
Chaotic maps and pattern recognition – the XOR problem

Alan Rogers a,*, John G. Keating b, Robert Shorten a, Daniel M. Heffernan c,d

a Department of Electronic Engineering, National University of Ireland, Maynooth, Co. Kildare, Ireland
b Department of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland

c Department of Mathematical Physics, National University of Ireland, Maynooth, Co. Kildare, Ireland
d School of Theoretical Physics, Dublin Institute for Advanced Studies, Dublin 4, Ireland

Accepted 31 July 2001

Abstract

In this report, we describe a novel application of the Baker’s map. We demonstrate that the chaotic properties of this

map can be used to implement basic operations in Boolean logic. This observation leads naturally to the possibility of

new computational models and implementations for conventional computational systems. Here we show that by

considering the variation of the fractal dimension of its attractor, and using varying parameter values as inputs, the

generalised Baker’s map can be used as a natural exclusive OR (XOR) gate. Further, this map can also be used to create

other logical functions such as the AND gate. The efficacy of our results are demonstrated by means of a concrete

application; namely by designing, to the best of our knowledge, for the first time, a half-adder that is constructed

entirely by utilising chaotic dynamics. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Nonlinear dynamics, as a subject, has reached a considerable degree of maturity in recent years. However, despite

rapid theoretical advances in the subject, the general area of nonlinear dynamics has also been characterised by a lack of

engineering applications (with the exception of nonlinear control [1]) that exploit the fundamental theory and properties

of nonlinear systems. This observation is somewhat surprising since many engineering systems are designed to exhibit

behaviour commonly found in nonlinear systems. Examples of this abound in the aerospace industry. Fighter aircraft,

for instance, are designed to have unstable dynamics to aid manoeuvrability under extreme flight conditions. Such

aircrafts are artificially stabilised under normal flight conditions. The properties of local instability of trajectories (rapid

manoeuvrability) and global stability of orbits (safety) are often found in nonlinear and chaotic systems. One property

in particular is extremely attractive from an engineering perspective: exponential sensitivity to initial conditions, which

allows chaotic systems to be hypersensitive to changes in system parameters; and yet underlying this sensitivity, chaotic

systems have global properties, such as fractal dimension of state-space attractor, which can be extracted and used as

output variables. This observation suggests that chaotic dynamics can be used as the design basis for rapid system

identification, and in the design of high performance control systems. Here, we begin the process of examining the

suitability of chaotic maps for such engineering applications.

In this paper, we will show how the generalised Baker’s map can be used to solve the exclusive OR (XOR) problem.

This is a fundamental problem of pattern recognition, and involves telling at a single glance whether a point belongs to

one of the two classes: class A or NOT class A (class B), where class A consists of two diagonally opposite corners of a

unit square, and class B consists of the other two corners. The inability of a single-layer perception to solve this problem

Chaos, Solitons and Fractals 14 (2002) 57–70
www.elsevier.com/locate/chaos

*Corresponding author. Tel.: 353-1-7086067; fax: 353-1-7083967.

E-mail address: alan.rogers@may.ie (A. Rogers).

0960-0779/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0960-0779 (01 )00181-3



is considered to be a severe drawback for ANNs as a mechanism for nonlinear problem-solving. We will consider the

XOR problem in more depth later.

The generalised Baker’s map is a two-dimensional, three-parameter, nonlinear mapping, which is chaotic for vir-

tually all parameter values. We use it here because it is one of the best-understood chaotic maps, and is particularly

suited to rigorous analysis (see [2]). It also has the useful property that its Lyapunov dimension is monotonically in-

creasing for a wide range of parameter values, and we shall utilise this when we develop the XOR gate. To the best of

our knowledge, neither Baker’s map, nor any other chaotic map, has been previously used to solve the XOR problem in

this way.

The rest of the paper is organised as follows. In Section 2 we will describe the XOR problem, and the way in which

artificial neural networks (ANNs) can, and more importantly, cannot, solve this problem. We shall describe the Baker’s

map in Section 3. In Section 4 we show how the Baker’s map can act as a natural XOR system, and we present some of

the properties, advantages, and drawbacks, of the new system. In Section 5 we show how a half-adder can be built using

two Baker’s maps. In Appendix A, we briefly describe ANNs and their use as pattern classifiers.

2. Pattern recognition and the XOR problem

The pattern recognition problem consists of designing algorithms that automatically classify feature vectors asso-

ciated with specific patterns as belonging to one of a finite number of classes. A benchmark problem in the design of

pattern recognition systems is the Boolean exclusive OR (XOR) problem. The standard XOR problem is depicted in

Fig. 1. Here the diagonally opposite corner-pairs of the unit square form two classes, A and B (or NOT A). From the

figure, it is clear that it is not possible to draw a single straight line which will separate the two classes. This observation

is crucial in explaining the inability of a single-layer perceptron to solve this problem (an overview of the perceptron is

given in Appendix A).

This problem can be solved using multi-layer perceptrons (MLPs), or by using more elaborate single-layer ANNs

such as the radial basis function neural network [3]. However, the inability of simple ANNs, such as the Adeline [4], to

solve this problem, effectively ended research interest in the area of ANNs for over 20 years, which highlights the

importance of the XOR problem in the design of pattern recognition systems. In this paper, we show that the gen-

eralised Baker’s map can be trained to solve this problem in a straightforward manner.

3. Chaos and the Baker’s map

3.1. The generalised Baker’s map

In their classic study of fractal dimensions, Farmer et al. [4] introduced the generalised Baker’s map in order to

obtain rigorous results on the dimension of strange attractors. It is a transformation of the unit square ½0; 1� � ½0; 1�, and
has three parameters, R1, R2 and S:

xnþ1 ¼
R1xn if yn < S;

1=2þ R2xn if yn P S;

�

ynþ1 ¼
yn=S if yn < S;
yn � S
1� S

if yn P S:

8<
:

ð1Þ

Fig. 1. The exclusive OR (XOR) problem: points (0,0) and (1,1) are members of class A; points (0,1) and (1,0) are members of class B.

58 A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70



We illustrate the Baker’s map transformation in Fig. 2. As can be seen from Eq. (1), the mapping depends on whether

the point in question is above or below a horizontal line y ¼ S.
Since the Baker’s Map is a mapping of the unit square, we restrict S to the range (0,1) and R1 and R2 to the range (0,

0.5]. In Fig. 2, we show the action of the map on the entire unit square. Iterating the map gives two vertical strips, whose

widths depend on R1 and R2. Iterating the map again gives four strips, then eight strips, and so on. The attractor is the
union of a line segment (vertical direction) and a Cantor set (horizontal direction).

3.2. Lyapunov numbers and Lyapunov dimension of the Baker’s map

It can be seen in Fig. 2 that the action of the map leads to ‘stretching’ in the y-direction and ‘compressing’ in the x-

direction. It is possible to put these actions into a more mathematical framework by using the notion of Lyapunov

numbers. These numbers characterise the stability of the map, and are defined as follows:

Let Jn ¼ ½JðxnÞ 	 Jðxn�1Þ 	 . . . 	 Jðx1Þ�, where JðxÞ is the Jacobian of the map, JðxÞ ¼ ðoF =oxÞ, for some map F.
Let j1ðnÞP j2ðnÞP 	 	 	 P jpðnÞ be the magnitudes of the p eigenvalues of Jn.
Then the Lyapunov numbers are given by

ki ¼ lim
n!1

½jiðnÞ�1=n; i ¼ 1; 2; . . . ; p: ð2Þ

Since the Baker’s map is two-dimensional, it will have two Lyapunov numbers, characterising the average stretching/

compression factors in the x- and y-directions (see Fig. 3). Note that the Lyapunov exponents are simply the logarithms

of the Lyapunov numbers. It is customary to order the Lyapunov numbers, so that k1 > k2 > 	 	 	 > kn.

The Lyapunov dimension was introduced by Kaplan and Yorke [5] in the so-called Kaplan–Yorke conjecture: that

the Lyapunov dimension DL is the same as the information dimension for ‘‘typical’’ attractors. For the Baker’s map,

DL ¼ 1þ log k1
log 1=k2

: ð3Þ

Fig. 2. Action of the Baker’s map on unit square: transforms square into two strips, then four strips, eight strips, and so on.

Fig. 3. Lyapunov Numbers characterise the average stretching factors of some small circle of radius d. In this case, k1 > 1 and k2 < 1.

A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70 59



The Jacobian of Eq. (1) can be written in the following form:

J ¼ L2ðyÞ 0
0 L1ðyÞ

� �
; where

L1ðyÞ ¼
1=S when y < S;
1=ð1� SÞ when y > S;

�

L2ðyÞ ¼
R1 when y < S;
R2 when y > S:

�

So from Eq. (2) we get

k1 ¼ lim
n!1

L1ðynÞ . . . L1ðy1Þ½ �1=n;

k2 ¼ lim
n!1

L2ðynÞ . . . L2ðy1Þ½ �1=n:

By taking logs, and with some manipulation, noticing that the orbits are ergodic in the y-direction, we find that the

Lyapunov exponents are:

log ky ¼ S log
1

S
þ ð1� SÞ log 1

1� S
; ð4aÞ

log kx ¼ S logR1 þ ð1� SÞ logR2: ð4bÞ

In our implementation of the XOR gate, we only require two input parameters, so we shall let R2 ¼ R1, in which case we
find that

log kx ¼ logR1: ð5Þ

4. Using the Baker’s Map to solve the XOR problem

4.1. Background

If we plot the fractal dimension of Baker’s map for varying values of R and S, it becomes obvious how we can use

the map to solve the XOR problem. Firstly, we show how the Lyapunov exponents (Eqs. (4a) and (5)) vary with R and

S (see Fig. 4). Clearly, since the map is contractive in x-direction, the Lyapunov exponent in that direction is always

negative. Conversely, the map is expansive in the y-direction, and therefore that Lyapunov exponent is always positive.

From Eq. (3), the Lyapunov dimension is given by

DL ¼ 1� log ky

log kx
: ð6Þ

In Fig. 5, we plot DL against R, with S as a parameter. Notice that the fractal dimension varies between 1 and 2, as we
would expect. Due to the symmetry of Fig. 4(b), the fractal dimension is symmetrical about S ¼ 0:5. We have chosen
slightly asymmetrical values of S to illustrate this.

We can choose values of R and S, so that a pair (low R, high S) and another pair (high R, low S) give the same fractal

dimension, say DA. This corresponds to a diagonally opposite corner pair in the XOR problem. We can say, therefore,
that if the fractal dimension DL ¼ DA, then the inputs are in class A, and if DL 6¼ DA, then the inputs belong to class B.
Note that we always limit S to the range [0, 0.5], to ensure a unique fractal dimension for any given (R; S) pair.
For example, in Fig. 6, we could say that the following pairs of parameters form classes.

Obviously, the points in Table 1 do not lie on a perfect square, but that is unimportant. The key idea is that two pairs

of diagonally opposing points are mapped to the same class. It is also clear that we are quite restricted in the possible

pairs of points which we can map to the same fractal dimension. However, if we choose any four (R; S) pairs of points
corresponding roughly to (low, low), (low, high), (high, low) and (high, high), then by drawing a straight line through

the (low, high), (high, low) points and intersecting the y-axis, we can effectively solve the XOR problem for much larger

set of inputs. We call the intersection of this line with the y-axis, DM, the (modified) Lyapunov dimension. This is il-
lustrated in Fig. 6.

Procedure for calculation of DM :

(i) Given four points in the R–S plane, select the two points belonging to the same class: ðRa; SbÞ, ðRb; SaÞ in Fig. 6.
(ii) Calculate the Lyapunov dimensions corresponding to the two points, called D1, D2.
(iii) Calculate the slope, m ¼ ðD1 � D2Þ=ðRa � RbÞ.
(iv) The dimension DM ¼ D1 þ m 	 Ra ¼ D2 þ m 	 Rb.

60 A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70



As DM is constantly calculated, we can tell whether the inputs are in class A, or not. An algorithm of this form is
referred to as a training algorithm in the ANN and statistical pattern recognition literature [8]. The availability of such

an algorithm, and its complexity, ultimately determines the applicability of a particular paradigm for a given problem.

In our case, given a set of class labels, and a set of vectors, the training parts of the pattern recognition problem is

trivial, involving only the simple calculation of a slope. For an ANN, solving this problem requires repeated calculation

of the slope for at least two hyperplanes, and so is more computationally intensive.

4.2. Computer simulation

The system is easily implemented with a few lines of code. Essentially, we need to simulate Baker’s map, given its

input parameters, and then, using its state variables x and y, compute the Lyapunov dimension DL of the attractor (see
Fig. 7).

Fig. 4. Variation of Lyapunov exponent in the (a) x-direction, (b) y-direction.

A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70 61



Obviously, the speed of the system depends on the computation of the Lyapunov dimension. The traditional way to

do this is quite slow [6], and assumes that no detailed information is available about the system, that is to say, only a

time-series x0; x1; x2; . . . ; is available from the system. Given this time series, some value from the sequence is selected,

Fig. 6. A more general way of solving the XOR problem: draw a straight line through the two points belonging to class A (say), and

find where the line intersects the y-axis.

Fig. 5. Variation of fractal dimension with varying parameter values.

62 A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70



say xi, and then one searches the sequence for another value xj that is close to xi. The sequence of differences is assumed
to diverge exponentially, on the average:

d0 ¼ jxj � xij
d1 ¼ jxjþ1 � xiþ1j

..

.

dn ¼ jxjþn � xiþnj

ð7Þ

We assume that

dn ¼ d0ekn;

which, after taking logarithms, gives

k ¼ 1
n
log

dn
d0

: ð8Þ

Since we would like our system to be as fast as possible, this method is computationally expensive, as it involves

continually searching through some large array of numbers, and then performing additional calculations given in Eqs.

(7) and (8). As we have Baker’s map data readily available, and since we have its input parameters already, we have

found a quicker way to compute the Lyapunov numbers. They are calculated as follows: we iterate the Baker’s map

f ðx; yÞ as normal (call it B1), but we also iterate another Baker’s map ðB2Þ in parallel with it. For each pair ðxn; ynÞ
generated by B1, we use some nearby pair of numbers ðxn þ d; yn þ eÞ as initial conditions for B2. We then iterate B2
once (we have found that iterating more than once does not improve accuracy, but merely slows things down). Now, we

compute the Lyapunov numbers

kx ¼ log
jf ðxn; ynÞ � f ðxn þ d; yn þ dÞjX comp:

d
;

ky ¼ log
jf ðxn; ynÞ � f ðxn þ e; yn þ eÞjY comp:

e
:

ð9Þ

The numbers thereby computed tend to be noisy, but when averaged, they give the expected theoretical values. Note

also that since the map is always contracting in the x-direction, choosing a very small value for d gives entirely inac-
curate results, hence we tend to use d � 1.
To illustrate the action of the system, we choose four distinct points, more or less arbitrarily (see Fig. 8).

We compute the slope of the line between points 1 and 2, belonging to class A, to be m ¼ �1:60667, and the
(modified) Lyapunov dimension DM ¼ 1:752 (see Table 2).
In Fig. 9, we plot the output from Baker’s map system. Here, we have averaged every 200 points, to smooth the

output. Clearly, there is a tradeoff between speed of pattern classification, and accuracy. If we average more points, then

Fig. 7. The chaotic XOR system: the outputs from the map are the state variables x and y, and these are used to compute the

Lyapunov dimension.

Table 1

Parameter values and their corresponding fractal dimension, and class, as in Fig. 5

R value S value Fractal dimension Class

�0.1 0.5 1.3 A

�0.36 �0.1 1.3 A

�0.1 � 0.1 �1.14 B (NOT A)

�0.36 0.5 �1.68 B (NOT A)

A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70 63



Fig. 8. The four points selected to illustrate the chaotic XOR system.

Fig. 9. Output from the chaotic XOR system, with inputs as in Table 2. Contiguous sets of 200 points are averaged. Class A cor-

responds to a modified Lyapunov dimension DM � 1:75. Note that we cycle through points (1), (4), (2), (3) and (1), respectively.

Table 2

Parameter values and their corresponding classes, as shown in Fig. 6

Point no. R value S value Class

1 0.2 0.5 A

2 0.3 0.1 A

3 0.15 0.2 B

4 0.35 0.4 B

64 A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70



we get a smoother output, but this introduces a delay into the recognition process (see Figs. 10 and 11). Note also that

the relative smoothness also depends on how large the value of S is, with S ¼ 0:5 giving a perfectly smooth output. This
is because the expansion rates in the y-direction are the same only when S ¼ 0:5 (see Fig. 2).
It is clear from Fig. 11 that by merely observing if the output dimension lies in some suitable range about 1.75, we

can tell if the input is in class A, or class B.

Fig. 10. Output from the system with a 5-point averaging window. Since the output dimension switches between two values only, the

5-point averaging leads to six possible values for the output.

Fig. 11. Output from the system with 1000-point averaging windows.

A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70 65



5. Implementation of half-adder

Arithmetic circuits, constructed using simple Boolean logic gates, lie at the heart of modern digital computers. The

half-adder is one of the most fundamental of these circuits. It adds two binary numbers, and generates a carry out

signal, as illustrated in Table 3.

Table 3

Truth Table for a standard half-adder

Inputs Outputs

A B Sum Carry out

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

A+B
P

Cout

Fig. 12. Schematic diagram of 1-bit half-adder.

Fig. 13. Chaotic AND gate: only points lying above the decision boundary are designated TRUE (1). Therefore only the point with

(high R, high S) is designated TRUE, giving an AND gate.

66 A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70



Half-adders can be combined to make more complex logical units such as full-adders/subtractors, and one can

combine many 1-bit full-adders to give higher-order adders, such as the 64-bit and 128-bit adders present in modern day

calculators, computers, and other such technologies (see, for example [7]).

As can be seen from Fig. 12, a half-adder consists of an XOR gate and an AND gate. It only remains, therefore, for

us to fashion an AND gate using Baker’s map. This is quite straightforward – we place a decision boundary between

DM and the point corresponding to (high R, high S), as shown in Fig. 13.
If the modified Lyapunov dimension lies above the decision boundary, we classify it as 1 (TRUE or Class A), and if

it lies below, we classify the output as 0 (FALSE or NOT Class A). This gives us the carry out signal, Cout as shown in
the schematic. In a practical implementation, this would merely involve placing a comparator at the output of the

system. Note also that the chaotic AND gate allows considerable flexibility in which set of inputs gives a TRUE output.

We have simulated the half-adder using the same set of points as earlier. The results are shown in Table 4. The

decision boundary for the AND gate was taken as being halfway between the value of DM and the value of the modified
Lyapunov component of the (high R, high S) point. We obtain our binary outputs by denoting values above the de-

cision boundary as being in class 1, and below as being in class 0. Similarly, for the XOR gate, values lying close to the

DM line are denoted class 1, and outlying points are denoted class 0.

6. Conclusions

We have described how the Baker’s map can be used to provide an elegant solution to a long-standing problem in

pattern recognition: the exclusive OR (XOR) problem of single-layer perceptrons. By using the parameters of a chaotic

map as inputs, and the fractal dimension of the map as the output, it has been shown that the generalised Baker’s map

acts like a natural XOR gate. Further, we have shown that the map can also be used to function as other Boolean logic

functions, such as the AND gate. We have demonstrated the effectiveness of our results by means of a half-adder,

constructed entirely by utilising chaotic dynamics.

Acknowledgements

This work was supported by the Irish Science and Technology agency, Enterprise Ireland, under research grant No.

SC-00-86.

Appendix A. The perceptron

The term ANN is used to describe a wide-class of statistical pattern recognition and function approximation par-

adigms [3,4,8]. Originally motivated by the perceived structure of the human brain, neural neworks consist of a large

Table 4

Results from chaotic half-adder, with parameter values as in Table 2

XOR gate AND gate

R S DM Class R S DM Class

0.15 0.20 1.513 0 0.15 0.20 1.513 0

0.15 0.20 1.508 0 0.15 0.20 1.508 0

0.15 0.20 1.502 0 0.15 0.20 1.502 0

0.2 0.50 1.744 1 0.2 0.50 1.744 0

0.2 0.50 1.752 1 0.2 0.50 1.752 0

0.2 0.50 1.752 1 0.2 0.50 1.752 0

0.3 0.10 1.736 1 0.3 0.10 1.736 0

0.3 0.10 1.740 1 0.3 0.10 1.740 0

0.3 0.10 1.755 1 0.3 0.10 1.755 0

0.35 0.40 2.174 0 0.35 0.40 2.174 1

0.35 0.40 2.200 0 0.35 0.40 2.200 1

0.35 0.40 2.198 0 0.35 0.40 2.198 1

The class columns correspond to the Sum and Carry Out columns of the standard half-adder.

A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70 67



number of individual units, or neurons, connected together in some way. Information is usually stored in the ANN by

modifying the connection strength between neurons, and by modifying the nonlinear activation characteristics of the

individual neurons. Perhaps the most widely used ANN is the multi-layer perceptron (MLP). Originally derived as an

extension of the single-layer perceptron, the MLP has found widespread academic application in pattern recognition

problems, and in problems that require nonlinear static and dynamic function approximation [9]. The popularity of this

network type stems directly from the availability of computationally tractable algorithms for adapting the parameters

of the network based upon training data.

In Fig. 14, we show a typical neuron, with its constituent parts. Here, we have m inputs, which are modified by the

synaptic weights and summed at the junction. The activation function determines the output from the neuron. Typi-

cally, a sigmoid function or a Heaviside function is used as the activation function, although there are many other

possibilities. The MLP is constructed by connecting together many neurons.

A.1. Single-layer perceptron and the XOR problem

A single-layer perceptron (introduced by Rosenblatt [10]), or Adaline (introduced by Widrow and Hoff [11]), is a

particular type of neuron, based around the model shown in Fig. 14, with a hard limiter as the activation function. That

is, when the hard limiter input is positive, the neuron produces aþ 1 output, and it produces a� 1 output when the
input is negative. For some pattern recognition problems, single-layer perceptrons can be used to separate a set of

inputs into two classes. 1 We shall now describe how this is achieved.

First of all, it is customary to show the single-layer perceptron as a signal-flow graph.

As can be seen from Fig. 15, the inputs are given by x1; x2; . . . ; xm. The externally applied bias b, can be used to
modify the activation potential m (also called the local induced field). The hard limiter input is given by

m ¼
Xm
i¼1

wixi þ b: ðA:1Þ

In Pattern Recognition, the task of the perceptron is to classify some set of inputs fx1; x2; . . . ; xmg into one of two
classes, C1 or C2. In other words, if the inputs belong to class C1, then the neuronal output, y, is +1 (say), and the

output y is )1 if the inputs belong to class C2. If we look closely at Eq. (A.1), we can see how this is done. A hyperplane
in m-dimensional space is given by the following relation:

Xm
i¼1

wixi þ b ¼ 0: ðA:2Þ

This hyperplane forms the decision boundary between the two classes C1 and C2. If m is positive, then the points lie on the
one side of the decision boundary, and lie on the other side if m is negative. This is illustrated in Fig. 16.

Fig. 14. Model of a neuron.

1 If we have more than one perceptron, then we can separate the inputs into more than two classes.

68 A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70



For simplicity, we have only illustrated the two-dimensional case (i.e. two inputs x1, x2). It is also possible to have
several perceptrons in parallel, which allows the classification of points into more than two classes. Clearly, if we had

two perceptrons, then we would have two hyperplanes, allowing the classification of points into one of four classes. It

should also be clear that though, because the hyperplane acts as a linear boundary, the classes must be linearly sep-

arable, i.e., one must be able to draw a line (hyperplane) down the middle separating the two sets of points. Otherwise,

the perceptron may give an incorrect classification for some points (see Fig. 17).

Fig. 17. The sets on the left are linearly separable; the sets on the right are not.

Fig. 16. Hyperplane as a decision boundary for a two-class, two-dimensional pattern classification problem.

Fig. 15. Perceptron as a signal-flow graph.

A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70 69



Based upon the above discussion, it is clearly not possible to solve the XOR problem using a single-layer perceptron

since the members of each pattern class are not linearly separable. Its use is however possible to solve this problem using

an MLP, more specifically using a two-layer perceptron; the first layer transforms the problem into a linearly separable

problem, which the second layer then solves.

References

[1] Ott E, Grebogi C, Yorke J. Controlling chaos. Phys Rev Lett 1990;64:1196.

[2] Bishop CM. Neural networks for pattern recognition. Oxford: Clarendon Press; 1995.

[3] Haykin S. Neural networks – a comprehensive foundation. Englewood Cliffs, NJ: Prentice-Hall; 1999.

[4] Farmer JD, Ott E, Yorke JA. The dimension of chaotic attractors. Physica D 1983;7:153–80.

[5] Kaplan J, Yorke J. Chaotic behaviour of multidimensional difference equations. In: Peitgen HO, Walther HO, editors. Functional

differential equations and the approximations of fixed points, Lecture Notes in Mathematics, vol. 730. Berlin: Springer; 1979.

p. 204–7.

[6] Hilborn RC. Chaos and nonlinear dynamics. Oxford: Oxford University Press; 1994.

[7] Nelson VP et al. Digital logic circuit analysis and design. Englewood Cliffs, NJ: Prentice-Hall; 1995.

[8] Ripley BD. Pattern recognition and neural networks. Cambridge: Cambridge University Press; 1996.

[9] Narendra KS. Neural networks for control theory and practice. Proc IEEE 1996;84:1385–406.

[10] Rosenblatt F. Principles of neurodynamics. New York: Spartan; 1962.

[11] Widrow B, Hoff ME. Adaptive switching circuits. In: 1960 IRE WESCON Convention Record, vol. 3. New York: IRE; 1960.

pp. 96–104.

70 A. Rogers et al. / Chaos, Solitons and Fractals 14 (2002) 57–70


