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We consider unambiguous identification of coherent states of electromagnetic field. In particular,
we study possible generalizations of an optical setup proposed in M. Sedlák et al., Phys. Rev. A 76,
022326 (2007). We show how the unambiguous identification of coherent states can be performed
in a general case when multiple copies of unknown and the reference states are available. We also
investigate whether reference states after the measurement can be “recovered” and further used for
subsequent unambiguous identification tasks. We show that in spite of the fact that the recovered
reference states are disturbed by measurements they can be repeatedly used for unambiguous iden-
tifications. We analyze the role of various imperfections in preparation of the unknown and the
reference coherent states on the performance of our unambiguous identification setup.
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I. INTRODUCTION

Discrimination of quantum states is a challenging task
which dramatically differs from discrimination of states
of a classical system. The main difference between quan-
tum and classical discriminating problems is that single
copies of nonorthogonal quantum states cannot be distin-
guished perfectly. There exist several strategies how to
approach the problem of quantum-state discrimination
which are related to different choices of a figure of merit
that defines what is considered to be the best measure-
ment. In particular, the strategy that minimizes a mean
probability of error is called the min-error approach [1].
Another equally well motivated strategy is the so-called
unambiguous discrimination [2–4]. In this strategy errors
in conclusions are not permitted, which implies that also
inconclusive results are acceptable. Nevertheless, when-
ever we obtain a conclusive result we know for sure that
it is correct. Various discrimination tasks may differ by
a prior information about the quantum system we are
measuring. The discrimination among two known pure
states represents a situation, where we have the maxi-
mum knowledge about the possible preparations of the
system. On the other hand one can consider a situation
when we have no classical information available about
the preparation. Specifically, instead of being given only
one unknown quantum system, we are given additional
quantum systems, denoted as reference states, that rep-
resent possible preparations. Our task is to determine
unambiguously with which reference states the unknown
quantum system match. This problem is coined as the
Unambiguous Identification (UI) and can be used, for ex-
ample, in a communication of parties that do not share
common reference frame. In such case reference states
can be seen as an “alphabet” that is always send along
with the classical information carried by the unknown
state. If parties are communicating over medium unsta-
ble in time (e.g. optical fiber, air,. . .) then the UI over-

comes a standard need for a re-calibration of communi-
cation channel induced by the changes in the medium.

In our previous paper [5] (to which we will refer as to
Paper I) we showed that the UI for modes of an electro-
magnetic field can be efficiently performed if we known
that states to be discriminated are coherent states with
unknown amplitudes. We shown that this prior knowl-
edge (or, a reduction of a set of considered states of an
electromagnetic mode) significantly improves the success
of a discrimination process. Furthermore, we proposed
a simple optical setup consisting of a set of beam split-
ters and photodetectors for implementation of optimal
UI measurement. This setup was also recently experi-
mentally realized by L. Bart̊ušková et al. [6].

In the present paper we study possible generalizations
of an optical setup proposed in Paper I and we investi-
gate modifications and generalizations of the unambigu-
ous identification of coherent states. More specifically,
in Sec. II we show how the UI of coherent states can
be performed in a general case when multiple copies of
unknown and reference states are available. This inves-
tigation is motivated by the observation that with the
increase of the number of identically prepared particles
we can better identify the preparator, so we are ”closer”
to a classical domain. In Sec. III we investigate the
possibilities for a recovery of reference states after the
measurement is performed. This recovery process might
seem to be prohibited by the rules of quantum mechan-
ics (due to irreversible disturbance of a quantum state
by a measurement). Nevertheless, we show that in spite
of the fact that the recovered reference states are “de-
graded” (disturbed), nevertheless they can be used in the
next round of UI - this is true under the condition that
an undisturbed (new) copy of an unknown state is pro-
vided. Such a scenario can be seen as a repeated search in
a quantum database, where the data, i.e. the reference
states, degrade with their repeated use. In Sec IV we
investigate the influence of various imperfections and a



noise on the performance of our UI setups. Our findings
are summarized in Sec. V while the Appendix contains
some technical details of our calculations and proofs.

II. GENERAL UI MEASUREMENT STRATEGY

WITH BEAM SPLITTERS

We start our investigation of unambiguous identifica-
tion tasks with posing the problem within a sufficiently
wide framework. Specifically, we shall consider a set
of modes of quantum electromagnetic field (linear har-
monic oscillators) each of which with a semi-infinite-
dimensional Hilbert space H∞. In addition, we shall
consider that each of the mode is prepared in a coher-
ent state of a specific amplitude. All together we will
consider a set of M +1 groups of electromagnetic modes.
The group A of nA modes A1, . . . , AnA

carries nA copies
of an unknown coherent state |α?〉. Each of the remain-
ing M groups B, C, D, . . . contains nB, nC , nD, . . . copies
of the reference states |α1〉, |α2〉, |α3〉, . . . , |αM 〉, respec-
tively. Moreover, we are guaranteed that the unknown
state |α?〉 is the same as one of the reference states |αk〉
k = 1, . . . , M . Our task is to find out unambiguously
with which reference state the unknown state matches.
Thus, in general, the discrimination problem corresponds
to a selection among one of M possible types of states:

|Ψi〉ABC... ≡ |αi〉⊗nA

A ⊗ |α1〉⊗nB

B ⊗ |α2〉⊗nC

C ⊗ . . .

. . . ⊗ |α1〉⊗nN

N , (2.1)

with i = 1, 2, . . . , M . The most general measurement
strategy unambiguously discriminating among these M
possibilities can be described by a positive operator value
measure (POVM) consisting of M + 1 elements Ei with
i = 0, 1, . . . , M . The element Ei corresponds to a correct
identification of |Ψi〉 while E0 corresponds to an incon-
clusive result, i.e. the failure of the measurement. These
elements must obey “no-error” conditions [Eq. (2.2)] and
they have to constitute a proper POVM [Eq. (2.3)]:

∀i 6= j T r[Eiρj ] = 0; ρi = |Ψi〉〈Ψi|; (2.2)

Ei ≥ 0, E0 ≥ 0; E0 +

M
∑

i=1

Ei = 11. (2.3)

We assume that the states of the type |Ψi〉 appear with
an equal prior probability ηi = 1/M . The performance of
this UI measurement can be quantified by a probability
of identification for a particular choice of reference states

P (|α1〉, . . . , |αM 〉) =

M
∑

i=1

ηiTr[Eiρi] . (2.4)

However, a more adequate figure of merit is its average
value, i.e.

P =

∫

CM

P (|α1〉, . . . , |αM 〉)χ(α1, . . . , αM ) dα1 . . . dαM ,

(2.5)

where χ(α1, . . . , αM ) is the probability distribution de-
scribing our knowledge about the choice of reference
states. The optimality of a UI measurement is defined
with respect to the average performance P. However, we
will see that in most of the optical setups we propose it
suffices to optimize P (|α1〉, . . . , |αM 〉), because the opti-
mal value of the transmittivities in the setup does not
depend on specific reference states. In Eq. (2.5) we in-
tegrate over multiple infinite (complex) planes of com-
plex amplitudes. Unfortunately, a uniform distribution
on an infinite plane can not be properly defined. Thus,
χ(α1, . . . , αM ) can not be uniform, but instead should
be “regularized”, i.e. it should satisfy some reasonable
physical requirements. For example, the probability of
having reference states with very big amplitudes, i.e. of
very high energy, should be vanishing. In the present
paper we will calculate P (|α1〉, . . . , |αM 〉), because most
of the features that the averaged probability P will have
are already apparent in P (|α1〉, . . . , |αM 〉).

In Paper I we focused our attention mainly on the UI
problem with a single copy of an unknown state and a
single copy of each of two reference states (M = 2,nA =
nB = nC = 1). We proposed a simple efficient UI mea-
surement utilizing three beam splitters and two photode-
tectors. The whole setup is supposed to operate as fol-
lows: The unknown state |α?〉 is split by the first 50/50
beam splitter. As a result we obtain two equally “di-
luted” copies of the unknown state [15] described by a
vector | 1√

2
α?〉 ⊗ | 1√

2
α?〉. Each of these “copies” | 1√

2
α?〉

is, together with one of the reference states, fed into the
second (respectively the third) unbalanced beam split-
ter. The second (respectively the third) beam splitter
performs the comparison of the diluted unknown state
| 1√

2
α?〉 with the first (respectively the second) reference

state. Detection of photons at the output modes of
these quantum-state comparison measurement setups [7–
9] unambiguously indicates that |α?〉 differs from |α1〉 or
|α2〉. This enables us to conclude that |α?〉 = |α2〉 or
|α?〉 = |α1〉, respectively. We show in Appendix A, that
this measurement is optimal if we restrict ourselves to
discrimination of coherent states with the use of linear
optical elements, number resolving photodetectors.

Naturally, coherent states encode complex numbers.
From this point of view the state | 1√

2
α?〉 carries for-

mally the whole information about the complex ampli-
tude. This is due to the fact that we know the factor
λ = 1/

√
2 by which α? is rescaled. If the complex ampli-

tude α? is encoded in the state |λα?〉 then for 0 ≤ λ < 1
we will speak about a “diluted” unknown state while the
case λ > 1 will be referred to as a “concentrated” un-
known state |α?〉. These terms come from the fact that
the “diluted” state can be obtained by mixing a coher-
ent state and a vacuum at an input of a beam split-
ter. As a result of the beam splitter transformation two
modes at the output of the beam splitter are in the di-
luted states. On the contrary, the “concentrated” state
can be prepared by launching two copies of the same
coherent state into the beam splitter. As a result we ob-



FIG. 1: The beamsplitter setup designed for constructive in-
terference of the same input coherent states. Out of k copies
of a coherent state |α〉 we obtain at the output of a sequence
of k − 1 beamspitters one mode in the coherent state |

√
2α〉

and k − 1 modes in a vacuum state |vert0〉.

tain one of the output modes in the “concentrated” state
while the second mode in the vacuum state. Using a se-
quence of beamsplitters and corresponding resources one
can prepare “diluted’ or “concentrated” states with arbi-
trary value of the scaling factor λ. Actually, preparation
of “concentrated” states is the main idea we will employ
in our investigation of the UI measurement with multiple
copies of unknown and reference states. At the beginning
of the UI measurement we will, for each kind of a state,
concentrate the information encoded in its k copies into a
single quantum system. This can be done by a sequence
of k − 1 beam splitters (see Fig. 1) with transmitivities
chosen so that the input state |β〉⊗k constructively inter-

feres to produce the state |
√

kβ〉⊗ |0〉⊗k−1. More details
about this transformation can be found in Sec. III.A
of [9]. The result of these preliminary transformations
is a mapping of possible types of states |Ψi〉 into states
|√nAαi〉A1 ⊗|√nBα1〉B1 ⊗|√nCα2〉C1 ⊗ . . .⊗|0〉t, where
t = nA − 1 + nB − 1 + . . . + nM − 1. As a next step
we will use the setup proposed in Sec. III of Paper I for
a single copy of the unknown state and single copies of
M reference states. Of course, as we will see below the
transmitivities of all beam splitters in the setup must be
modified according to the number of copies of the un-
known and the reference states we are given.

A. Two types of reference states

The unambiguous identification of two types of coher-
ent reference states is the first natural step in generalizing
the scenario with single copies of unknown and reference
states investigated in Paper I. In this section we consider

FIG. 2: The beamsplitter setup designed for an unambigu-
ous identification of multiple copies of two types of coherent
states.

M = 2 and nA, nB, nC are arbitrary. The above men-
tioned idea of “concentration” of quantum information
implies that we first feed all provided copies of the un-
known state into nA−1 beam splitters to obtain the first
state |√nAα?〉 in the mode A1 (for brevity later called
only A). The other modes A2 . . . AnA

end up in a vacuum
state, therefore we will not consider them further. Simi-
larly, nB−1 (respectively, nC−1) beam splitters are used
to prepare the state |√nBα1〉 (respectively, |√nCα2〉) in
the modes B1 (C1). Next, we feed these concentrated
states into essentially the same scheme as in Paper I (see
Fig. 2). Thus, altogether we are going to use nA+nB+nC

beam-splitters. The analysis of the setup presented in
Fig. 2 is analogous to Paper I, therefore we comment on
it only briefly.

A beamsplitter transforms two input modes prepared
in coherent states |α〉 and |β〉, respectively, as |α〉⊗|β〉 7→
|
√

Tα +
√

Rβ〉 ⊗ | −
√

Rα +
√

Tβ〉 where R, T stands
for a reflectivity and a transmittivity coefficients of the
beamsplitter. The setup in Fig. 2 employs one additional
input mode D initially prepared in a vacuum state, i.e.
the state vector describing four input modes reads

|Φin〉 = |√nAα?〉A ⊗ |√nBα1〉B ⊗ |√nCα2〉C ⊗ |0〉D ,

where α? is guaranteed to be either α1 or α2. The action
of the three beamsplitters in the setup is described by a
unitary transformation

|Φin〉 7→ |Φout〉 = (U
(2)
AB ⊗ U

(3)
CD)(U

(1)
AD ⊗ IBC)|Φin〉 ,

where U
(j)
XY is associated with the j-th beamsplitter Bj

acting on the modes X and Y . Since beamsplitters do not
entangle coherent states it follows that the output state



|Φout〉 remains factorized. In the first step the beam-
splitter B1 with transmittivity T1 prepares two “diluted”
copies of the state |√nAα?〉, i.e.

|0〉D ⊗ |√nAα?〉A 7→ |
√

R1nAα?〉D ⊗ |
√

T1nAα?〉A .(2.6)

In the second step the beamsplitters B2, B3 perform the
transformation such that the output state reads

|Φout〉 = |out〉A ⊗ |out〉B ⊗ |out〉C ⊗ |out〉D , (2.7)

with

|out〉A = | −
√

R2nBα1 +
√

T2T1nAα?〉A ,

|out〉B = |
√

T2nBα1 +
√

R2T1nAα?〉B ,

|out〉C = | −
√

R3R1nAα? +
√

T3nCα2〉C ,

|out〉D = |
√

T3R1nAα? +
√

R3nCα2〉D .

A crucial observation is that the parameters Tj, Rj =
1 − Tj can be adjusted so that either the mode A, or
the mode C, ends up in a vacuum state providing that
α? = α1, or α? = α2, respectively. In particular, setting
the transmittivities to

T2 =
1

1 + nA

nB
T1

; T3 =
1 − T1

nC

nA
+ 1 − T1

, (2.8)

we find

|out〉A = |
√

R2nB(α? − α1)〉A ;

|out〉B = |
√

T2nBα1 +
√

R2T1nAα?〉B ;

|out〉C = |
√

T3nC(α2 − α?)〉C ;

|out〉D = |
√

T3R1nAα? +
√

R3nCα2〉D . (2.9)

Finally, we perform photodetection in output the
modes A and C by photodetectors D2 and D1, respec-
tively. By detecting a photon in one of the two modes
we can unambiguously identify the unknown state. In
particular, for these two modes we have

α? = α1 ↔ |0〉A ⊗ |
√

T3nC(α2 − α1)〉C ;

α? = α2 ↔ |
√

R2nB(α2 − α1)〉A ⊗ |0〉C . (2.10)

We note that due to the fact that at least one of the
modes is in a vacuum state both detectors cannot “click”
(detect the photons) at the same time. Therefore, in each
single run of the experiment only three situations can
happen:
i) none of the detectors click,
ii) only the detector D1 clicks,
iii) only the detector D2 clicks.
If only the detector D1 clicks that following Eqs. (2.10)
we unambiguously conclude that α? = α1. Similarly, if
only the detector D2 clicks we unambiguously conclude
that α? = α2. If none of the detectors click we cannot
determine which mode was not in the vacuum state and
therefore this situation represents an inconclusive result.

If α? = α1, then the probability of a correct identifica-
tion is given as the probability of detecting at least one
photon in the mode C

P1 = 1−|〈0|
√

T3nC(α2−α1)〉|2 = 1−e
− nCnA(1−T1)

nC+nA(1−T1)
|α1−α2|2 .
(2.11)

Analogously, in the case α? = α2 the probability of a
correct identification reads

P2 = 1−|〈0|
√

R2nB(α2−α1)〉|2 = 1−e
− nBnAT1

nB+nAT1
|α1−α2|2 .

(2.12)
Thus the total probability of the identification of refer-
ence states |α1〉 and |α2〉 is equal to

P(|α1〉, |α2〉) = η1P1 + η2P2 =
1

2
(P1 + P2) . (2.13)

Next we will optimize the performance of the setup by
choosing an appropriate value of transmittivity T1. The
definition of the uniform distribution on the set of co-
herent states is problematic, therefore we first focus our
attention on the probability of identification for a partic-
ular choice of reference states |α1〉 and |α2〉, respectively,
expressed by Eq. (2.13).

The investigation of the first derivative ∂P(|α1〉,|α2〉)
∂T1

re-
veals that the optimal choice of T1 does not depend on
the reference states |α1〉, |α2〉 only if nB = nC . As one
expects, because of symmetry arguments, T1 is optimally
set to 1/2 if nB = nC . In such a case, P(|α1〉, |α2〉) can
be simplified to take the following form:

P(|α1〉, |α2〉) = 1 − e
− nAnB

nA+2nB
|α1−α2|2 . (2.14)

Let us note that if nB 6= nC then there exists a prior
probability η1 = 1 − η2 for which the optimal choice of
T1 does not depend on the reference states. However, as
already mentioned, we focus on the ηi = 1/M case and
we will assume that we are given the same number of
copies of each reference state.

1. Trade-off of resources

The number of copies of an unknown state or of a ref-
erence state we have can be seen as a measure of some
resource. From this point of view an interesting question
immediately arises. Which type of resource is more use-
ful for an unambiguous identification of coherent states?
Are unknown states more useful than reference states or
vice versa? To answer these questions we consider the
following situation. Imagine we will get altogether N
quantum systems (modes of electromagnetic field) but
we have a liberty to specify whether the specific mode is
prepared in in the unknown state or in one of the two
reference states. Thus, if we ask for nA copies of the
unknown state we will obtain nB = nC = (N − nA)/2
copies per a reference state. Let us for simplicity assume
that N and nA have the same parity. The probability of



identification for a reference states |α1〉, |α2〉 then reads

P(|α1〉, |α2〉) = 1 − e−
nA(N−nA)

2N
|α1−α2|2 (2.15)

and it is maximized for nA = ⌊N/2⌋, because the terms
in the exponent are nonnegative. Hence, from the point
of view of the resources, it is optimal to ask for a prepa-
ration of ⌊N/2⌋ unknown states and the equal number of
copies per a reference state (specifically, ⌊N/4⌋).

2. Infinite number of copies of reference states

Unambiguous identification is a discrimination task
in which we have very limited prior knowledge about
the possible preparations of the quantum system we are
given. The amount of information about the possible
preparations is essentially given by the number of copies
of the reference states we obtain. In the limit of infinite
number of them the preparation of reference states be-
come known to us and thus the UI is becoming equivalent
to discrimination among known states. The unambigu-
ous discrimination among pair of known pure states (for
equal prior probabilities) was solved by Ivanovic, Dieks
and Peres [2–4] in 1987. Their optimal measurement suc-
ceeds with a probability 1−|〈ϕ1|ϕ2〉|, where |ϕ1〉, |ϕ2〉 are
the known states in which the system can be prepared.
In what follows we will show that in the aforementioned
limit (M = 2, nB = nC → ∞) our beam-splitter setup
achieves the same optimal performance. In order to prove
this we have to evaluate the limit of Eq. (2.14):

P (|α1〉, |α2〉, nB = nC → ∞)

= lim
nB→∞

1 − e
− nAnB

nA+2nB
|α1−α2|2

= 1 − e−
nA
2 |α1−α2|2

= 1 − |〈α1|α2〉|nA . (2.16)

In the last equality we have used the expression for
the modulus of the overlap of the two coherent states

|〈α1|α2〉|2 = e−|α1−α2|2 . In the limit nB = nC → ∞
the two known states that could be unambiguously dis-
criminated by the Ivanovic-Dieks-Peres measurement are
|ϕ1〉 = |α1〉⊗nA , |ϕ2〉 = |α2〉⊗nA . Thus, we see that
Eq. (2.16) is equal to 1 − |〈ϕ1|ϕ2〉| and so our beam-
splitter setup performs optimally in this limit. Let us
note that for nA = 1 our setup is in this limit equivalent
to the setup proposed by K. Banaszek [10] for unam-
biguous discrimination between a pair of known coher-
ent states. For nB = nC → ∞ our T2 → 1, T3 → 0, i.e.
the “concentrated” reference states are nearly reflected,
which induces a displacement of the “diluted” unknown
state | 1√

2
α?〉. In the same way K. Banaszek uses very

unbalanced beam-splitters to cause the displacement of
the outputs of the beam-splitter.

For the limiting case M = 2, nA = nB = nC → ∞
it is natural to expect a classical behavior, i.e. a unit
probability of identification. For unequal reference states

this result is easily obtained by taking the limit of Eq.
(2.14).

3. Weak implementation of UI measurement

Let us consider a basic version of UI of coherent
states (M = 2, nA = nB = nC = 1). We will
describe a measurement, which in the case of suc-
cess, leaves all the input states nearly unperturbed and
achieves the same probability of identification as the
original setup from Paper I. The measurement proce-
dure goes as follows. We first equally split each of
our resource states into N parts. Thus, we have N
copies of states | 1√

N
α?〉, | 1√

N
α1〉, | 1√

N
α2〉. We use the

beam-splitter setup from Paper I for each of these N
triples. The UI measurement performed on the first triple

will succeed with probability 1 − e
− 1

3 | 1√
N

α1− 1√
N

α2|2 =

1 − e−
1

3N
|α1−α2|2 . If we find α? = α1 we can

combine the unmeasured 3N − 3 modes into states

|
√

2N−2
N α1〉, |

√

N−1
N α2〉. For α? = α2 we operate anal-

ogously obtaining |
√

N−1
N α1〉, |

√

2N−2
N α2〉. If UI mea-

surement of the first triples fails we continue by mea-
suring the other triples until we find a conclusive out-
come or use all the triples. In case of k-th triple lead-
ing to conclusive result we concentrate the remaining

resources to obtain states |
√

2(N−k)
N α1〉, |

√

N−k
N α2〉 or

|
√

N−k
N α1〉, |

√

2(N−k)
N α2〉 depending on α? being α1 or

α2. We do not get a conclusive result only if the measure-
ments of all N triples yield inconclusive results. Hence,
the overall probability of successful identification of the

unknown states is 1− (e−
1

3N
|α1−α2|2)N = 1−e−

1
3 |α1−α2|2

and equals that of the optimal beam-splitter setup from
Paper I. However, in contrast to the setup from Paper
I, if a conclusive result is obtained before measuring the
N -th triple we still have “diluted” input states at our
disposal.

B. More types of reference states

In the previous section the optimal values transmittiv-
ities in our beam-splitter setup were state-independent
only in the case of equal number of copies per refer-
ence state. Thus, for more than two types of reference
states we will discuss only cases with the same number of
copies of each reference state. Unfortunately, we will see
that even in this restricted scenario, the optimal choice
of transmittivities in the setup we propose will depend
on the reference states.

The generalization of the beam-splitter unambiguous
identification scheme from the previous subsection is
straightforward. We start by preparing the “concen-
trated” states |√nAα?〉, |

√
nBα1〉, . . . , |

√
nBαM 〉. We use

M − 1 beam-splitters to sequentially split the “concen-



trated” unknown state |√nAα?〉 into M states. Each
of these M states is then merged with one of the “con-
centrated” reference states |√nBα1〉, . . . , |

√
nBαM 〉 on

beam-splitter C1, . . . , CM . The transmittivity Tk (of
beam-splitter Ck) is chosen so that destructive interfer-
ence yields vacuum on the second output port of Ck for
α? = αk. These output ports are monitored by photode-
tectors D1, . . . , DM . Detection of at least one photon by
photodetector Dk unambiguously indicates α? 6= αk. If
all photodetectors except the k-th fire, then we conclude
that α? = αk. For M = 2 we had freedom in choos-
ing the ratio T1 with which the “concentrated” unknown
state |√nAα?〉 was split into two parts used for the two
comparisons. In order to maximize the probability of
identification we can tune M − 1 transmittivities of the
beam-splitters that result in splitting the “concentrated”
unknown state. The optimal choice of these transmittiv-
ities even for equal prior probabilities ηj = 1/M depends
on the choice of the reference states. Once we consider
nB = nC = . . . then let us consider equal splitting of
the “concentrated” unknown state into M parts, even
though it is not necessarily the optimal choice. In such
a case the beam-splitters C1, . . . , CM are performing the
following transformation:

Ck : |
√

nA

M
α?〉 ⊗ |√nBαk〉 7→ |out1〉 ⊗ |out2〉;

|out1〉 = |
√

TknA

M
α? +

√

RknBαk〉; (2.17)

|out2〉 = | −
√

RknA

M
α? +

√

TknBαk〉.

The condition of |out2〉 being a vacuum for α? = αk

forces us to set the transmittivity to Tk = nA/(nA +
MnB). The probability of observing at least one photon

in |out2〉 if α? = αj is 1− e
− nAnB

nA+MnB
|αj−αk|2 . The corre-

sponding probability of identification therefore reads:

P (|α1〉, . . . , |αM 〉) =

M
∑

j=1

1

M

∏

k 6=j

(1 − e
− nAnB

nA+MnB
|αj−αk|2) .

(2.18)

Let us note that for a single copy of an unknown state
and a single copy of a reference state (nA = nB = nC =
. . . = 1) the scenario is the same as in the Sec. IV.E of
Paper I. In that special case both proposed setups coin-
cide, and therefore also the previous expression reduces
to Eq. (4.30) from Paper I.

III. RECOVERY OF REFERENCE STATES

AFTER THE MEASUREMENT

In this section we examine the information that re-
mains in the unmeasured modes of our beam-splitter
UI setups. In particular, we focus on the possibility of
“recreating” the reference states out of those modes. This

can be useful for creating a quantum database, which
would not be completely destroyed by the search per-
formed on it. Instead, the data i.e. the reference states
would degrade gradually with repeated use. First, we
show that reference states can not be ”recreated” without
additional resources if the first unambiguous identifica-
tion yields an inconclusive outcome. Although, this may
seem disappointing, we show that the unmeasured states
still can be used efficiently for UI if the same unknown
state is expected. Next, we examine the situation of the
first UI producing a conclusive result known to us. In
that case “diluted” reference states can be created, and
they can be used for another independent unambiguous
identification.

Let us consider the basic version of unambiguous iden-
tification of coherent states (M = 2, nA = nB = nC = 1).
The beam-splitter setup for this scenario was originally
proposed in Paper I and coincides with the setup de-
picted in Fig. 2. Modes B and D are not entangled with
other modes, therefore their state does not depend on
the measurement performed by the two photodetectors.
The states of the modes B, D is given by the Eqs. (2.8),
(2.9), where T1 is set to 1/2 (for details see section II A).

|out〉B = |
√

2

3
α1 +

√

1

6
α?〉B

|out〉D = |
√

1

6
α? +

√

2

3
α2〉D (3.1)

Using beam-splitters, phase shifters and known coherent
states we can produce out of states Eq. (3.1) a coherent
state of the form

|a(

√

2

3
α1 +

√

1

6
α?) + b(

√

1

6
α? +

√

2

3
α2) + γ〉, (3.2)

where a, b, γ ∈ C. Imagine we want to recover the first
reference state. Hence, we want the state from Eq. (3.2)
to be |λα1〉. Even though we know that either α? = α1,
or α? = α2, a suitable choice of a, b for one of these pos-
sibilities produces “junk” in the other case. Analogous
reasoning works for the second reference state. For the
inconclusive result of UI measurement we do not know,
which possibility took place, and thus the reference states
can not be recovered.

A. Repetition of UI for same unknown state

Although, the unmeasured modes of the beam-splitter
setup seem useless they can be exploited in the UI of
the same unknown state |α?〉. Namely, we can feed
them instead of reference states into the beam-splitter
scheme shown in Fig. 2. The concatenation is illus-
trated in Fig. 3. The transmittivity of the beamsplit-
ter B2 (respectively, B3) can be set so that its mea-
sured output is in a vacuum if α? = α1 (respectively,
if α? = α2). If we chose (for symmetry reasons) T1 = 1/2
then the transmittivities T2, T3 should be set to T2 = 3/4,



FIG. 3: The beam-splitter setup designed for a subsequent
unambiguous identification of multiple copies of an unknown
coherent state.

T3 = 1/4. This implies that the photodetectors measure

the states |(α? − α1)/
√

6〉, |(α2 − α?)/
√

6〉. Thus, for
both cases α? = α1, α? = α2 we can observe a photon in
only one of the photodetectors and with the probability

1 − e−
1
6 |α1−α2|2 unambiguously conclude which possibil-

ity took place. Hence, the probability 1 − e−
1
6 |α1−α2|2

is a conditional UI probability after a first identification
measurement returned an inconclusive result. The over-
all probability of an unambiguous identification for this

two-round measurement is 1 − e−
1
2 |α1−α2|2 . This is due

to the fact that the measurement fails only if both mea-
surement rounds yield an inconclusive outcome.

The two-round measurement is essentially an UI
scheme for M = 2, nA = 2, nB = nC = 1, so we can
compare its performance with the corresponding beam-
splitter scheme Eq. (2.14) analyzed in Sec. II A. Indeed,
the performance is the same, but the two round measure-
ment has one possible advantage. If the first round gives
a conclusive result then we still have an unmeasured copy
of the unknown state (i.e. copy of |α1〉 respectively |α2〉)
at our disposal. This is a similar advantage as in the case
of weak implementation of the UI measurement discussed
in Sec. II A 3.

B. Repetition of UI with different unknown state

As we illustrated in the beginning of Sec. III it is not
possible to “recreate” the reference states by linear optics
after an inconclusive result of an UI measurement is ob-
tained. On the contrary, we will show that when a conclu-
sive result is registered then both reference states can be
“recreated”. Although, this recreation is not perfect, the
recreated reference states are bit “diluted”. Neverthe-
less, subsequently, these states can be used as reference

FIG. 4: The beam-splitter setups designed for the recovery
of unmeasured modes from Fig. 2. In the case α? = α1 the
setup a) is used, however for α? = α2 the setup b) is used.

states for an UI with a different, independently prepared
unknown state |β?〉 (either β? = α1 or β? = α2).

When the α? = α1 result is found in the first round
of the UI, the unmeasured modes B, D are in states

|
√

3
2α1〉B and |

√

1
6α1 +

√

2
3α2〉D, respectively. Thus, we

have the “concentrated” first reference state |
√

3
2α1〉 in

the mode B. Let us now examine whether the reference
state |α2〉 can be “recreated” out of the modes B and D.
The natural idea is to use the mode B to shift the mode
D via a beam-splitter so that the α1 part of the ampli-

tude in |
√

1
6α1 +

√

2
3α2〉D is canceled. This happens for

the transmittivity of the beam-splitter equal to 9/10:

|
√

3

2
α1〉 ⊗ |

√

1

6
α1 +

√

2

3
α2〉 7→

7→ |
(

√

27

20
+

√

1

15

)

α1 +

√

1

60
α2〉 ⊗ |

√

3

5
α2〉 . (3.3)

Hence, we know how to recover separately either the
first or the second reference state. If solely such a single
state is used in the subsequent UI measurement then the
probability of success is bounded from above by 1/2, be-



cause only one type of a reference state can be identified.
Thus, we want to find a setup, which extracts both types
of reference states simultaneously and allows for a sub-
sequent round of the unambiguous identification of |β?〉.
Such a scheme is presented in Fig. 4a. The beam-splitter
B1 splits the “concentrated” first reference state into two
parts. One part can be directly used for the next round
of UI, the second part cancels the α1 contribution in the
amplitude of the coherent state in the mode D via the
beam-splitter B2. If we set transmittivity of the beam-
splitter B1 to be T R

1 , then the requirement of cancelation
of the α1 contribution of the amplitude of the coherent
state in the mode D constrains the transmittivity of B2

to be T R
2 = (9 − 9T R

1 )/(10 − 9T R
1 ). The corresponding

“recreated” reference states then read

|
√

3

2
T R

1 α1〉, |
√

6 − 6T R
1

10 − 9T R
1

α2〉 . (3.4)

We want to use these two states instead of the refer-
ence states |α1〉, |α2〉 in the next round of UI. Both
possible preparations |β?〉 = |α1〉, |β?〉 = |α2〉 will be

equally likely, therefore we chose T R
1 = (7 −

√
13)/9 so

that equally diluted reference states

|
√

λ2α1〉, |
√

λ2α2〉, λ2 ≡ 7 −
√

13

6
(3.5)

enter the next round of UI. If a conclusive result α? = α2

is obtained in the first round of UI, then after exchanging
the roles of the modes B and D, analogous recovery setup
(see Fig.4b) can be used to produce the “diluted” refer-
ence states Eq. (3.5). Thus, for both conclusive results
from the first round of UI, one type of UI measurement
using the recovered reference states can be used in the
second round. Actually, the beam-splitter setup from
Fig. 2 can be used (see Fig. 5) if we take into account

that for our input states nA = 1, nB = nC = (7−
√

13)/6.
Upon making this substitution the performance of the
setup is the same as in Sec. II A, and all the formulas
derived there remain valid. The aforementioned setup
succeeds in UI with the probability given by Eq. (2.14).
However, the second round of UI will be possible only if
the first UI succeeded, which implies the following prob-
ability of UI in the second round

P(|α1〉, |α2〉) = (1 − e−
1
3 |α1−α2|2)

× (1 − e
− 7−

√
13

2(10−
√

13)
|α1−α2|2) . (3.6)

It is interesting that UI with nearly orthogonal reference
states can be done also in the second round with a prob-
ability of success approaching unity.

Let us now see, whether further rounds of UI are still
possible. The first round of UI can be seen as use of the
beam-splitter setup from Fig. 2 with nA = nB = nC = 1
followed by the setup from Fig. 4 recovering the refer-
ence states. In the second round we have used again
the beam-splitter setup from Fig. 2 this time with

FIG. 5: The beam-splitter setup designed for repetition of UI
with different unknown state, which can be seen as a repeated
search in a quantum database. The gray beam-splitters in
recovery steps are used if the unknown state from previous
round of UI matches the second reference state otherwise
black ones are used.

nA = 1, nB = nC = (7 −
√

13)/6. It turns out
that we can perform infinitely many additional rounds
of UI, where in each round the unknown state is inde-
pendently chosen to be either |α1〉 or |α2〉. It suffices
to use the beam-splitter setup from Fig. 2 followed by
the setup from Fig. 4 recovering the reference states in
each round of UI. However, the transmittivities of the
beam-splitters used in those setups must be set as fol-
lows. Let us denote by

√
λk the factor by which the

reference states are suppressed at the beginning of the
k-th round (e.g. λ1 = 1). In k-th round of UI we should
set T1 = 1/2, T2 = 2λk/(1 + 2λk), T3 = 1/(1 + 2λk) in
the scheme from Fig. 2 and

T1 = 1 − 2λ2
k +

√

4λ4
k + (1 + 2λk)2

(1 + 2λk)2
;

T2 =
(1 − T1)(1 + 2λk)2

1 + (1 − T1)(1 + 2λk)2
, (3.7)

in the scheme presented in Fig. 4. The suppression of the
amplitude of reference states is given by λk 7→ λk+1 =
f(λk), where

f(x) =
(1 + 2x)2 − 2x2 −

√

4x4 + (1 + 2x)2

2(1 + 2x)
.

(3.8)

The probability of successfully performing the UI in the
k-th round is P (k)(|α1〉, |α2〉) = P (k−1)(|α1〉, |α2〉)(1 −
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FIG. 6: (Color online) The performance of the recovery setup.
The probability of identification P (|α1〉, |α2〉) as a function of
the scalar product (given by |α1 − α2|) depicted for various
numbers of measurement rounds. Starting from the left the
curves correspond to the probability of identification in the
first, 20th, 40th, 60th, 80th round of the UI.

e
− λk

1+2λk
|α1−α2|2), because the k-th round of the UI is pos-

sible only if all previous UI succeeded [11]. The depen-
dence of the probability of identification on the difference
of the amplitudes of the reference states and on the num-
ber of measurement rounds is depicted on Fig. 6.

Let us now discuss an alternative approach to the re-
covery of reference states. Imagine that our task is to
identify N independent unknown states with reference
states. Instead of recovering reference states after iden-
tifying each of the unknown states we can first split the
reference states into N parts and then perform the iden-
tifications independently. We are going to illustrate that
even though we know value N ahead of time, the split-
ting strategy does not outperform the strategy based on
recovery of reference states.

The splitting strategy begins by distributing the in-
formation in the two reference states into N copies of
the states | 1√

N
α1〉, | 1√

N
α2〉. These two states are then

put together with one of the unknown states and are un-
ambiguously identified by the scheme for M = 2, nA =
1, nB = nC = 1/N . The probability of a successful iden-
tification the unknown state depends only on the refer-
ence states, hence for each of the N UI measurements we

have P(|α1〉, |α2〉) = 1 − e−
1

N+2 |α1−α2|2 . The probability

that all of them succeed is therefore P
(N)
S (|α1〉, |α2〉) =

(1 − e−
1

N+2 |α1−α2|2)N . On the other hand in the scheme
with the recovery of the reference states the N -th round
can succeed only if all the previous identification rounds
were successful. This means that the probability of suc-
cess of the N -th round P (N)(|α1〉, |α2〉) is the same as
the probability that all the N rounds of the identifica-
tion task were successful. The difference between the
performance of the recovery and the splitting strategies
for different N is depicted in Fig. 7.

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ÈΑ1-Α2È

P
HN
L H
ÈΑ

1>
,ÈΑ

2>
L-

P
SHN
L H
ÈΑ

1>
,ÈΑ

2>
L

N=5

N=10

N=15
N=20

N=25
N=30

FIG. 7: The difference between the performance of the recov-
ery and the splitting strategies for different number of identi-
fication rounds N as a function of the scalar product (given
by |α1 − α2|).

IV. INFLUENCE OF NOISE ON RELIABILITY

OF UI SETUPS

In this section we investigate how noise (uncertainty)
in the state preparation affects the reliability of the mea-
surement results. The UI setups we have presented above
are designed specifically for coherent states and ideally
they are 100% reliable, i.e. whenever we obtain a con-
clusive result Ei then we can be completely sure that
the possibility xi (i.e., α? = αi) took place.However, it
might be that the unknown and reference states are sent
to us via a noisy channel or simply that their preparation
is noisy. We assume that this disturbance has the form
of a technical noise [12], and therefore the unknown and
the reference states are not pure coherent states |αi〉, but
rather their mixtures ωi:

ωi =
1

2πσ2

∫

C

dβe−
|β|2
2σ2 |αi + β〉〈αi + β| ; (4.1)

ρi(α) = (ωi)
⊗nA ⊗ (ω1)

⊗nB ⊗ (ω2)
⊗nC ⊗ . . . ,(4.2)

with σ defining the strength of the noise [13] and α in-
dicates the dependence on αi. In such a case conclu-
sive results of our UI setups will no longer be unambigu-
ous. More precisely, there will be a certain probability
P (xi|Ei) with which the obtained outcome Ei of the mea-
surement is the consequence of the possibility xi. This
probability is called the reliability of the outcome Ei. The
corresponding mathematical definition reads:

R(Ei) = P (xi|Ei) =
ηiP (Ei|xi)

∑M
j=1 ηjP (Ei|xj)

, (4.3)

where ηi is the a priori probability of the possibility xi

and P (Ei|xj) is the probability that the measurement
of the system prepared in the possibility xj will give
a result Ei. Let us note that under the possibility xi



we understand all situations in which the unknown state
is the same as the i-th reference state. Thus xi stands
for the whole set of situations, which differ by complex
amplitudes αk of the “centers” of the reference states
ωk. How those “center points” of all reference states are
chosen in xi is described by the probability distribution
χi(α1, . . . , αM ). The support of χi is Cm corresponding
to an infinite plane. Therefore a uniform probability dis-
tribution can not be defined on it. Nevertheless, we can
express the reliability as:

R(Ei) =
ηi

∫

CM dαχi(α)Tr(Eiρi(α))
∑M

j=1 ηj

∫

CM dαχi(α)Tr(Eiρj(α))
, (4.4)

where dα ≡ dα1 . . . dαM . In the limit σ → 0 states ωi be-
come |αi〉〈αi|. Because of the no-error conditions (2.2),
which for coherent states are satisfied by our UI setups,
only the i-th term of the sum in Eq. (4.3) survives. Thus,
without noise the reliability is equal to unity. For σ > 0
also other terms in Eq. (4.3) will contribute and hence
reliability will be less than one. Moreover, the precise
value of R(Ei) will depend on the probability distribu-
tions χi(α).

In the remaining part of this section we will investigate
a scenario, which might be called as the phase keying. We
assume that two reference states (M = 2) have always
opposite phases, i.e. if ω1 is centered around the am-
plitude α then ω2 is centered around the amplitude −α.
Values of α have a Gaussian distribution centered around
0 (vacuum) with a dispersion ξ , so

χi(α1, α2) = δ(α1 + α2)
1

2πξ2
e−|α1|2/(2ξ2), i = 1, 2.

(4.5)

In order to calculate the reliability we must first eval-
uate Tr[Eiρj(α)]. This means we have to derive the
probabilities with which detectors D1, D2 click if “fuzzy”
states ω?, ω1, ω2 are fed into the UI setup instead of
|α?〉, |α1〉, |α2〉. Our UI setup uses an additional mode
D that should be initially prepared in vacuum. We as-
sume that also this mode is noisy and initially in a state
ωi centered around 0 (vacuum).

To present our calculations concisely, we first derive
how the setup acts on coherent states: We integrate over
coherent states in Eq. (4.1) (e.g. |αi + β〉) and then we
integrate those partial results. Thus, for a single copy of
the unknown and the reference states we derive how the

UI setup acts on states |α? + ν〉, |α1 +β〉, |α2 + γ〉, |̺〉 fed
into modes A, B, C, D (see Fig. II) and finally we perform
integration over ν, β, γ, ̺.

For multiple copies of the unknown and the refer-
ence states we assume that the noise is acting indepen-
dently on each of the copies, i.e. we would analyze
nB copies of the first reference state entering as states
|α1 + β1〉, . . . , |α1 + βnB

〉. The first part of the UI setup,
which “concentrates” copies of the same species, gener-
ates the state |√nBα1 + 1√

nB
(β1 + . . . + βnB

)〉 and sim-

ilarly, the state |√nCα2 + 1√
nC

(γ1 + . . . + γnC
)〉 for the

second reference state, and |√nAα?+
1√
nA

(ν1+. . .+νnA
)〉

for the unknown state. The beam splitter transformation
for coherent input states does not entangle its outputs,
thus we can, in the same way as in section II A, derive
expressions for the states of the modes that the photode-
tectors D1, D2 measure. Consequently, the final states of
the modes A and C read:

∣

∣

∣

√

nAnB

nA + 2nB

[

α? − α1 −
√

1

nA
̺ +

1

nA
ν − 1

nB
β

]

〉

A

≡ |µ1〉A
(4.6)

∣

∣

∣

√

nAnC

nA + 2nC

[

α2 − α? −
√

1

nA
̺ − 1

nA
ν +

1

nC
γ

]

〉

C

≡ |µ2〉C ,

where ν ≡
∑nA

k=1 νk, β ≡
∑nB

k=1 βk, γ ≡
∑nC

k=1 γk. Now
we have to evaluate the probability of the projection of
these states |µ1〉A, |µ2〉C onto the vacuum. Subsequently,
we will integrate this partial result to obtain the proba-
bility P (Dk|ρi(α)) that the photodetector Dk (k = 1, 2)
does not click. Probabilities P (Dk|ρi(α)) are related to
Tr(Eiρj(α)) in the following way:

Tr(E1ρ1) = [1 − P (D1|ρ1)].P (D2|ρ1) ;

Tr(E1ρ2) = [1 − P (D1|ρ2)].P (D2|ρ2) ;

Tr(E2ρ1) = P (D1|ρ1).[1 − P (D2|ρ1)] ;

Tr(E2ρ2) = P (D1|ρ2).[1 − P (D2|ρ2)] , (4.7)

where the argument of ρi(α) is omitted for brevity. Fi-
nally, we obtain the quantities Tr[Eiρj(α)] that we need
for evaluating the reliability according to Eq. (4.4).

Using the formula |〈0|µi〉|2 = e−|µi|2 for the modulus
of the overlap of two coherent states we obtain:



P (D1|ρi(α)) =

∫

Cm

d̺dγdν

(2πσ2)m
exp
[

− |̺|2 +
∑nA

k=1 |νk|2 +
∑nB

k=1 |γk|2
2σ2

−
nAnC

∣

∣

∣
α2 − α? −

√

1
nA

̺ − 1
nA

ν + 1
nC

γ

∣

∣

∣

2

nA + 2nC

]

;

(4.8)

P (D2|ρi(α)) =

∫

Cn

d̺dβdν

(2πσ2)n
exp
[

− |̺|2 +
∑nA

k=1 |νk|2 +
∑nB

k=1 |γk|2
2σ2

−
nAnB

∣

∣

∣α? − α1 −
√

1
nA

̺ + 1
nA

ν − 1
nB

β

∣

∣

∣

2

nA + 2nB

]

,

(4.9)

where m = nA+nC +1, n = nA+nB+1. The integrals in
Eq. (4.8) and (4.9) can be performed using the relations
derived in Appendix B. The results of the integration
read:

P (D1|ρi(α)) =
1

1 + 2σ2
e
− 1

1+2σ2
nAnC

nA+2nC
|αi−α2|2 ; (4.10)

P (D2|ρi(α)) =
1

1 + 2σ2
e
− 1

1+2σ2
nAnB

nA+2nB
|αi−α1|2 ,(4.11)

where we have used the formulas for the case xi, i.e.
α? = αi. Consequently, using these results in Eq. (4.7)
we obtain:

Tr(E1ρ1) =
1 + 2σ2 − e

− 1
1+2σ2

nAnC
nA+2nC

|α1−α2|2

(1 + 2σ2)2
;

Tr(E1ρ2) =
2σ2

(1 + 2σ2)2
e
− 1

1+2σ2
nAnB

nA+2nB
|α1−α2|2 ;

Tr(E2ρ1) =
2σ2

(1 + 2σ2)2
e
− 1

1+2σ2
nAnC

nA+2nC
|α1−α2|2 ;

Tr(E2ρ2) =
1 + 2σ2 − e

− 1
1+2σ2

nAnB
nA+2nB

|α1−α2|2

(1 + 2σ2)2
.

(4.12)

Now in order to obtain the reliability it remains to substi-
tute Eqs. (4.5), (4.12) into Eq. (4.4) and to perform the
remaining integrals. Those integrals can be performed in
polar coordinates, where the angular dependence is triv-
ial and the radial part can be simplified with the help of a

substitution t = e−r2/2. After performing the integration
we obtain the final result, which can be, for nB = nC ,
written in the compact form:

R(E1) = R(E2) =
1 + θ

1 + 2θ
;

θ =
nA + 2nB

nAnB

(

σ

2ξ

)2

. (4.13)

Let us note that limσ→0 R(Ei) = 1 is as it should. More-
over, the reliability depends only on the fuzziness of the
states entering the UI setup σ, the typical difference of
the amplitudes of the reference states 2ξ and the number
of copies that are available. If σ ≪ ξ, i.e. the fuzzi-
ness of the states, is much smaller than the displacement
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FIG. 8: The reliability of the UI setup (M = 2, nA = nB =
nC = 1) as a function of the typical displacement ξ. Different
curves correspond to different values of σ i.e. to different
fuzziness of the states. As is seen from the figure all curves
in the limit of large ξ are approaching the unity.

used to encode the information, then θ → 0 and R(Ei)
approaches the unity. More quantitative insight in the
case of a single copy of the unknown and the reference
states is provided by Fig. 8. In order to see how the
noise influences other relevant quantities we will calcu-
late P, PE , PF , which are called the averaged probability
of success, the error, and the failure, respectively. Ob-
viously, we either guess correctly, or incorrectly, or do
not guest at all (inconclusive result/failure), therefore
P + PE + PF = 1 must hold. It is useful to rewrite
the definition of these quantities in the following form:

P =
1

2

2
∑

i=1

∫

C2

dαTr(Eiρi(α))χi(α) ;

PE =
1

2

∫

C2

dα(Tr(E2ρ1(α)) + Tr(E1ρ2(α)))χ1(α) ;

PF = 1 − P − PE . (4.14)

Now it suffice to substitute Eqs. (4.12) into the above
equations and to perform the integration in polar coordi-
nates in the same way as in the previous paragraph. The
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FIG. 9: The reliability and the average probability of success
(P), the error (PE), and the failure (PF ) for the “phase key-
ing” scenario (M = 2, nA = nB = nC = 1) with σ = 0.25 as
a function of the typical displacement ξ .

resulting expressions read:

P =
1

1 + 2σ2
(1 − 1

1 + 2σ2 + 8nAnB

nA+2nB
ξ2

) ;

PE =
1

1 + 2σ2
(

2σ2

1 + 2σ2 + 8nAnB

nA+2nB
ξ2

) ; (4.15)

PF =
2σ2

1 + 2σ2
+

1 − 2σ2

1 + 2σ2

1

1 + 2σ2 + 8nAnB

nA+2nB
ξ2

.

(4.16)

More quantitative insight is presented in Fig. 9, which
for the fixed σ = 0.25 presents the behavior of the calcu-
lated quantities P, PE , PF as a function of the typical dis-
placement ξ. It is worth mentioning that for ξ → ∞ the
average probability of error goes to zero, but PF > 0, be-
cause the noise causes inconclusive results by firing both
detectors simultaneously.

V. CONCLUSION

In this paper we have studied a specific discrimination
task called the unambiguous identification (UI) of coher-
ent states. In this problem we are given a set of identical
quantum systems (modes of electromagnetic field) pre-
pared in coherent states. Some of these coherent states
are unknown and some of which serve as reference states.
The promise is that one of the reference states is the
same as the unknown state and the task is to find out
unambiguously which one it is. In Sec. II we presented a
generalization of the optical setup we proposed in Paper
I [5] to situations with more copies of the unknown and
the reference states. Our approach was based on an idea
of the “concentration” of the same type of states into
strong coherent states that were subsequently identified
by setups for the single-copy scenario. In the UI task it is

assumed that the particular choice of the reference states
is unknown to us, and only the probability distribution χ
describing this choice is known. Nevertheless, even with-
out having χ it is possible to derive the optimal choice of
transmittivities in the beam-splitter setup we proposed
for two types of reference states and an equal number
of copies of each of the reference states (nB = nC). In
that case the probability of identification for the reference
states |α1〉, |α2〉 reads:

P(|α1〉, |α2〉) = 1 − e
− nAnB

nA+2nB
|α1−α2|2 . (5.1)

In the limit of nB = nC → ∞ the two reference states
become known. Therefore, one needs to unambiguously
discriminate the unknown state between two known pure
states. The probability of success of our setup in this
case coincides with the optimal value achieved by the
Ivanovic-Dieks-Peres measurement [2–4].

In Sec. III we addressed the question whether the ref-
erence states can be recreated after our UI measurement.
We showed that the reference states can be partially re-
covered only if the measurement yielded a conclusive out-
come. The recovered reference states can be used in the
next round of the UI if another unknown state is pro-
vided. This might be seen as a repeated search in a
quantum database, where the data, i.e. the reference
states, degrade with repeated use of the database.

Recently, a framework for transformations induced by
linear optics on coherent states was proposed by B. He,
J. Bergou in [14]. They illustrated their method on the
setup proposed in Paper I and suggested that the refer-
ence states can be always perfectly recovered. However,
in their case the reference states are known, whereas in
our case the complex amplitudes of all coherent states
are not known in advance.

In Sec. IV we investigated how a particular type of
noise influenced the reliability of the conclusions drawn
by our UI setup. More precisely, we considered a commu-
nication scenario called the phase keying, with two coher-
ent reference states of equal amplitude, but the opposite
phases. We saw that the reliability of results, expressed
by Eq. (4.13), depends only on the ratio of the ampli-
tudes of the noise and the signal. However, for nonzero
noise the unambiguity of the conclusions is lost.
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Appendix A: Optimality proof

In this Appendix we shall prove optimality of the UI
setup if only linear optical elements, number resolving
detectors and sources of multimode coherent states are
allowed to be used. Due to the fact that the linear optical
transformations preserve the tensor product structure of
coherent states it follows that in any measurement (us-
ing arbitrarily many photodetectors) the measured state
is a factorized coherent state of N modes of the form
|β1 ⊗ · · · ⊗ βN 〉 = |β1〉 ⊗ · · · ⊗ |βN 〉 ≡ |~β〉. In order to
use an outcome of the measurement for the unambigu-
ous conclusion the probabilities for all the other options
must vanish. Let us notice that for the considered fam-
ily of states each photodetector measuring the individual
mode has a nonvanishing probability to observe n > 0
photons unless this mode is in the vacuum state, i.e. if
|βj〉 6= |0〉, then pn(|βj〉) = |〈n|βj〉|2 > 0 for all n > 0.
Only for the vacuum state pn(|0〉) = 0. Moreover, the
probability to observe no photon is nonvanishing for all
coherent states, i.e. this event cannot be used for un-
ambiguous conclusion. Consequently, the unambiguous
conclusions are necessarily associated with observation of
the nonzero number of photons identifying the fact that
the corresponding mode is not in the vacuum state.

In the case of unambiguous identification our goal is
to discriminate two families of states: either |α1 ⊗ α1 ⊗
α2〉, or |α2 ⊗ α1 ⊗ α2〉, where |α1〉, |α2〉 are arbitrary
coherent states, but α1 6= α2. In general, our (Gedanken)
experiment starts with a preparation of a coherent state
|α?⊗α1⊗α2⊗β1⊗· · ·〉, where |βj〉 are fixed states of some
ancillary modes. By linear optical elements this state is
mapped into a state |∆0 ⊗ ∆1 ⊗ ∆2 ⊗ ∆3 ⊗ · · ·〉, where
∆j are complex numbers depending on α?, α1, α2. Each
of these modes is measured by a photodetector. In order
to make an unambiguous conclusion α? = α1 based also
on a click of the jth photodetector we need to guarantee
for all values of α1, α2 that ∆j = 0 for α? = α2 and
|∆j | > 0 for α? = α1. Similarly, for the unambiguous
conclusion α? = α2. As it was shown by He and Bergou
[14] the linear optical transformations of coherent states
can be described by unitary matrices acting on vectors
of amplitudes of individual modes, i.e.













c11 c12 c13 . . .
c21 c22 c23 . . .

...
...

...
. . .

























α?

α1

α2

β1

...













=











∆1

∆2

...











, (A1)

with

|∆j〉 = |cj1α? + cj2α1 + cj3α2 + γj〉 (A2)

and γj =
∑

k cj,k+3βk. The condition ∆j = 0 holding
for all values α1, α2 if α? = α2 implies cj2 = γj = 0

and cj1 = −cj3 = λj , i.e. |∆(1)
j 〉 = |λj(α? − α2)〉, where

the upper index indicates the association of observation

of photons in this mode with the conclusion α? = α1.
Similarly, if the jth mode will be associated with the
conclusion α? = α2, then the corresponding state has to

be |∆(2)
j 〉 = |λj(α? − α1)〉.

The detectors can be divided into three classes accord-
ing to the type of states that are measured: i) |∆(1)

j 〉
(detecting α? = α1), ii) |∆(2)

j 〉 (detecting α? = α2), and,

iii) different type of a state corresponding to an incon-
clusive result. The detectors from the third class can not
be employed in making unambiguous decision and hence
will not be considered further. An arbitrary click on the
detector i) tells us that α? = α1 therefore we associate
these clicks with the unambiguous result α? = α1. Anal-
ogously, clicks from the type ii) detector are associated
with the unambiguous result α? = α2. In what follows
we shall show that the events on detectors leading to
the same conclusion can be replaced by a single detec-
tor while the success probability is preserved. In other
words, an experiment in which n1 detectors are used to
conclude that α? = α1 and n2 detectors to detect that
α? = α2 can be replaced by an experiment with only two
photodetectors. In particular, by renaming the output
ports the output vector can be rearranged into the form

























∆
(1)
1
...

∆
(2)
n1+1
...

∆n1+n2+1

...

























=























(α? − α2)λ1

...
(α? − α1)λn1+1

...
∆n1+n2+1

...























≡ ~α′
? . (A3)

In such case we denote Ω ≡ e−|α1−α2|2 and the success
probability reads

Psuccess =
1

2
(1 −

n1
∏

j=1

e−|λj(α1−α2)|2)

+
1

2
(1 −

n1+n2
∏

j=n1+1

e−|λj(α1−α2)|2) (A4)

= 1 − 1

2
(Ω

Pn1
j=1 |λj |2 + Ω

Pn1+n2
j=n1+1 |λj |2) ,

because the UI measurement fails only if none of the con-
clusive detectors fire. However, there exist a unitary ma-
trix of the block diagonal form

U =





U1 O O
O U2 O
O O I



 , (A5)

where U1, U2 are suitable unitary matrices ni × ni such
that

U1 : (λ1, . . . , λn1)
T 7→ (κ1, 0, . . . , 0)T ;

U2 : (λn1+1, . . . , λn1+n2)
T 7→ (κ2, 0, . . . , 0)T .



with κ1 =
√
∑n1

k=1 |λk|2 and κ2 =
√
∑n2

k=1 |λn1+k|2.
This means that the overall product of coherent states
transforms into

U : ~α′
? 7→































κ1(α? − α2)
0
...

κ2(α? − α1)
0
...

∆n1+n2+1

...































. (A6)

Two detectors measuring the first and the (n1 +1)th out-
put port are of the first respectively the second type and
we see that the probability of success

Psuccess =
1

2
(1 − e−|κ1(α1−α2)|2) +

1

2
(1 − e−|κ2(α2−α1)|2)

= 1 − 1

2
(Ω

Pn1
j=1 |λj |2 + Ω

Pn1+n2
j=n1+1 |λj |2) (A7)

equals the multidetector case (see Eq.[A4]). This means
we have shown that it suffice to consider one conclusive
photodetector of the type one and one of the type two.
We can now go back to Eq. (A1) and require that the
states measured by the photodetectors D1, D2 have the
form |∆1〉 = |λ1(α? − α2)〉, |∆2〉 = |λ2(α? − α1)〉. This
corresponds to the following transformation matrix from
Eq. (A1)

W =







λ1 0 −λ1 . . .
λ2 −λ2 0 . . .
...

...
. . .






. (A8)

Let us now find the bounds on |λ1|, |λ2| required by the
unitarity of the matrix W . At first, each row is normal-
ized, i.e.

1 =
∑

i

|c1i|2 = 2|λ1|2 + a2 =
∑

i

|c2i|2 = 2|λ2|2 + b2 ,

where a, b are norms of remaining parts of the first and
the second row vectors, respectively. Their orthogonality
and the Cauchy-Schwartz inequality give us the inequal-
ity |λ1λ2| ≤ ab. With the help of the previous equation
we find

|λ1|2|λ2|2 ≤ (1 − 2|λ1|2)(1 − 2|λ2|2). (A9)

The probability of success in the UI for the scheme using
linear optical elements described by the matrix W is

P(|α1〉, |α2〉) =
1

2

2
∑

i=1

(1 − e−|λi|2|α1−α2|2). (A10)

The higher the |λi|’s the higher P(|α1〉, |α2〉) is. However,
the values of λ1, λ2 must satisfy the inequality (A9) and
therefore the maximum is limited to

P(|α1〉, |α2〉) =
1

2
(1 − e−|λ1|2|α1−α2|2) +

+
1

2
(1 − e

− 1−|λ1|2
2−3|λ1|2 |α1−α2|2

). (A11)

The optimization of |λ1| for any value of |α1 −α2| yields
|λ1|2 = 1/3, which corresponds to a performance of the
setup proposed in Paper I and hence concludes the proof
of the optimality of that setup under the considered con-
straints.

Appendix B: Evaluation of Gaussian type of

integrals

As we have seen the following type of integrals

Im =
1

(2πσ2)m

∫

Cm

dα1 . . . dαme−
Pm

i=1
|αi|2
2σ2 − a

b
|x+

Pm
i=1 αi|2

emerge often in our calculation for the noise model.
These integrals can be evaluated recursively using the
relation

1

(2πσ2)

∫

C

dα e−
|α|2
2σ2 − a

b
|x+α|2 =

b

b + 2aσ2
e
− a

b+2aσ2 |x|2

(B1)

we are going to derive now. Left hand side (LHS) of Eq.
(B1) can be rewritten using the following modification of
the rectangular identity

k |β − α1|2 + l|β − α2|2 = (B2)

=
∣

∣

∣

√
k + lβ − kα1 + lα2√

k + l

∣

∣

∣

2

+
kl

k + l
|α1 − α2|2

as

LHS =
e
− a

b+2aσ2 |x|2

(2πσ2)

∫

C

dα e
−
∣

∣

∣

q

1
2σ2 + a

b
α− 2bσ2

b+2aσ2 x

∣

∣

∣

2

=
e
− a

b+2aσ2 |x|2

(2πσ2)

∫

C

dα e
−
∣

∣

∣

q

1
2σ2 + a

b
α

∣

∣

∣

2

=
b

b + 2aσ2
e
− a

b+2aσ2 |x|2 1

2πσ′2

∫

C

dα e−
|α|2
2σ′2

=
b

b + 2aσ2
e
− a

b+2aσ2 |x|2
, (B3)

where we have used the fact that we are integrating over
whole complex plane. As a consequence, a constant shift
of argument does not matter and the Gaussian distribu-
tion is normalized to unity. Hence we have proved Eq.
(B1), which we can be rewritten as

Im(a, b) =
b

b + 2aσ2
Im−1(a, b + 2aσ2).

From this recursive rule it follows that

Im(a, b) =
b

b + 2aσ2m
e
− a

b+2maσ2 |x|2
, (B4)

which is the result we wanted to obtain.
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