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The filamentous fungus Aspergillus fumigatus is

responsible for approximately 4% of all tertiary hospi-

tal deaths in Europe [1]. A. fumigatus has emerged as a

significant human pulmonary pathogen capable of

inducing disease in patients undergoing immunosup-

pressive therapy or those with pre-existing pulmonary

malfunction [2,3]. Invasive aspergillosis is the most

serious form of the disease, involving the invasion of

viable tissue and resulting in a mortality rate of 80–

95% [4,5]. Circumvention of the host immune response

facilitates in vivo fungal dissemination, and recent

work has demonstrated that the modified diketopipera-

zine, gliotoxin, secreted by A. fumigatus, is capable of

specifically blocking the respiratory burst in humans

by inhibiting assembly of the NADPH oxidase in iso-

lated polymorphonuclear leukocytes [6]. In addition,

the release of hydroxamate-type siderophores, to facili-

tate iron acquisition by the organism, is also essential

for fungal virulence [7].

Although classically referred to as secondary meta-

bolites, gliotoxin and siderophores, in addition to a

diverse range of other bioactive components, may
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Aspergillus fumigatus is an important human fungal pathogen. The Asper-

gillus fumigatus genome contains 14 nonribosomal peptide synthetase

genes, potentially responsible for generating metabolites that contribute to

organismal virulence. Differential expression of the nonribosomal peptide

synthetase gene, pes1, in four strains of Aspergillus fumigatus was observed.

The pattern of pes1 expression differed from that of a putative siderophore

synthetase gene, sidD, and so is unlikely to be involved in iron acquisition.

The Pes1 protein (expected molecular mass 698 kDa) was partially purified

and identified by immunoreactivity, peptide mass fingerprinting (36%

sequence coverage) and MALDI LIFT-TOF ⁄TOF MS (four internal pep-

tides sequenced). A pes1 disruption mutant (Dpes1) of Aspergillus fumigatus

strain 293.1 was generated and confirmed by Southern and western analy-

sis, in addition to RT-PCR. The Dpes1 mutant also showed significantly

reduced virulence in the Galleria mellonella model system (P < 0.001) and

increased sensitivity to oxidative stress (P ¼ 0.002) in culture and during

neutrophil-mediated phagocytosis. In addition, the mutant exhibited altered

conidial surface morphology and hydrophilicity, compared to Aspergillus

fumigatus 293.1. It is concluded that pes1 contributes to improved fungal

tolerance against oxidative stress, mediated by the conidial phenotype, dur-

ing the infection process.

Abbreviations

CGD, chronic granulomatous disease; NRP synthetase, nonribosomal peptide synthetase; PNS, postnuclear supernatant; ROS, reactive

oxygen species.
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actually play a front-line role in organism growth and

pathogenicity. Indeed, interest in these compounds is

considerable, as many natural products are of medical

or economic importance [8,9]. One mechanism that has

been shown to be responsible for the biosynthesis of

bioactive metabolites is nonribosomal peptide synthesis

[10]. Most bioactive metabolites exhibit a peptidyl

and ⁄or polyketide composition, along with elaborate

architecture including cyclic or branched-cyclic struc-

tures and modified proteogenic or nonproteogenic

amino acids. Nonribosomal peptide synthetases (NRP

synthetases) generally possess a colinear modular struc-

ture, with each module responsible for the activation,

thiolation and condensation of one specific amino acid

substrate [11]. In linear NRP synthetases, the three

core domains are organized in the order condensation,

adenylation and thiolation (CAT)n to form an elonga-

tion module that adds one amino acid to the growing

chain. Variations on this structure include the iterative

NRP synthetases characteristic of siderophore synthe-

tases [10] or nonlinear NRP synthetases that deviate in

their domain organization from the standard (CAT)n
architecture. NRP synthetases that fall into this group

include a peptide synthetase involved in biosynthesis of

the siderophore yersiniabactin from Yersinia species

[12] and the NRP synthetase Pes1 of A. fumigatus [13].

It is now clear that 14 NRPS genes are present in

the genomes of A. fumigatus and Aspergillus nidulans,

respectively [14,15]. Given that few functional NRP

synthetase genes or proteins have been identified to

date in fungi, the possibility that NRP synthetase pseu-

dogenes may undergo transcription due to the presence

of functional promoters [16,17], and the difficulties

associated with predicting metabolites synthesized by

cognate NRP synthetases, both gene and protein

expression analysis of pes1 was undertaken in

A. fumigatus, coupled with the disruption of pes1 to

facilitate the assessment of the role played by pes1 in

mediating the virulence of A. fumigatus.

Results

Gene expression analysis

Growth curves for the three Aspergillus isolates,

ATCC 26933, 16424 and 13073, showed that the expo-

nential growth phase began at 12 h and extended until

48 h. Idiophase, the period when logarithmic growth

had ceased, was reached at approximately 72 h, with

similar biomass obtained for all three isolates (data

not shown).

RT-PCR analysis was performed to investigate the

relationship between fungal growth and pes1 expres-

sion. Owing to the large size of the pes1 transcript,

different regions spanning the gene were selected for

RT-PCR analysis (Fig. 1A). Primers employed were

specific for adenylation domain 2 or 4 (pes1A2,

pes1A4), the epimerase-condensation domains (pes1E1-C1)

and, for A. fumigatus Af293, epimerase domain 2

(pes1E2). The presence of genomic DNA was excluded

by analysis of the size difference between the genomic

(617 bp) and cDNA (348 bp) amplicons of calm (5)

(Fig. 1B).

A time-dependent difference in the expression level

of pes1 for the four Aspergillus isolates was evident.

Amplicon presence corresponding to pes1A2, pes1A4
and pes1E1-C1 confirmed that pes1 of A. fumigatus

ATCC 26933 was expressed at all time points (Fig. 1C–

E). At the time corresponding to idiophase (72 h), the

highest expression was apparent. Semiquantitative ana-

lysis of pes1 expression was undertaken (amplicon

pes1A2; Fig. 1H) and was confirmed to be significantly

increased by 38% (P < 0.005) over the culture period

(24–72 h).

Analysis of the pes1 expression of A. fumigatus

ATCC 13073 (Fig. 1C–E) showed very low levels of

expression at 24 h. Pes1 expression by isolate ATCC

13073 demonstrated an increase in transcript level from

24 h to 48 h and a further significant (2.5-fold; pes1A2)

increase after 72 h (P < 0.04) (Fig. 1H). In contrast,

upregulation of the pes1 gene expression was not

observed for Aspergillus isolate ATCC 16424 (Fig. 1C–

E). Expression was evident at all time points during

growth from 24 to 72 h; however, basal levels of expres-

sion were maintained as the culture ceased logarithmic

growth, with relative expression for pes1A2 calculated as

61%, 57% and 66% for 24, 48 and 72 h, respectively

(Fig. 1H).

Simultaneous expression analysis of A. fumigatus

sidD was undertaken using precisely the same culturing

conditions as used for pes1 analysis, for comparative

expression analysis. The results are illustrated in

Fig. 1F. Expression of sidD is evident at all time points

(24, 48 and 72 h) and for three Aspergillus isolates

investigated and appears to be reduced under pro-

longed culturing, with at least a five-fold decrease at

the 72 h time point for isolates ATCC 26933 and

13073, in contrast to the observed pes1 expression pro-

file in both isolates.

An amplicon corresponding to pes1E2 confirmed the

presence and expression of pes1 in the transformation

recipient pyrG auxotrophic strain Af293.1 (Fig. 1G).

In accordance with results obtained for A. fumigatus

ATCC 26933 and 13073, pes1 was expressed in

A. fumigatus 293.1 at all time points, with the highest

expression apparent at 72 h, thereby validating the use
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of this strain in subsequent gene-disruption experi-

ments.

In order to find whether pes1 was expressed during

fungal infection in G. mellonella, A. fumigatus

ATCC 26933 conidia were injected into larvae and

total RNA was isolated between T ¼ 24 and 96 h. It is

clear from Fig. 2 that pes1 was expressed during fungal

growth in G. mellonella, as the pes1A2 cDNA was

detected at 72 and 96 h postinoculation (confirmed by

DNA sequence analysis; data not shown). Moreover,

pes1 expression appeared to increase relative to the

actin cDNA control, which indicates elevated pes1

expression as opposed to an increase in total fungal

RNA concomitant with increased fungal mass. No

pes1A2 cDNA was detected in uninfected larval con-

trols.
Purification and immunological detection of Pes1

A recombinant protein corresponding to the second

epimerase domain of pes1 (pes1E2) was expressed

(Fig. 3A, lane 1) (34 kDa) and verified by MALDI-

TOF MS; 54.5% of peptides (28% sequence coverage)

obtained corresponded to the theoretical amino acid

sequence of Pes1E2 (data not shown). Polyclonal anti-

serum was generated, and western blot characterization

of the anti-Pes1E2 reactivity was evident (Fig. 3A, lane

2). Immunoreactivity was also evident against baculo-

virus-expressed recombinant Pes1TEA [13] (Fig. 3A,

lanes 3 and 4). Immunoaffinity-purified Pes1E2 anti-

bodies (IgG-Pes1) were used in western blot analysis to

detect recombinant Pes1TEA, resulting in an immuno-

reactive band of the correct size (120 kDa), thereby

Fig. 2. Differential expression of pes1 in infected Galleria mellonella.

Delayed pes1 expression was evident in G. mellonella infected with

Aspergillus fumigatus ATCC 26933 conidia (1 · 105), relative to the

continual presence of A. fumigatus actin cDNA.
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Fig. 1. Time course analysis of pes1 gene expression. (A) Sche-

matic diagram showing the domain architecture of pes1 (19 190 bp

nonribosomal peptide synthetase). A, AMP-binding (adenylation)

domain; E, epimerase; C, condensation domain; T, thiolation

domain. The epimerase 1 and condensation domain 1 (E1 and C1)

occur between nucleotides 1485 and 3783. The adenylation

domains 2 and 4 (A2 and A4) occur between nucleotides 4326 and

5505 and 10 710 and 11 919, respectively. Epimerase domain 2

(E2) occurs between nucleotides 9336 and 10 161, and was cloned

and expressed using pProEx-Hta in Escherichia coli. Polyclonal anti-

serum was raised against this region of Pes1. The 3760 bp region

(pes1TEA) has been previously cloned and expressed [13]. (B)

RT-PCR analysis of the housekeeping gene calmodulin (calm) con-

firmed the absence of DNA (gDNA, genomic DNA). (C, D, E, G)

RT-PCR was used to assess pes1 expression (by amplification of

regions pes1A2, pes1A4, pes1E1+C1 and pes1E2) for Aspergillus

fumigatus ATCC 26933, 16424, 13073 and 293.1 in cultures ran-

ging from 24 to 72 h postinoculation. Optimal cDNA amplification

was found to require 28 cycles of PCR. (F) PCR was performed on

cDNA using primers to the putative siderophore synthetase-enco-

ding gene, sidD. (H) Semiquantitative analysis of pes1A2 levels. Val-

ues were normalized against the corresponding calm amplicon. The

highest level of expression at 24 h was normalized as 100, and the

results are given as relative expression (%).
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confirming that immunoaffinity-purified antibodies to

Pes1E2 successfully recognized this domain within the

larger Pes1TEA protein.

Purification of native Pes1 from mycelial lysates

(250 mg protein) of A. fumigatus ATCC 26933 was

undertaken using IgG-Pes1 to detect the presence of the
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Fig. 3. Purification of the Pes1 protein from Aspergillus fumigatus. (A) Immunoblotting of recombinant proteins with antibodies directed to

condensation domain 5 of Pes1. Lane 1, Coomassie Blue-stained SDS ⁄ PAGE gel (12.5%) of purified recombinant Pes1E2 (34 kDa). Molecular

mass markers are indicated. Lane 2, immunodetection of Pes1E2 using Pes1E2 antisera (1 : 2500 dilution). Lane 3, SDS ⁄ PAGE analysis of

Pes1TEA (120 kDa). Lane 4, western analysis of Pes1TEA probed with affinity-purified IgG-Pes1 (1 : 1000 dilution); this confirmed that immu-

noaffinity-purified antiserum was functional. (B) Anion-exchange chromatography of native Pes1 from A. fumigatus. All fractions were subject

to western analysis using IgG-Pes1, and fractions 28–32, which were found to contain the highest amounts of Pes1, were pooled. The

protein profile was also visualized by Coomassie Blue-stained SDS ⁄ PAGE gels (5%). (C) Gel filtration (Superose 6) chromatography of the

nonribosomal (NRP) synthetase Pes1. The protein elution profile with molecular mass markers is illustrated. The start material for the gel fil-

tration chromatography consisted of pooled fractions from the Q-Sepharose separation step. Fractions 12–16 were found to contain immuno-

reactive proteins when probed with IgG-Pes1. Coomassie Blue-stained gel of the eluted fractions. Arrows indicate proteins subjected to

MALDI-TOF and LIFT-TOF ⁄ TOF MS analyses. (D) SDS ⁄ PAGE and immunological analysis of the final protein preparation. Lane 1, Coomassie

Blue-stained SDS ⁄ PAGE analysis illustrating the peak fraction from the Superose 6 column, which chromatographed around 500 kDa. Lane

2, western analysis of this fraction probed with IgG-Pes1. Lane 3, phosphoserine antiserum (rabbit) reactivity towards Pes1.
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protein. Pes1 was retained on a Q-Sepharose ion

exchanger and eluted between 250 and 300 mm NaCl

(Fig. 3B). Western blot analysis (Fig. 3B) consistently

detected a single band in fractions 28–32 that migrated

at 210–220 kDa. The predicted molecular mass of Pes1

is 698 kDa but no immunoreactive band within this

range was visible. Analysis (5% SDS ⁄PAGE) revealed a

number of proteins of similar molecular mass (210–

240 kDa) (Fig. 3C), indicative of partial proteolytic

fragmentation of the NRP synthetase. Fractions

containing Pes1 eluted from Q-Sepharose media (frac-

tions 28–34; 14 mL total) were pooled, concentrated

(5 mg in 500 lL) and loaded on a Superose 6 gel filtra-

tion column (Fig. 3C). Pes1 eluted from the column at

an apparent molecular mass of about 500 kDa. As no

protein of this approximate mass was observed by

SDS ⁄PAGE (Fig. 3C), it was possible that breakdown

of the NRP synthetase occurred during SDS ⁄PAGE

sample preparation. However, it cannot be excluded the

intact Pes1 did not enter the 5% SDS ⁄PAGE gels used

for these analyses. Overall, Pes1 was purified to approxi-

mately 50% purity (250 lg total protein), and a typical

final protein profile is shown in Fig. 3D. A dominant

protein band was obvious at approximately 220 kDa

(indicated by arrow) that was associated with an immu-

noreactive band of the identical size using IgG–Pes1

(Fig. 3D). The observed protein was approximately

35% of the predicted mass of Pes1 and may represent

the C-terminal proteolytic fragment that contained the

second epimerase domain to which antibodies had been

raised. Interestingly, an immunoreactive band was also

detected at an identical molecular mass using phospho-

serine antisera and may result from detection of the

phosphoserine moiety of the 4¢-phosphopantetheine
cofactor bound to the NRP synthetase (Fig. 3D).

MS analysis of high molecular mass proteins

High molecular mass proteins were excised from

SDS ⁄PAGE gels and subjected to peptide mass finger-

printing by MALDI-TOF or LIFT-TOF ⁄TOF analy-

sis. From the MALDI-TOF spectrum of band 1

(Fig. 3C) (approximately 220 kDa), 195 out of 266

peptides were observed with identical monoisotopic

values (m ⁄ z tolerance <1 Da) to the theoretical digest

of Pes1, thereby providing 35.9% sequence coverage of

the NRP synthetase. The LIFT-TOF ⁄TOF post-source

decay fragmentation of the selected peptides with

monoisotopic masses of 1262.633 and 1323.275 Da

revealed the amino acid sequences QASDEGVEGTLR

and NPLPDSVRVGNR, respectively. Both internal

sequences were identical to the predicted sequence of

Pes1. These peptides fell within the C-terminal region

of Pes1, a result consistent with the observed immuno-

logical detection of a protein of this molecular mass

using affinity-purified IgG-Pes1 (Fig. 3D).

Band 2 (Fig. 3C) migrated on SDS ⁄PAGE at a

slightly higher molecular mass (approximately

240 kDa) than band 1. Sequence coverage (37.2%) of

this protein was obtained (198 out of 239 peptides).

MALDI LIFT-TOF ⁄TOF fragmentation of two

peptides with monoisotopic masses of 1051.65 and

1172.559 Da revealed the amino acid sequences

TVARVKDLR and SIRELATRVK, respectively. As

the predicted and calculated molecular mass of Pes1 is

estimated to be 698 kDa (observed 440–550 kDa), it

would appear that Pes1 fragmented into at least two

breakdown products (Fig. 3C, protein bands 1 and 2;

220 and 240 kDa, respectively), although it is possible

that further differential proteolysis had occurred.

Disruption of pes1 in A. fumigatus

A Dpes1 mutant was generated by homologous transfor-

mation of A. fumigatus strain 293.1 with an 8.4 kb frag-

ment containing the pes1A2 domain (Fig. 1) disrupted

by a zeocin–pyrG-encoding region plus 3 kb of 5¢ and 3¢
flanking regions, respectively (Fig. 4A). This construct

was generated by double-joint PCR [18] and character-

ized by KpnI restriction, and DNA sequence analysis

confirmed the replacement of the pes1A2 domain by the

zeocin–pyrG region surrounded by intact 5¢ and 3¢ flank-
ing regions of the target gene (Fig. 4B). Following pro-

toplast transformation, PCR screening for pes1A2

(negative) and zeocin (positive) colonies identified two

transformants (out of 53 in total), one of which was

confirmed by Southern analysis (using identical DNA

loading (Fig. 4C) to lack the pes1A2 domain, while con-

taining an adjacent ABC multidrug transporter (Gen-

Bank accession number EAL90367) (Fig. 4C).

Subsequent RT-PCR analysis confirmed that pes1

expression in day 3 cultures was absent in the Dpes1
mutant, compared to A. fumigatus 293.1. ABC multi-

drug transporter expression was intact in both A. fumig-

atus 293.1 and the Dpes1 mutant (Fig. 4D).

Importantly, western analysis, using immunoaffinity-

purified Pes1-IgG, showed that the Pes1 protein was

completely absent from the Dpes1 mutant. Interestingly,

Pes1 was primarily located in the cytosolic fraction (C)

of A. fumigatus 293.1 protoplast lysates, and to a lesser

extent in the microsomal (M) fraction (Fig. 4E).

The pes1 mutant displays reduced virulence

Altered growth rates have the potential to affect

pathogenesis during comparison of the virulence of

NRP synthetase in Aspergillus fumigatus E. P. Reeves et al.
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wild-type (parental) and mutant strains, and so the

growth rate of A. fumigatus 293.1 was compared with

that of the Dpes1 mutant. Growth curves (Fig. 5A)

showed that the exponential growth phase began at

24 h and extended until 72 h for both, and that the

stationary phase was reached at 96 h, with similar bio-

mass obtained for both 293.1 and the Dpes1 mutant

(379 and 359 mg ⁄ 100 mL culture, respectively). In

order to determine whether human neutrophils killed

A. fumigatus 293.1 and Dpes1 similarly, the fungicidal

activity of purified human neutrophils was determined

in vitro. The kinetics of fungal killing are shown

in Fig. 5B for a ratio of neutrophils to A. fumigatus

conidia of 4 : 1. Killing of A. fumigatus 293.1 conidia

occurred slowly, and only 23% of the conidia were

killed after 40 min. There was a difference in the pat-

tern of killing of conidia of A. fumigatus Dpes1. After

40 min, 56% of the conidia were killed, and only 4%

remained viable after 80 min. To further test the

reduced virulence of A. fumigatus Dpes1, we investi-

gated the pathogenicity of the mutant using the

G. mellonella virulence model. Figure 5C shows the

mortality of larvae following infection with Aspergillus

conidia. Avirulence of A. fumigatus 293.1 (pyrG

mutant) was observed, as larvae were fully protected

against infection with 1 · 106 viable conidia, as previ-

C

D

E

B

A

Fig. 4. Disruption of Aspergillus fumigatus pes1. (A) Construction of a gene deletion cassette as previously described [18]. Flanking regions

(3 kb each; 5¢ and 3¢) encompassing the deletion target (an adenylation domain of the nonribosomal peptide (NRP) synthetase, pes1A2), in

addition to the pyrG–zeocin construct, were individually amplified by PCR, and then combined and subjected to nested PCR to yield a final

product of 8.5 kb. (B) This product was characterized by KpnI restriction and DNA sequence analysis, which confirmed the replacement of

the NRP synthetase adenylation domain by the pyrG–zeocin region surrounded by intact 5¢ and 3¢ flanking regions of the target gene, and

used for A. fumigatus transformation. Following transformation, mutant selection by PCR analysis of A. fumigatus 293.1 and putative

mutants confirmed the absence of the relevant adenylation domain in the mutant strain. (C) DNA electrophoresis of restricted A. fumigatus

293.1 and Dpes1 DNA. Southern analysis confirmed the absence of pes1 in the Dpes1 mutant and that a downstream ABC transporter was

intact in both 293.1 and mutant strains. (D) RT-PCR analysis confirmed the absence of pes1 expression in A. fumigatus Dpes1 relative to

parental strain 293.1. Intact expression of an adjacent ABC multidrug transporter gene is evident in both strains. (E) Pes1 was not present in

the postnuclear supernatant (PNS), cytosolic (C) or microsomal (M) fraction (see Experimental procedures) of the Dpes1 mutant, but was

present in PNS and C of A. fumigatus 293.1.
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ously described [19]. After 2 days, 25% of the larvae

infected with wild-type 293 spores had died, in contrast

to the attenuated virulence seen when conidia from

Dpes1 were used (P < 0.045). Extending this study,

larvae were infected with a higher conidial dose

(1 · 107) (Fig. 5D). Conidia of the wild-type 293 strain

caused the death of virtually all larvae within 2 days,

while the virulence of conidia of Dpes1 was signifi-

cantly reduced to 40%, as shown by the death of 12 of

30 larvae (P < 0.001). Taken together, these data

establish the critical role of pes1 in the success of

A. fumigatus infection in vivo.

Effect of pes1 disruption on conidial phenotype

Conidia of the parental A. fumigatus 293.1 and of the

Dpes1 mutant were point inoculated on AMM agar

plates containing 5 mm uracil and uridine (for 293.1

only) and glucose (10 mm) as the carbon source. As

shown in Fig. 6A,B, disruption of pes1 resulted in an

alteration of the conidial colour phenotype. The Dpes1
mutant produced yellow–green conidia, as opposed to

the greyish-green melanin colour of wild-type conidia.

Conidia of both A. fumigatus 293.1 and of the Dpes1

mutant were further analysed by scanning electron

microscopy (Fig. 6A,B). Wild-type conidia showed a

rough surface covered with ornamentation; in contrast,

conidia of the Dpes1 mutant possessed a smoother sur-

face with a lower degree of ornamentation on the coni-

dial wall. In concurrence with the altered conidial

phenotype, a hydrophobicity assay (Fig. 6C) of conidia

from both wild-type and mutant Aspergillus strains

revealed the Dpes1 mutant to be 51% more hydropho-

bic than the 293.1 strain (P ¼ 0.003).

In order to investigate whether the altered conidial

morphology affects the sensitivity to H2O2, conidia of

the Dpes1 mutant or A. fumigatus 293.1 (as a control)

were exposed to different H2O2 concentrations in plate

diffusion assays. The inhibition zones obtained with

the two different conidia were compared and are

shown in Fig. 6D. Both A. fumigatus 293.1 and Dpes1
strains showed an increase in the diameter of the inhi-

bition zone as the dose of H2O2 increased, but the

effect was stronger in the case of the Dpes1 mutant

(for 8 lL of 3% H2O2 (v ⁄ v), P ¼ 0.002).

Investigation of the fungicidal effectiveness of react-

ive oxygen species (ROS) against the parental strain

and Dpes1 mutant was extended to the effects of

A B

C D

Fig. 5. Attenuated virulence of Aspergillus fumigatus Dpes1 in in vitro and in vivo virulence assays. (A) Growth curve of Aspergillus fumigatus

293.1 (n) and Dpes1 (d) in AMM supplemented with 5 mM uracil and uridine (293.1 only) and 5 mM glucose at 37 �C. (B) Fungicidal activity of

human neutrophils against opsonized conidia; these were mixed at a ratio of one target organism to four immune cells in 1 mL of NaCl ⁄ Pi for

the indicated periods of time, and fungal viability was determined. Reduction in survival of conidia of A. fumigatus 293.1 by neutrophils com-

pared to conidia of Dpes1 was found to be significant (P < 0.033). Each value is derived from triplicate plating and the mean values (± SE) from

three experiments are shown. (C, D) Survival probability plots (Kaplan–Meier) of G. mellonella larvae after infection with either 1 · 106 (C) or

1 · 107 (D) conidia from 293.1 (n), 293 (m), or Dpes1 mutant (d) (n ¼ 30). The probability of larval survival when injected with A. fumigatus

293 was significantly lower than with the Dpes1 mutant (P < 0.045 and P < 0.001 for 1 · 106 and 1 · 107 conidia, respectively).
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HOCl. HOCl is a strong nonradical oxidant and is the

most fungicidal agent thought to be produced by neu-

trophils [20]. Data for incubation of A. fumigatus

293.1 and Dpes1 in 1 lm or 2.5 lm HOCl are shown in

Fig. 6E. Killing by 2.5 lm HOCl occurred quickly,

and over 90% of both strains were killed after just

4 min. Interestingly, there was a difference in the

pattern of killing by 1 lm HOCl, and after 8 min of

exposure, 51% of parental 293.1 were still viable com-

pared to only 17% of the Dpes1 mutant (P ¼ 0.005).

These results imply that conidial morphology is closely

linked to resistance against ROS and thus provide an

explanation for the reduced virulence levels observed

for A. fumigatus Dpes1 in in vitro and in vivo pathogen-

esis assays (Fig. 5).

Discussion

Here we present data that demonstrate the differential

expression of a nonribosomal peptide synthetase, Pes1,

in four strains of A. fumigatus. Native Pes1 protein

was partially purified from A. fumigatus ATCC 26933

and found to exhibit a molecular mass of approxi-

mately 500 kDa upon gel filtration. Pes1 was identified

both by immunoreactivity, using immunoaffinity-puri-

fied antibodies, and by peptide mass fingerprinting

(35.9% and 37.2% sequence coverage of the N-ter-

minal and C-terminal domains, respectively, of Pes1).

Furthermore, using MALDI LIFT-TOF ⁄TOF MS, the

sequence of four peptides derived from Pes1 was deter-

mined. Deletion of pes1 was confirmed by Southern

BA C

D

E

Fig. 6. Phenotypic characteristics of Dpes1 mutant conidia. (A and B, top panel) Spore colour of parental 293.1 (A) and Dpes1 mutant (B)

grown on AMM plus 5 mM glucose and 2% (w ⁄w) agar at 37 �C for 4 days. (A and B, bottom panel) Scanning electron micrographs of coni-

dium (approximate diameter of 3 lm) of parental 293.1 (A) and of Dpes1 mutant (B) with strongly reduced surface ornamentation. (C) Relat-

ive hydrophilicity of conidia of parental 293.1 and Dpes1 mutant was determined and found to be statistically different (P ¼ 0.003).

Susceptibility of conidia of Aspergillus fumigatus 293.1 (h) and Dpes1 (n) strains to damage by H2O2 was investigated (D), and growth inhibi-

tion was plotted against the respective volume of 3% (v ⁄ v) H2O2. Assays were carried out in duplicate (n ¼ 3) (for 8 lL of 3% H2O2 (v ⁄ v),

P ¼ 0.002). Fungicidal activity of HOCl was determined (E). The reaction mixture, NaCl ⁄ Pi, contained conidia of 293.1 (s,d) or Dpes1

(n,h)(1 · 108 mL)1) and 1 (d,n) or 2.5 lM (s,h) HOCl for the indicated time points. Each line is representative of the mean (± SE) of three

experiments (P ¼ 0.005).
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analysis and RT-PCR, in addition to western blot ana-

lysis, and the mutant was shown to be significantly less

virulent in the G. mellonella model system (P < 0.001)

and more susceptible to oxidative stress (P ¼ 0.002),

both in culture and during neutrophil-mediated phago-

cytosis. The Dpes1 mutant also exhibited altered

conidial morphology and hydrophobicity. Taken

together, these results confirm a role for pes1 in pro-

tecting A. fumigatus against oxidative stress.

Semiquantitative analysis of pes1 expression has

confirmed that the gene is present, and differentially

expressed, in four strains of A. fumigatus. Increased

levels of pes1 expression were evident in strains

ATCC 26933 and 13073 over the culture time course,

while expression in ATCC 16424 remained static over

the 72 h culture period. Using the well-established

G. mellonella model of fungal virulence, we have

previously shown that A. fumigatus ATCC 26933

exhibits significantly greater virulence than either

ATCC 16424 or ATCC 13073 [21], and we have

hypothesized that the Pes1 product may contribute

to this differential virulence (see below). Recent stud-

ies on pes1 expression in A. fumigatus ATCC 26933,

simultaneously determined by northern and RT-PCR

analysis, showed detectable expression [13]. However,

only northern analysis confirmed the constitutive nat-

ure of pes1 expression at all time points, while

RT-PCR analysis failed to detect expression at 24 h.

The higher sensitivity of the RT-PCR analysis in the

present work most likely accounts for this observa-

tion, and is in turn related to the low abundance

level of fungal NRP synthetase transcripts ) possibly

only 2% of actin gene expression [22]. In the present

study, we also confirmed that increased A. fumigatus

pes1 expression occurred in G. mellonella following

larval inoculation. Indeed, the G. mellonella system

has recently been used to detect upregulation of

Metarhizium anisophilae-derived Pr1 (which encodes

a subtilisin-like protease) in infected insect larvae as

the mycelia emerge and produce conidia on the sur-

face of the cadaver [23].

It seems unlikely that pes1 encodes a destruxin syn-

thetase [24], as this toxin was not detected in A. fumig-

atus culture filtrates by RP-HPLC analysis (data not

shown). The NRP synthetase gene of Alternaria brassi-

cae has also been suggested to play a role in sidero-

phore biosynthesis, yet upregulation of expression in a

low-iron environment was not observed [16]. Direct

comparison of pes1 expression with that of sidD in

A. fumigatus revealed concomitant upregulation of

pes1 and diminution of the latter, possibly implying a

difference in functionality and bringing into question

the classification of pes1 as a putative siderophore

synthetase-encoding gene. Lee et al. [22] have recently

identified a number of NRP synthetase genes in the

plant pathogen Cochliobolus heterostrophus (NPS1-12).

These authors demonstrated that only the NPS6 gene

was essential for fungal virulence; however, a distinct

NRP synthetase (NPS4; 20 kb)) was found to encode

four adenylation, six condensation, six thiolation and

three epimerase domains. Whole protein-based and

adenylation domain-based phylogenetic analysis has

now demonstrated that NPS4 clusters with Pes1, in

particular with respect to Pes1A4 and NPS4A4 (supple-

mentary Fig. S1 and Table S1). Moreover, Pes1 and

NPS4 share 37% amino acid identity (56% similarity).

We have also bioinformatically identified a putative

Aspergillus oryzae NRP synthetase (GenBank accession

number BAE64185.1) that exhibits significant 61%

identity and 76% similarity to Pes1, and two A. nidu-

lans NRP synthetases (GenBank accession numbers

EAA65335 and EAA65835) that share approximately

50% identity and 67–71% similarity, respectively, with

Pes1 (supplementary Fig. S1). Thus, it is now clear

that the number of fungal NRP synthetases identified

is set to expand as fungal genome sequence data

emerge.

Microarray analysis has shown that certain disabled

open reading frames are expressed in Saccharomyces

cerevisiae [25]. Thus, the possibility that NRP synthe-

tase pseudogenes may undergo transcription due to the

presence of functional promoters, allied to the diffi-

culty in confirming the NRP synthetase gene expres-

sion [17,22], necessitate that consideration be given to

the functional identification of NRP synthetases, at the

protein level, by emerging technologies. Here, mono-

specific, immunoaffinity-purified antibodies have been

used to facilitate Pes1 purification, and MALDI LIFT-

TOF ⁄TOF MS has been deployed to unambiguously

confirm the presence of native Pes1 in A. fumigatus.

Interestingly, while the molecular mass of detectable

Pes1 was shown to be about 500 kDa by gel filtration

analysis, SDS ⁄PAGE analysis demonstrated the exist-

ence of two lower molecular mass subunits. To our

knowledge, immunodetection of Pes1 using phospho-

serine antisera is novel; however, further studies are

required to determine whether this reactivity is directed

towards the phospho component of the 4¢-phospho-
pantethine arm or against phosphoserine residues in

Pes1.

Specific interruption of pes1 gene expression and

confirmation that the cognate protein product is com-

pletely absent in A. fumigatus is significant, as it repre-

sents one of the first successful attempts to disrupt an

NRP synthetase gene in the organism. Historically,

gene disruption ⁄deletion in A. fumigatus has been
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hampered by low frequencies of homologous recombi-

nation of the deletion construct [18]. In our hands, the

double joint-PCR approach described by these authors

for preparation of deletion constructs worked well and

greatly simplified construct generation. Furthermore,

although not used during the present study, the demon-

stration that A. fumigatus DakuA [26] and DakuB [27]

mutants can yield up to 80–95% site-specific homolog-

ous transformation, following protoplast transforma-

tion, is significant, as it should greatly improve the

success rate for gene deletion in this organism.

G. mellonella is attracting ever-increasing attention

as a model organism for the study of microbial viru-

lence in general [23], and Aspergillus virulence in par-

ticular [26,28]. The in vitro generation of ROS has

been observed in the self-defence system of G. mello-

nella, with both O2
– [29] and its dismutation product

H2O2 [30] being found in phagocytic cells. The signifi-

cantly reduced virulence of the Dpes1 mutant, com-

pared to A. fumigatus Af293, is evident at conidial

loads of both 106 and 107 per larvae. These data con-

firm the suitability of the G. mellonella virulence model

to detect alterations in the pathogenicity of A. fumiga-

tus mutants and complement the recent demonstration

that the system can also be used to confirm lack of

virulence following gene deletion [26]. Thus, the eluci-

dation of significantly reduced virulence of the

A. fumigatus Dpes1 mutant further enhances the utility

of this model system, which provides an alternative, or

complementary, approach to the use of animal model

systems.

ROS production following activation of the respirat-

ory burst NADPH oxidase of neutrophils is required

for optimal antimicrobial function, and its importance

is demonstrated by the syndrome of chronic granulo-

matous disease (CGD) [31]. CGD is a rare condition

and is associated with the absence of the generation of

ROS. ROS have widely been thought to be responsible

for the killing of phagocytosed microorganisms, either

directly (O2
– and H2O2) or by acting as substrate for

myeloperoxidase-mediated halogenation (HOCl) [20].

In previous studies, inhibitors of the NADPH oxidase

that decreased the production of ROS inhibited the

killing of A. fumigatus [32], and invasive aspergillosis is

the primary cause of death in patients suffering from

CGD [33]. The primary observations of this study on

neutrophil-mediated killing of A. fumigatus 293.1 coni-

dia highlight the importance of pes1 as an important

contributor to fungal virulence. Killing of conidia

demonstrated a clear time-dependent index, with

neutrophils exhibiting the ability to kill conidia of

A. fumigatus Dpes1 at a higher rate than those of

293.1. The fungicidal effects of increasing concentra-

tions of H2O2 and HOCl were studied, with greater

sensitivity to both ROS being exhibited by A. fumiga-

tus Dpes1. Oxidants such as HOCl are known to react

with thiol groups, thioesters, and aliphatic or aromatic

groups [34]. Most of these reactions lead to a loss in

oxidative capacity, resulting in the loss of microbial

properties. However, the effect of HOCl is directly

related to the presence of protein on the surface or in

the surrounding environment [35], and higher amounts

of protein will consume the available HOCl. The Dpes1
mutant displayed differences in conidial surface mor-

phology and was shown to be significantly more

hydrophobic than the parental 293.1 strain. Previous

studies have implicated both pigment and altered coni-

dial protein surface in increased susceptibility to oxida-

tive damage [36,37]; accordingly, the differences in

conidial ornamentation observed for A. fumigatus

Dpes1 may render this mutant more sensitive to

applied ROS. Interestingly, upregulation of pes1

expression was not observed following H2O2-induced

oxidative stress in cultures of A. fumigatus 293.1 grown

in either Sabouraud or 5% FBS in MEM (data not

shown). Moreover, expression of neither of the two

A. nidulans orthologues of pes1 (GenBank accession

numbers EAA65335 and EAA65835; supplementary

Fig. S1 and Table S1) was upregulated following expo-

sure to H2O2 [38].

Sheppard et al. [39] have recently described the

importance of the transcription factor StuA in the

acquisition of developmental competence in A. fumiga-

tus. These authors showed pes1 expression to be the

most significantly altered (downregulated) in an

A. fumigatus stuA mutant, following whole genome

microarray analysis, during the onset of developmental

competence. Significantly, the stuA mutant exhibited

enhanced sensitivity to H2O2-induced oxidative stress,

and a small, although not significant, reduction in

virulence in a murine model system. This pattern of

altered resistance to oxidative stress is similar to that

observed in the Dpes1 mutant, so it is possible that the

Pes1 peptide product may be involved in mediating the

downstream effects of StuA-induced gene expression.

Secondary metabolites may play a significant role in

fungal development [14]. For example, in Aspergillus

parasiticus and A. nidulans, chemical inhibition of

polyamine biosynthesis inhibits sporulation, in addi-

tion to aflatoxin and sterigmatocystin production,

respectively [40]. As late growth phase expression of

pes1 is evident, it is possible that the Pes1 peptide

product may be involved in the sporulation process of

this fungus.

In summary, our data show that pes1 expression

is temporally regulated in A. fumigatus both in vitro
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and during infection of G. mellonella, respectively.

Pes1 protein was also demonstrated in A. fumigatus,

thereby confirming that pes1 is a functional gene.

Disruption of pes1 led to decreased fungal virulence,

and increased susceptibility to oxidative stress and

neutrophil-mediated killing, in addition to altered

conidial morphology and hydrophobicity. Taken

together, these data strongly suggest that pes1 signifi-

cantly contributes to the resistance of A. fumigatus

to oxidative stress.

Experimental procedures

Chemicals

All chemicals and reagents were purchased from Sigma-

Aldrich (Sigma-Aldrich Chemical Co., Poole, UK), unless

stated otherwise.

Microorganisms and culture conditions

Clinical isolates of A. fumigatus used in this study included

ATCC 26933, ATCC 16424 and ATCC 13073 (obtained

from the American Type Culture Collection, MD, USA)

with culture conditions and growth curves constructed as

previously described [21]. The A. fumigatus strain Af293

and the transformation recipient pyrG auxotrophic strain

Af293.1 were obtained from the Fungal Genetics Stock

Center, Kansas City, USA [41] and cultured on Aspergillus

minimal medium (AMM), supplemented with 5 mm uridine

and uracil (auxotrophic strain) and 1% (w ⁄ v) glucose.

Aspergillus growth curves were obtained as previously des-

cribed [21].

Isolation of genomic DNA, RNA and RT-PCR

amplification

Preliminary sequence data were obtained from The Insti-

tute for Genomic Research website at http://www.tigr.org.

The extraction of genomic DNA was as previously des-

cribed [42]. Fungal RNA was isolated and purified from

crushed hyphae of Aspergillus, employing the RneasyTM

plant mini kit (Qiagen, Crawley, UK). Total RNA was

extracted from Aspergillus-infected G. mellonella using TRI

REAGENTTM according to the manufacturer’s instruc-

tions. Prior to cDNA synthesis, RNA was treated with

DNase I. cDNA synthesis from mRNA (1 lg) was per-

formed using the SuperScriptTM kit (Invitrogen, Paisley,

UK) using oligo(dT) primers. PCR was performed using

AccuTaq polymerase with 1–10 ng genomic DNA as tem-

plate. PCR was performed using the primers summarized

in Table 1. PCR conditions were as follows: 95 �C dena-

turing for 5 min (95 �C denaturing for 30 s, 55 �C anneal-

ing for 30 s, 72 �C extension for 6 min) · 28 cycles; and

72 �C extension for 6 min. The gene encoding calmodulin

(calm), which is constitutively expressed in Aspergillus

Table 1. Nucleotide sequence of oligonucleotide primers used to amplify Aspergillus fumigatus genes from A. fumigatus genomic DNA and

cDNA.

Primers Sequence (5¢- to 3¢)

pes1A2 forward GGCTCTGGAACTGAATAAAGCGAC
pes1A2 reverse GTCCCATATATCCGCTTGCAATCT
pes1A4 forward TCTGACTCCGTCGATAGCTAGCAT
pes1A4 reverse CCAGATCCTCACGACTGATAAGCTC
pes1C2 forward GAGATCTAGATACCCATGCAGCCCTGTC
pes1C2 reverse GAGAAAGCTTGTCAACTTGAATGCGGGTAGG
pes1E1-C1 forward CGCTGGCGAACACATTATATGA
pes1E1-C1 reverse ACGAATTACTTGCAGCCGCTT
sidD forward ACGCAACCGACTGGTTGTT
sidD reverse ATTCGTGCGAGACTCGGAT
Calmodulin forward CCGAGTACAAGGAAGCTTTCTC
Calmodulin reverse GAATCATCTCGTCGACTTCGTCGTCAGT
Aspergillus fumigatus actin forward CGAGACCTTCAACGCTCCCGCCTTCTACGT
Aspergillus fumigatus actin reverse GATGACCTGACCATCGGGAAGTTCATAGGA
5¢ flanking forward CTAGCTGGTGAAGCAATGTCTCCGCAACATTTGGCGACATGGTCTCATAT
5¢ flanking reverse GGCCGAGGAGCAGGACTGAGAATTCTTTGCGGTCTTCCTGAAGCTGACCACTGT
3¢ flanking forward CATTGTTTGAGGCGAATTCGATATCGAGGCTCAGAACCTCCCTGCGCAGACGCG
3¢ flanking reverse GGCCTCCCTAAGCTTCTGGACCTTTTCGCGTGTTGCTTCCGACATAGGAACGAG
zeocin–pyrG forward GAATTCTCAGTCCTGCTCCTCGGCC
zeocin–pyrG reverse GATATCGAATTCGCCTCAAACAATG
Nested forward GAGACCTAGGAAGCAATGTCTCCGCAACATTTGGCGACATGGTCTCATAT
Nested reverse GAGACCGCGGAAGCTTCTGGACCTTTTCGCGTGTTGCTTCCGACATAGGA
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fumigatus, served as a control in RT-PCR experiments

[43]. Primers for actin of G. mellonella were as previously

described [23]. Visualization of amplicons was performed

using an ‘Eagle-Eye II’ digital still video system (Strata-

gene, La Jolla, CA, USA). Densitiometric quantification

of PCR products was performed using genetools soft-

ware (Syngene, Cambridge, UK).

Cloning and expression of pes1E2

The pes1E2 sequence was amplified from A. fumigatus

ATCC 26933 genomic DNA, using primers incorporating

terminal HindIII and XbaI sites (New England Biolabs, Ips-

wich, UK). PCR products were cloned directly into the

pProEx-HtaTM expression vector (Invitrogen), and the

resultant expression vector containing pes1E2 was trans-

formed into Escherichia coli strain DH5a. After confirmat-

ory DNA sequence analysis, expression of pes1E2 was

induced and recombinant Pes1E2 purified [44]. Recombinant

Pes1TEA (Fig. 1) was purified as previously described [13].

Antiserum production

Rabbit antiserum was raised against purified Pes1E2 using

standard protocols [44]. Pes1-specific antibodies were immu-

noaffinity purified against Pes1E2 immobilized on nitro-

cellulose, eluted with 0.1 m glycine ⁄HCl, pH 2.9, and

immediately neutralized with 0.5 m NaOH. Immuno-

affinity-purified antibodies (termed IgG-Pes1) were used

(1 : 1000) for 1 h in western blot analyses. Phosphoserine

antisera (Abcam, Cambridge, UK) was used at a dilution

of 1 : 250 and incubated for 16 h at 4 �C. Horseradish per-

oxidase-conjugated donkey anti-rabbit IgG (1 : 5000 dilu-

tion) (Amersham Biosciences, Freiburg, Germany) was

used to detect reactive bands by the enhanced chemilumi-

nescence (ECL) system (Pierce Biotechnology, Cramlington,

UK).

Protein purification

Hyphae were harvested from 4 L of cultured A. fumigatus

ATCC 26933. All protein isolation and purification steps

were performed at 4 �C. Protein concentrations were deter-

mined using the Bradford method with BSA as a standard.

Hyphae were washed twice in NaCl ⁄Pi and ground to a fine

powder under liquid N2. The ground hyphae were resus-

pended in Break Buffer [45], in the presence of protease

inhibitors [46], and sonicated (Bandelin Sonopuls, Progen

Scientific Ltd., Mexborough, UK) for 3 · 5 s at maximum

power. After centrifugation for 10 min at 40 000 g using a

Sorvall Instruments RC5C centrifuge (GSA rotor) (Thermo

Electron Corp., Asheville, NC, USA), the supernatant

(approximately 250 mg of protein) was chromatographed

successively as follows. Starting material was loaded onto

Q-Sepharose (1.5 · 8 cm, 1 mLÆmin)1, 2 mL fractions col-

lected, eluted with a 100 mL linear gradient of 0–1 m NaCl

in Break Buffer). Peak fractions containing native Pes1

were identified by immunoreactivity (IgG-Pes1), pooled

(14 mL) and concentrated to 0.5 mL using a Centricon 30

(Millipore, Cork, Ireland). The concentrated material

(approximately 850 lg of total protein) was further purified

by gel filtration using an ÄKTA Purifier 100 system (Amer-

sham Biosciences), whereby a Superose 6 column

(10 · 300 mm) was equilibrated in Break Buffer supplemen-

ted with 500 mm NaCl at a flow rate of 0.4 mLÆmin)1. The

concentrated material from Q-Sepharose was loaded on the

column and 0.5 mL fractions were collected. As molecular

mass markers, thyroglobulin (669 kDa), ferritin (440 kDa),

catalase (232 kDa) and aldolase (158 kDa) were used sepa-

rately. Protease inhibitors were included in all buffers used

for chromatography [46]. Electrophoretic analysis was car-

ried out using 5% SDS ⁄PAGE to facilitate detection of

high molecular mass proteins.

MS

Peptide mass fingerprinting and LIFT-TOF ⁄TOF MS

analysis of trypsin-digested Pes1 were carried out using a

Bruker ultraflex LIFT-TOF ⁄TOF (Bruker, Rheinstetten,

Germany), as previously described [46]. Only peptides with

high signal intensity were subject to LIFT-TOF ⁄TOF ana-

lysis [47] and resultant spectra processed using FLEXAnal-

ysis software (Bruker). Database searches and sequence

comparisons were carried out via mascot inhouse server

(Matrix Science, London, UK) and biotools (Bruker),

respectively.

Disruption of A. fumigatus pes1

Disruption of pes1 was performed using the double-joint

PCR method as previously described [18]. The first-round

PCR generated amplicons containing 5¢ and 3¢ flanking

regions of pes1A2 and carried 25 bp of homologous

sequence overlapping with the ends of the pyrG selection

marker. The sequences of primers used to amplify the

flanking regions (5¢ and 3¢ flanking forward and reverse)

are given in Table 1. The pyrG selection marker was ampli-

fied from the pCDA21 plasmid (a gift from AA Brakhage,

Leibnitz-Institute for Natural Product Research and Infec-

tion Biology) using primers pyrG forward and pyrG reverse

(Table 1). Conditions for the first-round PCR were as fol-

lows: 93 �C for 5 min; four cycles of 93 �C for 30 s, 58 �C
for 2 min and 72 �C for 3 min; 24 cycles of 93 �C for 30 s,

60 �C for 2 min and 72 �C for 3 min; and finally 72 �C for

10 min. PCR products were gel purified (gel extraction kit,

Qiagen), and for the second-round PCR, 1 lL of both the

5¢ flanking and 3¢ flanking amplicons were mixed with 3 lL
of the purified pyrG amplicon. The second-round PCR
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conditions (using Long Expand polymerase; Roche Diag-

nostics GmbH, Mannheim, Germany) were: 94 �C for

2 min; 15 cycles of 94 �C for 45 s, 62 �C for 2 min, 68 �C
for 12 min; and finally 15 min postpolymerization. Nested

primers for the third-round PCR were designed (Table 1)

including a 5¢-AvrII (New England Biolabs) restriction site

on the forward primer and a 3¢-SacII (New England Bio-

labs) restriction site on the reverse primer. Conditions for

the third-round PCR were as previously described [18].

Prior to cloning into the pCR 2.1-TOPO expression vector,

PCR products were confirmed on the basis of size, sequen-

cing (Lark Technologies, Takeley, UK) and KpnI (New

England Biolabs) restriction enzyme digestion.

Aspergillus transformation

A. fumigatus protoplasts were prepared from conidia of

A. fumigatus 293.1 grown for 7 h at 37 �C in AMM sup-

plemented with 5 mm uracil and uridine. Hyphal cells were

harvested by centrifugation at 200 g for 15 min (IEC Cen-

tra CL3R, swingout rotor, Biosciences, Dublin, Ireland)

and resuspended in 40 mL of Protoplasting Buffer (0.4 m

(NH4)2SO4, 50 mm potassium citrate, 10 mm MgSO4,

0.5% (w ⁄ v) sucrose, pH 6.2) containing Zymolase

(120 mg), Driselase (400 mg), Glucanase (200 mg), BSA

(400 mg) and 10 mm 2-mercaptoethanol. The suspension

was incubated at 37 �C for 1.5–2 h, and filtered through

Miracloth (Calbiochem, Bad Soden, Germany), and proto-

plasts were pelleted by gentle centrifugation (200 g, 5 min).

Protoplasts (1 · 107) were resuspended in 200 lL of

Transformation Buffer (TM) (0.6 m KCl, 50 mm CaCl2,

10 mm methanesulfonic acid, pH 6.0) containing 10–20 lg
of transformation DNA, and 100 lL of polyethylene gly-

col (PEG) solution (25% (w ⁄ v) PEG 6000, 50 mm CaCl2,

0.6 m KCl, 10 mm Tris ⁄HCl, pH 7.5). The suspension was

chilled to 4 �C for 15 min, and a further 1 mL of PEG

solution added at room temperature for 15 min. TM

(10 mL) was added to the mixture, and the transformed

protoplasts were pelleted by centrifugation (200 g, 5 min).

Protoplasts were resuspended in 500 lL of TM, and 50 lL
aliquots were mixed with 10 mL of AMM (minus uracil

and uridine) containing 1 m sorbitol as osmotic stabilizer

plus 2% (w ⁄ v) molten agar, and then poured onto min-

imal medium agar plates. Putative transformants became

visible after 2 days of incubation at 37 �C and were sub-

cultured onto AMM. Southern blot analysis was carried

out as previously described [48].

Subcellular fractionation and localization of Pes1

To localize Pes1, protoplasts were prepared as described

above and homogenized in Break Buffer containing 10%

(v ⁄ v) glycerol. A postnuclear supernatant (PNS) was centri-

fuged (40 000 g for 3 h at 4 �C in a Beckman SW40 TI) to

yield microsomal (M) pellet and soluble cytosol (C) fractions

as previously described [49]. Fractions were analysed by

SDS ⁄PAGE and immunodetection using immunoaffinity-

purified antibodies, IgG-Pes1.

In vitro killing of conidia by human neutrophils

Neutrophils were purified from fresh human blood by

dextran sedimentation and centrifugation through Ficoll ⁄
Hypaque as previously described [50]. Cells (5 · 108) were

incubated at 37 �C in 1 mL NaCl ⁄Pi in a rapidly stirred

chamber. IgG opsonized conidia were added (1.25 · 108)

and killing measured as described by Segal et al. [51],

omitting lysostaphin. Results were calculated as the mean

(± se) from three experiments with colony counts

performed in triplicate for each sample and expressed as a

percentage of the original numbers at time zero.

In vivo testing of virulence

A. fumigatus strains were grown on AMM for 14 days at

37 �C. Conidia were harvested [21] and infection studies

carried out in the insect model G. mellonella, according to

standard protocols [29,52]. A group of 30 larvae were infec-

ted with the A. fumigatus 293.1, 293 or Dpes1 by injecting

20 lL of an inoculum suspension (per larvae) containing

1 · 106 or 1 · 107 conidia into the hemocoel ⁄body cavity

via the last proleg. Larvae were observed for mortality,

twice daily, over a period of 7 days.

Scanning electron microscopy (SEM)

Conidia were fixed in 5% (v ⁄ v) formaldehyde and 2%

(v ⁄ v) glutaraldehyde in cacodylate buffer (0.1 m cacodylate,

0.01 m CaCl2, 0.01 m MgCl2, 0.09 m sucrose, pH 6.9) and

washed with cacodylate buffer and then with TE buffer

(10 mm Tris ⁄HCl, 2 mm EDTA, pH 6.9). Conidia were

placed onto poly(l-lysine) coated glass slides and SEM car-

ried out as previously described [28].

In vitro test for H2O2 and HOCl sensitivity

Conidia of A. fumigatus 293.1 and Dpes1 were harvested

from AMM plates [21] and resuspended in NaCl ⁄Pi at a

final concentration of 1 · 108 conidia ⁄mL. AMM agar

(100 mL) with added uracil and uridine (293.1 only) was

cooled to 38 �C and 1 mL of conidia added before pouring

into a Petri dish (240 · 240 mm). Nine holes with a diam-

eter of 1 cm were punched into each agar plate and differ-

ent amounts of 3% (v ⁄ v) H2O2 solution applied. Plates

were incubated for 16 h at 37 �C and inhibition zones

determined as an average of three specimens each.

Conidia (1 · 108 ⁄mL) were suspended in 1 mL of

NaCl ⁄Pi and exposed to two different concentrations of

HOCl (1 and 2.5 lm) at 37 �C. After mixing for 1, 2, 4 and
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8 min, aliquots were removed and diluted 1 : 10 in ice-cold

AMM. Serial 10-fold dilutions were then made, and plated

in triplicate for each specimen; results were calculated as

the mean (± se) from three separate experiments. The pH

remained stable during assays to within 0.15 pH units of

the starting pH.

Hydrophobicity assay

Conidia were harvested [21], washed twice and suspended

in 0.05 m sodium phosphate buffer (pH 7.4) containing

0.15 m NaCl to D540 nm ¼ 0.4. The conidial suspension was

treated with xylene (2.5 : 1, v ⁄ v), vigorously mixed for

2 min, and allowed to settle for 20 min. The absorbance of

the aqueous phase was then determined at 540 nm and the

relative hydrophilicity determined [53].
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The following supplementary material is available

online:

Fig. S1. Phylogenetic analysis of adenylation (A)

domains from a range of fungal nonribosomal peptide

synthetases (NRPS). GenBank accession numbers for

all NRPS are given in supplementary Table 1. The loca-

tion of the four Aspergillus fumigatus Pes1-derived A

domains is shown (*). Pes1A4 clusters with C. hetero-

strophus NPS4 A4 and A. brassicae NRPS1 A4, respect-

ively. The A3 domains for all three proteins also exhibit

evolutionary relatedness, but to a lesser extent.

Table S1. Genbank accession numbers of all fungal

nonribosomal peptide synthetases used to construct the

data in supplementary Fig. S1.

This material is available as part of the online article

from http://www.blackwell-synergy.com
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