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Abstract

The spread s(M) of an n × n complex matrix M is s(M) = maxij |λi − λj |, where
the maximum is taken over all pairs of eigenvalues of M , λi, 1 ≤ i ≤ n, [9] and
[11]. Based on this concept, Gregory et al. [7] determined some bounds for the
spread of the adjacency matrix A(G) of a simple graph G and made a conjecture
regarding the graph on n vertices yielding the maximum value of the spread of
the corresponding adjacency matrix. The signless Laplacian matrix of a graph G,
Q(G) = D(G)+A(G), where D(G) is the diagonal matrix of degrees of G and A(G)
is its adjacency matrix, has been recently studied, [4], [5]. The main goal of this
paper is to determine some bounds on s(Q(G)). We prove that, for any graph on
n ≥ 5 vertices, 2 ≤ s(Q(G)) ≤ 2n − 4, and we characterize the equality cases in
both bounds. Further, we prove that for any connected graph G with n ≥ 5 vertices,
s(Q(G)) < 2n − 4. We conjecture that, for n ≥ 5, sQ(G) ≤

√
4n2 − 20n + 33 and

that, in this case, the upper bound is attained if, and only if, G is a certain path-
complete graph.
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1 Introduction

For an n × n complex matrix M , the spread s(M) of M is defined as the di-
ameter of its spectrum, that is, s(M) = maxi,j|λi − λj|, where the maximum
is taken over all pairs of eigenvalues of M . There are several results concern-
ing the spread of a matrix, see for example [10], [9], [11], [1] and [14]. Let
G = (V, E) be a simple, undirected graph of order n with adjacency matrix
A and the vertex degrees ∆ = dG(v1) ≥ dG(v2) ≥ · · · ≥ dG(vn) = δ. Gregory
et al.[7] have determined bounds for the spread of the adjacency matrix of a
simple graph, see [7] for further details.

Let D(G) be the diagonal matrix of vertex degrees of G and L(G) = D(G)−
A(G), the Laplacian matrix of G. Since the minimum eigenvalue of L(G) is
zero, the spread of L(G) is equal to the spectral radius of L(G), a parameter
that has received much recent attention. Related to the Laplacian matrix is
the so-called signless Laplacian matrix of a graph G, Q(G) = D(G) + A(G),
which has recently been studied, [4], [5]. For a graph G on n vertices, we
denote the spectrum of Q(G) by Spec(Q(G)) = (q1, . . . , qn−1, qn), where q1 ≥
. . . ≥ qn−1 ≥ qn. It is readily seen that Q(G) is positive semidefinite, so that
qi ≥ 0, i = 1, . . . , n, and Cvetković et al. [5] proved that qn(G) = 0 if and only
if G is a bipartite graph. In this case, the study of the spread of Q(G), which
we refer to as the Q-spread, and denote by sQ(G), is reduced to the study of
q1(G). In this paper, we are interested in determining upper and lower bounds
on sQ(G) in the case that G is not constrained to be a bipartite graph.

This paper is organized as follows. In the next section, we determine upper and
lower bounds on the Q-spread among all simple graphs on a given number of
vertices. Section 3 is dedicated to the special case of the path complete graphs
PCn,p,t when t = 1. We determine the spectrum of all PCn,p,1-graphs and we
prove that PCn,1,1 maximizes the Q-spread over the class of graphs of the form
G = PCn,p,1. For another results to the path complete graphs see [8], [12], [2].
The paper ends with a conjecture that PCn,1,1 maximizes sQ(G) over the class
of connected graphs on n vertices.

2 Bounds for the Q-spread of a graph

In this section we find sharp lower and upper bounds for sQ(G) where G is a
simple graph with at least one edge. The bulk of the work below is in dealing
with the case that G is connected, and as will be seen in Section 3, we believe
that the upper bound for connected graphs given here can be improved.

It is straightforward to see that for any graph G we have sQ(G) ≥ 0, with
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equality holding if and only if G has no edges. Our first result deals with the
case that G has at least one edge.

Proposition 1 Suppose that G is a graph on n vertices with at least one edge.

Then sQ(G) ≥ 2, with equality holding if and only if G consists of a union of

independent edges and possibly some isolated vertices.

PROOF. Let G have minimum degree δ and maximum degree ∆. We have
q1(G) ≥ ∆ and qn(G) ≤ δ, so that sQ(G) ≥ ∆− δ. If ∆− δ ≥ 3, then certainly
sQ(G) > 2, so suppose now that ∆ ≤ δ + 2. Note that if ∆ = δ, so that G

is regular, then we find readily that q1(G) ≥ δ + 1, qn(G) ≤ δ − 1, so that
sQ(G) ≥ 2. In the regular case, we see that sQ(G) = 2 only if q1(G) = δ + 1,
which in turn yields that each connected component of G consists of a single
edge. Henceforth, we suppose that G is not regular.

Observe that if δ = 0, then since G has at least one edge, q1(G) ≥ 2, yielding
the desired inequality; the equality case then follows from the fact that q1(G) =
2 if and only if each connected component of G on at least two vertices consists
of a single edge. Henceforth, we assume that δ ≥ 1.

Note that any vertex of degree δ is adjacent to a vertex of degree δ+i for some
i = 0, 1, 2 (the latter case occurring only if ∆ = δ +2). Hence for some such i,
Q(G) contains a principal 2 × 2 submatrix that is permutationally similar to

T =







δ + i 1

1 δ





 . It now follows from interlacing that qn(G) is bounded above

by the smallest eigenvalue of T, which is 2δ+i−
√

i2+4
2

.

Note also that, when the vertices of G are suitably labelled, there is a principal
submatrix of Q of order ∆ + 1 that is entrywise greater than or equal to the

matrix S =





























∆ 1 1 . . . 1

1 δ 0 . . . 0

1 0 δ . . . 0
...

. . .
...

1 0 . . . 0 δ





























. Hence we find that q1(G) is bounded below by

the Perron value of S, which is readily seen to be
∆+δ+

√
(∆−δ)2+4∆

2
.

From the above considerations, we find that sQ(G) ≥ ∆+δ+
√

(∆−δ)2+4∆

2
−

2δ+i−
√

i2+4
2

=
∆−δ−i+

√
(∆−δ)2+4∆+

√
i2+4

2
. Thus for the case that ∆ = δ + 2,

we have that for some i = 0, 1, 2, sQ(G) ≥ 2−i+
√

12+4δ+
√

i2+4
2

; since δ ≥ 1, we
thus find that sQ(G) ≥ 3. For the case that ∆ = δ + 1, we have that for some

i = 0, 1, sQ(G) ≥ 1−i+
√

5+4δ+
√

i2+4
2

; since δ ≥ 1, we have sQ(G) > 5
2
.
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The conclusion now follows. �

Proposition 2 For any connected bipartite graph G with n vertices,

sQ(Pn) = 2 + 2 cos
π

n
≤ sQ(G).

PROOF. As noted in Section 1 for any bipartite graph, the Q-spread coin-
cides with q1(G) (or equivalently, the Laplacian spectral radius of G). Accord-
ing to Yan [13], for any bipartite graph G, 2 + 2 cos π

n
≤ q1(G), and the path

Pn is the unique graph such that q1(Pn) attains this lower bound. �

Remark 1: Based on a number of computational tests using the AutoGraphiX
System [3], Cvetković et al. [6] conjectured the following result concerning
lower and upper bounds for sQ(G).

Conjecture 3 Fix n ≥ 6. Of all connected graphs on n vertices, sQ(G) is

maximized by Kn−1 + e, the graph formed by adding a pendant edge to Kn−1.

Further, of all connected graphs on n vertices, sQ(G) is minimized by the path

Pn and, in the case that n is odd, by the cycle Cn.

Next, we turn our attention to finding an upper bound on the Q-spread for
connected graphs.

Lemma 4 Suppose that G is a connected graph on n vertices with maximum

degree at most n − 2. Then sQ(G) ≤ 2n − 4, and equality holds if and only if

n = 4 and G = C4.

PROOF. Let the maximum degree of G be ∆. We have q1(G) ≤ 2∆ ≤ 2n−4,
and so certainly sQ(G) ≤ 2n − 4. Suppose now that sQ(G) = 2n − 4; then
necessarily G is regular of degree n − 2, so that Q(G) = (n − 2)I + A(G).
Further, qn(G) = 0, so that A(G) has −(n − 2) as an eigenvalue. Hence, G

must be bipartite, in addition to being regular of degree n− 2. It now follows
that each of the partite sets in the bipartition of V has cardinality at most 2,
so that n ≤ 4. It is straightforward to determine now that n = 4 and G = C4.

�

Our main result of this section, the upper bound on the Q-spread for connected
graphs given by Theorem 12, requires a number of technical lemmas, which
follow. Henceforth we let J denote an all ones matrix, 1 denote an all ones
vector, 0 denote a zero vector, and I denote an identity matrix; orders for
each will be clear from the context.
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Lemma 5 Suppose that G is a graph on n vertices such that q1(G) > 2n− 4.
Then G has maximum degree n − 1. If G has, say, k vertices of degree n − 1,

then q1(G) ≤ 1
2
(3n − 6 +

√

(n − 2)2 + 8k). The equality holds if and only if G

also has n − k vertices of degree n − k − 2.

PROOF. Let ∆ be the maximum degree of G. Since 2∆ ≥ q1(G) > 2n − 4,
we see that ∆ > n − 2. Hence we must have ∆ = n − 1. Suppose that G has
k vertices of degree n − 1. Then Q(G) can be written as

Q(G) =







(n − 2)I + J J

J B





 ,

where B = kI +Q(H), and H is the subgraph of G induced by the vertices of
degree less than n−1. Note that (B1)i = k+2dH(vi). Since dH(vi) ≤ n−2−k,
B1 ≤ (k+2(n−2−k))1 = (2n−k−4)1, where 1 denotes the all ones vector.
It follows that q1(G) is bounded above by the Perron value of the 2×2 matrix

M =







n − 2 + k n − k

k 2n − k − 4





 .

A computation shows that the Perron value of M is given by 1
2
(3n − 6 +

√

(n − 2)2 + 8k).

Observe that B1 = k +2(n−2−k) if and only if the remaining n−k vertices
of G have the same degree n− k − 2. So, the unique graph G on k vertices of
degree n− 1 that has maximum q1 also has n− k vertices of degree n− k − 2
and the conclusion follows. �

Let On−k denote the empty graph on n − k vertices; we define the graph
GR(n, k) as the join of Kk and On−k, i.e., GR(n, k) = Kk∇On−k. Let Mn be
the set of all semi-definite positive matrices of order n. Let M1 and M2 ∈ Mn.
We call that M2 is bounded below by M1 in a positive semi-definite ordering
if xT M1x ≤ xT M2x, for all x ∈ Rn, x 6= 0.

Lemma 6 Let G 6= Kn be a graph on n vertices with k vertices of degree

n − 1. Then qn(G) ≥ 1
2
(n + 2k − 2 −

√

(n + 2k − 2)2 − 8k(k − 1)).

PROOF. Note that with a suitable numbering of the vertices of G, Q(G) −
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Q(GR(n, k)) is a positive semidefinite matrix, where Q(GR(n, k)) is given by

Q(GR(n, k)) =







(n − 2)I + J J

J kI






,

and where the diagonal blocks in the partitioning are of orders k and n − k,
respectively. Consequently, qn(Q(G)) ≥ qn(Q(GR(n, k))).

For each i = 1, . . . , n, let ei denote the i-th standard unit basis vector. We
find that for each j = 2, . . . , k, e1 − ej is an eigenvector for Q(GR(n, k)) cor-
responding to eigenvalue n − 2, while for each j = k + 2, . . . , n, ek+1 − ej is
an eigenvector for Q(GR(n, k)) corresponding to eigenvalue k. Consequently,
we see that Q(GR(n, k)) has n − 2 as an eigenvalue of multiplicity at least
k − 1, and k as an eigenvalue of multiplicity at least n− k − 1. Further, since
Q(GR(n, k)) has an orthogonal basis of eigenvectors, it follows that there are

remaining eigenvectors of Q(GR(n, k)) of the form







α1

β1





 . It follows that the

remaining eigenvalues of Q(GR(n, k)) coincide with those of the 2 × 2 matrix

S =







n − 2 + k n − k

k k





 .

The eigenvalues of S are readily seen to be

1

2
(n + 2k − 2 ±

√

(n + 2k − 2)2 − 8k(k − 1)),

and thus we find that qn(G) ≥ min{k, n−2, 1
2
(n+2k−2−

√

(n + 2k − 2)2 − 8k(k − 1))}.
Since k ≥ 1

2
(n + 2k − 2 −

√

(n + 2k − 2)2 − 8k(k − 1)), and n − 2 ≥ 1
2
(n +

2k − 2 −
√

(n + 2k − 2)2 − 8k(k − 1) the conclusion follows.�

Corollary 7 GR(n, k) is the unique connected graph that minimizes qn among

all non-complete graphs on n vertices with at least k vertices of degree n − 1.

PROOF. It suffices to show that qn(GR(n, k)) < qn(GR(n, k) ∪ e) when we
add an edge e between two vertices of degree k of GR(n, k). With a suitable
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labelling of the vertices, we have

Q(GR(n, k) ∪ e) =





























(n − 2)I + J J J

J kI O

k + 1 1

J O

1 k + 1





























As in Lemma 6, we find that the eigenvalues of Q(GR(n, k)∪e) are n−2 (with
multiplicity k − 1), k (with multiplicity n − k − 2), as well as the eigenvalues
of the matrix

S =















n − 2 + k n − 2 − k 2

k k 0

k 0 k + 2















.

According to Lemma 6, the least eigenvalue x of Q(GR(n, k)) is x = 1
2
(n +

2k − 2 −
√

(n + 2k − 2)2 − 8k(k − 1)). So, if we show that S − xI is positive
definite, the result will follow. We have

S − xI =















n − 2 + k − x n − 2 − k 2

k k − x 0

k 0 k + 2 − x















,

so that det(S − xI) =
(k + 2 − x)[(n − 2 + k − x)(k − x) − k(n − 2 − k)] + k(−2)(k − x)
= 4k > 0.
Since k − x and n − 2 + k − x are positive the result follows. �

The following result was established by generating all graphs satisfying the
hypotheses and then verifying the inequality on the Q-spread.

Lemma 8 Let G be a graph on n = 5, 6, or 7 vertices, with k ≥ 3 vertices of

degree n − 1. Then, sQ(G) < 2n − 4.

Lemma 9 Suppose the G is a graph on n ≥ 8 vertices, with k ≥ 3 vertices of

degree n − 1. Then sQ(G) < 2n − 4.

PROOF. If k = n, then G = Kn and sQ(Kn) = n < 2n−4 for n ≥ 8. Now we
consider two cases. In the first case, suppose that q1(G) > 2n−4. From Lemma
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5 we find that q1(G) ≤ 1
2
(3n − 6 +

√

(n − 2)2 + 8k), while from Lemma 6 we

have qn(G) ≥ 1
2
(n + 2k − 2 −

√

(n + 2k − 2)2 − 8k(k − 1)). Hence, sQ(G) ≤
1
2
(3n − 6 +

√

(n − 2)2 + 8k) − 1
2
(n + 2k − 2 −

√

(n + 2k − 2)2 − 8k(k − 1)) =
1
2
(2n − 2k − 4 +

√

(n − 2)2 + 8k +
√

(n + 2k − 2)2 − 8k(k − 1)). Note that
√

(n − 2)2 + 8k < n−2+ 4k
n−2

and that
√

(n + 2k − 2)2 − 8k(k − 1) < n+2k−

2− 4k(k−1)
n+2k−2

, so it follows that sQ(G) < n− k − 2 +
n−2+ 4k

n−2

2
+

n+2k−2− 4k(k−1)
n+2k−2

2
=

2n − 4 + 2k
(

1
n−2

− k−1
n+2k−2

)

. Since k ≥ 3 and n ≥ 8, we have 1
n−2

≤ k−1
n+2k−2

,

and the conclusion follows.

In the second case, suppose q1(G) ≤ 2n − 4. If q1(G) < 2n − 4, we have
the result. Now, consider q1(G) = 2n − 4. Suppose, to the contrary, that
sQ(G) = 2n− 4. In this case qn must be zero. From [5] G is a bipartite graph
and hence the spectrum of the signless Laplacian and Laplacian are the same.
So, q1(G) ≤ n < 2n − 4. We thus conclude that sQ(G) < 2n − 4. �

Lemma 10 Suppose that G is a graph on n ≥ 7 vertices with k = 1 or 2
vertices of degree n− 1, and no vertices of degree n− 2. Then q1(G) < 2n− 4.

PROOF. We may write Q(G) as

Q(G) =







(n − 2)I + J J

J B






,

where B = kI +Q(H), and H is the subgraph of G induced by the vertices of
degree less than n−2. Note that B1 ≤ (k +2(n−3−k))1 = (2n−k−6)1. It
follows that q1(G) is bounded above by the Perron value of the 2 × 2 matrix

M =







n − 2 + k n − k

k 2n − k − 6





 .

A computation shows that the Perron value of M is given by 1
2
(3n − 8 +√

n2 − 8n + 16k + 16). Since n ≥ 7 and k ≤ 2, we find that 1
2
(3n − 8 +√

n2 − 8n + 16k + 16) < 2n − 4, and the conclusion follows. �

Remark 2: For n = 5 or n = 6 and k = 1 vertex of degree n − 1 and no
vertices of degree n− 2, direct computations show that q1 < 2n− 4. However,
for n = 5 or n = 6 and k = 2, the graph of the Figure 1 is an example of a
graph on n vertices with 2 vertices of degree n − 1 and no vertices of degree
n − 2 for which q1 > 2n − 4.
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Fig. 1. Graph with 5 vertices, k = 2 and q1(G) = 6.3722 > 2n − 4

Lemma 11 Let G be a graph on n vertices with k = 1 or 2 vertices of degree

n − 1, and at least one vertex of degree n − 2. If n ≥ 7, then qn(G) ≥ 2k
n−2

.

PROOF. There is a labelling of the vertices of G such that Q(G) − T is a
positive semidefinite matrix, where T is given by

T =





















(n − 2)I + J 1 J 1

1T n − 2 1T 0

JT 1 (k + 1)I 0

1T 0 0T k





















,

and where the diagonal blocks are of orders k, 1, n−k−2, and 1, respectively.

The eigenvalues of T consist of n − 2 (with multiplicity k − 1), k + 1 (with
multiplicity n − k − 3) and the eigenvalues of the 4 × 4 matrix

U =





















n − 2 + k 1 n − k − 2 1

k n − 2 n − k − 2 0

k 1 k + 1 0

k 0 0 k





















.

Consider c = 2k
n−2

. It suffices to show that the smallest eigenvalue of U is at
least c; observing that U is diagonally similar to the symmetric matrix

W =





















n − 2 + k
√

k
√

k(n − k − 2)
√

k
√

k n − 2
√

n − k − 2 0
√

k(n − k − 2)
√

n − k − 2 k + 1 0
√

k 0 0 k





















,

we find that it is enough to show that W − cI is a positive definite matrix.
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We proceed to do so by considering the trailing principal minors of W − cI.
Evidently k + 1 − c > k − c > 0, while the trailing principal minor of order 3
is (k − c)((k + 1)(n− 2)− c(n + k − 1) + c2 − n + k + 2). This last is positive

if and only if k(n − 3) + 4k2

(n−2)2
> 2k(k+1)

n−2
, which clearly holds for n ≥ 5.

It remains only to check that det(W − cI) > 0. An uninteresting computation
shows that det(W −cI) = (k−c)[k(k+1)n−2k(k+1)+2kn+k2(n−2)−5k−
2k2− c(n−2)(n−2+k)− c(k+1)(n−2)−2k(k+1)c+kc+ c2(2n+2k−3)−
c3]−k2(n−3)− 4k3

(n−2)2
+ 2k2(k+1)

n−2
. It follows that det(W −cI) > (k−c)[n(2k2 +

1)−2k(k +1)−5k−2k2 −2k2 −2k(k +1)−2k(k+1)c]−k2(n−3)− 4k3

(n−2)2
>

n(2k3 + k − 2ck2 − c − k2) − k((6 + c)k(k + 1) + 2k2 + 5k) + 3k2 − 4k3

(n−2)2
.

For k = 1, that last member is n(2 − 3c) − (19 + 6c) + 3 − 4
(n−2)2

= 2n −
6n−12
n−2

− 16 4
(n−2)2

, which is positive for n > 12. For k = 2, that last member

is 14n − 36n+48
n−2

+ 12 − 108 − 32
(n−2)2

, which again is positive for n > 12. Thus,
W − cI is positive definite. By direct computation, it turns out that for k = 1
or k = 2 and 7 ≤ n ≤ 12, det(W − cI) > 0, and the conclusion follows. �

Remark 3: The graph of the Figure 2 is an example of a graph on n = 6
vertices with k = 1 vertex of degree n − 1 and at least one vertex of degree
n − 2, for which q1 < 2k

n−2
.

Fig. 2. Graph with 6 vertices, q6(G) = 0.48 < 2k
n−2 = 0.5

Theorem 12 Let G be a connected graph on n ≥ 5 vertices. Then sQ(G) <

2n − 4.

PROOF. We begin by observing that sQ(Kn) = n < 2n − 4 since n ≥ 5.
Henceforth we assume that G is not a complete graph. Suppose first that the
maximum degree of G is at most n−2. Then the result follows from Lemma 4.
Henceforth, we assume that G has k ≥ 1 vertices of degree n−1. If k ≥ 3, then
by Lemma 9 we have sQ(G) < 2n − 4 for n ≥ 8; direct computation for the
cases n = 5, 6, 7 also yields sQ(G) < 2n−4 by Lemma 8. If k = 1 or k = 2 and
G has no vertices of degree n−2, then by Lemma 10, we have sQ(G) < 2n−4
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if n ≥ 7. Finally, if k = 1 or k = 2 and G has a vertex of degree n− 2, we find
from Lemma 11, qn(G) ≥ 2k

n−2
for n ≥ 7. Hence, sQ(G) < 2n − 4 for n ≥ 7,

while direct computation for the cases n = 5, 6 also yields sQ(G) < 2n − 4. �

Remark 4: It is interesting to note that the conclusion of Theorem 12 fails
when n = 4. Indeed, direct computations show that of the six connected
graphs on four vertices, only the graph P4 has a Q-spread that is less than
2n − 4 = 4.

Corollary 13 Let G be a graph on n ≥ 5 vertices. Then sQ(G) ≤ 2n − 4.
Equality holds if and only if G = Kn−1 ∪ K1.

PROOF. Suppose first that G is connected. Then the results follows immedi-
ately from Lemma 4 and Theorem 12. Suppose now that G is not connected; let
C be the connected component of G having the largest number of vertices, and
suppose that C has m vertices. We find readily that q1(G) ≤ 2(m−1) ≤ 2n−4.
Hence, we see that sQ(G) ≤ 2n− 4. Further, if sQ(G) = 2n− 4, then we must
have that m = n−1 and that q1(G) = 2n−4. This last implies that C = Kn−1,

and hence that G = Kn−1 ∪ K1. �

3 Q-spread of PCn,p,1

From now on, we work with graphs of order n obtained from the disjoint
union of stars K1,n−p−1 and p copies of isolated vertices, pK1, where 1 ≤ p ≤
n − 2. Its complement is a special case of the path complete graphs(see [2]),
which is denoted as PCn,p,1 = K1,n−p−1 ∪ pK1. Several systems for obtaining
conjectures in a computer-assisted way have been proposed in the literature.
Among them, we employed the AutoGraphix system (AGX) [3]. A survey is
available in Caporossi and Hansen [3]. We used AGX to find connected graphs
on n vertices with maximum Q-spread. Based on the results of a number of
AGX searches, we conjecture that the path complete graph on n vertices has
maximum sQ(G) and it is obtained by adding exactly one edge to the graph
Kn−1 ∪ K1. Further, from Corollary 13, the disconnected graph Kn−1 ∪ K1

maximizes the Q-spread over all simple graphs on n ≥ 5 vertices.

In Theorem 14, we determine the spectrum, and hence the spread, of the graph
PCn,p,1. Note that in the statement of that theorem, a superscript denotes the
multiplicity of the eigenvalue.

Theorem 14 Let n ≥ 4 and G = PCn,p,1. Then, the spectrum of PCn,p,1 is
Spec(Q(PCn,p,1)) =
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(
2n+p−4±

√
4n2+n(−4p−16)+p2+16p+16

2
, (n − 2)(p), (n − 3)(n−p−2)) and the spread of

G is
sQ(PCn,p,1) =

√

4n2 + n(−4p − 16) + p2 + 16p + 16.

PROOF. We we find that Q(PCn,p,1) can be written as

Q(PCn,p,1) =















(n − 3)I + J J 0

J (n − 2)I + J 1

0T 1T p















,

where the diagonal blocks are of orders n−p−1, p and 1, respectively. For each
i = 1, . . . , n, let ei denote the i-th standard unit basis vector. We find that for
each j = 2, . . . , n−p−1, e1−ej is an eigenvector for Q(PCn,p,1) corresponding
to eigenvalue n − 3, while for each j = n − p + 1, . . . , n − 1, en−p − ej is an
eigenvector for Q(PCn,p,1) corresponding to eigenvalue n − 2. Consequently,
we see that Q(PCn,p,1) has n − 3 as an eigenvalue of multiplicity at least
n−p−2, and n−2 as an eigenvalue of multiplicity at least p−1. Further, since
Q(PCn,p,1) has an orthogonal basis of eigenvectors, it follows that there are

remaining eigenvectors of Q(PCn,p,1) of the form















α1

β1

γ















. We then deduce that

the eigenvalues of the 3 × 3 matrix M =















2n − p − 4 p 0

n − p − 1 n − 2 + p 1

0 p p















comprise

the remaining three eigenvalues of Q(PCn,p,1). Direct computation shows that

the eigenvalues of M are
2n+p−4±

√
4n2+n(−4p−16)+p2+16p+16

2
and n − 2.

The expressions for Spec(Q(PCn,p,1)) and sQ(PCn,p,1) now follow readily. �

The following proposition shows that PCn,1,1 has maximum Q-spread among
all PCn,p,1 for 2 ≤ p ≤ n − 2.

Proposition 15 For n ≥ 7 and 2 ≤ p ≤ n − 2, we have

sQ(PCn,p+1,1) < sQ(PCn,p,1) ≤ sQ(PCn,1,1) =
√

4n2 − 20n + 33.

PROOF. Observe that the inequality sQ(PCn,p+1,1) < sQ(PCn,p,1) is equiv-
alent to the inequality −4n + 2p + 17 < 0. Since p ≤ n − 2, we find that
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−4n+2p+17 ≤ −2n+13 ≤ −1, the last inequality following from the hypoth-
esis that n ≥ 7. Therefore, for n ≥ 7, we have sQ(PCn,p+1,1) < sQ(PCn,p,1),
as desired. �

From AutoGraphiX computational tests, we formulate the following conjec-
ture.

Conjecture 16 For any connected graph G with n ≥ 5 vertices,

sQ(G) ≤
√

4n2 − 20n + 33.

The upper bound is attained if and only if G = PCn,1,1.

The conjecture above is equivalent to:

Conjecture 17 There is no connected graph G with n ≥ 5 vertices such that

√
4n2 − 20n + 33 < sQ(G) < 2n − 4.

Observe that 2n − 5 + 2
n

<
√

4n2 − 20n + 33 for each n ≥ 1.
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