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Abstract. Let k be a field and let l < m be positive integers. We compute

the blocks of the centralizer of the symmetric group Σl in the group algebra

kΣm, for m − l ≤ 3. We also determine the possible decomposition matrices
of these blocks. Our proof uses formal characters of degenerate affine Hecke

algebras and abacus combinatorics.

1. Introduction

Throughout this paper, we fix the following notation:

(i) p is a prime number,
(ii) (R,F, k) is a p-modular system (as in [7]) with k algebraically closed,
(iii) m is a positive integer and Σm is the symmetric group of degree m,
(iv) n is a non-negative integer with 0 ≤ n < m and l = m− n,
(v) Σ′n is the stabilizer of {1, . . . , l} and Σl is identified with the stabilizer

subgroup of {l + 1, . . . ,m} in Σm (so Σ′n
∼= Σn and Σl × Σ′n ≤ Σm),

(vi) RΣΣl
m = {a ∈ RΣm | ab = ba for all b ∈ RΣl}.

Our long-term goal is to understand the representation theory of the centralizer
algebra RΣΣl

m . In particular, we would like to find the simple modules and the
blocks of kΣΣl

m . We would also like to find the decomposition matrices for the
algebra RΣΣl

m . For example, if n = 0 and l = m, RΣΣm
m is the centre Z(RΣm) of

the group algebra, and the blocks are determined by the Murnagham-Nakayama
conjecture [8]. As the centre is commutative, each of its blocks contains a unique
simple module. In [6] we completed a similar analysis for the case n = 1.

The problem appears to be substantially more difficult when n > 1. In particular
we do not yet have a good description of the centre Z(kΣΣl

m ) of kΣΣl
m . In this paper

we develop an approach to these problems that depends on understanding the
formal characters of the degenerate affine Hecke algebra Hkn. We solve all three
problems completely, for n = 2, 3. It is likely that our methods would work for
n = 4, subject to an unpleasant case-by-case analysis. But it will become apparent
that the combinatorics renders this approach impractical, for n > 4, at least without
the introduction of some new ideas.

1.1. Background on Degenerate Affine Hecke Algebras and Representa-
tions of the Symmetric Group. If O is any commutative ring and n is a positive
integer, the degenerate affine Hecke algebra of degree n over O, denoted by HOn , is
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the unital, associative O algebra with generators x1, . . . , xn, s1, . . . sn−1 subject to
the following relations:

xixj = xjxi,(1)

(sisj)
mij = 1, where mii = 1, mii+1 = 3 and mij = 2, for |i− j| > 1,(2)

sixj = xjsi, if j 6= i, i+ 1,(3)

sixi = xi+1si − 1 or equivalently sixi+1 = xisi + 1.(4)

The subalgebra of HOn generated by all xi is isomorphic to the polynomial algebra
O[x1, . . . xn]. The relations in (2) are the familiar Coxeter relations defining the
symmetric group Σn; it follows that the subalgebra generated by all si is isomorphic
to the group algebra OΣn. As an O-module, HOn is just O[x1, . . . , xn] ⊗O OΣn.
Relations (3) and (4) show how to multiply an element of the polynomial subalgebra
by an element of the group ring subalgebra. For more information about degenerate
affine Hecke algebras, see Kleshchev’s book [9].

The relations (3) and (4) are motivated at least in part by the fact they are
satisfied when xi is replaced by the ith Jucys-Murphy element Li. (Recall that Li
is the sum of all transpositions in Σi that are not in Σi−1, with L1 = 0.) It follows
that there is a surjective algebra homomorphismHOn → OΣn given by si 7→ (i, i+1)
and xi 7→ Li. This homomorphism and variations on it are central this paper.

It is a remarkable fact that the composition factors of an Hkn-module M that
is finite dimensional over k are determined by the composition factors of the re-
striction of M to the polynomial subalgebra. This allows us to define formal char-
acters of Hkn-modules, as follows. Because k is algebraically closed, every simple
k[x1, . . . , xn]-module is one-dimensional. There is a bijection between the set of
isomorphism types of simple k[x1, . . . , xn]-modules and kn, in which a simple mod-
ule V corresponds to (a1, . . . , an) ∈ kn if the variable xi acts as the scalar ai on
the one-dimensional k-space V . The formal character of a k[x1, . . . , xn]-module is
defined to be the formal Z-linear combination of elements of kn corresponding to its
composition factors. The formal character of an Hkn-module M that is finite dimen-
sional over k is defined to be the formal character of the restriction M↓k[x1,...,xn].
By Theorem 5.3.1 in [9], the composition factors of M are determined by its formal
character. Because of the surjective map Hkn → kΣn, each simple kΣn-module can
be inflated to a simple Hkn-module, and so every simple kΣn-module has a formal
character. The same thing is true if k is replaced by C.

When studying blocks, it is useful to know that the centre of HOn consists of
all symmetric polynomials in the variables x1, . . . , xn. This was first proved by
Bernstein, see [2]. Murphy [10] (and independently Jucys) proved that the re-
striction of the map HOn → OΣn to the centres is a surjective homomorphism
Z(HOn )→ Z(OΣn).

The central character of Hkn associated to an indecomposable Hkn-module M is
the map Z(Hkn) → k given by f → f(a1, . . . , an), where (a1, . . . , an) occurs in the
support of the formal character of M . This does not depend on the order of the
entries in (a1, . . . , an), as all such (a1, . . . , an) lie in a single Σn-orbit. Sometimes
we say that (a1, . . . , an) is a central character of M .

The formal characters of the simple CΣn-modules are easy to compute. Let
Sλ be the Specht module (defined over C) corresponding to the partition λ of n.
Consider the Young diagram corresponding to λ. The content of the node in the
c-th column and r-th row of the diagram is c − r. The Young diagram can be
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built up in one or more ways by starting with the node in the upper left hand
corner, then adding nodes one by one subject to the condition that after each
node is added the result is a Young diagram. Each one of these ways to build
the Young diagram is recorded in an n-tuple (a1, . . . , an), where ai is the content
of i-th node added. There is one such n-tuple for each standard λ-tableau. The
formal character of Sλ is the formal sum of these elements of Cn. For example, the
partition [3, 1] has 3-standard tableau t1, t2, t3 and the formal character of S[3,1] is
(0,−1, 1, 2) + (0, 1,−1, 2) + (0, 1, 2,−1) because:

0 1 2
−1

1 3 4
2

1 2 4
3

1 2 3
4

contents t1 t2 t3

Note that the formal characters of simple CΣn-modules are linear combinations of
elements of Zn.

If the formal characters of the simple Hkn-modules are known, it is an easy
mechanical task to compute the decomposition matrix for Σn. Because of the
surjective map Hkn → kΣn, each simple kΣn-module Dµ corresponds to a simple
Hkn-module; let ψµ be the formal character of this module. To find the row of
the decomposition matrix labelled by the partition λ, one starts with the formal
character of Sλ and reduces each entry of each n-tuple modulo p to obtain a Z-
linear combination of elements of kn; this combination is equal to

∑
µ
dλµψ

µ, where

dλµ is the entry on the λ row and µ column of the decomposition matrix. Finding
the integers dλµ from the formal characters is just a matter of solving a system of
linear equations.

1.2. The Degenerate Hecke algebra Hkn and the centralizer algebra kΣΣl
m .

In this paper, we develop a very similar strategy for investigating the blocks and
decomposition matrices of RΣΣl

m .
First, we need a parametrization of the simple FΣΣl

m -modules. Because FΣm and
FΣl are split semisimple algebras, it follows from 1.0.1 in [9] that each irreducible
FΣΣl

m -module has the form Sβ\α := HomFΣl
(Sα, Sβ), where α is a partition of

l and β is a partition of m such that the Specht module Sα is a constituent of
the restriction (Sβ)↓FΣl

. Thus, using the classical branching rule, the irreducible
FΣΣl

m -modules are parametrized by pairs (α, β), where α is a partition of l whose
Young diagram has been obtained from that for the partition β of m by removing
m− l nodes.

Next, we fix a block idempotent E of RΣl, and let E be the corresponding block
idempotent of kΣl. Recall that n = m−l. In place of the surjective map Hkn → kΣn
above, we use the following:

φ : Hkn → kΣΣl
mE

si 7→ (l + i, l + i+ 1)E, i = 1, . . . , n− 1

xi 7→ Ll+iE, i = 1, . . . , n

By Proposition 2.1.1 in [9], the algebra kΣΣl
m is generated by Z(kΣl), the Murphy ele-

ments Ll+1, . . . , Lm, and the subalgebra kΣ′n. (This remains true when k is replaced
by any commutative ring.) Since Z(kΣlE) is a commutative local ring, it follows
that the map Hkm → kΣΣl

mE/JZ(kΣlE) is surjective, where JZ(kΣlE) is the ideal of
kΣΣl

mE generated by the Jacobson radical of Z(kΣlE). Since JZ(kΣlE) is contained
3



in the Jacobson radical of kΣΣl
mE, the algebras kΣΣl

mE and kΣΣl
mE/JZ(kΣlE) have

the same simple modules. A theorem of Dade (12.9 in [7]) tells us that kΣΣl
mE and

kΣΣl
mE/JZ(kΣlE) also have the same blocks.
We can use the displayed map φ to associate to each simple kΣΣl

mE-module the
formal character of a simple Hkn-module. Provided we know the formal characters
of the simple Hkn-modules, we can then find the decomposition matrix for RΣΣl

mE.
The row of the decomposition matrix corresponding to the irreducible FΣΣl

mE-
module Sβ\α is computed as follows. The Young diagram for β is obtained from
the Young diagram for α in one or more ways by adding a series of nodes. The
element (a1, a2, . . . , an) of Zn is associated to adding a node of content a1, then
a node of content a2, etc. There is one n-tuple for each standard skew [β\α]-
tableau. Take the formal sum of all these, then reduce each entry in each n-tuple
modulo p to obtain a formal Z-linear combination of elements of kn. The result
can be expressed in a unique way as a Z-linear combination of formal characters
associated to simple kΣΣl

mE-modules. The resulting coefficients are the entries in
the row of the decomposition matrix.

The precise decomposition matrix of RΣΣl
mE depends on m, l, and E. However,

knowing only n = m− l already tell us quite a lot. We use n to write down a short
“menu” from which the rows of the decomposition matrix must be chosen. Whether
each possible row appears, and how many times it appears, are then determined by
m and E, and the combinatorics of James’ abacus (see Section 3 below).

Our main result says that if n ≤ 3, then every block idempotent of RΣΣl
m has the

from E1E2, where E1 is a block idempotent of RΣm and E2 is a block idempotent of
RΣl. We obtain this information from our knowledge of the decomposition matrices.
Using Proposition 6 and a theorem of Bessenrodt [3], we show that enough of the
rows on the “menu” actually occur to link any two irreducible FΣΣl

mE1E2-modules.
It is natural to conjecture that the centre of RΣΣl

m is generated by Z(RΣm)
and Z(RΣl). In an earlier paper [6], we proved that this is the case when n = 1.
Computer calculations performed by Danz, some of them making use of a recent
theorem of Alperin [1], have shown that this the case for all l and m with m ≤
8. (Alperin’s theorem provides us with a way to compute, for any group G and
subgroup H, the order of the finite abelian group Z(ZGH)/〈Z(ZG),Z(ZH)〉, where
as usual Z denotes the integers; this group has order equal to the product of the
elementary divisors of a certain matrix called the reduced class-coset table for the
groups ∆H and H ×G.) It is not true that for any group G and subgroup H, the
centre of RGH is generated by Z(RG) and Z(RH); for counterexamples, see [5].

There is a surjective algebra homomorphism HZ(RΣl)
n → RΣΣl

m that acts as the
identity on Z(RΣl), sends xi to Ll+i, and sends si to the transposition (l+i, l+i+1).
The conjecture that the centre of RΣΣl

m is generated by Z(RΣm) and Z(RΣl) is
equivalent to the conjecture that this homomorphism restricts to a surjective map

Z(HZ(RΣl)
n )→ Z(RΣΣl

m ). It is interesting to compare this to a theorem of Brundan
[4]. Brundan proves that for any commutative ring O and any monic polynomial
f(x1) ∈ O[x1], the map HOn → HOn /〈f〉 restricts to a surjective map between the
centres.

2. Formal characters of simple Hkn-modules for n ≤ 3

The main purpose of this section is to enumerate the formal characters of all
simple Hkn-modules when n ≤ 3. However, we start with some very general remarks

4



about modules over rings. Suppose that A and B are rings and φ : A→ B is a ring
homomorphism. Then each B-module can be inflated to an A-module along φ.

Lemma 1. Let V be a B-module and let U be a submodule of V .

(i) U is an A-submodule of V .
(ii) Assume that φ is surjective. Then each A-submodule of V is a B-submodule

of V .
(iii) Assume that B = φ(A) + J(B). If V is simple as an B-module, then it is

simple as an A-module.

Proof. Only the third statement requires any comment. Assume that V is simple
as an B-module. Let φ′ : A → B/J(B) be φ followed by the natural map. Then
φ′ is surjective, by the hypothesis. Since V is simple as a B-module, it is well-
defined and simple as a B/J(B)-module. Then the second statement shows that V
is simple as an A-module. �

Corollary 2. Assume that B = φ(A) + J(B). If

0 ⊆ U1 ⊆ U2 ⊆ . . . ⊆ Ur = V

is a composition series for V as a B-module, then it is a composition series for V
as an A-module.

Proof. The proof is by induction on r. By the previous Lemma, U1 is a simple
A-submodule of the A-module V . Then V/U1 has a shorter composition length as
a B-module. �

The map φ : Hkn → kΣΣl
mE from the introduction satisfies condition (iii) from

this Lemma. This gives us the following proposition.

Proposition 3. Let M be an R-free RΣΣl
mE-module such that F ⊗R M is an

irreducible FΣΣl
m -module. Let M = M/J(R)M . Then the composition factors of

M as an Hkn-module are the inflations along φ of the composition factors of M as
kΣΣl

m -module.

Proof. We may assume that EM = M . The result now follows from an application
of Corollary 2 with A = Hkn, B = kΣΣl

mE, and V = M . �

Now we turn to formal characters of simple modules over a degenerate affine
Hecke algebra. The rest of this section only requires k to be algebraically closed;
it does not have to be of finite characteristic. Much of this analysis (and more)
already appears in A. S. Kleshchev’s book [9], or chapter 4 of M. Vazirani’s Ph.D.
thesis [11].

The relations among the generators of Hkn ensure that each of its 1-dimensional
modules has formal character (a, a + 1, a + 2 . . .) or (. . . , a + 2, a + 1, a), for some
a ∈ k. Suppose that a ∈ kn is such that ai − aj 6= ±1, for all i 6= j. Then
by Theorem 6.1.4 of [9], there is an simple Hkn-module that has dimension n! and
formal character

∑
σ∈Σn

σ(a). For example, the 1-dimensional Hk2 -modules have

formal character (a, a− 1) or (a− 1, a), while each 2-dimensional Hk2 -modules has
formal character (a, b) + (b, a), for some a, b ∈ k with b 6= a± 1. These account for
all simple Hk2 -modules.
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Lemma 4. Let a, b, c ∈ k with a 6= b± 1, a 6= c± 1 and b 6= c± 1. Apart from the
families of 1-dimensional modules M1 = (a− 2, a− 1, a) and M2 = (a, a− 1, a− 2),
there are two families of simple Hk3-modules which have central character (a−2, a−
1, a), and these have formal characters

M3 := (a− 1, a, a− 2) + (a− 1, a− 2, a) and
M4 := (a− 2, a, a− 1) + (a, a− 2, a− 1).

There are two families of simple Hk3-modules which have central character (a −
1, a, b), and these have formal characters

M5 := (a− 1, a, b) + (a− 1, b, a) + (b, a− 1, a) and
M6 := (b, a, a− 1) + (a, b, a− 1) + (a, a− 1, b).

In addition, Hk3 has a single family of simple 6-dimensional modules M7 with formal
character is

∑
σ∈Σ3

σ(a, b, c).

Proof. We adopt the notation of [9]. By the shuffle lemma, the induced module

(a − 2, a − 1) ⊗ (a)↑Hk
3 has formal character (a − 2, a − 1, a) + (a − 2, a, a − 1) +

(a, a − 2, a − 1). In particular M1 is its unique 1-dimensional composition factor.
It follows from this that there is a 2-dimensional composition factor M3 whose
formal character is (a− 2, a, a− 1) + (a, a− 2, a− 1). Repeating the argument with

(a− 1, a− 2)⊗ (a)↑Hk
3 we get a 2-dimensional composition factor M4 whose formal

character is (a − 1, a − 2, a) + (a − 1, a, a − 2). Also (a − 2) ⊗ (a − 1) ⊗ (a)↑Hk
3 =

M1 +M2 +M3 +M4, in the Grothendieck group of Hk3 .
Now consider those modules with central character (a − 1, a, b). The module

M5 := (a−1, a)⊗(b)↑Hk
3 has formal character (a−1, a, b)+(a−1, b, a)+(b, a−1, a).

This is simple, as it has no 1-dimensional composition factors. Similarly M6 :=

(a, a−1)⊗ (b)↑Hk
3 is an simple module with formal character (a, a−1, b)+(a, b, a−

1) + (b, a, a−1). Also (a−1)⊗ (a)⊗ (b)↑Hk
3 = M5 +M6, in the Grothendieck group

of Hk3 .
Finally, we have already discussed the existence of the 6-dimensional simple Hk3 -

module M7, before this lemma.
It follows from Lemma 6.1.1 in [9] that these are all the simple Hk3 -modules. �

3. Some results on the abacus

We introduce an idea of G. James [8]. Let e be a positive integer. Then we can
represent a partition α as an arrangement of beads on an abacus with e-runners.
It is convenient to assume that the total number of beads is a fixed multiple of e.
The runners are labelled from left to right by the residues 0, 1, . . . , e− 1 mod e. If
i is a positive integer, with residue r mod e, then we may refer to the r-th runner
as the i-th runner. The positions on runner i are labelled, from top to bottom, by
the integers i, i+ e, i+ 2e, . . ..

Moving a bead due left (right) into an empty position on an adjacent runner
corresponds to removing (adding) a single node from (to) α. Moving a bead one
position up (down) into an empty space on the same runner corresponds to removing
(adding) an e-rim hook from (to) α. More generally, moving a bead from position
i to an empty position j corresponds to adding a rim hook of length j − i to (if
i < j) or removing a rim hook of length i − j from (if i > j) from α. We refer to
i→ j as an |i− j|-rim hook at i (or on runner i).
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If i→ j is a rim-hook of α, the leg-length of H is the number of positions strictly
between i and j that are occupied by beads. For integers l ≤ h we use alh(α) and
rlh(α) to denote the number of addable or removable h-rim hooks of leg-length l that
can be added or removed from α, respectively. We will use the following elegant
result, due to C. Bessenrodt [3]:

Lemma 5. Given a partition α and a positive integer h, then for l = 0, . . . , h− 1
we have

alh(α) = 1 + rlh(α).

Now the e-core of α is obtained by removing all e-rim hooks from the abacus of
α. The number of bead moves required to do this is called the e-weight of α. The
collection of all partitions of a fixed integer that have a given e-core is called an
e-block.

Suppose that α is a partition of n and that i 6= j are integers such that α has a
removable node at i and an addable node at j−1. Moving the bead at i into position
i − 1 and the bead at position j − 1 into position j produces another partition of
n. We denote this partition by α(i, j). Then α(i, j) is said to be a one-box-shift of
α. Clearly α and α(i, j) belong to the same e-block if and only if i ≡ j mod e. The
rest of this section will be concerned with proving:

Proposition 6. Let α and β be partitions that belong to an e-block B. Suppose
that α has a removable node at position i. Then either β has a removable node on
runner i or α(i, j) exists for some j ≡ i mod e.

For integers i > j we set

(5) qij := #{f ∈ N | j < ef ≤ i}.
Thus qij counts the number of rows of the abacus that contain i or that are directly
above i, and that are also below but not containing j. Note that if k is an integer
with i > k > j then qij = qik + qkj .

Suppose that B is an e-block of partitions. Then for each residue i mod e, the
number xi of beads on runner i of the e-abacus representing α ∈ B does not depend
on α. We use wi = wi(α) to denote the number of bead moves required to move all
beads as far up as possible on runner i of α. In particular w0 + . . . + wp−1 is the
weight of B. For a positive integer h, we set aih = aih(α) as the number of addable
h rim-hooks with initial position on runner i and rih = rih(α) as the number of
removable h rim-hooks with initial position on runner i. These notations can be
extended to the case that i is an integer, by considering the residue of i mod e. For
integers i > j, we define

(6) dij := qij + xj − xi.
This depends only on the e-block B of α.

Lemma 7. Let i > j and e be positive integers. Set h := i − j. Then for each
partition α we have ajh(α) = dij + rih(α).

Proof. Represent α on an e-abacus, with enough beads so that there are no empty
positions in the top qi,j-rows. For each position a on runner j, there is a corre-
sponding position a+ h on runner i. All but the topmost qij positions on runner i
correspond to positions on runner j. Each removable h-rim hook on runner i rep-
resents an empty position on runner j and a bead on the corresponding position on
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runner i. Each addable h rim-hook on runner j represents a bead on runner j and
a corresponding empty position on runner i. Otherwise corresponding positions are
either both empty or both occupied by a bead. Counting also the top qij beads on
runner i, we see that xi − xj = qij + rih − ajh. The lemma follows from this. �

Corollary 8. Let B be an e-block of partitions and let i > j be integers. Set
h = i− j. Then either all partitions in B have a removable h-rim hook on runner
i, or for each partition in B, the number of addable h-rim hooks on runner j is
greater than or equal to the number of removable h-rim hook on runner i.

Proof of Proposition 6. If di,i−1 < 0 then Lemma 7 implies that β has a removable
node on runner i. So we may assume that di,i−1 ≥ 0. Now ri,1(α) > 0, by
hypothesis. So Lemma 7 implies that ai−1,1(α) > 0. This means that we may
choose j ≡ i mod e such that α has an addable node at position j − 1. It follows
from this that the partition α(i, j) exists and belongs to B. �

4. The p-blocks of RΣΣl

l+2

In this section l > 0 and n = 2. So G = Σl+2 and H = Σl. By the work in
Section 2, for any field k there are three possible families of simple kGH -modules:

name formal character
M1 (a, a− 1)
M2 (a− 1, a)
M3 (a, b) + (b, a), b 6= a± 1

Now let (F,R, k) be a p-modular system. Let E1 be a block (i.e. central
primitive) idempotent in RG and let E2 be a block idempotent in RH such that
E1E2 6= 0. Then there exist a partition β ∈ E1 and a partition α ∈ E2, such
that [α] can be obtained from [β] by the successive removal of two nodes. Recall
that the formal character of Sβ\α is the sum of all 3-tuples of the residues of the
nodes occupied by n− 1 and n in all standard skew [β\α]-tableau and the modular
character of Sβ\α is the reduction modulo p of its formal character. This coincides
with the formal character of the p-modular reduction of Sβ\α.

Theorem 9. Suppose that p 6= 2. Then RGHE1E2 is a block of RGH .

Proof. If kGHE1E2 has only one irreducible module then the result is trivial. If
it has a simple module of type M3, then it cannot have simple modules of type
M1 or M2. So we may assume that it has simple modules of both types M1 and
M2. Moreover, cutting kGH by the idempotent E1E2 fixes the central character of
these modules as (i, i− 1), for some i ∈ Fp ⊆ k.

We have enumerated the irreducible FGH -modules as being of type M1,M2 or
M3. We label the p-modular reduction of Mu by Nu, for u = 1, 2, 3. As p 6= 2, a
module of type M1 or M2 has p-modular reduction with central character (i, i− 1)
if and only if a = i. Similarly, a module of type M3 has p-modular reduction with
central character (i, i− 1) if and only if {a, b} = {i, i− 1}. The work above shows
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that each row of the decomposition matrix of RGHE1E2 is a row of the matrix:

[β\α] name M1 M2

i-1 i
N1 1 0

i

i-1 N2 0 1

i

i-1
N3 1 1

If FGHE1E2 were not connected, it would contain at least one module of type
N1 and another of type N2. Suppose that this situation occurs. The proof is
completed by showing that FGHE1E2 contains at least one module of type N3.

Suppose that di,i−1 < 0. Let β ∈ E1 be of type N2. Then Lemma 7 implies that
β has a removable 1-rim-hook on runner i. In particular, β is also of type N3.

Suppose then that di,i−1 ≥ 0. Let β be of type N1. So ri,1(β) > 0. Lemma 7
implies that ai−1,1(β) > 0. So there are integers u, v ≡ i mod p such that β has
beads at positions u and v − 1 and no beads at positions u − 1, u − 2 and v + 1.
Move the bead at position u into position v and move the bead at position v − 1
into position u− 1. The resulting partition belongs to E1 and has removable 1-rim
hooks on runners i and i− 1. It follows that in either case FGHE1E2 contains at
least one module of type N3. �

Theorem 10. Suppose that p = 2. Then RGHE1E2 is a block of RGH .

Proof. As in the previous theorem, we may assume that kGHE1E2 has two one-
dimensional simple modules, each with central character (0, 1).

We have enumerated the irreducible FGH -modules as being of type M1,M2

or M3. A module of type M1,M2 always has 2-modular reduction with central
character (i, i + 1). A module of type M3 has 2-modular reduction with central
character (i, i+ 1) if and only if a 6= b. We label the possible 2-modular reduction
of M1 by N1, N3, that of M2 by N2, N4 and that of M3 by N5. The work above
shows that each row of the decomposition matrix of RGHE1E2 is a row of the
matrix:

[β\α] name M1 M2

i-1 i
N1 1 0

i

i-1

N2 1 0

i i-1
N3 0 1

i-1

i

N4 0 1

i-1

i
N5 1 1

9



If FGHE1E2 were not connected, it would contain at least one module of type
N1 or N2, another of type N3 or N4. Suppose that this situation occurs. Then,
just as in the proof of Theorem 9, FGHE1E2 contains at least one module of type
N5. �

5. The p-blocks of RΣΣl

l+3 for p 6= 3

In this section l > 0, n = 3 and p 6= 3. So G = Σl+3, and H = Σl. As
before (F,R, k) is a p-modular system. Let E1 be a p-block idempotent of RG and
let E2 be a p-block idempotent of RH such that E1E2 6= 0. Then there exist a
partition β ∈ E1 and a partition α ∈ E2, such that [α] can be obtained from [β]
by the successive removal of three nodes. As in the previous section, we will be
concerned with the module S[β\α], its formal character, and the formal character
of its p-modular reduction.

Suppose that kGHE1E2 has an simple module with central character (i, j, k),
where i, j, k ∈ Fp and j, k 6= i ± 1, k 6= j ± 1. Then this is the unique simple

kGHE1E2-modules. But any algebra with a single class of simple modules is inde-
composable. So kGHE1E2 is a block algebra in this case.

Suppose now that kGHE1E2 has an simple module with central character (i, i−
1, j), where i, j ∈ Fp and j 6= i−2, i−1, i, i+1. Then we may assume that kGHE1E2

has simple modules of type M5 and M6, with a = i and b = j, in the notation of
Lemma 4. The modules have formal characters (i−1, i, j) + (i−1, j, i) + (j, i−1, i)
and (i, i− 1, j) + (i, j, i− 1) + (j, i, i− 1), respectively. Using similar arguments to
those used in Theorems 9 and 10, we see that kGHE1E2 is a block algebra in this
case also.

From now on we assume that kGHE1E2 has an simple character with central
character (i, i− 1, i− 2), for some i ∈ Fp. Then there are four simple Hk3 -modules
that have central character (i − 2, i − 1, i). These are the modules M1,M2,M3 or
M4, with a = i, in the notation of Lemma 4.

Now consider the irreducible HF3 -modules of Lemma 4 whose parameters a, b, c
are all integers. We give necessary and sufficient conditions on the parameters
to ensure that the p-modular reduction has central character (i − 2, i − 1, i). For
modules of type M1,M2,M3 or M4 the condition is that a ≡ i mod p. We label
these possibilities as N1, N2, N3 or N4, respectively. For modules of type M5 or M6

we require a = i and b = i− 2, or a = i− 1 and b = i. We label these possibilities
as N5,1, N6,1, N5,0 or N6,0, respectively. For modules of type M7 the condition is

that {a, b, c} = {i− 2, i− 1, i}. We label any one of these modules by N7.
We construct the matrix below as follows. The rows are indexed by the possi-

ble irreducible FGHE1E2-modules. The columns are indexed by the simple Hk3 -
modules which have central character (i − 2, i − 1, i). Each entry gives the com-
position multiplicity of the column module in the p-modular reduction of the row
module.

10



[β\α] name M1 M2 M3 M4

i-2 i-1 i N1 1 0 0 0

i

i-1

i-2

N2 0 1 0 0

i-1 i

i-2
N3 0 0 1 0

i

i-2 i-1 N4 0 0 0 1

i-1 i

i-2
N5,1 1 0 1 0

i-2 i-1

i
N5,0 1 0 0 1

i

i-1

i-2

N6,1 0 1 0 1

i-1

i-2

i

N6,0 0 1 1 0

i

i-1

i-2

N7 1 1 1 1

The following result describes a symmetry of the decomposition matrix of RGH :

Lemma 11. The permutation i→ −i on formal characters induces an involutary
map on the irreducible FGH-modules and on the simple kGH-modules. For FGH

it is induced by transposition of partitions. The map commutes with p-modular
reduction and acts on the type of modules as follows:

M1 ↔M2, M3 ↔M3, M4 ↔M4,

N1 ↔ N2, N3 ↔ N3, N4 ↔ N4,

N5,i ↔ N6,1−i, N7 ↔ N7.

Theorem 12. Suppose that p 6= 3. Then RGHE1E2 is a block of RGH .
11



Proof. Suppose first that p 6= 2. Consider the following table:

FGH -modules kGH -module critical
residue

Additional FGH -
modules

N1, N2 − i N6,0 orN5,0

N1, N3 − i− 2 N5,1

N1, N4 − i N5,0

N1, N5,1 M1 − −
N1, N5,0 M1 − −
N1, N6,1 − i N7 orN5,0

N1, N6,0 − i− 2 N5,1 orN7

N3, N4 − i− 1 N7

N3, N5,1 M3 − −
N3, N5,0 − i− 1 N7

N4, N5,1 − i− 1 N7

N4, N5,0 M4 − −
N5,1, N5,0 M1 − −
N5,1, N6,1 − i− 1 N7

N5,1, N6,0 M3 − −
N5,0, N6,1 M4 − −

Its row are labelled by pairs of possible irreducible FGHE1E2-modules. We omit
any pair of modules if the pair of transpose modules (as given in Lemma 11) has
already been listed. If the pair has a common p-modular constituent, this is listed
in the second column. Otherwise, we apply Proposition 6 with the runner given
in the third paragraph. In this case the existence of the two modules implies
the existence of one of the simple modules given in the final column. We do not
consider pairs involving N7, as the p reduction of this module contains all simple
kGHE1E2-modules as composition factors.

For example, the first row considers the case that FGHE1E2 contains irreducible
modules of type N1 and N2. These modules have no common p-modular composi-
tion factor. For i = 1, 2, let βi be a partition in E1 such that S[βi\αi] is of type Ni,
for some αi ∈ E2. In the first row we consider runner i. If β2 has a removable node
on runner i, then there exists α3 ∈ E2 such that S[β2\α3] is of type N6,0. Otherwise,
Proposition 6 tells us that there exists j ≡ i mod p such that β1(i, j) belongs to
E1. But there exists α4 ∈ E2 such that S[β1\α4] is of type N5,0. This accounts for
the possibilities listed in the last column of the first row.

Suppose that FGHE1E2 has modules of type X1, X2 whose 3-modular decom-
positions do not have a common composition factor. The table can be used to show
that there exists an irreducible FGHE1E2-module Y such that:

• Xi and Y share an simple composition factor, for i = 1, 2, or
• dim(Y ) > dim(Xi), for i = 1, 2.

This is enough to show that the p-decomposition matrix of RGHE1E2 is connected.
It follows that RGHE1E2 is a p-block of FGH .

When p = 2, we must modify our arguments. For HK3 has only three families of
simple modules, namely those of type M1,M3,M4 (as each module of type M2 is
already of type M1). We get the same list of potential FGH modules N1, . . . , N7.
However now more of these modules have common p-modular composition factors.
The proof is then completed using a table similar to that given above for p > 3. �
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Example 13. The partition β = [5, 13] is the unique partition in a 5-block E1

of Σ8, as it has 5-weight 0. We may strip nodes of content 2, 3, 4 from β in 4
different ways, giving partitions that belong to the principal 5-block E2 of Σ5. The
corresponding block RΣΣ5

8 E1E2 contains modules of type N1, N2, N5 and N7.

Example 14. The principal 5-block E1 of Σ5 contains 5 partitions. We may strip
nodes of residue 2, 3 and 4 mod 5 from 4 of these, to give the partition [2] in the

principal 5-block E2 of Σ2. The corresponding block RΣΣ2
5 E1E2 contains modules

of type N1, N2, N6 and N8.

6. The p-blocks of RΣΣl

l+3 for p = 3

In this section p = 3 and (R,F, k) is a 3-modular system. We continue to assume
that G = Σl+3, H = Σl and n = 3. There are six simple Hk3 -modules that have
central character (1, 2, 0). These are modules of type M1 or M2, with a an integer,
in the notation of Lemma 4. For i ∈ F3, we use M1,i and M2,i for the modules
whose characters are (i− 2, i− 1, i) and (i, i− 1, i− 2), respectively.

Now consider the irreducible HF3 -modules of Lemma 4 whose parameters a, b, c
are all integers. All of these have 3-modular reduction with central character (i −
2, i− 1, i), assuming that a, b, c are distinct mod 3. We label a module of type Mj

by Nj,i, where i ≡ a mod 3.
We construct a matrix as follows. The columns are indexed by the simple Hk3 -

modules which have central character (0, 1, 2). Each row, apart from the last,
represents one of three possible irreducible FGHE1E2-modules, depending on the
value of i ∈ F3. Each entry gives the composition multiplicity of the column module
in the p-modular reduction of the row module. So the matrix has 19 rows.

13



[β\α] name M1,i M1,i−1 M1,i−2 M2,i M2,i−1 M2,i−2

i-2 i-1 i
N1,i 1 0 0 0 0 0

i

i-1

i-2

N2,i 0 0 0 1 0 0

i-1 i

i-2
N3,i 0 0 1 0 1 0

i

i-2 i-1 N4,i 0 1 0 0 0 1

i-1 i

i-2
N5,i 1 0 1 0 1 0

i

i-1

i-2

N6,i 0 1 0 1 0 1

i

i-1

i-2

N7 1 1 1 1 1 1

We now consider the effect of transposition of partitions:

Lemma 15. The permutation i→ −i on formal characters induces an involutary
map on the irreducible FGH-modules and on the simple kGH-modules. For FGH

it is induced by transposition of partitions. The map commutes with p-modular
reduction and acts on the type of modules as follows:

M1,i ↔M2,2−i,

N1,i ↔ N2,2−i, N3,i ↔ N3,2−i, N4,i ↔ N4,2−i,

N5,i ↔ N6,1−i, N7 ↔ N7.

Theorem 16. Suppose that p = 3. Then RGHE1E2 is a block of RGH .

Proof. Consider the following table:

14



FGH -modules kGH -module critical
runner

Additional FGH -
modules

N1,i, N1,i−1 − i N5,i−1

N1,i, N2,i − i− 2 N5,i orN6,i

N1,i, N2,i−1 − − N3,j orN4,j

N1,i, N2,i−2 − − N3,j orN4,j

N1,i, N3,i − i− 2 N5,i

N1,i, N3,i−1 M1,i − −
N1,i, N3,i−2 − i− 2 N5,i orN6,i

N1,i, N4,i − i N5,i−1

N1,i, N4,i−1 − i− 2 N5,i orN7

N1,i, N4,i−2 M1,i − −
N1,i, N5,i M1,i − −
N1,i, N5,i−1 M1,i − −
N1,i, N5,i−2 − i− 2 N5,i orN7

N1,i, N6,i − i N5,i−1 orN7

N1,i, N6,i−1 − i− 2 N5,i orN7

N1,i, N6,i−2 M1,i − −
N3,i, N3,i−1 − i− 2 N5,i orN7

N3,i, N4,i − i− 1 N7

N3,i, N4,i−1 M1,i−2 − −
N3,i, N4,i−2 M2,i−1 − −
N3,i, N5,i M1,i−2 andM2,i−1 − −
N3,i, N5,i−1 − i− 1 N7

N3,i, N5,i−2 M1,i−2 − −
N4,i, N4,i−1 − i− 2 N6,i orN7

N4,i, N5,i − i N5,i−1 orN7

N4,i, N5,i−1 M1,i−1 andM2,i−2 − −
N4,i, N5,i−2 M1,i−1 − −
N5,i, N5,i−1 M1,i − −
N5,i, N6,i − i N7

N5,i, N6,i−1 M1,i−2 andM2,i−1 − −
N5,i, N6,i−2 M1,i andM2,i−1 − −

Its row are labelled by pairs of possible irreducible FGHE1E2-modules. We omit
any pair of modules if the pair of transpose modules (as given in Lemma 15) has
already been listed. If the pair has a common 3-modular constituent, this is listed
in the second column. Consider the rows labelled by N1,i, N2,i−1 and N1,i, N2,i−2.
The existence of any one of these modules implies that E1 has positive 3-weight.
It then follows from Lemma 5 that FGHE1E2 has one of the modules labelled
N3,j or N4,j , for some j. Otherwise, we can apply Proposition 6 with the runner
given in the third paragraph. In this case the existence of the two modules implies
the existence of one of the simple modules given in the final column. We do not
consider pairs involving N7, as the p reduction of this module contains all simple
kGHE1E2-modules as composition factors.

Suppose that FGHE1E2 has modules of type X1, X2 whose 3-modular decom-
positions do not have a common composition factor. The table can be used to show
that there exists an irreducible FGHE1E2-module Y such that:

• Xi and Y share an simple composition factor, for i = 1, 2, or
• dim(Y ) > dim(Xi), for i = 1, 2.
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This is enough to show that the 3-decomposition matrix of RGHE1E2 is connected.
It follows that RGHE1E2 is a block of RGH . �
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