

A has order a non-trivial power of 3.
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In this section A; will denote a fixed subgroup of A, properly contained in A.
We let M. = A'.M, denote the factor extension A M./A; of M. by A = A/A,.
So 1/\\/1C is a perfect central extension of M. by a non-trivial 3-group, and any factor
extension M¢/A! of M. by Al/A! is non-split, for every subgroup Al < A!l.

If X is any subgroup of M, then we will use A!.X or X to denote its inverse image
in 1/\\/[,:. We note that there is a natural conjugation action of M. on ﬁc, since ﬁc is
a central extension of M.

We will use the notation of Section 3.1. In particular, F is an extra-special 3-group
of M. of type 3%, and Nu, (F) = F x L, where L = SL(2,5).2. We let C =L’. So
C = SL(2,5). Also W will denote a fixed Sylow 3-subgroup of M. containing F, and
St will denote the intersection of W with L. Since F = O3(F x L), it follows that

F = 03(AL(F x L)).

LEmMA 3.12.1. L splits over A'.

PRrROOF. From the Atlas, the group C = 2.25 is isomorphic to the universal cov-
ering group of 5. Hence C splits over Al. But C contains a Sylow 3-subgroup Sy, of

L. So Sy, splits over Al. We conclude that L splits over Al. O

We will denote by L! a fixed complement to Al in L. So L! is a complement to

Fin AL.(F x L).
LEMMA 3.12.2. F does not split over Al.

PROOF. Suppose there exists a complement F! to A! in F. Since A! is central,

there is a one-to-one correspondence between the complements to A! in P and the
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elements of the set H'(F',A') = Hom(F!,A') = Hom(F,A'). The complement
corresponding to f € Hom(F!, A!) is the set {f(z) x z | z € F'}.

Now |[Hom(F,A')| = |Q(A')|* is a power of 3, as F is an elementary abelian
3-group. Consider the central involution 7' of L!. This element normalizes F and
A'. Thus it permutes the complements to A! in F. Since there are an odd number

L. We assume that 7! fixes

of complements, there is at least one which is fixed by 7
F!. As 7! inverts F and centralizes A, it inverts all homomorphisms F — A!. So
7! fixes no non-trivial elements of the 3-group Hom(F, A'). Hence F! is the unique
complement fixed by 71.

Let z be an arbitrary element of L' < Cg; (7!). Then (F')* is a complement to
Alin F and (F!)*)" = (F})*™" = (F!)7'® = (F!)*. As F! is the unique complement
fixed by 7!, this implies that (F1)® = F1. So L' normalizes F!. Hence F! x L! is a
complement to A' in A'.(F x L). Since W is a subgroup of A'.(F x L), it splits over

A'. This implies that ﬁc itself splits over Al, as W is a Sylow 3-subgroup of ﬁc.

This is impossible. The lemma now follows. O

We now prove

—

LEMMA 3.12.3. B/ = F/ = Z(F).

—

PROOF. Since Z(F) is cyclic, Z(F) is abelian. The derived group ¥’ of ¥ is con-
tained in Z/(F), since F' = Z(F). Furthermore, F' is stabilized by (a) € L. Let
Al = Cg, (a) and Z' = [F,a]. Then by [As86, 24.6] we have F/ = Al x Z'. Also A}

is contained in A! and Z/(F) = Al x 7Z1.
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We claim that A} = A!. If not, A'/A} is a non-trivial quotient of A. Since A! is
an arbitrary non-trivial quotient of A, we can replace it by A'/Al. So for the rest of
the proof we assume we have done so. This is equivalent to assuming that A} = {1}.

By [As86, 24.6], the abelian group F/F' can be written as F/F = Cg g (1) %

[F/F,7]. Since T centralizes A'F'/F” but inverts F'/(A1F') = F/Z/(ﬁ =~ F, we have
F/F' = (A'F'/F") x [F/F', 7).

Let F' be the inverse image of [F/F' 7] in F. Then A'F' NF' = I, since
(A'F'/F) n (F'/F') = {1}. But A'nF' = Al = {1}. So A'nF! = {1}. It follows
that F! is a complement to A! in F, contradicting Lemma 3.12.2. This proves our

claim. The lemma follows. O

COROLLARY 3.12.4. The 3-group ¥ is of class two. Hence ¥' = Z(F), while both

' and A! are elementary abelian.

PROOF. Since [F,F'] = {1}, we have [F,F'] < A'. So commutation in ¥ induces
a (7)-invariant bilinear map F/F’ x F'/A' — A'. Since F//A" and A" are centralized
by 7, while /F" is inverted by 7, the above map is trivial. Hence [, ] = {1}.

As F/F' = F is elementary abelian, [R93, 5.2.5] implies that F//[F, '] = ¥ is

also elementary abelian. In particular A! is elementary abelian. O

COROLLARY 3.12.5. C = L' centralizes '. The elementary abelian 3-group F' =
Z(F) can be written as

B =A'x 7!,

where Z' = Zs is an L-invariant subgroup of 3

71



PROOF. The action of M, on ﬁc restricts to an action of C and L on the 3-group
P =Z(F) = Z/(F\‘) By Lemma 3.1.3, the action of C on each section for the normal
series B/ > Al > {1} of ¥’ is trivial. Since C = SL(2,5) has no non-trivial quotients
which are 3-groups, this implies that it centralizes 38

Recall there exists an element a of order 4 in L\C which inverts Z(F). By [As86,
24.6] we may write I/ = Z(F) = Ci (@) x [F',a]. But a centralizes A' and inverts

F'/A'. So B = A! x 7', where Z! = [F',a]. This decomposition is L-invariant as

L = (C,a), and C centralizes F'. O

For the remainder of this chapter we let Sy,1 denote the Sylow 3-subgroup of L!

contained in W. So Sy is cyclic of order 3.

COROLLARY 3.12.6. Z(W) = Z(F).

PROOF. Since Z(W) = Z(F), we have Z(V/\\/') < Z/(-]:?) = Z(F). By the previous

corollary [C,Z(F)] = 1. So the Sylow 3-subgroup Sp: = W NL! of L! centralizes

Z(F). But Sy F = W. The result now follows immediately. O

The following lemma could have been proved earlier. We use it here to show that

A has order 3.

LEMMA 3.12.7. C acts irreducibly, but not absolutely irreducibly on F. Also L acts

absolutely irreducibly on F.

PRrOOF. From Proposition 3.1.14 the group L acts transitively on F#, and the

stabilizer of a point is isomorphic to Sy,. Since Sy, < C has index 40 in C it follows
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that Orb(C | F") = {40%}. Hence C acts irreducibly on F. Consider F as an additive
GF(3)C-module. Then § = EndGF(3)C(F) is a finite field of characteristic three.

Recall from Lemma 3.7.2 that Nm_ 2(F) = F x ((d)L), where d is an element of
ML..2 of order four, [d,C] =1, and [d,a] = 7.

We identify GL(4,3) with EndGF(g)(F). Then we can regard <d>L as a subgroup
of GL(4,3), as (d)L acts faithfully on F. Thus d € §, and hence 4 | |3#|. Since
% < GL(4,3), this implies that § = GF(9) or GF(81). However GF(81)# is a self
centralizing subgroup of GL(4,3), and thus does not contain C. So § = GF(9). This
proves the first statement.

Now C < L. So Endgr(3)r(F) C §. But [L,d] # 1. So Endgrzr(F) < §. We

conclude that Endgp(s)L(F) = GF(3). This proves the second statement. O

We now specialize the previous results to A = A. Then ﬁc becomes the universal
covering group A.M_. of M. by its Schur multiplier A, and X becomes A X, for any

X < M.

THEOREM 3.12.8. A =2 Zs.

ProOOF. By Corollary 3.12.4, the group A is an elementary abelian 3-group. Sup-
pose A = 7z, for some n € Z. We can find z1,...,25,91,...,Yn € B such that
{lzi,yi] | i=1,...,n} is a basis for A.

Commutation in F gives rise to the L-invariant alternating bilinear forms p; :

F xF = GF(3), for i = 1,...,n, where p;(%,%) is defined by the equation

n
[.’E, y] = H[xia yl]pl (E,ﬂ)’
i=1
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A

for any z,y € F with respective images 7,7 € F. Each p; induces a map f; €
Homgp(s)(F,F), given by fi(Z) : § — pi(%,9), for all 7,7 € F. The map f; is
non-trivial, as p;(Z;,7;) = lar(s)-

Since F and F~ are irreducible L-modules, Schur’s Lemma implies that f; is in fact
an L-isomorphism of F onto F ', for i = 1,...,n. Thus each f{!f; is an element of
Endgr(3)r(F). But L acts absolutely irreducibly on F by Lemma 3.12.7. So f{' fi =
\;, for some \; € GF(3)#.

Suppose n > 1. Then

0=p2(Z1,71) = (f2(1))@1) = A2 f1(Z1))H1) = A2 p1(T1,91) = A2 # 0.

This contradiction forces n = 1. We conclude that A = Zs. O

3.13. The Character Degrees of A.(E X M)

The action of M. on ﬁc restricts to an action of M = 1/\\/[/A onE. If z € M,
then % = §%, for any §j € E, where Z is any element of M lying over z. Notice that
y® is the image of §” in M., where y is the image of § in E.

Recall from (3.5.2) the chain K < Ay < Sy < Ag < M of subgroups of M, where

Ag=M' =g, Sy =Gy, Ay = Sy =y and K = 02(A4) = Zg.

PROPOSITION 3.13.1. E = Z3,

PrOOF. From Lemma 3.5.1 the elementary abelian 3-group E is isomorphic to the
regular GF(3)K-module. In particular E =2 E; ® E; @ E; ® E4 as GF(3)K-modules,

where each E; is cyclic of order 3.
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Suppose ¢ # j. Commutation in E gives rise to an K-invariant bilinear map
E; /A x f)j /A — A. By the regularity of E, we can find € K which centralizes one
of E;,E; and inverts the other. So the map must be trivial. Hence ]/E\)t commutes with
Ei. Moreover each EZ is abelian, since each E; is cyclic. We conclude that E is abelian.

By Proposition 3.1.4 the centralizer of Q in E < W is trivial. Hence

~

E=Ax[QE ~AXE,
using [As86, 24.6]. So E is elementary abelian of order 3°. O

We will use the following lemma, to show that the (3B) conjugacy class of M. fuses

—~

in M.

LEMMA 3.13.2. Let X be a special p-group of type p***, i.e. X' = ®(X) = Z(X)
is elementary abelian of order p?, while X = X/X' is elementary abelian of order p*.

Then there is some element x € X such that X' = [z, X].

PROOF. Let X = X/X'. We can regard X and X' as vector spaces over GF(p)
with dimensions 4 and 2, respectively. Commutation in X gives a bilinear map [, ] :
XxX— X\

Let 7, € X. If [fl,i] = X', we are done. Otherwise, there exists Zo € X such that
X = (%) @ (7)), where (7)) = {Z € X | [£1,7] = 1}. If [£5,X] = X', we are done.
Otherwise X = (Z;) @ (Z)" and (7,)" # (T)", since 7 € (7,)"\(Z:)". Thus
<51>J' N <52>J' is a 2-dimensional subspace of X. Let Z3,Z4 be generators for <§1>J' n

<EQ>L. By the bilinearity of the commutator, it is clear that [(Z1,Z2), (%3, %4)] = {1}
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Since X = (T1, T2, T3, T4 ), the vector space X' is spanned by {[Z;,;]}, for 1 <i <
Jj < 4. But then X' = ([#1, 72, [T3,T4]), since all the other terms in the spanning set
are trivial.

Let 7 = 7, + %3. Then [F,»] = [T1,7>] and [7,74] = [T3,74]. So [7,X] = X'. The

lemma follows.

We need the next result in order to investigate the action of A. (E X M) on E.

LEMMA 3.13.3. The (3A) conjugacy class of M splits in M., while the (3B)

conjugacy class of Mc fuses in ﬁc.

PROOF. Let & be an element of 1/\\/Ic whose image in M, is @. Then @& is central
in W, by Corollary 3.12.6. The derived group C! of L! centralizes Z/(F)7 by Corollary
3.12.5. Hence

Ciz. (@) =F x C' = A.(Cp,(a)).
In particular, the conjugacy class (3A4) of M. containing « splits in Me..

By Lemma 3.13.2, there exist z,y € F\F” such that A = ([z,y]). This implies
that the conjugacy class of zA in M, = (ﬁc) /A fuses in M.. But by Proposition
3.1.14, the element zA € F\F’' comes from the (3B) conjugacy class of M. So this

class fuses in M. O

We fix p € Irr(A)# for the remainder of this chapter. In the next lemma we
compute the degrees and 3-defects of the irreducible characters of A.(E X M) which

lie over p.

76



LEMMA 3.13.4. Deg(A.(E x M) | p) = {36%,45%,90%,144}. Hence

(3.13.5) Def3(A.(E x M) | p) = {5'%}

PROOF. As before & is an element of ﬁc whose image in M. is a. We deduce
from Proposition 3.1.12 and Lemma 3.13.3 that & lies in an M-orbit of size 20, and M
has three such orbits in E.

Recall that after Proposition 3.1.12 we set 3 as an element of E belonging to the
(3B) conjugacy class of Mc. We let 8 be an element of M. whose image in M, is
B. By (3.1.13), we have Cm(8) = A4, where Ay =2 4. It follows from Lemma 3.13.3
that Cgz_ (B) is a subgroup of (E).A4 of index 3. In particular 3 lies in an M-orbit of
length 180.

Since [A,M] = 1, we have Orb(M, A#) = {12}. Thus

Orb(M, E#) = {12,203, 180}.

As M has 6 orbits on E#, it also has 6 orbits on Irr(f))#. By Proposition 3.1.12, the
set Trr(B mod A)# accounts for 2 of these orbits. There exists a Galois automorphism
~ of the characters of subgroups of E such that pY = p?. Hence 7 sends Irr(f) |
p) bijectively onto the set Irr(ﬁ | p?). In particular these two sets have the same

cardinality. Since Irr(E)# is the disjoint union of these two sets and Irr(E)#, all of
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which are M-invariant, we have
6 = |Orb(M, Irr(E)) |
= |Orb (M, Trr(E)#)| + |Orb (M, Tre(E | p))| + |Orb (M, Tre(E | p*))|
=2+ 2|Orb(M, Irr(E | )|

We conclude that |Orb(M, Irr(E | p))| = 2.

Let Ty be a Sylow 2-subgroup of M. Then from the Atlas T is a maximal
subgroup of M. Moreover T5 is semi-dihedral of order 16.

Now Cg(T2) = {1} by (3.1.13). So C4(T2) = A. Since E is an abelian 3-group
and T, is a 3'-group, by [As86, 24.6] we have E=Ax []AE, Ts]. Let gﬁl be the unique
character in Irr(E) which is trivial on [E, T»] and restricts to p on A. Sot; € Cg.(T2).
Moreover IM(zﬁl) = Ts, since Ts is maximal in M. So 7,&1 lies in an M-orbit of length
720/16 = 45.

Let N5 be the normalizer of a Sylow 5-subgroup of M. Then Ny is a maximal
subgroup of M, isomorphic to the Frobenius group 5 : 4. As with Ts, we can find
= Irr(f) | p) such that Ing(¢)2) = Nj. So ¢ lies in an M-orbit of length 720/20 = 36.

Since IM(@-) is a 3'-group, v; extends to Ia.(ExM) (z@,), for i = 1,2. It is routine

to show that Deg(T2) = {1%,2%} and Deg(N;) = {1%,4}. Hence by Clifford theory

Deg(A.(E » M) | ¢y) = {45,90°},  Defs(A.(E x M) | ¢y) = {57},
(3.13.6)
Deg(A.(E x M) | ¢;) = {361,144},  Defs(A.(E x M) | ¢) = {5°}.

Also Irr(A.(ExM) | p) is the disjoint union of Irr(A.(ExM) | ¢;) and Irr(A.(ExM) |

¥2). The results of the lemma now follow. O
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Finally we have

PROPOSITION 3.13.7. The group Ngz (C2) = A.(E x M) has a unique 3-block.

This block necessarily induces the principal 3-block, Bj, of ﬁc. Hence

k(0278375 | p) = 127
(3.13.8)
k(Cy,Bg,d | p) =0, for all other values of d.

PROOF. The first statement follows from the fact that E is self centralizing in M...

We obtain (3.13.8) from (3.13.6). O

3.14. The Character Degrees of A.(F X L)

Recall from Corollary 3.12.5 that Z(F) = I/ = A x Z! is an L-invariant decompo-

sition of the elementary abelian 3-group Z () = 72.

LEMMA 3.14.1. If X is a subgroup of Z(F) of order 3, then ¥ /X is an extra-special

144
group of type 3,7,

PrOOF. Let X < Z(F) have order 3. Let Z denote the inverse image of Z(¥/X) in
F. Then Z(F) = ¥/ < Z < F because X < F'.

Recall that the subgroup C of L acts trivially on Z(f‘) Hence C normalizes Z,
and Z/ Z(F) is a C-invariant subspace of ¥/ Z(F). But by Lemma 3.12.7 the group C
acts irreducibly on '/ Z(F). So Z = Z(F). Tt follows that Z(F/X) = Z(F)/X = F/X.
But (F/X) = F'/X, as X < F'. So Z(F/X) = (F/X)".

Finally, ¥'/X has exponent 3, since by the Atlas M. has no elements of order 9. [

We can now prove the following
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LEMMA 3.14.2. There exist characters X1, X2 € Irr(F | p) such that Ia.Fxr)(X1) =
A.(F x L), and Ian.Fxr)(X2) = A.(F x C). Each ¥; extends to its stabilizer in

A.(F xL). Hence

(3.14.3)

Deg(A.(F x L) | x1) = {9%,36°,45%, 54}, Def3(A.(F x L) | x1) = {5%,4°},

Deg(A.(F x L) | X2) = {18,36%,54%,722,90,108}, Defs(A.(F x L) | x2) = {5%,4%}.
Also

Irr(A.(F x L) | p) is the disjoint union of Irr(A.(F x L) | x1) and Irr(A.(F x L) | x2).

PRrROOF. Let A € Irr(Z(F))#. We can regard \ as an element of Irr(Z(F)/ Ker(\))#.
Then by Theorem 1.2.18, there is unique irreducible character A of F / Ker(A) lying over
A, and A has degree 9 and vanishes outside Z(F)/ Ker()). By inflation, we may regard
X as an irreducible character of F. We see in this way that F has eight characters of
degree 9 which vanish outside Z(F). Since Irr(F | p) and Irr(F | p®) are of the same
size, and account for all irreducible characters of Irr(F | Z(F)) non-trivial on A, both
of these sets contain (8 — 2)/2 = 3 characters.

We pick X1, X2 € Irr(F | p), with x; trivial on Z' and X, non-trivial on Z!. Then
Ia (Fx1)(X1) = A.(F x L), and Ia (5x1)(X2) = A.(F x C). Since A.(F x L) /F = L
has cyclic Sylow 3-subgroups, both %1 and X2 extend to their stabilizers in A.(F x L).
We obtain (3.14.3) immediately using Clifford theory.

The A.(F x L)-invariant character x; and the two A.(F x L)-conjugates of X2

account for all three elements of Irr(F | p). O
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To conclude our analysis of A.(F x L) we now prove

PROPOSITION 3.14.4. The group Ng; (C1) = A.(F x L) has a unique 3-block,
which necessarily induces the principal 3-block, Bj, of 1/\\/Ic. Hence
k(Cs,Bg,5 | p) =15,
(3145) K(C4,B3,41 ) =6,
k(C4,Bg,d | p) =0, for all other values of d.

PROOF. Since Ca (pxr)(F) = Z(F), the group A.(F x L) has a unique 3-block.

Then (3.14.5) follows from (3.14.3). O

3.15. The Character Degrees of A.(W X Q)

Most of the work of this section has already been done in Section 3.14. We have

LEMMA 3.15.1. There ezist X1, X2 € Irr(F) such that I (wuq)(X1) = A.(W x Q)
and I (wxq)(X2) = A.(W x (b)), where b is an element of QN C of order 4. Hence
Deg(A.(W % Q) | x1) = {9,187}, Def3(A.(W x Q) | X1) = {5°},

(3.15.2)
Deg(A.(W x Q) | x2) = {18%,367},  Def3(A.(W % Q) | X2) = {5°}.

Also

Irr(A.(WxQ) | p) is the disjoint union of Irr(A.(WxQ) | x1) and Irr(A.(WxQ) | x2)-

PRrROOF. The existence of x; and X2 comes from Lemma 3.14.2. The character X1
is invariant in A.(Fx L), and hence in A.(W x Q). The stabilizer of {2 in A.(W x Q)

is A.(Wx Q)NA.(FxC) =A.(F % (SL x (b)) It also follows immediately from

81



Lemma 3.14.2 that both X1 and X» extend to their stabilizers in A.(W x Q). We

obtain (3.15.2) using (3.4.1), (3.4.4) and Clifford Theory. O

We can now prove the following

PROPOSITION 3.15.3. The group Nﬁc(C:;) = A.(W X Q) has a unique 3-block.
This block necessarily induces the principal 3-block, B§, of ﬁc. Hence

k(C3,BS,5 | p) = 155
(3.15.4)

k(Cs,Bg,d | p) =0, for all other values of d.

PrOOF. The group A.(W X Q) has a unique 3-block since Ca (wxq)(W) =

o~

Z(W). Then (3.15.4) follows from (3.15.2). O

3.16. The Projective Conjecture for the prime p=3

The universal covering group 1/\\/[c of M, has a single 3-block of defect 7, namely
the principal block Bj. All other 3-blocks are of defect 1. We list here the characters

of B¥ lying over some fixed p € Irr(A)# and their 3-defects:

Character | x25 X26 X27 X28 X29 X30 X31 X32 X33

Degree 126 | 126 | 792 | 1980 | 2376 | 2376 | 2520 | 2520 | 2772

3-Defect ) 5 5 5 4 4 5 5 5

Character | X34 | X36 | X37 | X38 | X41 X42 X43 X44 X45

Degree 4752 | 6336 | 6336 | 7875 | 8064 | 10395 | 10395 | 10395 | 12375

3-Defect 4 5 5 5 ) 4 4 4 5
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Thus

k(ClaBS75 | p) = 127
(3.16.1) k(Ch, 83,4 | p) =6,
k(C1,Bg,d | p) =0, for all other values of d.

THEOREM 3.16.2. The Projective Conjecture holds for the McLaughlin Simple

Group and the prime p = 3.
ProOOF. From Conjecture 1.4.6 and Table 3.1 on page 48 we need to prove
k(C1,Bg,d | p) +k(Cs3,Bq,d | p) =k(C2,Bg,d | p) +k(C4, B, d | p),

for all values of d € Z,. From (3.13.8), (3.14.5), (3.15.4) and (3.16.1) we obtain the

following sums for the equation above for various values of d:

3-Defect Cl C3 Cz 04

) 12 + 16 = 12 + 15

4 |16 + 0 = 0 + 6

TABLE 3.4. The Projective Conjecture for p = 3

The summands in the above equation are zero for all other values of d. This proves

the Projective Conjecture for McLaughlin’s simple group for the prime p = 3. O
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Chapter 4

The Prime p=2

4.1. The 2-local structure of M.

We begin with a fundamental property of M.

PROPOSITION 4.1.1. M, has exactly one class of involutions and the centralizer of

an involution is isomorphic to 2.%g.

PrOOF. In [JW72] Janko and Wong characterised the McLaughlin Group as the
unique finite simple group possessing a single class of involutions, with the centralizer

of an involution isomorphic to the covering group 2.2(g of sg. O

For the rest of the thesis 7 will denote a fixed involution of M. and H will denote

the centralizer Cn, (7) of 7 in M. The group (7) will be denoted by T.

LEMMA 4.1.2. The group H/T = g has ezactly two conjugacy classes of involu-
tions: the class (2A) consisting of all involutions of cycle structure (..)(..)(..)(..), and
the class (2B) consisting of all involutions of cycle structure (..)(..). The inverse image
in H of the class (2A) is the unique conjugacy class of non-central involutions of H,

while that of (2B) is a single conjugacy class of elements of order 4 in H.

PRrROOF. This comes from the character table of 2g found in the Atlas. O
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We now prove

PROPOSITION 4.1.3. M. has exactly one conjugacy class of elementary abelian 2-
subgroups of order 22. If K is a representative of one of these classes then N, (K)

acts doubly transitively on K#.

PROOF. It is clear from Lemma 4.1.2 that H, and hence M, possesses elementary
abelian 2-groups of order 22.

Suppose K;,K» are elementary abelian 2-subgroups of M, of order 22. Choose
arbitrary pairs of distinct elements (71,&1) and (72, £2) from Kf& and Kf respectively.
Note that K; = (71,&1) and Ky = (72,85).

In view of Proposition 4.1.1, the elements 7,75 and 7 are all conjugate in M.
Since we are interested in K; and Ky only up to conjugacy in M., we may assume,
and we do, that 1 = 72 = 7. Hence both K; and K» are subgroups of H = Cpm_ (7).

By Lemma 4.1.2, there exists £ € H such that £ = &;. Obviously 7% = 7. So
K7 = K». This shows that M. has a single conjugacy class of elementary abelian 2-
subgroups of order 22. Taking K; = K, to begin with, the above argument also shows

that Ny, (K1) acts doubly transitively on K¥. O

We collect information on certain classes of 2-subgroups of g, which we will use

to classify the maximal elementary abelian 2-subgroups of H.

LEMMA 4.1.4. Let Ay be a regular transitive embedding of Z3 in As. Then Ag is a
self-centralizing trivial intersection subgroup of g, and all elements of A# come from

the (2A) conjugacy class of s. The normalizer Ny, (Ag) of Ag in ™Ag is isomorphic
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to the holomorph Ag x Aut(Ag) of Ag. There are exactly two RAs-conjugacy classes of

such subgroups Ag. These two classes fuse in Gg.

PRrROOF. Since Ay is an abelian regular transitive subgroup of Ss, it is self-centralizing
in &g, and all its non-trivial elements come from the (2A4) conjugacy class of g con-
sisting of involutions of cycle structure (..)(..)(..)(..). Furthermore Ng,(Ag) is the
holomorph of Ag i.e., the semi-direct product of Ay with its automorphism group
Aut(Ag) = GL(3,2). It is clear that Ngg(Ao) is contained in 2g (for instance be-
cause the simple group GL(3,2) has no subgroups of index 2). Hence there are two
Ag-conjugacy classes of subgroups of this type. However the full symmetric group &g
contains only one such class.

From the Atlas, the conjugacy class (24) of g contains 105 elements. Every
element in this class is contained in some Ag-conjugate of Ag. From the structure
of Ny, (Ag), the group Ag has (8!/2)/(2% - 168) = 15 conjugates in ™As. So the Ag-
conjugates of Ag contain at most |A¥| - |2g : Ag| = 7- 15 = 105 non-trivial elements.
Hence every element of the class (24) is contained in exactly one conjugate of Ag. It

follows that distinct 2s-conjugates of Ag intersect trivially. O
We now discuss the covering group of Ag in H.

LEMMA 4.1.5. Let Ay be a regular transitive embedding of Z3 in As. Then the
covering group Ro of Ag in H is elementary abelian of order 2*, and is a self-
centralizing subgroup of M. Distinct H-conjugates of Ryg intersect in T. Also
Nu(Ro) = Ry % Go, where Go = GL(3,2) acts as the full automorphism group on

AO = Ro/T
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ProOOF. By Lemmas 4.1.2 and 4.1.4, all elements of Ro\T come from the unique
conjugacy class of non-central involutions of H. In particular Rg has exponent 2. So
R, is an elementary abelian 2-group of order 2*.

Since Ag is a self-centralizing subgroup of 2s, it follows that the abelian group Ry
is self-centralizing in H. But Cpg, (Ro) < H = Cp. (7). So Ry is also self-centralizing
in M.

Distinct H-conjugates of Rg intersect in T, since Ag is a trivial intersection sub-
group of YAg = H/T, and each H-conjugate contains T.

As Ny, (Ag) =2 Ag x GL(3,2), it follows that Nu(Ro) = Ro. GL(3,2), where the
factor Nu(Rg)/Ro = GL(3,2) acts as the full automorphism group on Ag = Ro/T.

To show that N (Ryp) splits over Rg, we need only show that one of its Sylow

2-subgroups splits over Rg. To this end we fix
Ao = ((1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,5)(2,6)(3,7)(4,8)),
z=(1,3)(2,4)(5,8)(6,7), y=1(1,5)(2,6)(3,8)(4,7), =z=(1,2)(3,4)(5,7)(6,8),

and set K = (z,y) and Dg = K x (z). Then K = Z3 while Dg = Ds, and the group
So = Ag x Dg is a Sylow 2-subgroup of N (Ag).

Let Z,§ and Z be elements of H whose images in H/T are z,y and z respectively.
Then #,§ and 2 are involutions and # commutes with both § and 3. If §° = &j
then (Z,§) x (Z) = Dg is a complement to T in T.Ds. Otherwise §° = 7&§ and
<7'.7”7,17> X <§> 2 Dg is a complement to T in T.Dg. In any event T.Dg splits over T.
But this shows that the Sylow 2-subgroup T.S2 = Ry.Dg of Ng(Ryg) splits over Rg.

The rest of the lemma now follows. O
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COROLLARY 4.1.6. Nu(Ry) acts transitively on Ro\T.

ProOOF. Given z,y € Ro\T, there exists z € H such that z* = y, by Lemma 4.1.2.
Then RNR? > (7,y) > T. It follows from Lemma 4.1.5 that Ro = R§. Hence in fact

z € Na(Ry). This proves the corollary. O

The next lemma shows why we are interested in the two conjugacy classes of

subgroups of H of type Ry.

LEMMA 4.1.7. Every elementary abelian 2-subgroup of H is contained in the in-
verse image Ro = Z3 of some regular transitive embedding Ao of Z3 in H/T = Us.
Hence H has exactly two conjugacy classes of maximal elementary abelian 2-subgroups.

These two classes fuse in H.2 = Cpg, o(7).

PROOF. Let X be an elementary abelian 2-subgroup of H, and let X denote the
group XT/T. Recall from Lemma 4.1.2 that the single conjugacy class of non-central
involutions of H lies over the conjugacy class (2A) consisting of involutions of H/T =
g of cycle structure (..)(..)(..)(..). Hence no non-trivial element of X fixes a point. It
follows that X acts regularly on each of its orbits. In particular each orbit of X has
length |X]|.

There is a single conjugacy class of elementary abelian 2-subgroups of &g of order
|X| which act regularly on their orbits. Moreover a regular transitive embedding of Z3
in Gy contains representatives of each such class. We conclude that X < Ag, where
Ay is a member of one of the two classes of regular transitive embeddings of Z3 in g

given by Lemma 4.1.4.
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The previous paragraph shows that X < Ry, where Ry is the inverse image of
Ay in H. But by Lemma 4.1.5, the group Ry is itself elementary abelian of order 2*.
Hence H has two conjugacy classes of maximal elementary abelian 2-subgroups, and a
member of either class is the inverse image of a regular transitive embedding of Z3 in
Asg.

From the Atlas Cn,.2(7) = H.2 = 2.63. It then follows from Lemmas 4.1.4 and
4.1.5 that the two classes of maximal elementary abelian 2-subgroups of H fuse in

H.2. O

For the rest of this section we let R; and R be fixed representatives of the two
classes of maximal elementary abelian 2-subgroups of H of order 2. If we prove any
result for R;, then an analogous result will hold for Ry. In view of Lemma 4.1.7, the

factor group A; = R;/T is a regular transitive embedding of Z3 in H/T = ;.

LEMMA 4.1.8. Ny, (R1) = Ry x Ay, where Ay = ;7 acts flag transitively on Ry.

PROOF. Let £ be any element of R;\T. By Proposition 4.1.1 there exists z € M,
such that 7% = £. Hence Rq < Cwm,(€) = H” is in one of the two classes of maximal
elementary abelian 2-subgroups of H” given by Lemma 4.1.7. Then by Corollary
4.1.6, all elements of Ry \(¢) are conjugate in Ng=(Ry), and all elements of R;\T are
conjugate in Ng(Rq). It follows that Ny (Rq) acts transitively on Rf In parlicular
Nu(R1) is a subgroup of index |[R¥| = 15 in Npp_ (Ry).

From Lemma 4.1.5 we have Ng(R;) = R; % G, where G; = GL(3,2) acts as

the full automorphism group on R, /T. But Ng(R,) is the centralizer of the element
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7 € R¥ in Ny (Ry). We deduce from this, and the transitivity of Ny, (R1) on R¥,
that Num, (R1) acts flag transitively on Ry.

Now R; is a self-centralizing subgroup of M, by Lemma 4.1.5. Hence Ny, (R1)/Ra
is isomorphic to a subgroup of index |s|/(|Nm.(Ri):Nu(Ri)| - [Na(Rq)]) =
(8!/2)/(15-168) = 8 in Aut(R;) = GL(4,2) = 2g. From the list of maximal sub-
groups of Ag found in the Atlas, it follows that Nag, (R1)/Ry 22 2y,

By Lemma 4.1.5, the group Ng(R4) splits over R;. It also contains a Sylow 2-
subgroup of Nyv, (Rq). Hence the latter group also splits over R;. This completes the

proof of the lemma. 1

COROLLARY 4.1.9. M. has exactly two conjugacy classes of mazximal elementary
abelian 2-groups, corresponding to the two classes of subgroups of H isomorphic to Zj.

The former two classes fuse in Mc.2.

ProoOF. It suffices to show that R4 is conjugate to Ra in M,.2 but not in M,
since any maximal elementary abelian 2-subgroup of M., is M.-conjugate to a maximal
elementary abelian 2-subgroup of H, and hence to either Ry or Rs.

That R; and Ry are conjugate in M..2 is a consequence of Lemma, 4.1.7.

Suppose R; = R, for some x € M.. Then 7% € Ry, as 7 € Ry. Since both 7
and 7% lie in Ry, it follows from Lemma 4.1.8 that there exists y € Ny, (R1) such that
7% = 7. Hence R; = R3Y, where zy € H = Cpz_ (7). This contradicts our choice of

R; and Ry. We conclude that R; and R, are not conjugate in M. O

COROLLARY 4.1.10. Let S be a Sylow 2-subgroup of Mc. Then S contains exactly

one Mc-conjugate of Rq. In particular Ry is weakly closed in S with respect to Mg.
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PROOF. We may assume that S is a Sylow 2-subgroup of H containing R;. Let
Rgl) be an Mc-conjugate of R contained in S, and set Agl) = Rgl)/T. We need to
show that R, = Rgl).

The two conjugacy classes of elementary abelian 2-subgroups of H of order 2* do
not fuse in M., by Corollary 4.1.9. So R, and Rgl) are conjugate in H. Also Z(S/T)
is contained in A; N Agl), since by Lemma, 4.1.4 both A; and Agl) are self-centralizing

in H/T. But A; is a trivial intersection subgroup of H/T, by the same lemma. So

A = Agl). We conclude that R, = Rgl). O
The next result is due to Larry Finkelstein [Fk73, Lemma 5.3].

COROLLARY 4.1.11. If X is a subgroup of Ry properly containing T then

N, (X) < Ny, (Ra).

ProoOF. Suppose £ € Npg (X). Then T® < X* = X < Ry. By Lemma 4.1.8
we can find y € Ny, (Ry) such that T*Y = T and X*¥ = X. So zy € Ng(X) and
T < X < Ry NRJY. We conclude from Lemma 4.1.5 that zy normalizes R,. Hence so

too does z. This proves the corollary. O
We now prove the most important result of this section.

ProposITION 4.1.12. If R is a non-trivial radical 2-subgroup of M, then Ny, (R)

is conjugate in M to a subgroup of H, Ny (R1) or Na,(Rz).

PROOF. Since R is non-trivial, there is some involution 7! in Z(R). After a M-

conjugation, we may assume that 7! = 7. Then T = (7) < Z(R) < R implies that
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R <H=Cm_(7). Let X = QZ(R). Then T < X, and by Corollary 4.1.9 the group X
is contained in a H-conjugate of either Ry or Ra.

If T =X, then Np (X) = H. If T < X, then Ny, (X) is contained in a H-
conjugate of either Ny (Ry) or Ny, (Rs), by Corollary 4.1.11. The proposition now

follows from the fact that Npg_ (R) < Npp, (X). O

The easiest way to describe the radical 2-subgroups of H/T is to use the GL(4, 2)
representation of this group, and this we do. We then give a description of the radical 2-
subgroups of 7. Using these descriptions, and Propositions 1.3.5 and 4.1.12; we obtain

a list of the conjugacy classes of radical 2-subgroups of M. and their normalizers.

4.2. The Radical p-subgroups of GL(n,q)

Let V be a vector space of finite dimension n over a finite field of characteristic p
and order ¢, and let A be a radical p-subgroup of GL(V). We denote by [V, A?] the
subspace of V spanned by all commutators [v, 21,2, ...,2;], with ¢ > 1, v € V and
z; € A, for j = 1,...,i. For convenience we identify V and [V,A°]. So we have a

descending chain of subspaces:

C:V=[V,A°] D [V,A] D[V,A”] D--- D [V,A"] D [V,A] =0,

where ¢ is some integer between 1 and n. The normalizer Ngr,(v)(A) of A in GL(V)
acts on each factor [V, A?]/[V,A#1] of C.
We let A = A(C) denote the largest subgroup of Ngr,(v)(A) which acts trivially

on each of the factors of C. Then A is a p-group by [Go80, 5.3.3]. Also A is a normal
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subgroup of Ngr,(v)(A). It follows from Theorem 1.3.2 that A < A. But A < A, by
definition of A. So A = A.

If [V,A?Y/[V,A**1] has dimension n; 1, for i = 0,1,...,t — 1, then we say A is a
subgroup of GL(V) of type (n1,ns,...,n:). Notice that ny +n2+---+mny = n. Clearly
the above tuple of numbers uniquely determines A up to conjugacy in GL(V).

Conversely, suppose A is any p-subgroup of GL(V) of type (n1,ns2,...,n¢). Then

I, 0 - 0 GL.@ 0 - 0
x Iy, --- 0 *  GLn,0 0
A= | Naww(A) =

Hence Ngp,(vy(A) = A% (GLy, (q) X GLp,(q) X - - - X GLy, (¢)). Since GLy,(g) has trivial

p-core for all positive integers m, it follows that A is a radical p-subgroup of GL(V).
So we have determined the conjugacy classes of radical p-subgroups of GL(V).

In fact we have shown a little more. A Sylow p-subgroup S of GL(n,q) is of type

(1,1,...,1). The chain

Cs:V=[V,8D[V,S$'1D[V,8*]D---D[V,8" ] D [V,5"] = {0}

of subspaces of V is called a flag, since each factor is of dimension 1. Then the radical
2-subgroups of GL(V) contained in S correspond 1—1 to the subchains of Cs containing

both V and {0}. The one of type (n1,ns,...,n:) corresponds to the subchain:

V D [V,8"] D [V,S™tm2] 5 ... 5 [V, §mtnet+ne] — [0},
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It follows that each radical p-subgroup of GL(V) contained in S is weakly closed in S
with respect to GL(V).

We can now list representatives of the seven conjugacy classes of non-trivial radical
2-subgroups of GL(4,2). Welet A; ;. .k, Zij, ..k, and N; ; i denote a radical 2-group

of type (7, ], .., k), its center, and its normalizer in GL(4, 2), respectively.

(4.2.1)
1 0 0 0 1 0 0 O 1 0 0 O
* 1 0 0 01 00 * 1 0 0
A1ig= y L1 = , Nigig=
* x 1 0 0 010 * x 1 0
¥ k ox 1 *x 0 0 1 ¥ x ox 1
1 0 0 0 1 0 0 O 0 0
GL2(2)
01 00 01 0 0 0 0
Asqi1 = , Loy = ,  Noigi=
*= % 1 0 0010 * x 1 0
* % *x 1 * x 0 1 * x x 1
1 0 0O 1 0 0 O 1 0 0 O
* 1 0 O 01 00 * 0
Arp1 = v Lipa = , Nign = GLy(2)
* 01 0 0 01O * 0
x % % 1 *x 0 0 1 * x % 1
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We immediately obtain the following inclusions among the radical 2-subgroups of

GL(4,2) and their normalizers:

GL(4,2)
N3 Ni,3
\PRE Ni1,2
A
Asiq A
Azn Ais
{1}

FIGURE 1. The radical 2-subgroups of GL(4,2) and their normalizers

in GL(4,2)



T a fixed involution of M,

H =223 | the centralizer of 7 in M,
H.2 = 2.65 | the centralizer of 7 in M,.2
T the group (7) = Z(H)

Rijii.1 a fixed Sylow 2-subgroup of H

Ak the unique radical 2-subgroup of H/T of type
(4,3,--.,k) contained in Ry 1,1,1/T
Zij,...k the center of A;;

Nij, ...k the normalizer of A; ;.. in H/T

Rij. .k the covering group of A;; . in H

€ the generator of the center of Aq 11,1

€ an element of H whose image in H/T is €
Ay a fixed complement to Rg; in Ny, (R3,1) 2 R 1 % 2y
Ais a fixed complement to Ri 3 in Ny, (Ri3) 2 Ryj3 % Ay

Gs1 a fixed complement to Rs 1 in Nug(Rs,1) = Ra 1 % GL(3,2)

)

Gi3 a fixed complement to R1 3 in Ng(R13) = R1 3 % GL(3,2)

TABLE 4.1. Notation for Elements and Subgroups

4.3. The Radical 2-subgroups of H

Table 4.1 summarises the notation we shall use for the rest of Chapter 4.

We remark that from (4.2.1) the center Z1 11,1 of A11,1,1 = Ri,1,1,1/T is cyclic of

sty sty

order 2. Let £ denote a generator of this group, as specified in Table 4.1. Then the
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order of the centralizer of € in H/T = 2g is divisible by |A1,1,1,1] = 2%. From the
orders of the centralizers of elements of s, it is clear that £ comes from the class (2A4)

of Q[g.

We now investigate the radical 2-subgroups of H.

LEMMA 4.3.1. Z(R1 1.1 1) =T.

sty

PROOF. Let € denote an element of H whose image in H/T ise. Then Z(R1,1,1,1) <

(1,€). But from the Atlas the class (2A4) does not split in H. So & € Z(R1,1,1,1), and

the latter group must coincide with T. O

LEMMA 4.3.2. Z(Rg’l,l) =T and Z(R1’1,2) =T.

PROOF. From (4.2.1) the center Zs 1,1 of Ap 1,1 is an elementary abelian group of
order 22 which properly contains (). Moreover the normalizer Ny 1 1 acts on Z 1,1 as
the full automorphism group Aut(Z2,1,1) = GL(2,2). It follows that Z(Rs,1,1) is either
T or the full inverse image 22’1,1 of Z5 1,1 in H. Similarly Z(R 1,2) is either T or the
full inverse image 21,1,2 of Z1,1,2 in H.

Suppose Z(Ra,1,1) = Za11. Then Z(Ry12) = Z1,1,9, since Ry ;1 and Ry 2 are
conjugate in H.2, and in particular their centers are isomorphic. Hence &€ € 22,1,1 021,1,2
centralizes Ra 1,1R1,1,2 = Ry,1,1,1- This contradicts the fact that Z(Ry1,1,1) = T. We

sdsds

conclude that Z(Ry,1,1) = T and Z(Ry,1,2) = T. O

COROLLARY 4.3.3. The normalizer in Mc of each of the groups Ri1,1,1,Ro,1,1

st

and Ry 12 is contained in H, and the normalizer in Mc.2 is contained in H.2. In

particular, each of these groups is a radical 2-subgroup of M.
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ProoF. Each of the groups Ry,1,1,1, R2,1,1 and Ry,1,2 is radical in H. So the result

IREEE)

follows at once from Lemmas 4.3.1 and 4.3.2, and the fact that H = Cnr, (T). O

It turns out to be useful to represent A, > as a subgroup of s in order to describe
its covering group R » in H. So we first need some results on the elementary abelian

2-subgroups of As.

LEMMA 4.3.4. Suppose V is a finite set and X is a mazximal elementary abelian

p-subgroup of &(V). Then there exist decompositions:

V=VouViUVaU---UVy,
(4.3.5)
X=X; xXg X---x Xy,

of V and X, where X fizes each element of Vg, the V; are pairwise disjoint subsets of
V\Vo, and X; is a non-trivial elementary abelian p-subgroup of &(V;) acting regularly

and transitively on V;, for i =1,2,...,t.

Proor. Let Vg be the set of fixed points, and Vi,Vs,...,V; be the distinct X-
orbits of length > 1 on V. We identify &(V;), fori = 1,2,...,t, with the subgroup of all
permutations in &(V) fixing each element in V\V;. Hence §(V1)xS(Vy) x---x &(Vy)
is a subgroup of &(V). Let X; be the image of X under restriction to V;, for each
i=1,2,...,t. Each X is a regular transitive elementary abelian p-subgroup of &(V;).
Also X < X; x X3 x --- x X;. By the maximality of X, this inequality is actually an

equality. O
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We list the maximal elementary abelian 2-subgroups of &g to within conjugacy
in &g. Since 8 is even, the number of trivial orbits of any 2-subgroup is even. So no

maximal elementary abelian 2-subgroup of Gg has any trivial orbits.

Orbit Lengths | Elementary Abelian 2-group | Intersection with g
®) Z3 z3

(4,4) 72 x 7.2 7% x 7.2

(4,2,2) Z2 X Lo x Lo 72X 7y

(2,2,2,2) Zio X Lo X Loy X T Zo X Zig X Ly

Using the above table, it is clear that &g has a unique conjugacy class Z3 x Z3 of
elementary abelian 2-subgroups of order > 24 contained in 2g. Since the normalizer
in &g of such a subgroup is not contained in g, we see that s also has a unique
conjugacy class of such subgroups. Clearly Aj s is of this form. So we may choose an

identification of GL(4,2) with g so that

(436) A2,2 = <(15 2)(3a4)a (153)(254» X <(5a6)(75 8)a (55 7)(678)>

LEMMA 4.3.7. Let K be any four subgroup of s whose nontrivial elements come
from the class (2B) of involutions of type (..)(..). Then the covering group of K in

H = 2.3 is isomorphic to a quaternion group Qs of order 8.

PROOF. From the Atlas, the inverse images of elements of type (i,7)(k,l) are of
order 4 in H. Thus the covering group of K has a unique involution, namely 7. Since

the covering group is non-cyclic of order 8, it must be isomorphic to Qg. O
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LEMMA 4.3.8. Leto € Gg, and suppose x1 and xo are elements of H whose images
in H/T = As are (o(1),0(2)) (¢(3),0(4)) and (a(5),0(6)) (¢(7),0(8)), respectively.

Then [z1,z2] = 1.

PROOF. Let z3 and z4 be elements of H having images (o(1),5(2)) (o(5),5(6))
and (0(1),0(2)) (0(7),0(8)), respectively in As. By Lemma 4.3.7 the groups (z1,z3)
and (xl,:c4> are quaternion. So [z1,23] = [1, 4] = 7. Then [z1, z324] = [T1, Z4][71, T3]"* =

72 = 1. But 25 = z324 modulo <7'> The result now follows. O
We can now prove the following

LEMMA 4.3.9. The covering group Ras of Ass in H is extra-special of order 25.
In particular, its center is generated by 7. So Nam, (Ra,2) < H and Ny, 2(Ra,2) < H.2.

Hence Ry is a radical 2-subgroup of Me.

PROOF. By (4.3.6) the group A, is the direct product of two regular elementary
abelian 2-groups of type Z2. By Lemma 4.3.7 the covering group of each is quaternion,
and by Lemma 4.3.8 the two covering groups commute. Hence Rj is the central
product of two Qg’s and Z(Rs ) = T.

Finally Nam, (Re,2) < H, since H = Ny (T), and Ny, 2(Ro2) < H.2, since

H.2 = N, .2(T). O
Next we investigate the covering groups Rs; and R 3 of A3, and Ay 3 in H.

LEMMA 4.3.10. The groups Rs1 and Ri3 are representatives of the two classes
of mazimal elementary abelian 2-subgroups of M. of order 2*. In particular they are

conjugate in Mc.2.
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PROOF. From (4.2.1) the normalizer N3 ; of As; is isomorphic to the holomorph
Az 1 x GL(3,2) of Az ;. Hence all elements of Affl are conjugate in N3 ;. As remarked
before Lemma 4.3.1, the element £ € Az ; comes from the (24) conjugacy class of Us.
So all elements of A:ﬁl come from this class also. Then from Lemma 4.1.2, all elements
of R3 1\ T come from the single class of non-central involutions of H. Hence Rs; has
exponent 2. We conclude that it is in one of the two classes of maximal elementary
abelian 2-subgroups of H of order 2* given by Lemma 4.1.7.

A similar statement can be made for Ry 3.

Since Ag; and A, 3 are not conjugate in H/T, their inverse images R3 1 and Ry 3

cannot be conjugate in H. The lemma now follows from Corollary 4.1.9. O

COROLLARY 4.3.11. Ny, (Rs,1) = Ra1 % A1, where Az = A7 acts flag transi-

tively on R3 1. Hence R3 1 is a radical 2-subgroup of Mc.

PROOF. The first statement follows from Lemmas 4.1.8 and 4.3.10. Since 2, is

simple, R ; is the 2-core of Nyg, (Rs3,1). This proves the second statement. O

Similar statements can be made about R 3 and its normalizer Ny, (R1,3) = Ry,3%

Al 3.

)

COROLLARY 4.3.12. The groups Rs 1 and R 3 are the unique subgroups of Ri 1,11

isomorphic to Z3. In particular both are weakly closed in Ry 11,1 with respect to M.

PRrOOF. This is an immediate consequence of the lemma above and Corollary

4.1.10. O
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Next we take a look at the covering group R 2,1 of Ay in H. The first result is

easy.

LEMmMA 4.3.13. R1,2’1 = R3’1R173.

Proor. This follows at once from (4.2.1). O

LEMMA 4.3.14. Z(Rl,g,l) = CMC(R1’271) = <T,5> = Z% Hence NMC(RI,Q’l) =
Nm. (Z(Ri1,2,1)) = Nm.(Ra1) N Na. (Ri,3). Moreover Ny, (Ri2,1) acts as the full

automorphism group on Z(Rq2.1).

PrOOF. By Lemmas 4.1.5 and 4.3.10 the groups R3 ; and R 3 are self-centralizing
in Mc. Hence Cm, (Ri2,1) = Cm. (R31R1,3) = Rs1 NRy3 = (1,8). So Z(Ry2,1) =
<'r, €>.

The group Z(R4 2,1) = Rs,1 N Ry 3 strictly contains T. It then follows from Corol-
lary 4.1.11 that Ny, (Z(Ry,2,1)) < Nm.(Rs,1) N Ny (Ry3). But Ry21 = Rg 1Ry s.
So Nm, (Ri,2,1) > Nm. (R3,1) NN, (R1,3). Hence Nv, (Ri2,1) < N, (Z(Rl,z,l)) <
Nm. (R3,1) NN, (Ra,3) < Nm,(Ri,2,1). So these inequalities are all equalities.

From Corollary 4.3.11 the group Nwm, (Rs,1) acts flag transitively on Rg ;. Hence

the normalizer of Z(Ry,2,1) = (7,€) in Nam, (Rs,1) acts as the full automorphism group

on Z(Ry 1) = Z2. But this normalizer is Nag (Ry,2,1). This completes the lemma. [

COROLLARY 4.3.15. [R1’2,1,R1,2’1] = @(Rl,g,l) = Z(Rl,g’l). If T(l) 1S any sub-

group of Z(Ry21) of order 2, then Ry 51 /TW) is extra-special of order 2°.

PROOF. Since Ri2,1/Z(Ri2,1) = A12,1/Z(A1,2,1) is an elementary abelian 2-

group, it follows that [R1 2.1, R1,2,1] and ®(R 2 1) are non-trivial Na, (R 2,1)-invariant
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subgroups of Z(Ri,21). But Nam,(Ri,2,1) acts as the full automorphism group on
Z(Ri2,1), by Lemma 4.3.14. Hence [R12,1,R121] = ®(R1,2,1) = Z(R1,2.1).

It also follows from the action of Nap (Ri21) on Z(Rj21) that Ry /T() =
Ri,2,1/T. Since this latter group is extra-special of order 25, this completes the proof

of the lemma. O

4.4. The Radical 2-chains of M,

LEMMA 4.4.1. A Sylow 2-subgroup B1 of U7 is isomorphic to Dg. So it has two
non-cyclic subgroups Bs and B of order 4, each isomorphic to Z3. They can be ordered
so that Ny, (B2) is isomorphic to &4, while Ny, (B3) has the form (U4 x 3): 2. Both
B2 and Bz are radical 2-subgroups of 7. So too are By, which is self-normalizing in
A7, and By = {1}, whose normalizer is A7. Any radical 2-subgroup of 2z is conjugate

to exactly one of By, By, B3, By.

PRrROOF. Let By = ((1,3,2,4)(5,6),(1,2)(5,6)) be a fixed Sylow 2-subgroup of 7.
Then B; is dihedral of order 8. Also B is self-normalizing in ;. Hence it is a radical
2-subgroup of 7.

The trivial group By = {1} is a radical 2-subgroup of 27, since it is the 2-core of
its normalizer 2.

The centralizer of any involution of 27 is isomorphic to (Z3 x Z3) : 2. Hence there
are no radical 2-subgroups of 2l; of order 2.

Any radical 2-subgroup of 2l; of order 4 is conjugate to one of the three subgroups

of order 4 in By = Dg.
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The group ((1, 3,2,4)(5, 6)) is self-centralizing in 7. Hence its normalizer is B;.
So this group is not radical in 2.

Let By = ((1,2)(3,4), (1,2)(5,6)). Then Ng,(Bs) & &4. So B, is a radical 2-
subgroup of ;.

We set B3 = ((1,2)(3,4), (1,3)(2,4)). Its normalizer in &7 is isomorphic to &4 x
GS3. Thus N3 = ((Bs3,(1,2,3)) x ((5,6,7))) % {(1,2)(5,6)) = (A4 x 3) : 2 is the

normalizer of B3 in 2(;. So Bj is also radical in ;. O

Recall from Corollary 4.3.11 and Table 4.1 on page 97 that Nm,(Rs1) = Rs 1 X
Az, where Az = ;. We identify Ag; with 2 in such a way that the Sylow 2-
subgroup By of A3y =27 is Ry 11,1 NAs 1. So By, Ba and B3 are radical 2-subgroups

of A3,1 contained in Rl,l,l,l-

LEMMA 4.4.2. R3’1 A B1 = Rl,l,l,l; while R371 A B2 = R2,1,1 and R3’1 A B3 =
R1’2,1. Hence NMC(Rl’Q,l) = NR3,1><1A3,1 (R1,2’1) = R3,1 )<INA3’1 (B3) = R3,1)<l ((52[4 X3) :

2) =R X (3% : 2). In particular Ri 2,1 s a radical 2-subgroup of Me.

PrOOF. From the group orders, R31 xBi =Ri1,1,1.

Since R31 < Ra,1,1 <R3 % Az 1, the group Ro 1,1 N As; is a maximal subgroup
of B; isomorphic to ZZ Thus Ry1, N Ag;; is a radical 2-subgroup of Az;. Also
NR;,xas: (R2,1,1) = Ray (NAS,l(R2,1’1 n A3,1)). But by Equations (4.2.1) and
Corollary 4.3.1 the group Nm, (R2,1,1) = Nu(Ra,1,1) = 2.N21,1 has order 27.3. Hence

INAs; (R2,1,1 N Az 1)| has order < 23 .3. We conclude from this and Lemma 4.4.1 that

Ry1,1 NAz; =Bs.
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Similarly Ry 2,1 N Az 1 is a maximal non-cyclic subgroup of B; which is different
from Ry 1,1 N A3 1 = Ba. Hence Ry 21 NAs; = Bs.

From Lemma 4.3.14, the normalizer Nan, (R1,2,1) of Ri21 in M is the inter-
section Nn, (Rs,1) N Nam. (Ra,3) of the normalizers of R3; and Ry 3. In particular
Nm. (R1,2,1) = NRrgixas:(Ri2,1) = Rg1 % Na,,(Bs). The description of this last

group comes from Lemma 4.4.1. O

We can now prove the following

PROPOSITION 4.4.3. M. has nine conjugacy classes of radical 2-subgroups, with

representatives given in Table 4.2 on the following page.

PRroOF. This follows from Proposition 4.1.12, Equations (4.2.1), Corollaries 4.3.3
and 4.3.11, and Lemmas 4.3.9 and 4.4.2. The radical 2-subgroups R3; and R; 3 are
conjugate in H.2, and hence in Mc.2 by Lemma 4.3.10. Then from Figure 1 on page 96,
so too are Ry 1,1 and Ry 1,2. No other pairs of radical 2-subgroups in Table 4.2 on the
following page are isomorphic as groups. So Nm_ 2(R) is some extension Ny, (R).2

of Nm, (R), when R is one of Ry ;1

IEEEE)

1, Ri2.1, Rag2, T or {1}. For reasons outlined
in Proposition 4.4.9 below, we do not need detailed information about the normalizers
of Ri,1,1,1, Ro,1,1, Ri,1,2 or Ry s in either M. or M..2. We have already seen that

Nm, (T) = H.2 =2 2.63. Clearly Nm, 2({1}) = Mc.2. The structure of Ny, .2(Ra,2,1)

is investigated in Section 4.9 below. O

We will also need a list of the conjugacy classes of radical 2-subgroups of GL(3,2).

The notation and methods are as in Section 4.2.
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Radical 2-subgroup R | Structure | Ny (R) N, 2(R)
Rijgi,1 Z5xDg |Rii1 Rij,1,1-2
Ro.1 Z% X Z% Ro,1,1 % 63 Roy1,1 % 63
Riip Z3x7Z3 | Ry %63 Ri12 %63
Rs; VA Rs 1 »x Az, Rs 1 Az
Ri3 VA RizxAz3 Rizx A3
Rio1 7274 Ri21x(3%2:2) | Ry % (63 x 63)
R, 2 | Ry, (65 x 63) | Ran. (65 x 63).2
T Z H =29, H2~26,
{1} {1} M. M,.2

TABLE 4.2. The Radical 2-subgroups of M,

LEMMA 4.4.4. There are four conjugacy classes of radical 2-subgroups of GL(3,2),

represented by:

As=10 1 0|, Aiz2= 1|+« 1 0|, A21=10 1 0|, Atg1=1|x 1 0

Their normalizers in GL(3,2) are N3 = GL(3,2), Nio = A;2 x GL(2,2) = &4,

Nai1 &2 Ayq xGL(2,2) 2 G4, and Ny 11 = Ay 1,1 = Dg respectively.

Proo¥r. This follows directly from the results of Section 4.2. O
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Recall from Lemma 4.1.5 and Table 4.1 on page 97 that Nu(Rs3,1) = Rs1 % Gz 1,
where Gz 1 is isomorphic to GL(3,2). We identify Gs 1 and GL(3,2) in such a way

that the Sylow 2-subgroup A; 11 of Gs1 = GL(3,2) corresponds to Ry 1,1,1 N G3;1.

syt

LEMMA 4.4.5. Every radical 2-subgroup of Nu(Rs 1) = Rs 1 xG3 1 is conjugate in
Nu(Rs,1) to one of the groups R 1, Ra1,1, Ri21 or Ri1,1,1. Similarly every radical
2-subgroup of Nu(R13) = Ri3 % G153 is conjugate in Nu(Ra 3) to one of the groups

Ris, Rii2, Rigi or Riga1.

sty

PROOF. There are 4 conjugacy classes of radical 2-subgroups of Ng(Rg,1) = Rg 1
Gas,1. These classes are represented by Rz 1 @ A3, R31 X Aj2, Rg1 x Az, and R3 1 %
A1, using the notation of Lemma 4.4.4. It is easy to see that Rs 1 X A3 = Rz and
Rs1 % Ai1,0 = Ryi,1,1, while Rg; © Ao and R3 1 @ Ap; are Rp 11 and Ry in

some order. O

We now deal with the radical 2-subgroups of of Nm, (Ra,2).

LEMMA 4.4.6. Every radical 2-subgroup of Nm,(Ra,2) s conjugate in Nav, (Ra2)

to one of the groups Rao, Ro 1,1, Ri12 or Ryj1,1,1-

ProOF. The factor group Nm.(Ra2)/Ra 2 is isomorphic to &3 x &3. There are
four conjugacy classes of radical 2-subgroups in this factor group, represented by 1 x 1,
Gy x1,1x 63 and 63 X G,. It follows from Lemma 4.3.9 and Figure 1 on page 96,
that the inverse images in Ny, (Ry2,2) of these classes are represented by Ra 2, Rz 1,1,

R1’1,2 and R1,1’171 in some order. O
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The previous results allow us to prove the following.

LEMMA 4.4.7. Any radical 2-chain of M. is Mc-conjugate to a unique chain of

the form
(448) C:Ph=1<P <---<P,,
where P;, for i = 0,1,...,n, is one of the radical 2-subgroups of M, as given in

Table 4.2 on page 107. Any chain of this form is a radical 2-chain of M.

PRrOOF. This is clear from Lemmas 4.4.1, 4.4.2, 4.4.5 and 4.4.6, Proposition 4.4.3,
and the fact that R 1,1, Ri,2,1 and Ry 1,2 are maximal in the Sylow 2-subgroup R1,1,1,1

of Mc. O

The following proposition halves the number of radical 2-chains we must consider.

PROPOSITION 4.4.9. The collection of radical 2-chains (4.4.8) of M, containing
any one of the groups Ri 11,1, R2,1,1, Ri,1,2 or Ra 2 contribute zero to the alternating

sty

sums of Conjectures 1.4.2, 1.4.4 and 1.4.6.

PRrOOF. Let C be a radical 2-chain of Mg, as in (4.4.8). Then T < P, since each
non-trivial group in Table 4.2 contains T.

If T < Py, form the 2-chain C': By =1 < T < P, < P, < --- < P, by inserting
T between Py and P,. If T = Py, form the 2-chain C': Ph=1< P, < --- < P, by
deleting P (if n = 1, we just drop P,,). In either case C' is a radical 2-chain of M,
since it has the same form as (4.4.8). Moreover the chains C' and C' have opposite

parity i.e. |C| = |C'| £1.
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Clearly if we apply the operation ' twice, we recover the original chain. In other
words (C")' =C.

If Nm, (C) = N, (C'), then the contribution of C' and C' to any alternating sum
is zero. In particular this occurs if, for some value of 7+ = 1,2,...,n we have T < P;
and Ny (P;) < N, (T) = H. By Corollary 4.3.3 the normalizer of any one of the

groups Ri,1,1,1, Ro,1,1 or Ry 1,2 is contained in H. The same is true of Ry » by Lemma

sdbsts

4.3.9. Hence we can ignore all 2-chains containing any of these groups. O
Chain C | Chain Description Nm. (C) Nm. 2(C) Parity
Ci {1} M, M,.2 +
Cs {1} <R3 Nm, (R31) | Nm.(Rs) -
Cs {1} <R31 <Ry Nm. (Ri2,1) | Nm.(Riz1) |+
Cy {1} <R3 Nm.(Ri3) | Nm.(Ras) -
Cs {1} <Ri3 <Ry Nm. (Ri2,1) | Nm (Ripz1) |+
Cs {1} < R121 Nm.(Ri2,1) | Nmo2(Rig1) |-
¢, |{p<T H H.2 .
Cs {1} < T <R3, Nu(Rs,1) Nu(Rs,1) +
Co |{1}<T<Rs1<Riz: |Nu(Riz1) |Nu(Ripi) |-
Cho {1} <T<Rigs Nu(Ri,3) Nu(Ri,3) +
Ci {1} <T <Riz<Ripa | Na(Riz1) | Na(Riza) -
Ci2 {1} < T<Rip2:1 Nua(Ri2,1) | Nma(Riz:) |+

TABLE 4.3. The Remaining Radical 2-chains of M,
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We can now give a list of radical 2-chains of M. which is sufficient for the purpose

of proving the Conjectures.

THEOREM 4.4.10. If C is a radical 2-chain of M. then C is redundant from the
point of view of the Conjectures, or C is Mc-conjugate to exactly one of the radical

2-chains given in Table 4.3 on the preceding page. The only chains in this table which

are conjugate in Mc.2 are the pairs {C2,Cas}, {C3,C5}, {Cs,Cio} and {Cy,C11}.

Proo¥F. This is clear from Section 4.3, Lemma 4.4.7 and Proposition 4.4.9. O

Note that the 2-chains C,...,Cg in Table 4.3 are not the same as the 3-chains

having the same names in Table 3.1 on page 48.

4.5. The Character Degrees of H

From the character table of H 22 2.2(g given in [Con85, p22], the group Ny, (C7) =
H has two 2-blocks. The characters x13 and 23 lie in a block b; of defect 1, while the
remaining 21 characters lie in the principal 2-block bg. Clearly T is the unique defect
group of by. Since H = Ny (T), we conclude from Brauer’s First Main Theorem that
b;™Me is a block of M, of defect 1. The characters of b; are handled by the theory of
blocks with cyclic defect groups.

We list here the characters in by and their defects:
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Character | x1 | X2 | X3 | Xxa| X5 | X6 | X7 | X8| Xo | X0 | X11

Degree 1 7| 14| 20 21| 21| 21| 28| 35| 45| 45

Defect 7 7 6 5 7 7 7 5 7 7 7

Character | x12 | X14 | X15 | X16 | X17 | X18 | X19 | X20 | X21 | X22

Degree 56 | 70 8| 24| 24| 48| 56| 56| 56| 56

Defect 4 6 4 4 4 3 4 4 4 4

Since Nm, (Cr) = H, we have

k(C77BO77) = 87 k(C7,Bo,6) = 27
(451) k(C7a BO) 5) = 25 k(c77 8074) = 85
k(C7,Bo,3) =1, k(C7,Bg,d) =0, for all other values of d.

From [Con85, p22] the characters of by invariant in H.2 are x1, X2, X3, X4, X5

X8> X95 X125 X14, X15 and X1s.

Thus

k(C7,Bg,7,M..2) =4, k(C7,Bg,6,M..2) =2,
(4.5.2) Kk(C7,Bo,5,Mc.2) =2, k(C7,Bg,4,M..2) =2,

k(C7,Bg,3,M..2) =1, k(C7,Bp,d,M..2) =0, for all other values of d.

4.6. The Character Degrees of Ng(Rs3 ;) and Ny, (Rs 1)

We note that Rs; is a self-centralizing 2-subgroup of Nm.(Rs1). Hence the

principal 2-block is the unique 2-block of each of the groups Nu(R3,1) and Nm, (Rs1).
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So the characters of both groups lie in 2-blocks inducing the principal 2-block, By, of
M..
Recall from Lemma 4.1.5 and Table 4.1 on page 97 that Nu(Rs1) = Rs1 % Gs 1,

where G3,1 = GL(3,2) acts as the full automorphsim group on Az, = Rg1/T.

LEMMA 4.6.1. Orb(Nu(R3,1),R3 1) = {1,7,8}.

ProoF. The group Gs,; acts transitively on the subspaces of codimension 1 of
Az;1. Therefore the 7 elements of Irr(R3; mod T)# form a single Gz j-orbit. The
trivial character forms another Gs q-orbit on Irr(Rs3; mod T).

Since Nu(Rs,1) acts transitively on Rz 1\T (by Corollary 4.1.6) and fixes both
elements of T, there are exactly three G3 1-orbits in R3 ;. So there are just three Gg ;-
orbits in Irr(Rs.1). We have just seen that Irr(R3,; mod T) accounts for two of these

orbits. So the complement Irr(Rs | T) to Irr(Rs 1 mod T) is the third orbit. O
We now deal with the chains Cg and Cjg.

PROPOSITION 4.6.2. The group Nm, (Cs) = Nu(Rs,1) has a unique 2-block, which

necessarily induces the principal 2-block, By, of Mc. Moreover
Deg(Nu(Rs,1)) = {1,3%,6,7°,8%,14,21%,24%} and Def, (Nu(Rs,1)) = {7%,6%,4°}.
Thus
k(Cs,Bo,7) = 8, k(Cs,Bg,6) = 2,
(4.6.3) k(Cs,Byp,5) =0, k(Cs,Bg,4) = 6,
k(Cs,Bo,3) =0, k(Cs,Bo,d) =0, for all other values of d.
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Also
(4.6.4) k(C10,Bqg,d) = k(Cs,Bg,d), for all values of d.

PROOF. By Lemma 4.6.1 the group Ng(R3 1) has two orbits on Irr(R3,1)#, one of
length 7 and the other of length 8. We let 9y be a representative of the former orbit,
and 1 be a representative of the latter orbit.

From the Atlas, the group Gsz,; = GL(3,2) has two conjugacy classes of maximal
subgroups with index 7. Each consists of subgroups isomorphic to &4. The stabilizer
of ¢ in Gs,; must lie in one of these classes of subgroups. By Theorem 1.2.15, the
character ¢, extends to its stabilizer in Ng(Rs31). It then follows from Theorem
1.2.16 that Deg(In, (ry,)(¥1) | ¥1) = Deg(6,) = {12,2,3%}. Using Clifford Theory

we conclude
(4.6.5) Deg( Nu(Rs1) | 91 ) = {7%,14,21%}.

From the Atlas, the group Gs1 = GL(3,2) has a unique conjugacy class of sub-
groups with index 8, consisting of subgroups isomorphic to 7: 3. Moreover the group
7: 3 is Frobenius (for instance because GL(3,2) has no elements of order 21). The
stabilizer of 1, in Gs,; must lie in this class of subgroups. By Theorem 1.2.15, the
character ¢, extends to its stabilizer in Ng(Rs31). It then follows from Theorem
1.2.16 that Deg(In,, (v 1) (¥2) | ¥2) = Deg(7: 3) = {1*,32}. Using Clifford Theory we

conclude

(4.6.6) Deg( Nu(Rs,1) | 42 ) = {8°,24°}.

114



Since Nu(Rs,1) =2 R, % GL(3,2), we also have

(4.6.7) Deg( Nu(Rs,1)/Rs,1 ) = Deg( GL(3,2) ) = {1,3%6,7,8}.

Equations (4.6.3) now follow from (4.6.5), (4.6.6) and (4.6.7). Equation (4.6.4)

holds because the 2-chains Cy and C are conjugate in M.2. O

We now consider the chains C5 and Cy.

LEMMA 4.6.8. Orb(A3,1,R3;) = {1,15}. So the stabilizer in Az1 of any non-

trivial character of Rs 1 is isomorphic to GL(3,2). Hence

(4.6.9) Deg( Nu, (Rs1) | Ry ) = {15,45%,90,105,120}.

Proor. By Corollary 4.3.11, the group A3z acts transitively on the subspaces of
R3,1 of codimension 1. Hence it also acts transitively on (R§,1)#. From the Atlas,
there are two conjugacy classes of subgroups of index |(R§’1)#| =15in Ag; 2 A7;. A
representative of either of these classes is isomorphic to GL(3,2). Hence the stabilizer
in Az of any non-trivial character of Rs is isomorphic to GL(3,2). Clifford Theory

now gives us (4.6.9). O

The following completes our analysis of the stabilizers of the radical 2-chains C%

and Cj.

PROPOSITION 4.6.10. The group Nam (C2) = Nm.(Rs,1) has a unigue 2-block,

which necessarily induces the principal 2-block, By, of M. Moreover Deg (NMc (R371)) =
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{1,6,102,142,15%, 21, 35,452,90, 105,120} and Defy(Nn, (Rs,1)) = {78,6%,4}. Hence
k(Cy,Bo,7) =8,  k(Cy,By,6) =6,

(4.6.11) k(C2,Bo,5) =0,  k(C2,Bp,4) =1,
k(C2,Bg,3) =0, k(C2,Bg,d) =0, for all other values of d.

Also

(4.6.12) k(C4,Bg,d) = k(C3,Bq,d), for all values of d.

PRrROOF. Since Ny, (Rs1)/Rs1 = Az, we have
(4.6.13) Deg( Nm. (Rs,1)/Rs,1 ) = Deg(R7) = {1,6,10%,14%, 15,21, 35}.

Equations (4.6.11) now follow from (4.6.9) and (4.6.13). Equation (4.6.12) holds

because the 2-chains C and Cy are conjugate in Mc.2. O

4.7. The Character Degrees of Ni(Ry21) and Nm, (Ri2,1)

It follows from Lemma 4.3.14 that Cm, (Ri,2,1) = Cua(Ri2,1) = Z(R1,2,1) is con-
tained in Ry 2,1. Hence the principal 2-block is the unique 2-block of each of the groups
Nu(Ri1,2,1) and Nm, (Ri,2,1). So the characters of both groups lie in 2-blocks inducing
the principal 2-block, Bg, of M.

We deal first with the stabilizer Nu(Rq 2,1) of the radical 2-chains Cy, C11 and

Cia.

LEMMA 4.7.1. Ri 2,1 has exactly three irreducible characters which are non-trivial

on Z(Ri21). Let x be one such. Then x vanishes outside Z(Ri21) and X|z(R,...) =
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4\, where X is a non-trivial linear character of Z(Ri,2,1). The group Nam, (Ri,2,1) acts
doubly transitively on the three elements of Irr(R1,2,1 | Z(Rl,g’l)) , while the normalizer
Nu(Ri21) of T <Z(Ri2,) in Nm,(Ra2,1) acts transitively on the two elements of

II‘I‘(RLQ’l | T) g II‘I‘(RLQ,l | Z(RI,Z,I))-

PROOF. Let A be a non-trivial character of Z(R42,1). By Corollary 4.3.15 the
group Ry 21/ Ker(])) is extra-special of type 21+4. It follows that Irr(Rq 2,1 | A) consists
of a single irreducible character x, which vanishes outside Z(R4 2,1), and equals 4\ on
Z(Ryp,1)-

Since there are three choices for A, the group Ry 2,1 has exactly three irreducible
characters lying over non-trivial characters of its center.

By Lemma 4.3.14 the group Nm_(R121) acts doubly transitively on Z(Ry 2,1)%.
It follows that it acts doubly transitively on Irr(Z(Rl,g,l))#, and that the normalizer
Nu(Ri,2,1) of T acts transitively on the subset Irr ( Z(Ry 2,1) | T) of Irr( Z(Rl,z,l))#

This implies the rest of the lemma. O

We now compute the degrees of the irreducible characters of Ny (R4 ,2,1) lying over

the single non-trivial character of Z(R4 2,1) containing T in its kernel.

LEMMA 4.7.2. Deg( Nu(Ri2,1) | Z(Ri,21)/T ) = {4%,8}.

ProOOF. From Lemma 4.7.1, it is clear that R 2,; has a unique irreducible charac-
ter x1 lying over the unique non-trivial linear character in Irr(Z(Ri,2,1) mod T). Also

X1 is invariant in the group Nu (R4 2,1). Then x1 extends to this group, since all Sylow
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subgroups of Ng(Ri,2,1)/Ra,2,1 = &3 are cyclic. The lemma now follows from Clifford

Theory. O

Next we compute the degrees of all irreducible characters of Ny (R 2.1) lying over

non-trivial characters of R 1.

LEMMA 4.7.3.

Deg( NH(R1,2,1) | R3,1 ) = {34,42,6,84}, and

Deg( Nu(Ri21) | Rs1/T) = {3%,4%,6,8}.
PROOF. By Lemma 4.7.1 the two elements of Irr( Z(Ry2,1) | T ) form a single
Nz (Ry,2,1)-orbit. Let x2 be a character in this orbit. Then Iny (R, ,.,)(X2) = Ri2,1.Z3.

From Clifford Theory we get
(474) Deg(NH(Rl’z,l) | T) = {83}

The group Ni o acts flag transitively on Az ;/(e), by (4.2.1). Hence there is a
single Ny 5 1-orbit of non-trivial linear characters of Az ; whose kernels contain (). Let
X3 be amember of this orbit. Identify x3 with its inflation to R3 1. Then In (g, . ,)(X3)
has index 3 in Ng(Ri1,2,1)- S0 Iny (Ry..)(X3) = Rs1 % Dg. Since Rg); is abelian, it

follows immediately from Clifford Theory that
(4.7.5) Deg(Nu(Ri21) | Rs1/Z(Rio1)) = {3%,6}.

Now the set Deg (NH (Riz21) | R3,1) is obtained from Lemma, 4.7.2 and Equations
(4.7.4) and (4.7.5), while Deg(Ng (R1,2,1) | Ra,1/T) is obtained from Lemma 4.7.2 and

Equation (4.7.5). O
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We can now prove

PROPOSITION 4.7.6. The group Nm, (Cy) = Nu(Ra,2,1) has a unique 2-block, which

necessarily induces the principal 2-block, By, of Mc. Moreover
Deg(NH (R1,2,1)/T) = {127 27 367 427 67 8}7
(4.7.7) Deg(NH(Rl,zg)) = {12,2;3674276584}a

Defs (Ng(Ri2,1)) = {78,6%,5%,4"}.

Hence
k(Cy,Bo,7) =8,  k(Cy,Bq,6) =2,
(4.7.8) k(Cy,Bo,5) =2,  k(Cy,Bg,4) =4,
k(Cy,Bo,3) =0, k(C9,Bg,d) =0, for all other values of d.
Also
(4.7.9) k(Cy, Bo,d) = k(Ci1,Bo,d) = k(Ci2,Bo,d), for all values of d.

PROOF. Lemma 4.7.3 dealt with all characters of Nu (R 2,1) non-trivial on Rg ;.
Since Nu(R1,2,1) = R31 % &4, the remaining characters are just the characters of &4
inflated to Ng(Ri,2,1). Equations (4.7.7) follow from this and Lemma 4.7.3. Since
Nu(Ri,2,1) has a unique 2-block, we immediately obtain (4.7.8). The equalities in
(4.7.9) follow from the fact that Ng(Rq 1) is the stabilizer of each of the radical

2-chains Cg, 011 and 012 in Mc. O

We now consider the stabilizer Deg(NMc (R1,2,1)) of the radical 2-chains C3, Cjs

and 06-
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LEMMA 4.7.10. Deg( NMC (R1,2’1) | Z(Rl,Z,l) ) = {122,24}

PROOF. By Lemma 4.7.1, the group Nm,(Ri,2,1) acts transitively on the three
elements of Irr(Ry 21 | Z(Ri,2,1)). Since an element of Ny, (Ri,2,1) fixes a linear
character A of Z(R1,2,1) if and only if it normalizes Ker(\), it follows from Lemma 4.7.1
that the unique character x € Irr(Rl,g,l | Z(R1,2’1)) with kernel T has Ng(Rj21) as
its stabilizer in N, (Ri1,2,1). The result now follows from Lemma 4.7.2 and Clifford

Theory. (]

COROLLARY 4.7.11. Let x € II‘I‘(RLQ’l | Z(R17271)). Then the stabilizer
INMC(Rl,Q,l)(X) of x i Nm,(Ri2,1) is conjugate to Nu(Ri21). Hence the stabilizer

has Sylow 3-subgroups of order 3.

ProoOF. The proof of the lemma shows that I, (R, .,.,)(X) is conjugate to Ng (R 2,1)-
This last group has Sylow 3-subgroups of order 3, since Ry 2,1 is a 2-group, and the

quotient group Ne(Rq,2,1)/Ri,21 = Ni2,1/A1,2,1 is isomorphic to &3 by (4.2.1). O

LEMMA 4.7.12. Deg( NMC (R1,2’1)/ Z(R1’271) ) = {12,24,34,62,92}.

PROOF. We give detailed descriptions of the structure of Na, (Ri12,1)/ Z(Ri1,2,1)
in the beginning of Section 4.9. It turns out to be expedient to quote these results
here, although we could prove the present lemma without this material.

It follows from Corollary 4.9.5 that Num, (Ri,2,1)/ Z(Ra,2,1) = (A4 x As®) % (1),
where A,® = 9, and A, % (1) =2 &, for i = 1,2. The result of the lemma is now a

straightforward exercise in Clifford Theory. O

The next result will be needed in Section 4.10.
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COROLLARY 4.7.13. Let x € Irr(Ri,2,1)#. Then the stabilizer Iny,_ (R, 5.1)(X) has

Sylow 3-subgroups of order 1 or 3.

PROOF. If x is an element of Irr(Ri,2,1 | Z(R1,2,1)), then this is a consequence of
Corollary 4.7.11.

If x is trivial on Z(R42,1), then it is inflated from a non-trivial character X of
Ri21/Z(Ry2,1)- In the notation of the proof of the lemma, this last group is the direct
product Vi x V5 of the four-groups Vi = O2(A4(1)) and V, = 02(A4(2)). So X is the
direct product x; X X, of some linear characters x; and x, of V1 and Va, respectively. A
Sylow 3-subgroup of its stabilizer in Ny, (R12.1)/ Z(Ri2,1) = (A4(1) x Ay (2)) x (1) has
order strictly bigger than 3 if and only if A4 stabilizes X; for i =1,2. This happens
if and only if ¥; and X, are both trivial, in which case ¥ is trivial, contradicting our

hypothesis. O

We can now prove the following

PROPOSITION 4.7.14. The group Nm.(Cs) = Nm.(Ri2,1) has a unique 2-block,

which necessarily induces the principal 2-block, By, of M.. Moreover

Deg(Nm. (Ri2,1)) = {1%,2%,3%,6%,9%,12% 24}, and

Defs (Nm, (Ri21)) = {7°,6°,5%,4}.
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Hence

k(C37 BO: 7) = 87 k(c37 BO7 6) = 67
(4.7.15) k(C3,Bo,5) = 2, k(C3,Bg,4) =1,

k(C3,Bg,3) =0, k(C3,Bg,d) =0, for all other values of d.

Also

(4.7.16) k(Cs3,Bo,7) = k(C5,Bo,7) = k(Cs,Bo,7), for all values of d.

PROOF. We obtain the degrees of the irreducible characters of Na, (R1,2,1) from
Lemmas 4.7.10 and 4.7.12. Then (4.7.15) is an immediate consequence, given the fact
that Nat, (Ri,2,1) has a unique 2-block.

The equalities in (4.7.16) follow from the fact that the radical 2-chains C3, Cs and

Cs have identical stabilizers in Mc. O

4.8. The Ordinary Conjecture for the prime p =2

From [Con85, pl01] the group M. has four 2-blocks of defect 0, one block of
defect 1 containing two ordinary characters, and the principal block By containing the
remaining 18 characters. The conjecture holds for the block of defect 1 by the theory
of blocks with cyclic defect. For details see [Da96]. So we need only worry about the
principal block. We list here the characters of the principal block and their defects,

with the notation taken from [Con85]:
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Character X1 X2 X3 X4 X5 X6 X9 X12 X13

Degree 1 22| 231 252| 770 | 770 | 1750 | 4500 | 4752

Defect 7 6 7 5 6 6 6 ) 3

Character | x14 | X15 X16 X17 | Xi18 | X19 X20 X23 X24

Degree 5103 | 5544 | 8019 | 8019 | 8250 | 8250 | 9625 | 10395 | 10395

Defect 7 4 7 7 6 6 7 7 7

Thus, since N, (C1) = M, we have

k(017 BO7 7) = 87 k(Cl) BO) 6) = 67
(4.8.1) k(C1, By, 5) = 2, k(C1,Bg,4) =1,
k(C1,Byp,3) =1, k(C1,Bg,d) =0, for all other values of d.
From [Con85, p101] the characters x1, X2, X3, X4, X9; X125 X13, X14, X155 X20 are
the characters of By invariant in Mc.2. Thus
k(C1,Bg,7,M..2) =4, k(Cy,Bo,6,M..2) =2,
(4.8.2) k(Cy,Bg,5,Mc.2) =2, k(Ci,Bg,4,M..2) =1,

k(C1,Bp,3,Mc.2) =1, k(C1,Bg,d,M..2) =0, for all other values of d.

We now have enough information for the following theorem.

THEOREM 4.8.3. The Ordinary Conjecture holds for McLaughlin’s simple group

and the prime p = 2.
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PRrROOF. From Conjecture 1.4.2 and Table 4.3 on page 110 we need to prove

k(C1,Bo,d) + k(C3,Bo,d) 4+ k(Cs,Bo, d) + k(C10,Bo,d) =
(4.8.4)
k(027 BO; d) + k(C4a BO; d) + k(C77 BO; d) + k(097 BO; d);

for all values of d € Z.
From (4.8.1), (4.7.15), (4.6.3), (4.6.4), (4.6.11), (4.6.12), (4.5.1) and (4.7.8) we

obtain the following sums for the above equation for various values of d:

2-Defect | C4 Cs Cs Cio Cs Cy Cy Cy
7 8 + 8 + 8 4+ 8 = 8 4+ 8 + 8 + 8
6 6 + 6 + 2 4+ 2 = 6 + 6 + 2 + 2
5 2 + 2 +4 0 + 0 = 0 + 0 + 2 + 2
4 1 + 1 + 6 + 6 =1 + 1 + 8 + 4
3 1 + 0 + 0 + 0 = 0 + 0 4+ 1 + 0

TABLE 4.4. The Ordinary Conjecture for p = 2

The summands in Equation (4.8.4) are zero for all other values of d. This completes

the proof. O

4.9. The Invariant conjecture for the prime p = 2

In view of Table 4.3, and Equations (4.8.2) and (4.5.2), it remains only to compute
the degrees of the characters of Nnm, (Cs) = N, (Ra,2,1) and Ny, (Ci2) = Nu(Ra2,1),
which are invariant in NMC.2(CG) = NMC.Z(R1,2,1) and NMC.2(012) = NH.Q(R1’2’1)

respectively.
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First we introduce some notation, which we will use for the remainder of this
chapter.

Let V= Ri21/Z(Ri21), Vi = Rs1/Z(Ri21) and Vy = Ry 3/ Z(Ry241). So V
is elementary abelian of order 24, and V = V| x V.

Recall from Section 3.1 that E is an elementary abelian 3-subgroup of M, of order
3%, and Ny, (E) = E x M, where M = Mjo. By Proposition 3.1.12 there exists
an element (; of E which comes from the (3B) conjugacy class of M, such that
Cm.(B1) = E x Ay, where Ay = 24 is contained in M. Also Ay < Ny ({81)) = Sa,
where Sy = G4 is contained in M’ 2 2g. Clearly each element of S4\A4 inverts f;.

Let 32 be an element of order 3 in A4, and let ¢ be an involution in S4\A4 inverting
B2. Then « inverts B;. Furthermore S, is the semi-direct product of the four-group
K = 02(A4) with (85,1) = &3.

Let S = (ﬂl, ﬂ2>. Then S is an elementary abelian 3-subgroup of E x M of order
32 inverted by . Also S x () normalizes K, but intersects it trivially. Hence E x M
contains the group K x (S x (1)).

Now N, .2(E) = E x (M x (c)), where c is an involution in M¢.2\Mc inverting
E, by Lemma 3.7.1. Then c inverts 8; € E and centralizes S4 = K x (2,¢) < M. It
follows that K1) = (4, ¢) is a four-subgroup of M,.2 normalizing {8 ), (32) and K.
So we can form the subgroup K x (S x K()) of E x (M x {c)).

By Proposition 4.1.3, the four-groups K and Z(R »,1) are conjugate in M. Con-
jugating by an element of M., if necessary, we may assume that K = Z(R12,1). The

same proposition also shows that Nyp_ (K) acts transitively on K#. Conjugating by an
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element of N, (K), if necessary, we may assume that 7 € Z(R4 2,1) = K, is centralized
by ¢t € K.

We summarise our notation in the following table:

V = Z3 | The elementary abelian group Ri21/Z(Ri,2,1)-
V1 22 Z3 | The subgroup R31/Z(Ri2,1) of V.
Vs =2 Z3 | The subgroup Ry 3/ Z(R1 1) of V.
E =72} | A subgroup of M, isomorphic to Z3.
M = Mg | A complement to E in Nyg_ (E).
51 A fixed element of E from the (3B) class of M,.
A, =22, | The centralizer of 8; in M.
S4 =2 &4 | The normalizer of <ﬂ1> in M.
B An element of order 3 in A4.
S=7Z% | The group (B1, ).

An involution in S4\A4 inverting 8, and centralizing 7 € Z(Rq2,1).

~

o

An involution in Mc.2\M, inverting E and centralizing M.
K 273 | The 2-core O3(A4) of A4, which coincides with Z(Rq 2,1).

K® = 72 | The four-group (¢, c).

TABLE 4.5. Notation for the remainder of the chapter

We note the following for future use.

LEMMA 4.9.1. The group S x K is the direct product <61,c> X <ﬂ2,Lc> of two

copies of G3. Hence 0(S x K1) = {1}.
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PROOF. This is a consequence of the fact that ¢ inverts 8; and centralizes s,

while ¢ inverts S. O

LEMMA 4.9.2. NMC_Q(RLQ’I) = R1,2’1 X (S X K(l))

PRrROOF. The group S x KD normalizes Nm, (Z(R1,2,1)), as it normalizes K =
Z(R1,2,1) and M. By Lemmas 4.3.14 and 4.4.2 it follows that it normalizes Rq 21 =
02 (Nm. (Ri2,1)) = O2(Nm, (Z(Ri2,1)))- Hence (S x K1) N Ry 2 is contained in
02(S x KM), which is {1} by Lemma 4.9.1.

The group Num, 2(Ri 2,1)/Ri 2,1 has order |32: 2|-2 = 36, by Lemma 4.4.2. This is

also the order of S x K("). We conclude that Ny, 2(Ri2,1) = Ri21 % (S K(l)). O

COROLLARY 4.9.3. Nnm,2(Ri2,1)/Ri21 acts faithfully on V.

PRrROOF. We have V = Ry 21/ ®(Ri,2,1), by Corollary 4.3.15. Then [As86, 24.1]
implies that Cny,_ , (R, 2.)(V) is @ 2-group. So Cgyxa (V) is a normal 2-subgroup of

S x KM, But 02(S x KM) = {1}, by Lemma 4.9.1. The result follows. O

COROLLARY 4.9.4. NH.Q(Rl’z’l) = R1,2,1 A (</61,C> X <LC>) = R1,2,1 A (63 X Zz)

and Cm, .2 (Z(R1,2,1)) =Ry, % </31;C> =Ry, % Gs.

PROOF. By Lemma 4.3.14, we know that Na, (Ri1,2,1) acts as the full automor-
phism group on Z(Ry21). In particular S x K®) acts doubly transitively on K# =
Z(Ryp2,1)%.

The group (81, K()) is a subgroup of index 3 in S x K which centralizes 7 €
K, since KV centralizes 7 and K < Ay = Cm(B1). Hence it must coincide with

Csur (7). S0 N 2(Ri21) = CNpy, 2(Raz0) (T) = Ra21 % ((B1,¢) x (uc)).
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The group {(f1, ¢) is a subgroup of index 2 in Cg,, ) (7) which centralizes K. Hence

it must coincide with CS)«K(U (Z(Rl’gyl)). So CMC_Q (Z(Rl’zyl)) = R17271 el <ﬁ1,C>. O

COROLLARY 4.9.5. If we identify S and K@ with their #mages in
Nm.2(R1,2,1)/ Z(R1,2,1), then there exists a decomposition S = Y1 x Yo of S into
cyclic subgroups, such that Ny, 2(Ri21)/ Z(R12,1) = (A4(1) X A4(2)) x K1) where
A4(i) =V; xY; =224 and A4(i) X <L> > Gy, fori=1,2. Moreover c¢ transposes A4(1)

and A4(2).

PROOF. We identify the group S x (¢) with its image in Na, (Ri,2,1)/ Z(R1,2,1).-
So this group acts faithfully on V. Both Rs; and Ry 3 are normal subgroups of
Nm,.(Ri2,1), by Lemma 4.3.14. Hence V; and V, are subgroups of V stabilized by S.
Since ¢ inverts all elements of S, the fact that S acts non-trivially on both V; and V,
implies that ¢ acts faithfully on both V; and V5.

Let Y; be the kernel of the action of S x () on V3_;, for i =1,2. Then Y1 NY, =
{1}. So each of these kernels has order 3 and S =Y; x Ya.

Consider the involution ¢ in Nm, 2(Ri1,2,1)\Mec. By Corollary 4.1.9 and Lemma
4.3.10, this element cannot normalize R3 1. So Rf ; is an elementary abelian subgroup
of Ri,1 of order 24 distinct from Rs,i. It then follows from Corollary 4.3.12 that
R, =Ry3. In the same way R{; =Ras,1. So c exchanges V; and Vs in its conjugation
action on V. Hence it also exchanges Y; and Y,. Now S has four subgroups of order 3,
namely (B1),(B2),{B152) and (B185"). Since c inverts B; and centralizes 3>, we see

that it transposes (8132) and (813, '), while fixing (1) and (f3>). Hence Y is one
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of the subgroups (813.) and (8135 "), while Y5 is the other. We set A =V, %Y,

and A4(2) = V2 A Y2.
Since Y; acts faithfully on V;, it follows that ARE= Ay, for 4 = 1,2. It is also

clear that A, » (1) = &,, while ¢ transposes A4 and A,®. O
We can now prove the following

PROPOSITION 4.9.6. Deg(NH.Q(Rl,Q,l) | Z(Rl,g’l)/T) = {44,82} and

Deg(Nu.2(Ri,2,1) | T) = {8%,16}. Hence
Inv(Nu(Ri21)) = {1%,2,3%,4°,6,8%}, and

InvDefs (NH (R1,2,1)) ={7%,6,5%,4°}.
Thus

k(C12,Bo,7,M..2) =4, k(Ci2,B0,6,M..2) =2,
(497) k( 0127 BO; 57 M..2 ) = 27 k( 0127 80747 M..2 ) = 27

k(C12,Bo,d,M..2) =0, for all other values of d.

PROOF. From the list of maximal subgroups of g in the Atlas, Nug.2(Ri,2,1) is
isomorphic to 2. (Z2264). We compute the character degrees of Z31&4 by using Clifford
Theory on the linear characters of the base group Z3. Fixing some ordered basis of
the base group Z3, we let (i1,42,43,i4) denote the character of Z3 sending the j* basis
element to (—1)%, for each j = 1,2,3,4. Table 4.6 on the following page summarizes our
results. It follows from this table that Deg(NH_Q(RLQ,l)/T) = {1%,22,3%,44,6%,8%}.

Comparing this with (4.7.7), we see that

(4.9.8) Inv(Nu(Ri2,1)/T) = {17,2,3%,4%6,8}.
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Base Orbit | Stabilizer | Stabilizer Character | Induced Character
Character | Length | Structure | Degrees Degrees

(1,1,1,1) 1 | &y 12,2, 32 12,2, 32
(1,1,1,0) 4 G3 x 6, 12,2 4%'8
(1,1,0,0) 6 Gy x 62 14 64

(1,0,0,0) 4 S; x 63 12,2 4%'8
(0,0,0,0) 1 [h 12,2, 32 12,2, 32

TABLE 4.6. The Irreducible characters of Zy! G4

The group Z(R1,2,1)/T is the diagonal embedding of Z, in the base subgroup 7.3 of
Z.5164. The characters (0,0,0,0), (1,1,0,0), (1,1,1,1) are all trivial on this subgroup,
while (1,0,0,0) and (1,1,1,0) are not. Hence Irr (Ng.2(R1,2,1) | Z(R1,2,1)/T) consists
of those irreducible characters of Zy1 &4 lying over the latter two characters. So from
the table above, Deg(Nu.2(R1,2,1) | Z(R1,2,1)/T) = {4%,8%}.

By Lemma 4.7.1 the group Nu.2(Ri2,1) acts transitively on the two elements of
Irr(Ri 2,1 | T). Moreover the stabilizer of an element of Irr(R1,21 | T) in Nug.2(Ri,2,1)
is Cm..2(Z(Ri,2,1)). From Corollary 4.9.4 the group Cwm,.2(Z(R1,2,1)) is of the form
Ri,2,1 % 6&3. Since all Sylow subgroups of &3 are cyclic, we immediately obtain from
Clifford Theory and Lemma 4.7.1 that Deg(Ng.2(Ri1,2,1) | T) = {8%,16}. Comparing

this with (4.7.4) we deduce that

(499) IHV(NH_Q(RLQJ) | T) == {8}
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We obtain Inv(Ng(Ry,2,1)) from (4.9.8) and (4.9.9). By Proposition 4.7.6, the
group Ng(Ri1,21) = Nm,(Ci2) has a unique 2-block, which necessarily induces the

principal 2-block, By, of M. The rest of the proposition now follows. O

LEMMA 4.9.10. Deg(Nm,.2(R1,2,1)/ Z(Ri,21) ) = {1%,2%,4,62,91,12}. Hence

IHV(NMC.2(R1,2,1)/ Z(R1,2,1)) = {12,2%,9%}, and
(4.9.11)
InVDef2 ( NMC.Q(RLQ’l) mod Z(Rl,z’l) ) = {74, 62}

PROOF. We use the notation of Corollary 4.9.5. So Nam..2(Ri,2,1)/ Z(R1,2,1) =
(A x A,@) x KO, where A, = 2, for i = 1,2. Let A}, \j, A} be the distinct
linear characters of A4(i), with Al the trivial character. Let u‘ denote the single
irreducible character of Ay (@) of degree 3.

Then
A X ot O, A xp®, pt xOAg, Ag xop?, pt xS, pt X,

is a complete list of those characters of A4(1) X A4(2) which are non-trivial on V.

The determinantal character det(u?) of u?, as given in Definition 1.2.12, satisfies
det(p?) = det() = det(uf), for i = 1,2. So det(u?) is the trivial character of A4,
Hence det(p! x p2) = det(u') x det(u?) is the trivial character of A, x A4, It
follows that the determinantal order o(u! x u?), as given in Definition 1.2.13, is 1.

The unique character p! x u? of As™ x A4® of degree 9 is necessarily K(1)-

invariant. Then, since

( |(AsD x Ay®) s KW A x AP | ot x p?) (! x p?)(1) ) =(4,9) =1,
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Theorem 1.2.14 guarantees that u! x p? extends to (A4(1) x A4(2)) x KM, Hence
(4912) Deg(NMC_Q(R17271)/Z(Rl,z’l) | ,U,l X ,LL2) = {94}

Recall from Corollary 4.9.5 that A4 x (1) = &4, for i = 1,2, and that c inter-
changes A4(1) and A4(2). We now examine the action of K1) = <L,C> on
Trr(As® x A,®).

The characters A} x p? and u' x \? are stabilized by ¢« and transposed by c. So

they form a single K(M-orbit. Thus
(4.9.13) Deg (N, 2(Ri,2,1)/ Z(Ra2,1) | Al x ) = {67}

The stabilizer of A} x p? in K is trivial. Hence the remaining four characters

AL g2, it x A2, AL x 2, gt x A2 of Ay x A4 form a single K™M-orbit. So
(4.9.14) Deg(Nm. 2(Ri2,1)/ Z(Ri2,1) | Ay x p?) = {12}.

The quotient ((A4(1) X A4(2)) X K(l)) /V is isomorphic to &3 x &3. Hence
(4.9.15) Deg(Nm. .2(R1,2,1)/Ra,2,1) = Deg(63 x 63) = {1%,2%,4}.

The multiset Deg(Nm,.2(Ri,2,1)/ Z(R1,2,1)) can be obtained from (4.9.12),
(4.9.13), (4.9.14) and (4.9.15). The rest of the lemma now follows from a compari-

son with Lemma 4.7.12. O
LEMMA 4.9.16.
Inv(Nar, (Ra21) | Z(Ra,2,1)) = {12%,24},

InvDefz (Nm, (Ra,2,1) | Z(Ra2,1)) = {5°,4}.
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PROOF. From Lemma 4.9.2, we have Nam,.2(Ri12,1)/Ri21 =2 (63 x S3). By
Lemma 4.7.1 there is a single N, 2 (R4 2,1)-orbit of characters of Ry 21 non-trivial
on Z(Ri,2,1). Moreover, a character x of this orbit vanishes outside Z(Rq 2,1). We
may suppose, without loss of generality, that Ker(x) = T. Then x is invariant in
Nu2(Ri2,1)- But Nga(Ri2,1) is a sugroup of index three in Nag, 2(Rq2,1). So it
must coincide with Iny, ,(Ry2.1)(x)- Now Deg(Nu.2(Ri2,1) | Z(R1,21)/T) = {4*,8%},
by Proposition 4.9.6. Hence Deg(Nm..2(Ri2,1) | Z(Ri2,1)) = {124,242}

The lemma now follows from a comparison with the result of Lemma 4.7.10. O

From the previous two lemmas we obtain the following

PRroOPOSITION 4.9.17.
Inv(Nam, 2(Ri2,1)) = {17,2%,9%,12%, 24},
InvDefs (Nam, 2(Ri2,1)) = {74,6%,5%,4}.
Hence
k(Cs,Bo,7,Mc.2) =4, k(Cg,B0,6,Mc.2) =2,
(4.9.18) k(Cs,B0,5,Mc2) =2, k(C4,B0,4,Mc2) =1,
k(Cs,Bo,d,M¢.2) =0, for all other values of d.

PRroOOF. This follows at once from Lemmas 4.9.10 and 4.9.16 and the fact that

N, .2(Cs)= Nm..2(Ri,2,1)- |

We now have enough information for the following theorem.
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THEOREM 4.9.19. The Invariant Conjecture holds for McLaughlin’s simple group

and the prime p

=2.

Proor. By [Da96] we need only consider the unique 2-block, By, of M. having

a non-cyclic defect group. In view of Table 4.3 on page 110, Conjecture 1.4.4 for the

block By is equivalent to the equation

(4.9.20)

for all values of

From (4.8.2), (4.9.7), (4.9.18) and (4.5.2)

k(C4,Bo,d,Mc.2 )+ k(C12,Bp,d,Mc.2) =

k( 06; B(),d, M..2 ) —|—1{( 07, Bo,d, M..2 ),

de 7.

equation above for various values of d:

we obtain the following sums for the

2-Defect | C; Ci2 Cs Cy
7 4 + 4 = 4 + 4
6 2 4+ 2 = 2 + 2
5 2 4+ 2 = 2 + 2
4 1 + 2 =1 + 2
3 1 + 0 = 0 + 1

TABLE 4.7. The Invariant Conjecture for p = 2

The summands in Equation (4.9.20) are zero for all other values of d. This com-

pletes the proof.
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4.10. The Projective conjecture for the prime p =2

By Theorem 3.12.8, the McLaughlin group has a cyclic Schur multiplier of order 3.
As in Section 3.12, we let A denote the center of the universal perfect covering group

1/\\/[c of M.. So A is cyclic of order 3. If X is a subgroup of Mc, then we will denote

its inverse image in ﬁc by A.X or X.

Let p be some fixed non-trivial character of A.

LEMMA 4.10.1. ﬁc has three 2-blocks, B, B and B3, lying over the 2-block of A

containing p. The block B has defect 7 and contains 18 characters, while B has defect

1 and contains 2 characters, and B3 has defect 0.

PROOF. We use the Atlas notation for the characters in Trr(M, | p). Two of these
characters, x3¢ and 37, have defect 1 and lie in a 2-block B} of defect 1, while another,

Xa1, lies in a 2-block B3 of defect 0. The remaining 18 characters lie in a single 2-block,

Bg, of defect 7.

We list the irreducible characters of Bf and their 2-defects:

Character X25 X26 X217 X28 X29 X30 X31 X32 X33
Degree 126 | 126 | 792 | 1980 | 2376 | 2376 | 2520 | 2520 | 2772
Defect 6 6 4 5 4 4 4 4 5
Character | xs34 | X35 | X38 | X39 | X0 X42 X43 X44 X45
Degree 4752 | 5103 | 7875 | 8019 | 8019 | 10395 | 10395 | 10395 | 12375
Defect 3 7 7 7 7 7 7 7 7
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Thus

k(0178377|p):87 k(0158356|p):25
(4102) k(cla 8375 | p) =2, k(Cla B874 | p) =9,

k(C1,B5,3 | p) =1, k(C1,Bg5,d | p) =0, for all other values of d.

The covering group Hof H= 2.2g splits over A, because H is the universal cov-
ering group of the alternating group 2g. So its subgroups A.Ng(Rs1), A.Nu(R13)
and A.Nu(Ri2,1) also split over A. Now H has a unique 2-block of defect greater
than 1, and by Propositions 4.6.2 and 4.7.6, each of its subgroups R3 1, Ri,3 and Ry 21

has a unique 2-block. Then in view of Table 4.3 on page 110, it follows that

(4.10.3) k(C;,Bg,d | p) = k(Ci,Bo,d), for 7 <i <12, and all values of d.

Next we consider the groups A.Nwm, (Rs,1), A.Nm.(Ri3) and A.Nm, (Ri21).
Recall from Table 4.5 on page 126 and from Lemma 4.9.2 that the Sylow 3-subgroup
S of Nm, (Ri2,1) is elementary abelian of order 9. Using Lemma 4.3.14 and Corollary

4.3.11, we see that S is also a Sylow 3-subgroup of both Nag, (Rs,1) and N, (Ra 3).

LeEMMA 4.10.4. The covering group S of S in ﬁc does mot split over A. Hence it

is extra-special of type 3?2.

PRrROOF. By construction S = (ﬂl, ﬂ2>, where 3; € E is an element of the (3B)

class of Mc, and 2 is a 3-element of Ay < M. In particular S £ E.
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Let ﬁl be an element of ﬁc having (; as its image in M. From the Atlas, ﬁl is
a 3-element of the unique conjugacy class of ﬁc lying over the conjugacy class (3B)
of M. In particular [Cg;_(51)] = [Cm, (81)!-

It follows from Proposition 3.1.12 that Ca,(81) = E x A4. This group normalizes
E and has a Sylow 3-subgroup of order 3°. Hence the group Csi. (B1) < A.Cp.(81)
normalizes E, and has a Sylow 3-subgroup of order 3°. But E is isomorphic to Z3, by
Proposition 3.13.1. Hence it centralizes 8;. So E is the unique Sylow 3-subgroup of
Csi, (B1). Since S is a 3-group normalizing E, but not contained in B, we conclude
that S £ Csi, (B1). In particular S is not abelian. So S does not split over A.

From the Atlas, any element of ﬁc whose image in M. has order 3 itself has order
3. Hence S has exponent 3.

The previous two paragraphs show that S is a non-abelian 3-group of exponent 3

and order 3%. The lemma follows. O
We now study Nﬁc (03) = Nﬁc (R1’271).
PROPOSITION 4.10.5.
Deg(Nﬁc (R1a271) | p) = {367 627 927 122a 24}7

Defy (Ngz (Ri2.1) | p) = {7%,6%,5%,4}.
Hence

k(0378877|p):87 k(c378376|p)=27
(4.106)  k(Cs,B3,5|p) =2,  k(Cs,Bj,4|p) =1,

k(Cs,Bg,3 | p) =0, k(Cs,Bg,d | p) =0, for all other values of d.
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Also
(4.10.7)  k(Cs,Bg,d | p) =k(Cs,Bg,d | p) =k(Cs,B§,d | p), for all values of d.

PrOOF. From Lemma 4.4.2 the normalizer of Ry 2 in M is of the form Ry 2; %
(32: 2). Then from Lemma 4.10.4, its covering group Niz. (Ri2,1) in M. is of the form
Rﬁg,l X (3?2: 2), where Rﬂ%,l is the unique Sylow 2-subgroup of the inverse image
ﬁ1,2,1 of Ri21 in ﬁc.

The Sylow 3-subgroup 3}+?, of a complement 3} : 2 to Rf;’l in Ngz (Ri,2,1), has
exactly one irreducible character p lying over p. Now p has degree 3 and is invariant
in 3?2 : 2. So there are exactly two characters of 3?2 : 2 lying over u, and each
has degree 3. We inflate these to characters of Nz (Ri1,2,1)- In this way we obtain all
irreducible characters of Irr(Nﬁc(Rl,z,l) | p) whose kernels contain Rgg,l.

Let x be a non-trivial irreducible character of ng,l. Then there is one exten-
sion x of x to ﬁ172,1 = A X RS%J which lies over p. The stabilizer INﬁc(Rl,Z,l)(jz)
of this extension is then just A.In,_(R,..)(X)- By Corollary 4.7.13, we know that
A TNy (Rez)(X)/ (A X Rglgl) has a Sylow 3-subgroup of order 1 or 3. Also, a Sy-
low 2-subgroup of Nam, (Ri2,1)/(A x Rglgl) is cyclic of order 2. Hence Y extends
to its entire stabilizer, by Theorem 1.2.11. We conclude that there is a degree pre-
serving bijection between Irr(Np, (Ry2,1) | Ri,2,1) and the set of those characters of
Irr(Nﬁc (Ri,2,1) | p) whose restriction to Ry 1 is non-trivial.

All elements of Irr(valc(RLz,l) | p) belong to a single 2-block bf of Nz, (Ri,2,1)

lying over the block of A containing p. This block bj has a defect group containing
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RE%,I' In particular, the defect of (b(’g)ﬁc is at least logy(|R1,2,1]) = 6. It then follows

—~

from Lemma 4.10.1 that (b})Me = Bj.
The character degrees and defects given in the statement of the proposition now
follow from the first paragraph of the proof, Lemmas 4.7.10 and 4.7.12, and the fact

that Deg(NMc (R1,2,1)/R1,2,1) = Deg(32: 2) = {12, 24}. O
Next we deal with Ng; (C2) = Nz (Ra,1).

PRrROPOSITION 4.10.8.
Deg(Ngz (Ra,1) | p) = {6,15°,21%,24% 45,90, 105,120},
Def> (Ngz_ (Rs,1) | p) = {7°,6%,4%}.
Hence
k(C5,Bg, 7| p) =8, k(C2,Bg,6p) =2,
(4.10.9)  Kk(C9,Bg,5|p) =0, k(C2,Bg,4 | p) =3,
k(C2,Bg,3 | p) =0, k(C2,Bg,d | p) =0, for all other values of d.

Also
(4.10.10) k(C4,Bg,d | p) =k(C2,B§,d | p), for all values of d.

PRrROOF. From Corollary 4.3.11 and Lemma 4.10.4, the group Ng; (Ra,1) is of the
form Rg% p K3,1, where Rg% is the unique Sylow 2-subgroup of the cover of R3; in
1/\\/[c, and the complement K3,1 is a non-split central extension of Az; = 7 by the

cyclic group A of order 3.
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From the character table of 2(; in the Atlas, we obtain

Deg(Ass | p) = {6,152,212,24%},
(4.10.11)
DefQ(Kg,l | p) = {74,6,42}

Let x be a non-trivial linear character of R ;. By Lemma 4.6.8, the As ;-orbit
of x is Irr(Rs1)#, and In,, (ms,1)(X) is of the form Rg; % GL(3,2). We let X be
a linear character of ﬁg,l = A x RQ} lying over p and non-trivial on Rgli Then
the stabilizer of ¥ in Ng; (Rs,1) is of the form A.(R3; x GL(3,2)). But A.(Rj,
GL(3,2)) splits over A, since a Sylow 3-subgroup of Rs 1 x GL(3,2) is cyclic of order
3, and is not central in its normalizer. Hence there is a degree preserving bijection
between Irr(Iny,, (re1)(X) | X) and Irr(INﬁc(Rs’l)()Z) | X). We conclude that there is
also a degree preserving bijection between Irr(Np. (Rs,1) | Rs1) and the set of those
characters of Irr(Nﬁc (Rs,1) | p) non-trivial on Ry ;.

We now obtain Deg(Ng; (Ra,1) | p) and Defs (Ng; (Rz,1) | p) using (4.6.9) and
(4.10.11).

All elements of Irr (Nﬁc (Rs,1) | p) belong to a single 2-block b of Niz. (Rs,1) lying

over the block of A containing p. This block b§ has a defect group containing RQ}

In particular, the defect of (b3)M-< is at least log,(|[R31|) = 4. It then follows from
Lemma 4.10.1 that (b3)Me = By,

We can now compute (4.10.9) using the multiset Defs(Ngz (Rsz,1) | p) and the
fact that Ng; (C2) = Ngz (Rs1). Equation (4.10.10) holds because Ng; (Rs;1) =

Ngz (Ri3) = Ngz (Ca). O

We can now prove the following
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THEOREM 4.10.12. The Projective Conjecture holds for McLaughlin’s Simple Group

M. and the prime p = 2.

PROOF. We need only consider the 2-blocks Bfj and B of positive defect in Lemma
4.10.1. Since Bj has defect 1, it has a cyclic defect group. So Conjecture 1.4.6 holds
for it by [Da96]. In view of Table 4.3 on page 110, Conjecture 1.4.6 for the block Bj

is equivalent to the equation

k(C1,Bg,d | p) +k(C3,Bg,d | p) + k(Cs,Bg, d | p) + k(C10,Bg,d | p) =
(4.10.13)
k(027 Bgad | p) + k(C4> BS:d | p) + k(C77 837d | p) + k(097 Ba7d | p):

for all values of d € Z.
We obtain Table 4.8 using Equations (4.10.2), (4.10.6), (4.10.9) and (4.10.10), as

well as (4.5.1), (4.6.3), (4.7.8), (4.6.4) and (4.10.3).

2-Defect | C; Cs Cs Cho Cy Cy Cy Cy
7 8 + 8 + 8 + 8 = 8 4+ 8 + 8 + 8
6 2 + 2 + 2 + 2 = 2 4+ 2 4+ 2 4+ 2
5 2 + 2 + 0 + 0 = 0 4+ 0 4+ 2 4+ 2
4 5 + 1 + 6 4+ 6 = 3 4+ 3 + 8 + 4
3 1 + 0 + 0 + 0 = 0 + 0 4+ 1 4+ 0

TABLE 4.8. The Projective Conjecture for p = 2

The summands in the above equation are zero for all other values of d. This

completes the proof. O
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