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Abstract: In this paper we use an optimal control approach to analyze time
dependent enzyme concentrations that minimize the transition time of a metabolic
pathway while respecting the natural constraints imposed by a limited biosynthet-
ical capacity. Our main result states that, under appropriate assumptions, at each
time instant all the available enzyme production capacity is allocated to a single

reaction, a finding reminiscent of bang-bang control laws typical in classical time-
optimal control.
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1. INTRODUCTION

Metabolic pathways consist of networks of bio-
chemical reactions which are regulated by a set
of enzymes catalyzing each interaction (Heinrich
and Schuster 1996). The overall behavior of such
metabolic networks depends substantially on each
of the enzymes involved in the process.

In this paper we address the mechanism responsi-
ble for the distribution of the enzyme concentra-
tions in a metabolic network. This approach relies
on the assumption that evolution has adapted this
mechanism to satisfy certain optimality criteria.
Previous studies have tackled this problem by
considering a number of objective functions, e.g.,
flux optimization (Heinrich et al. 1991, Heinrich
and Klipp 1996, Holzhütter 2004), minimization
of total enzyme concentration (Klipp and Heinrich
1999) and maximization of growth rate (Bilu et
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al. 2006). All these works focus on the steady state
properties of the pathways and consider time inde-
pendent enzyme concentrations. However, recent
experiments have revealed well defined hierarchi-
cal temporal patterns in enzyme expression levels
in amino acid (Zaslaver et al. 2004) and flagella
biosynthesis of E. coli (Kalir and Alon 2004),
which suggest that the temporal distribution of
the enzyme concentrations may have an impor-
tant impact on the behavior of some metabolic
networks.

Klipp and co-workers considered the problem of
optimizing time varying enzyme concentrations
in an insightful paper (Klipp et al. 2002). Inter-
estingly, they concluded that the enzyme profiles
that minimize the transition time of the pathway
obey a clear hierarchical pattern: each enzyme is
expressed at the maximum possible level in the
same sequence as they appear in the pathway. A
valuable complement to these results can be found
in (Zaslaver et al. 2004), in which the authors de-
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rive enzyme profiles which optimize an objective
function accounting for the total cost of enzyme
production and the time taken by the pathway in
reaching its presumed goal. A key feature of the
latter work is that the results are supported by
experimental data that validates this sequential
or just-in-time behavior. These findings establish
a one-to-one temporal relationship between the
sequence of reaction steps in the pathway and
the temporal sequence in which the enzymes are
expressed.

An important limitation of the approach taken in
(Klipp et al. 2002) is that the optimization is done
by discretizing the time scale and assuming that
the enzyme profiles are piecewise constant func-
tions. This ad-hoc method leaves open the ques-
tion of whether optimization over more general
classes of temporal profiles might lead to different
conclusions.

This paper complements the investigations of
(Klipp et al. 2002) and (Zaslaver et al. 2004).
We aim to gain insight into the time dependent
enzyme concentrations which minimize the transi-
tion time in a metabolic pathway. The motivation
for this work is the observation that the problem
dealt with in (Klipp et al. 2002) can be naturally
posed and solved in terms of classical optimal
control theory (Pontryagin et al. 1962). It is in
this sense that this work intends to be a rigorous
extension of (Klipp et al. 2002). Furthermore, by
posing the problem in a standard control theoretic
framework, a direct link between the problem
under consideration and traditional concepts and
abstractions pertaining to control theory is made
evident. In this context, the enzyme profiles corre-
spond to the control inputs that drive the state of
the system, i.e. metabolite concentrations, from
a certain initial condition to a final state. The
problem then consists of determining the optimal
control inputs that steer the state to the desired
final state while ensuring that the transition time
is kept minimal and the input constraints are
satisfied.

The main theoretical tool used throughout this
paper is Pontryagin’s Minimum Principle (PMP)
(Pontryagin et al. 1962). This result will be used
to derive generally applicable qualitative conclu-
sions about the optimal enzyme profiles by us-
ing simple geometric arguments, as well as to
derive optimal solutions to particular problem
statements. We deal with the case of metabolic
pathways whose objective is to convert a single
initial substrate into a single final product. Our
main result is that, if the optimal enzyme concen-
trations are uniquely determined, then they are
switching sequences between zero and the maxi-
mum available enzyme concentration, which gives
a strong control theoretic support for the ad-hoc

procedure of (Klipp et al. 2002). This result is
derived with no assumptions on the stoichiometry
of the pathway, and only requires the kinetic laws
to be linear in the enzyme concentrations. It also
implies that for any time instant, all the available
enzyme is allocated to a single reaction and so
provides further evidence of the link between the
activation sequence and the specific topology of
the network.

We emphasize that our approach can encompass a
wide range of situations and, since the application
of the PMP is fairly general, it can ultimately lead
to a systematic procedure for finding the exact
form of the optimal enzyme concentrations.

2. PONTRYAGIN’S MINIMUM PRINCIPLE

In this section, we briefly state the main results of
optimal control theory developed by Pontryagin
and co-workers (Pontryagin et al. 1962). This will
provide the basic concepts, notation and results
to be used in the remainder of this paper.

We are interested in dynamical systems of the
form

ẋ(t) = f (x(t), u(t)) , (1)

x(0) = x0, (2)

where the dot denotes the time derivative, x(t) ∈
R

n is the state vector, u(t) ∈ R
m is the control

input vector, f (x(t), u(t)) is a continuously dif-
ferentiable function and x0 ∈ R

n is the initial
condition of the system. Suppose that the control
objective is to drive the state x(t) from x0 to a
final state x(tf ) that must lie in a certain set
S. This allows us to tackle problems in which
the final condition is not fully specified. Since in
this framework the final time tf is not specified
a priori, this is referred to as a free final time

problem.

The magnitude of the control input is usually
bounded by some extremal values arising from the
nature of the problem itself. If we denote the set
of admissible values for u(t) as U ⊆ R

m, then it is
required that u(t) ∈ U , ∀t ∈ [0, tf ]. The objective
is then to determine an optimal control input,
u∗(t), such that

u∗(t) = arg min
u(t)∈U

J , ∀t ∈ [0, tf ] (3)

where

J = h (x(tf )) +

∫ tf

0

g (x(t), u(t)) dt, (4)

is the target cost functional.

This problem is difficult and in general every case
must be treated on an individual basis. However,
a useful result due to Pontryagin and his co-
workers (Pontryagin et al. 1962) provides a set
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of necessary conditions for optimality, i.e. if an
optimal solution exists, then it must satisfy the
conditions given by the minimum principle. For
that purpose we define a scalar valued function,
called the Hamiltonian, as

H (x(t), u(t), p(t)) = g (x(t), u(t)) +

p(t)T f (x(t), u(t)) , (5)

where the vector p(t) ∈ R
n is called the system’s

co-state. The PMP states that, if an optimal u∗(t)
exists for the problem of interest, then there exists
a nontrivial co-state trajectory p∗(t) such that:

(a) The set of differential equations

ẋ∗(t) =
∂H (x∗(t), u∗(t), p∗(t))

∂p
, (6)

ṗ∗(t) = −
∂H (x∗(t), u∗(t), p∗(t))

∂x
, (7)

is satisfied by the state and co-state tra-
jectories subject to the boundary conditions
x∗(0) = x0 and x∗(tf ) ∈ S. Because of the
nature of the constraints on the solutions,
equations (6) and (7) typically constitute a
two point boundary value problem (BVP).

(b) The Hamiltonian is minimized by the optimal
control input u∗(t) for all t ∈ [0, tf ], i.e.

u∗(t) = arg min
u(t)∈U

H (x∗(t), u(t), p∗(t)) . (8)

(c) The Hamiltonian for the optimal control input
is zero for all t ∈ [0, tf ], that is,

H (x∗(t), u∗(t), p∗(t)) = 0. (9)

This is a consequence of the fact that the
final time is not specified in the problem
formulation, but rather is a parameter to be
optimized over.

(d) The co-state vector is transversal to S in the
final time, that is,

p∗(tf )T (q − x∗(tf )) = 0, ∀q ∈ M (10)

where M is the tangent hyper-plane of S at
x∗(tf ).

From the definition of the Hamiltonian in (5) it
should be noted that (6) is just a convenient way
of rewriting the state equation (1). However, (7)
through (10) give us additional information useful
to obtain the optimal control input u∗(t). The
solution procedure for a particular optimal control
problem using the PMP is far from being standard
and usually requires some problem-specific analy-
sis. Nevertheless, a general outline to accomplish
this task would be as follows:

- Derive the form of the optimal control law from
(8) and (9).

- Solve the two point BVP comprised in (6) and
(7). The original optimal control problem has
been transformed into a set of 2n differential
equations.

- The 2n integration constants arising from the
BVP in (6) and (7) and the final time tf can
be computed by solving the system of 2n + 1
algebraic equations composed by x∗(0) = x0,
x∗(tf ) ∈ S, (9) at t = tf and (10). This
emphasizes the importance of the transversality

condition in (10), which is key for the complete
solution of the problem.

3. OPTIMAL METABOLIC REGULATION

Consider a metabolic pathway with a single sub-
strate x1 and a single final product P . The ob-
jective of the pathway is to convert x1 into P
through a set of p chemical reactions involving
the metabolites {x1, x2, . . . , xn}. Unlike the the-
ory of Metabolic Control Analysis (Heinrich and
Schuster 1996), we allow the substrate and prod-
uct concentrations to change in the same time
scale as the intermediate metabolites. Hence, a
fundamental relation arising from this formulation
is that the total metabolite concentration remains
fixed, i.e.

P (t) +

n
∑

i=1

xi(t) = C, (11)

where xi(t) and P (t) denote the metabolite and
product concentrations as functions of time, re-
spectively.

A dynamical description for the metabolic path-
way is

ẋ(t) = Nv (x(t), u(t)) , (12)

P (t) = C − qx(t), (13)

where x(t) = [x1(t) x2(t) · · · xn(t)]
T

∈ R
n is

the vector of metabolite concentrations, u(t) ∈
R

m is the vector of enzyme concentrations,
v (x(t), u(t)) ∈ R

p is the vector of reaction rates,
N ∈ R

n×p is the stoichiometry matrix, q =
[1 1 · · · 1] ∈ R

n and m ≥ n.

We also assume that the rate laws comprising
v (x(t), u(t)) are linear in the enzyme concen-
trations, as in e.g. Mass Action and Michaelis-
Menten kinetics. In addition, since the enzyme
production capacity of the cell is finite, it is plausi-
ble to posit that the enzyme concentrations must
satisfy

m
∑

i=1

ui(t) ≤ ET , (14)

where ET stands for the total available enzyme
abundance. Moreover, all enzymes must satisfy
ui(t) ≥ 0, which together with (14) implies that
the set of admissible enzyme concentrations U is
given by a simplex in R

m.
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We are interested in finding time dependent en-
zyme concentrations u∗(t) that drive the pathway
from the initial state

x(0) =
[

C 0 · · · 0
]T

, (15)

to the terminal condition P (tf ) = Pf < C, tf <
∞ over some time interval [0, tf ], such that

u∗(t) = arg min
u(t)∈U

T , ∀t ∈ [0, tf ] (16)

where

T =
1

C

∫ tf

0

(C − P (t)) dt, (17)

is the transition time of the substrate-product
conversion (Klipp et al. 2002).

It is important to note that, as in the framework
described in Section 2, the terminal condition
P (tf ) = Pf does not completely specify the final
state, but rather gives the surface where the final
state must lie. Using (11), this surface is described
by

S =

{

x(tf ) ∈ R
n :

n
∑

i=1

xi(tf ) = C − Pf

}

. (18)

This kind of terminal condition also implies that
the value of the final state arises from the opti-
mization itself, instead of being pre-specified.

The transition time defined in (17) is slightly
different from the one used in (Klipp et al. 2002),
since by forcing Pf < C we are implicitly exclud-
ing the case when tf = ∞. This is done in order
to ensure that the transition time is finite for any
control input whose values belong to the set U .
As shall be seen later, this issue has consequences
for the behavior of the optimal enzyme concentra-
tions that lead to a difference between our results
and the ones in (Klipp et al. 2002).

Referring to (5), the Hamiltonian for this dynam-
ical system is given by

H (x(t), u(t), p(t)) = 1 −
P (t)

C
+

p(t)T
Nv (x(t), u(t)) , (19)

where p(t) ∈ R
n is the co-state trajectory. An in-

spection of (19) shows that, since the rate is linear
in the enzyme concentrations, the Hamiltonian is
linear in every control input. This fact together
with the geometry of the set U has interesting
consequences in the form of the optimal enzyme
profiles, as shown in next proposition. For this
purpose and under the assumption than m ≥ n,
it is convenient to write the Hamiltonian as

H (x∗(t), u(t), p∗(t)) = 1 −
P (t)

C
+

m
∑

i=1

hi(t)ui(t),

(20)

where hi(t) is, in general, a nonlinear function of
x∗(t) and p∗(t).

Proposition 1. The optimal enzyme profile u∗(t)
satisfies

m
∑

i=1

u∗
i (t) = ET , ∀t ∈ [0, tf ] (21)

Proof. The proof follows using simple geometri-
cal facts of linear functions defined over convex
polyhedrons. For ease of notation, we will denote
the set of vertexes of U as

V = {e1, e2, . . . , em} ∪ {0} , (22)

where ei has ET in its ith entry and 0 elsewhere.
Similarly, the set of (m−1)−dimension faces of U
is defined as

F = {F1, F2, . . . , Fn} ∪ {P} , (23)

where Fi and P are the faces defined by

Fi = {u(t) ∈ U : ui(t) = 0} , (24)

P =

{

u(t) ∈ U :

m
∑

i=1

ui(t) = ET

}

, (25)

respectively.

From (9) it holds that H must vanish along the
optimal trajectory, but

1 −
P (t)

C
> 0, ∀t ∈ [0, tf ] , (26)

which from (20) implies that

m
∑

i=1

hi(t)u
∗
i (t) < 0, ∀t ∈ [0, tf ] , (27)

⇒ u∗(t) 6= 0, ∀t ∈ [0, tf ] . (28)

Since H is linear in u(t) and U has linear bound-
aries, from (8) it follows that u∗(t) ∈ V , ∀t ∈
[0, tf ], which is sometimes referred as the fun-
damental theorem of linear programming. Let
u∗1(t) be the optimal solution for t ∈ [ta, tb]
such that u∗1(t) is located at vertex ei. If there
exists another optimal solution u∗2(t) 6= u∗1(t)
for t ∈ [ta, tb] such that u∗2(t) ∈ Fi \ V , then
the linearity of H implies that any point in Fi is
also optimal for t ∈ [ta, tb]. In particular, since
0 ∈ Fi, ∀i, this implies that the origin would
also be optimal, which contradicts (28). Hence it
follows that u∗(t) /∈ Fi \ V , ∀i, so that u∗(t) ∈ P
and (21) holds. 2

Proposition 1 implies that, in order to keep a min-
imal transition time, the total available enzyme
must be always fully used. This result resembles
the nature of bang bang control laws in classical
time-optimal control. However, it must be pointed
out that the problem under consideration is not
exactly a time-optimal control problem in its clas-
sical conception, because the transition time T is a
measure of the average time taken by the pathway
in achieving its goal.
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Additional qualitative insight into the form of
the optimal enzyme profiles may be gathered by
exploiting the properties of the Hamiltonian and
the set of admissible control inputs U , as shown
in next proposition.

Proposition 2. If the optimal enzyme profile u∗(t)
is unique, then it is a piecewise constant func-
tion. Moreover, if min {h1(t), h2(t), . . . , hm(t)} is
unique, then each component of u∗(t) follows a
switching sequence defined by

u∗
i (t) =







ET , ∀t : hi(t) = min {h1(t), h2(t),
. . . , hm(t)}

0 , any other case

(29)

Proof. Here we follow the notation in the proof of
Proposition 1. If the optimal input u∗(t) is unique,
then u∗(t) /∈ P \ V , ∀t ∈ [0, tf ], since otherwise
the linearity of H (x∗(t), u(t), p∗(t)) would imply
that there exists a time interval over which any
input value in P is optimal. Furthermore, the only
case in which u∗(t) is not piecewise constant is
when there exist 0 ≤ ta < tb ≤ tf such that
u∗(t) ∈ P \ V , ∀t ∈ [ta, tb], which contradicts
our first conclusion. Therefore, if u∗(t) is unique
then it is a piecewise constant function. The form
(29) can be derived using the fact that, from (9),
(20) and (26) it follows that hi(t) < 0, for some
i ∈ {1, 2, . . . , m} , ∀t ∈ [0, tf ]. 2

Equation (29) reveals that the optimal enzyme
profiles are essentially a set of switching sequences
between 0 and the maximum enzyme concentra-
tion ET . In the context of the general metabolic
pathway of our interest, this has major signifi-
cance in its behavior, since it essentially means
that at any time instant, only a single biochemical
reaction of the whole network is active. This be-
havior is closely related with the just-in-time pro-
moter activity described in (Zaslaver et al. 2004),
and also gives a strong control theoretic support to
the methodology developed in (Klipp et al. 2002),
which precisely assumed that the optimal enzyme
concentrations are piecewise constant functions.
It should be remarked that we do not make any
assumptions on the stoichiometry of the pathway
and just require the kinetics to be linear in the
enzyme concentrations.

Our results are strongly connected with the ones
of (Klipp et al. 2002), but we must point out
an essential distinction between the statement of
Proposition 2 and the the analysis given in (Klipp
et al. 2002). Under uniqueness of the solution,
Proposition 2 does not allow active enzymes with
concentrations lower than ET , i.e. only full activ-
ity is permitted. However, the results in (Klipp et

al. 2002) state that, for the case of an unbranched
pathway, the optimal solution is such that there is

a time instant t′ such that 0 < u∗
i (t) < ET , ∀t >

t′. The difference might arise from the fact that
the problem dealt with in the current paper con-
siders a finite time horizon in the cost functional,
while in (Klipp et al. 2002) the authors address
the infinite time horizon case.

The uniqueness of the optimal enzyme profiles in
Proposition 2 is a strong assumption which is al-
ways guaranteed, provided that min {h1(t), h2(t),
. . . , hm(t)} is non-unique only for isolated time
instants. Indeed, at those isolated time instants,
the optimal solution is undefined and they corre-
spond to the switching times of u∗(t). If this does
not hold for some time interval T , i.e.

hi(t) = min {h1(t), h2(t), . . . , hm(t)} , (30)

∀i ∈ I, ∀t ∈ T , where I is a certain index set with
at least two elements and T ⊆ [0, tf ], then the
optimal solution is not unique and is described by
the hyperplane







∑

i∈I

u∗
i (t) = ET , ∀t ∈ T

u∗
i (t) = 0, ∀i /∈ I, ∀t ∈ T

(31)

In the case in which the solution is unique, Propo-
sition 2 can be interpreted as that the optimal
solution jumps from one vertex of U to another de-
pending on how the functions hi(t) evolve in time.
Thus, since each vertex of U (with exception of the
origin) can be regarded as a full expression of a
single enzyme, we conclude that these jumps cor-
respond to a bang bang switching sequence that
determines the order in which the reactions are
activated. A further step in revealing the nature of
this switching sequence is to determine the precise
ordering in which the switchings take place. As
it has been previously reported in (Zaslaver et

al. 2004) for the case of unbranched pathways, the
sequence of the activations can be closely related
to the topology of the biochemical network, so in
view of our results it should be possible to reveal
such links for other pathway topologies.

An interesting extension of our results would be
to add transcriptional dynamics of the enzyme
biosynthesis to the pathway described in (12).
This would allow the gathering of insightful infor-
mation about the gene promoter activity behind
the expression of each of the involved enzymes.
Taken directly, such an approach would neglect
the time scale difference between enzyme biosyn-
thesis and metabolism, as was done in (Zaslaver
et al. 2004).

So far we have focused only on the properties
of the Hamiltonian, but in order to determine a
precise switching sequence it turns out that the
core information lies in the solution of the BVP
comprised in (6) and (7), as shown in the next
section for the case of an an unbranched pathway.
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4. ILLUSTRATIVE EXAMPLE

As an illustrative example of our derivations, we
apply our results to optimize time dependent
enzyme concentrations in an unbranched pathway
as depicted in Figure 1.

x1 x2 xn P
u1 un

· · ·

Fig. 1. Unbranched metabolic pathway.

Assuming Mass Action enzyme kinetics, i.e. vi =
kiui(t)xi(t), and using the result of Proposition 2
we derive analytical solutions of the BVP interval-
wise for n = 2, k1 = 0.1, k2 = 0.05, C = 1, Pf =
0.8 and ET = 1. The details of the derivation are
omitted due to length constraints, but it can be
noted that the optimal solution is such that there
is only a single switching instant. The plot of both
optimal metabolite and enzyme concentrations is
shown in Figure 2. The results show that the
product effectively reaches the desired level by
means of a single switching at t = t1. The
switching time t1, the final time tf and the exact
value of the final state arise from the optimization
itself.
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Fig. 2. Optimal solution for n = 2.

5. CONCLUSIONS

We have tackled the issue of determining time
dependent enzyme concentrations that minimize
the transition time of a metabolic pathway sub-
ject to a limited total enzyme abundance. It is
shown that this problem can be naturally posed
within an optimal control framework and solved
by means of Pontryagin’s Minimum Principle.

By studying properties of the Hamiltonian func-
tion and the set of feasible enzyme concentra-
tions, qualitative insights regarding the optimal

enzyme distributions can be derived. Our main
result states that these are essentially switching
sequences between zero and maximum activity.
This result is valid for general stoichiometries,
provided that there is a single substrate and a
single product and that the kinetics are linear in
the enzyme concentrations, as in e.g. Mass Action
and Michaelis-Menten kinetics.

The problem may also be posed in terms of a
two point boundary value problem. However, this
might turn out to be a difficult task itself and will
depend crucially on the enzyme kinetics. As an
illustration, a simple example was presented for
the case of an unbranched pathway.
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