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Abstract

The Inverse Frobenius-Perron problem (IFPP) concerns the creation of discrete
chaotic mappings with arbitrary invariant densities. In this note, we present a new
and elegant solution to the IFPP, based on positive matrix theory. Our method
allows chaotic maps with arbitrary piecewise-constant invariant densities, and with
arbitrary mixing properties, to be synthesized.
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1 Introduction

The synthesis, or custom-design of chaotic maps, is a natural extension of
the research carried out on nonlinear dynamical systems over the past thirty
years. Ulam and Von Neumann had even studied the logistic map in the 1940s
[1]. Notwithstanding Von Neumann’s famous point about using deterministic
processes to generate randomness, synthetic chaotic maps do have many po-
tential applications, especially in hardware-based random-number generators,
and digital noise generators [2—4]. They may also be used to artifically recreate
physical data from real-world systems [5]. In this paper, we present an elegant
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way of creating designer chaotic maps with arbitrary invariant densities. The
synthesis method presented is based on the theory of positive matrices, and
originates in work on synchronised communication networks.

When a chaotic map is iterated, different initial conditions exponentially
diverge leading to completely different long-run behaviour. However, when
looked at statistically, many chaotic maps possess a single physically relevant
invariant density, which remains stable when random noise is added to the pro-
cess [6]. Given an arbitrary initial condition, the invariant density describes
where iterates end up on average. For simple maps such as the tent map, or
the Bernoulli (2¢ mod 1) map, iterates have an equal probability of land-
ing anywhere in the state-space: the natural invariant density p is constant,
and equals one [7]. Many maps, however, do not possess a simple invariant
measure.

The Frobenius-Perron operator P, is an operator on the space of probability
density functions [8]. The invariant density is a fixed point of the Frobenius-
Perron equation:

Pof(r) = - [ fix 1)

While it is relatively straightforward to calculate the invariant density p of
piecewise affine maps, most continuous maps do not possess a closed-form so-
lution to the Frobenius-Perron equation (especially where the invariant density
is a fractal).

Clearly, if it is very difficult to analyse a map to find its invariant density, then
the synthesis problem - generating a map which possesses a desired invariant
density - must seem quite a daunting prospect. However, Ulam conjectured
that the Frobenius-Perron operator could be approximated by the action of
a Markov map acting on a partition of the interval concerned [9]. The Ulam
conjecture was proved in 1976 by Li [10]. The Ulam matrix is a column
stochastic matrix which gives the probability of moving from any particular
interval in the partition to any other interval. The principle eigenvector of the
Ulam matrix is the invariant density of the map. Thus if a Markov matrix
can be synthesized for a particular eigenvector, then we have a solution for
the Inverse Frobenius-Perron problem (IFPP). The IFPP has been tackled
and solved by various groups (see [11] and references therein). The method
most relevant to this work is the solution of Géra and Boyarsky [12], [5].
They show how to generate a 3-band transformation from any given invariant
density. However, our method is more direct in that both the eigenvector and
the Ulam transition matrix are parameterized. No work is required to generate
the matrix - the procedure is completely mechanical. Our method also gives
complete control over the mixing properties of the map, independent of the
invariant density.



In the following section, we outline the synthesis method. We then give a
simple example of the application of the method to synthesize a map with a
prescribed invariant density. Some properties of the transition matrix are also
given, followed by conclusions. The appendix gives a little extra background
on the origins of the matrix used.

2 Synthesis Method

The following matrix arises naturally in the dynamical analysis of synchronised
communication networks based on TCP (Transmission Control Protocol). Fur-
ther properties of the matrix are given in the appendix, and the interested
reader should refer to [13], or [14], for the origins of this matrix.
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The matrix A is a column stochastic matrix, and is strictly positive when
a; >0and 0 < f; <1 Vie{l,---,n}, and so A can represent a Markov
process. From the theory of positive matrices, it is well-known that the matrix
A has a leading eigenvalue p(A) = 1, and a single eigenvector in the positive
orthant, called the Perron eigenvector [15]. The Perron eigenvector, z, of the
A matrix has the following form:

o= (22 3

Clearly, we can control the dominant eigenvector of the matrix through choice
of the a;; and (;. For our purposes, the matrix A is the Ulam matrix, and the
Perron eigenvector represents the invariant density of the process governed by
A. The Ulam matrix may be represented as a one-dimensional chaotic map
if we let each entry of the matrix denote the transition probability from one
interval to another. More formally, partition the unit interval into N equal sub-
intervals, {11, ..., In}. Let entry a;; of the A matrix denote the probability of
a transition from interval I; to interval I;, denoted p;;. To construct the map,
place a line segment of slope +1/p;; in the square defined by the intervals
I;, I;, for each entry of the matrix. It is convenient to start at the point (0,0)
and place the line segments end to end, although there are many possibilities,
as illustrated in Figure 1. The map in Figure 1 is one possible implementation
of the following transition matrix:
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Fig. 1. A possible one-dimensional map corresponding to a 4 x 4 transition matrix

1/41/31/40
1/41/6 1/4 1
1/21/41/40
0 1/41/40

We can write the matrix A in the following, more compact, form, where we
have normalized the alphas: > a; = 1.

r+ao(l=051) a(1—05) - ai(1—5,)
A 042(1‘—51) B+ as(1 = [3s) | (5)
an (1 = B1) B+ an(1 = B,)

It is possible to choose the a; and (; so that the eigenvector represents any
desired invariant density. For simplicity, we can set all of the 3; = 0.1 say,
and then determine the «a; for the desired density. Once the a; and f3; are
determined, the matrix A is fully determined, and can then be implemented
as a map.
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Fig. 2. Map corresponding to the A matrix in the example (6)

3 Example

As an example, we will synthesize a chaotic map whose invariant density has
a triangular shape: For simplicity, we partition the unit interval into five equal
segments. Let pgesirea = [1,3, 5,3, 1]. We then determine the «; with 3; = 0.1.
This gives us the following column-stochastic transition matrix:

0.1692 0.0692 0.0692 0.0692 0.0692
0.2077 0.3077 0.2077 0.2077 0.2077
A = 10.3462 0.4462 0.3462 0.3462 0.3462 (6)
0.2077 0.2077 0.2077 0.3077 0.2077
0.0692 0.0692 0.0692 0.0692 0.1692

A possible 1-D chaotic map corresponding to this transition matrix is shown
in Figure 2, and the invariant density of the map after 30000 iterations, pactua
is shown in Figure 3. The density has been scaled such that the first en-
try of pactuar = 1 to allow ready comparison with the desired invariant den-
sity. It can be seen that p,cua i very close to the desired invariant density,
p=11,3,5,3,1]. Figure 4 shows a typical output from the map. (MATLAB
code to implement the method is freely available at http://www.eeng.may.ie

/arogers/ifpp.)
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Fig. 4. Chaotic time-series produced by the map in Figure 2
4 Further Properties of the Transition Matrix

The matrix A arises naturally in the study of synchronised communication
networks, and is used to model the dynamics of networks employing TCP
congestion control [13] [14]. It has a number of interesting properties, which
we mention here.

(1) The matrix A is strictly positive as defined in section 2, or strictly non-
negative if we allow o; = 0. As such, it possesses a dominant eigenvalue
called the Perron eigenvalue A, of geometric and algebraic multiplicity 1.
The corresponding Perron eigenvector

T _ ay an

represents a fixed point of the linear system
W(k+1) = AW (k). For any other eigenvalue \; # \,, we have |\;| < A,.
(2) The rate of convergence to the fixed point is bounded by the second




largest eigenvalue of A. For our application, the second-largest eigen-
value determines how quickly we get to the desired invariant density.
The second-largest eigenvalue thus controls the mixing properties of the
map. As we can make the second-largest eignevalue as large or as small
as we like, we have complete control over the mixing properties, indepen-
dent of the invariant density. It can be shown that, apart from the Perron
eigenvalue, all the the eigenvalues of A lie within the interval [5;, 3,].
(3) If the (; are distinct, and are ordered such that 5; < B < -+ < 3,, then
it can be shown that the eigenvalues of A are interlaced with the 3; thus:

51</\1<62<)\2<"'<ﬁn<)\n:>\p:1- (7)

(4) The Lyapunov exponent of the map resulting from the matrix A can be
shown to be

1 1 1
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in the limit 5; — 0. We find this to be a very good approximation for
small ;.

5 Conclusions

From an engineering viewpoint, custom-design of chaotic maps is absolutely
necessary for possible future applications. Maps must be tailored to fit the
application. In this paper, we have presented a direct way of creating designer
chaotic maps with arbitrary invariant densities. The synthesis method pre-
sented is based on the theory of positive matrices, and originated in work on
synchronised communication networks. Its most useful property is its straight-
forward implementation. Moreover, our method allows complete control of the
mixing properties of the map, independent of the invariant density.
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A Transition matrix - supplementary material

The special form of the matrix A arises in the context of communication net-
works, and its origins are described thoroughly in [13] and [14]. Essentially,
the matrix comes about from a model of synchronised information sources op-
erating an Additive-Increase Multiplicative-Decrease (AIMD) congestion con-
trol algorithm. Networks of such devices in the presence of a bottleneck buffer
may be modelled as a positive linear system, whence we get the A matrix.
More recent results will be found in [16]. We present some further properties
of the matrix A below, which are proved in the aforementioned papers.

Lemma 1 For a positive column stochastic matriz A of the following form:
diag(Bi,. .., B3.)+ (/X a)lar, ..., [1—=B1, ..., 1=8,], and 3; € (0,1),

a; > 0, then the dominant (Perron) eigenvector of A, corresponding to the
sole unity eigenvalue is given by

aq Qp

=6 1= B,

Theorem 1 Consider the matrix A in Lemma 1. The following statements
are true:

z, = 0] .0 €R (A1)

(1) Ezcept for the Perron eigenvalue, all of the eigenvalues lie in the interval

[ﬂl?ﬂn]-
(2) If all the Bs are distinct, then §; < A\ < P2 < ... <[ <Ay =1

Outline Proof: The matrix A is diagonally similar to a matrix of the form
G YD + apf?)G where D = diag(3i,...,3,), and G is a diagonal matrix
(simple calculation). Using Lemma 1 together with this result, and standard
results on the symmetric eigenvalue problem (see for instance Theorem 8.6.2
in [17], or [18]), the proof of (1) and (2) follow directly.

References

[1] S. Ulam, J. von Neumann, On combinations of stochastic and deterministic
processes, Bulletin of the American Mathematical Society 53 (1947) 1120.

[2] R. L. Kautz, Using chaos to generate white noise, Journal of Applied Physics
86 (10) (1999) 5794-5800.

[3] L. Kocarev, Chaos-based cryptography: A brief overview, IEEE Circuits and
Systems Magazine 1 (3) (2001) 6-21.

[4] M. Delgado-Restituto, A. Rodriguez-Vazquez, Integrated chaos generators,
Proceedings of the IEEE 90 (5) (2002) 747-767.



[5] A. Boyarsky, P. Géra, Chaotic maps derived from trajectory data, Chaos 12 (1)
(2002) 42-48.

[6] H. G. Schuster, Deterministic Chaos, VCH, 1989.

[7] E. Ott, Chaos in Dynamical Systems, 2nd Edition, Cambridge University Press,
2002.

[8] A. Lasota, M. Mackey, Chaos, Fractals, and Noise, Vol. 97 of Applied
Mathematical Sciences, Springer-Verlag, 1994.

[9] S. M. Ulam, A Collection of Mathematical Problems, Vol. 8 of Interscience
Tracts in Pure and Applied Math, Interscience, 1960.

[10] T. Li, Finite approximation for the frobenius-perron operator: A solution to
ulam’s conjecture, Journal of Approximation Theory 17 (1976) 177-186.

[11] E. M. Bollt, Controlling chaos and the inverse frobenius-perron problem:
Global stabilization of arbitrary invariant measures, International Journal of
Bifurcation and Chaos 10 (5) (2000) 1033-1050.

[12] P. Géra, A. Boyarsky, A matrix solution to the inverse frobenius-perron
problem, Proceedings of the American Mathematical Society 118 (2) (1993)
409-414.

[13] R. Shorten, D. Leith, J. Foy, R. Kilduff, Analysis and design of synchronised
communication networks, in: Proceedings of 12th Yale Workshop on Adaptive
and Learning Systems, 2003.

[14] A. Berman, R. Shorten, D. Leith, Positive matrices associated with synchronised
communication networks, Linear Algebra and Its Applications (Accepted).

[15] D. G. Luenberger, Introduction to Dynamic Systems, Wiley, 1979.

[16] D. Leith, et al., Stochastic equilibria of aimd communication networks,
submitted to SIAM Journal on Matrix Analysis and Applications.

[17] G. Golub, C. van Loan, Matrix Computations, Johns Hopkins University Press,
1996.

[18] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, 1985.



