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Abstract

Background: The nature of the immune response to infection is dependent on the type of infecting organism. Intracellular
organisms such as Toxoplasma gondii stimulate a Th1-driven response associated with production of IL-12, IFN-c, nitric oxide
and IgG2a antibodies and classical activation of macrophages. In contrast, extracellular helminths such as Fasciola hepatica
induce Th2 responses characterised by the production of IL-4, IL-5, IL-10 and IgG1 antibodies and alternative activation of
macrophages. As co-infections with these types of parasites commonly exist in the field it is relevant to examine how the various
facets of the immune responses induced by each may influence or counter-regulate that of the other.

Principal Findings: Regardless, of whether F. hepatica infection preceded or succeeded T. gondii infection, there was little
impact on the production of the Th1 cytokines IL-12, IFN-c or on the development of classically-activated macrophages
induced by T. gondii. By contrast, the production of helminth-specific Th2 cytokines, such as IL-4 and IL-5, was suppressed
by infection with T. gondii. Additionally, the recruitment and alternative activation of macrophages by F. hepatica was
blocked or reversed by subsequent infection with T. gondii. The clinical symptoms of toxoplasmosis and the survival rate of
infected mice were not significantly altered by the helminth.

Conclusions: Despite previous studies showing that F. hepatica suppressed the classical activation of macrophages and the
Th1-driven responses of mice to bystander microbial infection, as well as reduced their ability to reject these, here we found
that the potent immune responses to T. gondii were capable of suppressing the responses to helminth infection. Clearly, the
outcome of particular infections in polyparasitoses depends on the means and potency by which each pathogen controls
the immune response.
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Introduction

Many pathogens stimulate polarised immune responses involving

the development of T helper cells with characteristic Th1 (pro-

inflammatory) or Th2 (anti-inflammatory) cytokine profiles. The

direction of the polarisation is often dependent on the type of

infecting organism with intracellular pathogens, such as bacteria,

viruses and protozoan parasites, inducing a Th1 response char-

acterised by production of pro-inflammatory mediators such as IL-

12, IFN-c and nitric oxide and extracellular pathogens, such as

helminths, inducing a Th2 response characterised by the production

of IL-4, IL-5 and IL-10 [1]. A critical feature of these two types of

responses is that they counter-regulate each other; thus, if one type of

immune response is stimulated, the other type is suppressed [2].

A consequence of this cross regulation is that, for instance,

infection with an extracellular pathogen requiring a Th2 response

may inhibit a Th1 response required for control of a simultaneous

intracellular pathogen. For example, infection with F. hepatica

induces potent Th2 responses, characterised by production of IL-

4, IL-5 and IL-10 [3]. At the same time, this parasite suppresses

the generation of the Th1-associated cytokines, IFN-c and IL-2 [3]

and, as a result, mice co-infected with F. hepatica and Bordetella

pertussis showed a significant delay in clearing the bacterial

infection in the lungs [4,5]. This modulation of the immune

response was seen even though the two pathogens occupy different

compartments within the body of the host, with F. hepatica found in

the liver and B. pertussis confined to the lungs. The immunomod-

ulatory effects of F. hepatica are systemic and begin within the first

day after infection when the parasite induces the recruitment and

alternative activation of macrophages; these macrophages, in turn,

influence the differentiation of CD4+ T cells towards the Th2

phenotype [6,7]. The capacity of F. hepatica to simultaneously
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down-regulate Th1 responses and up-regulate Th2 responses –

and do so at the earliest time after infection - sets it apart from any

other parasites studied to date [3,6] and makes it an excellent

model organism to investigate Th1/Th2 polarisation in the

context of co-infection with a Th1-stimulating, intracellular

infection.

Arguably, the quintessential Th1-inducing pathogen is Toxoplasma

gondii. This protozoan parasite of humans and animals has a

worldwide distribution with human infection rates of 22%–75% in

different countries depending on factors such as prevalence in

animals and dietary habits [8]. Acute infection is characterised by the

proliferation of rapidly dividing tachyzoites that stimulate very

potent Th1 cell-mediated responses stimulating the release of IL-12

from dendritic cells, neutrophils and macrophages which, in turn,

activates natural killer (NK) cells to produce IFN-c and drives

proliferation of Type 1 CD4+ and CD8+ T cells, which also produce

IFN-c. IFN-c has a major role in the development of resistance to

acute infection by activating macrophages to produce nitric oxide

(NO), which controls intracellular parasite growth [9,10,11]. This

triggers stage conversion to the slow growing bradyzoite stage,

contained within cysts in the skeletal muscles and central nervous

system, resulting in chronic – potentially lifelong – quiescent

infection. Specific immunity is required to maintain quiescence as

impairment of the immune response (as seen, for example, in HIV/

AIDS or organ transplants) leading to depletion of cellular immunity

can result in reactivation of T. gondii infection and lead to the

development of diseases such as toxoplasmic encephalitis [12].

The aim of this study was to investigate the developing immune

responses in mice that were co-infected with a protozoan and

helminth parasite; mice were infected with T. gondii prior and

subsequent to an infection with F. hepatica. First, we measured

isotype-specific antibody responses to the two parasites to confirm

that the characteristic Th1 and Th2 responses were initiated in our

co-infection model; second, the cellular compostion of peritoneal

exudate cells was determined and the activation state of

macrophages recovered from infected mice was determined; third,

we stimulated splenocytes with T. gondii lysate or F. hepatica

Excretory/Secretory (ES) antigens and measured production of

the Th1 cytokine, IFN-c, as well as the Th2-associated cytokines,

IL-4 and IL-5; fourth, we compared levels of the Th1- and Th2-

associated cytokines in sera and in response to non-specific

stimulation of splenocytes from singly and dually-infected mice, to

determine if co-infection altered production; and, fifth, we

examined the effect of co-infection on the health of the host.

Results

Serum levels of anti-Toxoplasma IgG2a and anti-Fasciola
IgG1 antibodies are unaffected in co-infected mice

Production of IgG1 has been associated with a developing Th2

response whereas IgG2a has been associated with a Th1 response,

so production of both isotypes was examined in the co-infected

mice to establish what type of response was initiated. Infection

with T. gondii induced high levels of specific IgG2a antibody, with

little or no IgG1; the absorbance values for IgG2a were not

significantly different between mice infected with T. gondii alone or

with this parasite and F. hepatica. Similar results were seen

regardless of the order of infection (Fig. 1A and B). In contrast, no

antigen-specific IgG2a was detected in any of the groups infected

with this F. hepatica regardless of order of infection (Fig. 1C and D);

however, when F. hepatica was the first infecting parasite it induced

potent specific IgG1 responses that were not ameliorated by co-

infection with T. gondii (Fig. 1C), showing that a Th2 response had

been induced, at least initially, in co-infected mice. No F. hepatica-

specific IgG1 antibody was detected in any of the groups when

mice were infected with T. gondii before F. hepatica (Fig. 1D).

Toxoplasma gondii suppresses the recruitment and
alternative activation of macrophages normally
associated with helminth infection

A feature of infections by helminths such as F. hepatica is the

recruitment of large numbers of cells to the site of infection [2].

The numbers of peritoneal exudate cells (PEC) in mice infected

with both F. hepatica and T. gondii were significantly lower than the

numbers found in F. hepatica-only infected mice on day 15 of F.

hepatica infection (day 10 of T. gondii infection; P,0.05; Fig. 2A).

The numbers of PEC in these co-infected mice were slightly, but

significantly, higher than the numbers of PECs found in T. gondii-

infected and uninfected mice (P,0.05; Fig. 2A). Similar results

were seen when T. gondii infection preceded F. hepatica infection.

The recruitment of cells is still obvious despite the earlier time

point (day 11 post F. hepatica infection) but this has been

significantly reduced in co-infected mice (P,0.05; Fig. 2B). Again,

the numbers of PEC in the co-infected mice were slightly, but

significantly, higher than the numbers of PECs found in T. gondii-

infected and uninfected mice (P,0.05; Fig. 2B). Microscopic

analysis showed macrophages to be the dominant cell type in all

the mice making up 89–91% of cells; other cells present included

lymphocytes (4–5%) and neutrophils (5–6%). As is typical for mice

infected with F. hepatica (in contrast to other animal models of F.

hepatica infection), no eosinophilia was observed [5].

Macrophage activation status was assessed to determine

whether they were classically or alternatively activated. Classically

activated macrophages express iNOS, which catalyses the

metabolism of arginine into nitric oxide, and produce the

proinflammatory cytokine, IL-12. Conversely, alternatively acti-

vated macrophages express Arginase 1 that catabolises the

conversion of arginine into creatine phosphate [6,13].

Macrophage activation was first evaluated by monitoring

expression of genes coding for iNOS and Arginase I using RT-

PCR. Macrophages from mice infected with F. hepatica alone

exhibited elevated expression of Arginase 1 but not iNOS,

indicating their alternative activation. In contrast, macrophages

from co-infected and from those infected with T. gondii alone

expressed iNOS but not Arginase 1, indicating that the cells were

classically activated. This pattern was observed whether F. hepatica

was the first infecting organism (Fig. 3A) or the second (Fig. 3B).

Neither iNOS nor Arginase I was expressed in macrophages from

uninfected mice (Fig. 3A, B).

Consistent with the RT-PCR results, adherent peritoneal

macrophages from T. gondii-only and co-infected mice, left in

culture for 48 hours without any antigenic stimulus, spontaneously

produced reactive nitrogen intermediates (469.1665.5 mM and

498.3681.7 mM nitrate, respectively, mean6S.E., n = 5 mice)

whereas cells from uninfected mice or mice infected only with F.

hepatica produced negligible levels of NO. Serum NO levels (at 10

or 14 days post T. gondii infection) confirmed these results and,

thus, were elevated in mice acutely infected with T. gondii but

remained at background levels in mice infected with F. hepatica

only. Hence, in mice infected with F. hepatica prior to infection with

T. gondii, NO levels on day 10 post T. gondii infection were not

significantly different from those seen in mice infected with T.

gondii alone (Fig. 3C). In mice infected with F. hepatica subsequent

to infection with T. gondii, NO levels on day 14 post T. gondii

infection were significantly reduced compared with levels in mice

infected with T. gondii alone but were still significantly higher than

the levels seen in mice infected with F. hepatica alone or naı̈ve mice

(Fig. 3D).

T. gondii and F. hepatica
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Confirmation of the classical activation status of the macrophages

from co-infected mice was also sought by analysing IL-12 production

by peritoneal macrophages early after infection with T. gondii. Thus,

4 days after infection with T. gondii, levels of IL-12 in peritoneal

exudate and spontaneous secretions from adhered peritoneal

exudate cells were significantly elevated in co-infected mice

compared with levels detected in F. hepatica-infected and uninfected

mice, but were not significantly different from the levels seen in T.

gondii-infected mice (Fig. 4A, B). This pattern was reaffirmed in sera,

where IL-12 levels were elevated significantly above background

levels in mice infected only with T. gondii and increased further in

mice infected with both T. gondii and F. hepatica (Fig. 4C).

Production of T. gondii-specific Th1 cytokines is not
suppressed by F. hepatica infection but T. gondii infection
inhibits the ability of splenocytes from Fasciola-infected
mice to produce Th2 cytokines

Stimulation of splenocytes with T. gondii antigen resulted in the

production of significant amounts of T. gondii-specific IFN-c in

Figure 1. Mice infected with both Toxoplasma gondii and Fasciola hepatica produce both anti-T. gondii IgG2a and anti-F. hepatica IgG1
indicating a Th1 response to the T. gondii infection and a Th2 response to the F. hepatica infection. BALB/c mice were infected with F.
hepatica (Fh) 5 days prior to infection with T. gondii (A,C) or T. gondii 3 days prior to infection with F. hepatica (B,D). Mice infected with either F.
hepatica alone or T. gondii alone or uninfected mice were used as controls. Serum was collected by cardiac puncture on: (A,C) day 10 post T. gondii
infection (day 15 post F. hepatica infection) or (B,D) day 14 post T. gondii infection (day 11 post F. hepatica infection). T. gondii-specific IgG1 and IgG2a
(A,B) and F. hepatica-specific IgG1 and IgG2a (C,D) antibodies were measured by ELISA. The results represent the mean6SE of one experiment with
five animals (A,C) or eight animals (B,D) per group. a indicates groups where the values obtained were significantly different to values obtained for the
T. gondii-only infected mice and b represents groups where the values obtained were significantly different to those obtained for the F. hepatica-only
infected group (P,0.05, Mann-Whitney non-parametric test).
doi:10.1371/journal.pone.0005692.g001

T. gondii and F. hepatica
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mice infected with T. gondii only and in co-infected mice

compared with uninfected mice or mice infected with F. hepatica

only, regardless of order of infection (P,0.05; Fig. 5A, B). When

mice were infected with F. hepatica prior to infection with T.

gondii, there was no significant difference in levels of T. gondii-

specific IFN-c between co-infected mice and mice infected with

T. gondii only (P.0.05; Fig. 5A). When mice were infected with

F. hepatica subsequent to infection with T. gondii, there was a

slight, but statistically significant, reduction in the levels of T.

gondii-specific IFNc in co-infected mice compared with mice

infected with T. gondii only (P,0.05; Fig. 5B) but the level of

IFN-c produced was still relatively high (at a mean of .30 ng/

ml, it was actually higher than the values seen in samples taken

from mice infected with F. hepatica prior to T. gondii, where the

mean was just over 20 ng/ml).

T. gondii antigen did not stimulate production of T. gondii-specific

IL-4 or IL-5 in splenocytes from any group of mice but stimulation

with F. hepatica ES products resulted in the production of high

levels of these cytokines in mice infected with F. hepatica alone.

Most strikingly, production of F. hepatica-specific IL-4 and IL-5 was

absent in mice concurrently infected with T. gondii and F. hepatica

regardless of whether T. gondii was the first infecting organism

(Fig. 5C, E) or the second (Fig. 5D, F).

The effects of T. gondii were also apparent when splenocytes

were non-specifically stimulated. Thus, cytokine production in

response to stimulation with PMA and anti-CD3e showed a clear

polarisation towards a Th1 response in co-infected mice, with a

suppression of F. hepatica-driven Th2 responses in co-infected mice.

Hence, there was no significant difference in the levels of IFN-c
produced by splenocytes from co-infected mice compared with T.

gondii-infected mice (P.0.05; Fig. 6A) but levels of IL-4 and IL-5

secretion by splenocytes from co-infected mice were significantly

lower than the levels from F. hepatica-infected mice (P,0.05;

Fig. 6B,C). These results were reflected in sera of infected mice.

Whilst not detectable in sera from uninfected or F. hepatica-only

infected mice, IFN-c levels in sera from co-infected mice

(19.4+1.6 ng/ml, mean6S.E., n = 8 mice) were not different from

T. gondii-only infected mice (20.663.7 ng/ml, n = 8). At the same

time, IL-4 was not detectable in sera from uninfected mice, T.

gondii-only or co-infected mice, but was readily detected in the sera

of F. hepatica-only infected mice (31610 pg/ml, n = 8). Likewise,

IL-5 was not detected in sera from uninfected or T. gondii-only

infected mice but was elevated in sera from F. hepatica-only infected

mice (159.4626.9 pg/ml, n = 8) and significantly lower (P,0.05)

in co-infected mice (65.4645.2 pg/ml, n = 8).

Co-infection with Fasciola hepatica has little effect on the
course of acute T. gondii infection

We observed no difference in severity of clinical signs such as

ruffled fur and hunching in co-infected mice compared with T.

gondii-infected mice. There was no obvious increase in liver

pathology in co-infected mice compared with F. hepatica-infected

mice based on the visual assessment of the whole liver and

examination of haematoxylin and eosin stained sections. Livers

from both groups of animals showed tracks of necrotic areas

caused by the migration of the juvenile flukes. Between 3–5 flukes

were seen in both single-infected and dual-infected livers. No large

areas of necrosis were seen in livers from T. gondii-infected or

uninfected mice. When F. hepatica infection preceded T. gondii

infection, the overall survival rate of co-infected mice was affected

slightly 288% of mice (15/17) used over the course of three

experiments survived co-infection compared with 100% survival in

mice infected with T. gondii (n = 17) or F. hepatica only (n = 15).

However, when T. gondii infection preceded F. hepatica infection,

there was no effect on survival rate with all co-infected mice

(n = 14) surviving until the end of the experiment.

Discussion

Fasciola hepatica and Toxoplasma gondii are prime examples of

extracellular helminth and intracellular protozoan parasites that

induce Th2- and Th1-biased immune responses, respectively. Our

detection of IgG1-specific antibodies to F. hepatica and IgG2a-

specific antibodies to T. gondii confirms this ability. Moreover, the

fact that levels of IgG1 induced by F. hepatica and levels of IgG2a

induced by T. gondii were similar in singly infected and co-infected

mice, at least when F. hepatica infection preceded T. gondii infection

Figure 2. Toxoplasma gondii infection suppresses the recruit-
ment of cells to the site of infection normally associated with F.
hepatica infection. (A) BALB/c mice were infected with F. hepatica (Fh)
then 5 days later were infected with T. gondii (Tg) or (B) mice were
infected with T. gondii 3 days prior to infection with F. hepatica. Mice
infected with either F. hepatica alone or T. gondii alone or uninfected
mice were used as controls. On days 10 (A) and 14 (B) post infection T.
gondii (days 15 and 11 post F. hepatica infection respectively) peritoneal
exudate cells were recovered from the peritoneal cavity by flushing
with PBS. Total cell numbers were determined by counting using a
Neubauer slide. Microscopic analysis showed macrophages to be the
dominant cell type in all the mice making up 89–91% of cells; other cells
present included lymphocytes (4–5%) and neutrophils (5–6%). Results
are presented as mean6SE for five animals per group (A) or eight
animals per group (B). a represents groups where the values obtained
were significantly different to values obtained for the T. gondii-only
infected mice and b represents groups where the values obtained were
significantly different to those obtained for the F. hepatica-only infected
group (P,0.05, Mann-Whitney non-parametric test).
doi:10.1371/journal.pone.0005692.g002

T. gondii and F. hepatica
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(Fig. 1A), is evidence that both parasites stimulated their own

distinctive Th-cell subset, even in co-infections. Most importantly,

these antibody results indicate that F. hepatica initially stimulated a

Th2-biased response in our co-infection experiments and, thus, the

classical activation state of macrophages and Th1-biased cytokine

profiles we observed in co-infected mice reflect an alteration of the

established F. hepatica-induced Th2-biased response by T. gondii.

The absence of F. hepatica-specific IgG1 antibodies in co-infected

mice where T. gondii infection preceded F. hepatica infection

(Fig. 1B) possibly confirms this notion but some qualification of this

statement is required because, in this experiment, sera were

collected on day 11 post F. hepatica infection, which may be too

soon to detect F. hepatica-specific IgG1.

A large cellular infiltrate, predominantly macrophages, to the

site of infection is a central manifestation of helminth infections

such as, for example, F. hepatica [2] and Brugia malayi [14].

Consistent with previous studies [6] we observed that F. hepatica

stimulates the recruitment of macrophages into the peritoneal

cavity within the first few days of infection. However, we found

that T. gondii significantly reduced the recruitment of macrophages

to the peritoneum in mice previously infected with F. hepatica. A

similar result was seen in the experiment whereby mice were

infected with T. gondii prior to infection with F. hepatica suggesting

that T. gondii affects the innate chemotactic responses that result in

the cell infiltration. While T-cell derived chemokines promote this

cellular recruitment, it is believed that innate immune signals may

initiate cell mobilization that is then maintained by established

adaptive immune responses [15]. Indeed, Th2-associated alterna-

tively activated macrophages express specific chemokines [16] that

preferentially attract Th2 cells [17]. Given the Th1 bias of T. gondii

Figure 3. Macrophages recovered from the peritoneal cavity of mice co-infected with T. gondii and F. hepatica are classically
activated. Mice were infected with F. hepatica 5 days prior (A) or 3 days subsequent (B) to infection with T. gondii. Mice infected with either F.
hepatica alone or T. gondii alone were used as controls. Fifteen (A) or eleven (B) days post F. hepatica infection (day 10 (A) or 14 (B) post T. gondii
infection respectively) peritoneal exudate cells were recovered from the peritoneal cavity by flushing with PBS. Expression levels of inducible nitric
oxide synthase (iNOS), Arginase 1 (Arg 1) and b-actin in adhered peritoneal exudate cells were analysed by RT-PCR. The data shown are from single
mice and are representative of results obtained from all mice in each group. Serum levels of NO were determined in the same mice. Serum was
collected by cardiac puncture on (A) day 10 post T. gondii infection (day 15 post F. hepatica infection) or (B) day 14 post T. gondii infection (day 11
post F. hepatica). A modified Griess reaction was used to measure NO (see Materials and Methods). The results represent the mean6SE of one
experiment with five animals per group (A) or eight animals per group (B). ). a represents groups where the values obtained were significantly
different to values obtained for the T. gondii-only infected mice and b represents groups where the values obtained were significantly different to
those obtained for the F. hepatica-only infected group (P,0.05, Mann-Whitney non-parametric test).
doi:10.1371/journal.pone.0005692.g003

T. gondii and F. hepatica
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infection it is of interest to note that expression of these Th2

related chemokines is down-regulated by Th1 associated cytokines

such as IFNc and TNFa [17,18] and is not detected in Th1

associated infections such as Staphylococcus aureus, Candida albicans, or

influenza virus [18].

Macrophages recruited to the peritoneum by F. hepatica show all

the hallmarks of alternative activation; by 5 days after infection,

the expression of markers of alternative activation, Fizz1, Arginase

1 and Ym1 are up-regulated and remain so for the subsequent 3

weeks [6]. In this study, we have shown that macrophages

recovered from F. hepatica-infected mice are alternatively activated,

however, macrophages from mice co-infected with T. gondii were

shown to be classically activated, similar to those found in mice

infected with T. gondii alone. This was reflected in the secretion of

nitric oxide and pro-inflammatory cytokines including IL-12 by

adherent peritoneal macrophages, in peritoneal exudate and in

elevated levels in sera. Therefore, the idea that alternatively

activated macrophages play a critical role in the development of

Th2 responses by helminth parasites [6,7,14,19] is supported by

our data showing that T. gondii also downplayed the development

of antigen-specific Th2 responses to F. hepatica. While the

appropriate Th1 or Th2 response was observed in splenocytes

taken from the singly-infected animals, the F. hepatica-specific Th2

response in co-infected animals was overwhelmed by the T. gondii-

specific Th1 response (Fig. 5).

The dominant Th1-biased response induced by T. gondii was

also seen at a non-specific level. Thus, non-specific T-cell

responses (to PMA and anti-CD3e) induced by F. hepatica were

switched from a Th2 bias to a Th1-predominant response by T.

gondii although the effect was more obvious where F. hepatica

infection preceded T. gondii infection than the other way around

(Fig. 6). Serum levels of typical Th1 and Th2 cytokines and

immune effectors were consistent with this modulation of non-

specific cytokine responses. Thus, the levels of the inflammatory

mediators associated with a Th1 response dominated in co-

infected mice and were similar in the sera of mice infected with F.

hepatica prior to infection with T. gondii and mice infected with T.

gondii only.

Previous studies from our laboratory showed that infection with

F. hepatica suppressed the production of Th1 cytokines to a

bystander infection with the pulmonary microbe B. pertussis, and

was sufficiently strong to reduce the ability of the mice to clear the

bacterium [4,5]. The parasite was also capable of suppressing the

Th1 response to a B. pertussis whole-cell vaccine [4]. It is

interesting, therefore, that in this study this helminth did not

exhibit any suppression of responses to T. gondii. However, these

results are in keeping with those of others that demonstrated the

ability of T. gondii to potently regulate the host’s immune response.

For example, T. gondii reduces the Th2 responses induced by

helminth infections such as Nippostronglylus brasiliensis [20] and

Schistosoma mansoni [21], enhances Th1 responses to Leishmania major

infection [22], shifts Th2 to Th1 immunity during chronic H. felis

[23] infection and elevates Th1 responses to non-related antigens

[24]. An important difference in our model is that F. hepatica is, to

date, the only infectious agent that simultaneously promotes Th2

responses and inhibits Th1 responses at the earliest time after

infection, and the Th1-biased response to T. gondii still ensued.

In keeping with the lack of effect of F. hepatica on the Th1

response to T. gondii, there was no significant effect on clinical

symptoms of toxoplasmosis in co-infected mice. Co-infection of

mice with F. hepatica and T. gondii did, however, appear to

adversely affect their survival, albeit slightly; 88% of the co-

infected mice in our study survived infection for at least the 15

days of the experiments, however, all mice infected with F. hepatica

Figure 4. Infection with Fasciola hepatica does not inhibit IL-12 production early in infection with Toxoplasma gondii. BALB/c mice were
infected with F. hepatica 5 days prior to infection with T. gondii. Mice infected with either F. hepatica alone or T. gondii alone were used as controls.
On day 4 post T. gondii infection (day 9 post F. hepatica infection) the peritoneal cavity was rinsed with PBS and the resulting lavage was spun at
500 g to pellet the exudate cells. The supernatant was retained to measure the level of IL-12 being secreted into the peritoneal cavity by cytokine
ELISA (B). Adherent peritoneal exudate cells (PEC) were cultured for 48 h and supernatants assayed for secretion of IL-12 by cytokine ELISA (A). Serum
was collected by cardiac puncture and levels of IL-12 determined by cytokine ELISA (C). The results represent the mean6SE of one experiment with
five animals per group. a represents groups where the values obtained were significantly different to values obtained for the T. gondii-only infected
mice and b represents groups where the values obtained were significantly different to those obtained for the F. hepatica-only infected group
(P,0.05, Mann-Whitney non-parametric test).
doi:10.1371/journal.pone.0005692.g004

T. gondii and F. hepatica
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or T. gondii alone survived. This represents only a couple of

infected mice and, whether it is a biologically significant result or

not would require experimentation on a much larger number of

animals. Thus, whether this loss of life is due to an enhanced

susceptibility to T. gondii as a result of the pre-existing F. hepatica

infection is impossible to say but appears unlikely since mice

did not exhibit any of the classical outward symptoms associated

with fatal acute infection with T. gondii. Likewise, enhanced

Figure 5. Production of T. gondii-specific Th1 cytokines is not suppressed by F. hepatica infection but T. gondii infection inhibits the
ability of splenocytes from F. hepatica-infected mice to produce Th2 cytokines. Mice were infected with F. hepatica 5 days prior or 3 days
subsequent to infection with T. gondii. Mice infected with either F. hepatica alone or T. gondii alone were used as controls. Cytokine production of the
Th1-associated cytokine IFN-c (A, B) and the Th2-associated cytokines, IL-4 (C, D) and IL-5 (E, F) by spleen cells was assessed on days 10 and 14 post T.
gondii infection (day 15 or 11 post F. hepatica infection respectively) by stimulation in vitro with ES antigen or T. gondii lysate. Cytokine concentrations
represent mean6SE after subtraction of background control values with medium only for five mice (A, C, E) or eight mice (B, D, F) per group.
a indicates groups where the values obtained were significantly different to values obtained for the T. gondii-only infected mice and b represents
groups where the values obtained were significantly different to those obtained for the F. hepatica-only infected group (P,0.05, Mann-Whitney non-
parametric test).
doi:10.1371/journal.pone.0005692.g005
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susceptibility to F. hepatica as a result of infection with T. gondii is

difficult to ascribe; there was no enhancement of gross liver

pathology in the co-infected mice and no difference in the number

of parasites harboured by the co-infected and singly-infected

groups. Nevertheless, the possibility that liver function was

disrupted in the co-infected mice cannot be dismissed, particularly

in light of a previous study on co-infection of mice with T. gondii

and another fluke, S. mansoni, where death of the hosts was

convincingly ascribed to liver dysfunction associated with

production of TNF and IL-12 [21,25]. Furthermore, the presence

of macrophages secreting reactive nitrite intermediates such as

nitric oxide can be readily imagined to contribute to the slight

increase in susceptibility to infection; nitric oxide is known to

contribute to the pathology seen in infection through its damaging

action on cell membranes [26]. This would perhaps have little

effect on juvenile flukes since they are resistant to the actions of

free radicals such as nitric oxide [27] but could have had

damaging effects on the organs in the peritoneal cavity. Thus,

(grossly inapparent) effects of nitric oxide-mediated damage

combined with the pathology caused by the migration of F.

hepatica through the liver may have contributed to the increased

susceptibility seen in the co-infected mice.

In summary, our results confirm that the intracellular pathogen

T. gondii stimulates a strong Th1 response characterised by the

early classical activation of macrophages and the production of the

inflammatory mediators IL-12, IFN-c and NO. These responses

are sufficiently potent as to suppress the development of alternative

activation of macrophages and, thus, the Th2 responses associated

with a pre-established infection with the helminth F. hepatica.

Given these results and the ubiquity of T. gondii infection, it seems

to us that the influence and importance of this parasite on animal

and human health may be severely under-appreciated, particularly

as a modulator of immune responsiveness in co-infections.

Materials and Methods

Parasites and infections
All animal research was performed with the approval of the

UTS/Royal North Shore Hospital Animal Care & Ethics

Committee. Tachyzoites of the T. gondii Me49 strain were

obtained from the ATCC and subsequently maintained by

continuous passage in Vero cells (using RPMI [Gibco] and 2%

heat inactivated newborn calf serum [NBS]) at 37uC in a 5% CO2

incubator. Parasites were harvested from freshly lysed cultures,

passed through a 26G needle and concentrated by spinning at

500 g. The pellet of tachyzoites was resuspended in sterile 0.9%

saline. Parasites were counted using a Neubauer haemocytometer

and diluted in sterile 0.9% saline to the required dose for injection.

T. gondii lysate was prepared by resuspending tachyzoites in PBS,

sonicating for 3610 sec at 50 W/20 kHz and centrifuging at

13,000 g to remove insoluble debris. Metacercariae and adult

worms of F. hepatica were obtained from the Elizabeth Macarthur

Agricultural Institute, N.S.W. Department of Agriculture (Cam-

den, Australia). Excretory-secretory (ES) products were prepared

by incubating adult worms in culture medium for 24 h as

previously described [6]. Protein concentrations were determined

using the Lowry protein assay (Biorad dye reagent).

Figure 6. Toxoplasma gondii suppresses Fasciola hepatica-driven
non-specific Th2 responses in co-infected mice. Mice were
infected with F. hepatica 5 days prior to infection with T. gondii to
allow time for a Th2 response to be induced. Mice infected with either
F. hepatica alone or T. gondii alone were used as controls. Fifteen days
post F. hepatica infection (day 10 post T. gondii infection) spleen cells
were stimulated in vitro with PMA plus anti-CD3 and medium alone was
included as a negative control. Levels of the Th1-associated cytokine
IFN-c (A) and the Th2-associated cytokines, IL-4 and IL-5 (B, C) were
assessed in supernatants 3 days later. Cytokine concentrations
represent mean6SE after subtraction of background control values
with medium only for five mice per group. a represents groups where
the values obtained were significantly different to values obtained for

the T. gondii-only infected mice and b represents groups where the
values obtained were significantly different to those obtained for the F.
hepatica-only infected group (P,0.05, Mann-Whitney non-parametric
test).
doi:10.1371/journal.pone.0005692.g006
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A pilot experiment was conducted where 6- to 8-weeks old

female BALB/c mice were infected orally with approximately 20

metacercariae of F. hepatica 2 days prior to, immediately after and 2

days subsequent to T. gondii infection (achieved by i.p. injection of

250 tachyzoites, after previous dose response experiments

demonstrated that, in our hands, this number of tachyzoites was

optimal for inducing Th1 responses in mice). Mice were

euthanased on day 10 post T. gondii infection and a limited

number of immunological parameters assessed. Data from this

experiment and from previous experiments that were not part of

this study were used to set time points for larger, more in depth

experiments.

We chose the i.p. injection of tachyzoites for our model for two

main reasons. First, estimation of the infective dose of tachyzoites

is far more reliable that that of bradyzoites since each tissue cyst

contains different numbers of tachyzoites and, furthermore, the

dissemination patterns following oral infection of mice with tissue

cysts is inconsistent [28]. Second, we wanted to establish a rapid,

predictable and reproducible response in the peritoneal cavity,

which is the early site for infection with juvenile fluke, and this is

best achieved using i.p. injection of tachyzoites though, ultimately,

both infection routes result in similar responses [29]; this was

particularly important in relation to our observations on

recruitment and activation of peritoneal macrophages in response

to F. hepatica and in co-infected mice.

To examine the effect of T. gondii on F. hepatica-induced Th2

responses fifteen 6- to 8-weeks old female BALB/c mice (Gore Hill

Research Laboratories, Sydney, Australia) were infected orally

with F. hepatica 5 days prior to infection with T. gondii. Five mice

per day were euthanased on days 4, 7 or 10 post T. gondii infection

(i.e. 9, 12 and 15 days after F. hepatica infection). In a reverse

experiment, sixteen 6- to 8-week old mice were infected with T.

gondii 3 days prior to infection with F. hepatica. Eight mice per day

were euthanased on day 10 and 14 post T. gondii infection (i.e. 7

and 11 days after F. hepatica infection). Controls included mice

infected with T. gondii and F. hepatica only and naive mice. Similar

results were achieved between the pilot study and the larger

studies.

Mice were monitored daily for clinical signs of acute T. gondii

infection - ruffled fur, hunched posture, lethargy and morbidity -

before being euthanased by terminal anaesthesia. The livers of all

animals were removed and assessed visually for signs of necrosis

caused by migrating F. hepatica. Damage to livers was assessed on a

scale of 1 to 5 with 1 meaning no visible damage and 5 meaning

heavy damage. Sections of formalin-fixed and wax embedded liver

were examined for areas of necrosis following staining with

haematoxylin and eosin (H&E).

Isolation and characterisation of peritoneal exudate
cells (PEC)

PECs were recovered by washing the peritoneal cavity with

6 ml of sterile phosphate-buffered saline (PBS). Total cell numbers

of PECs were estimated using a Neubauer hemocytometer and cell

types were analysed after staining with May-Grünwald’s solution

and Giemsa’s solution (Merck). The remaining cells were

centrifuged at 500 g, the supernatant retained for cytokine

analysis, while the pelleted cells were resuspended in RPMI

1640 containing 10% NBS and cultured in 6 well plates at 37uC/

5%CO2. After 2–3 h incubation, non-adhered cells were removed

by washing with RPMI and adhered cells (mainly macrophages)

were removed by scraping. Cells were counted, adjusted to a

concentration of 16106/ml and replated into 48 well plates. Cells

were incubated at 37uC/5%CO2 for 48 h before supernatants

were removed and stored at 220uC until analysis. Supernatants

were assayed for cytokines and NO as described below. Cells were

recovered for RNA extraction and RT-PCR by resuspending in

Tri-reagent (Sigma) added directly to the well. Samples were

stored at 270uC until analysis.

For RT-PCR, first strand cDNA was produced with oligo dT

primers from total RNA using AMV reverse transcriptase

(Promega) at 42uC for 60 min. Aliquots of the resulting cDNA

were amplified using primers specific for b-actin and Arginase 1

[30] and inducible nitric oxide synthase [iNOS; 31] under the

following conditions: 30 s denaturation at 95uC, annealing of

primers at 56uC for 5 sec, and 12 sec elongation at 72uC for 40

cycles. All PCR products were electrophoresed on 1% agarose gels

and visualised by ethidium bromide staining.

Immunological assays
T. gondii- and F. hepatica-specific IgG1 and IgG2 in serum was

measured by ELISA [32]. Briefly, 96 well microtiter plates (Nunc)

coated with 1 mg/well of F. hepatica ES products or T.gondii Me49

lysate diluted in 0.1 M carbonate buffer were incubated with

serum diluted 1:100 in 0.05% bovine haemoglobin in 0.3% Tween

in PBS. Single dilution assays were carried out where reference

samples were used to take into account plate-to-plate and day-to-

day variation as recommended in a detailed analysis of the topic

by Venkatesan and Wakelin [33]. Bound antibody was detected

using biotinylated anti-mouse IgG1 and IgG2a antibodies (BD

Pharmingen, San Diego, CA), ExtrAvidin-alkaline phosphatase

conjugate and r-nitrophenyl phosphate as substrate.

Splenocytes were cultured at 56106 cells/ml with 50 mg/ml of

T. gondii soluble extract or F. hepatica ES products. Control stimuli

were medium alone or anti-CD3e (2 mg/ml) plus phorbol

myristate acetate (PMA; 25 ng/ml). Concentrations of IL-12,

IFN-c, IL-4 and IL-5 were measured by immunoassay using

matched pairs of anti-cytokine antibodies purchased from BD

Pharmingen (San Diego, CA) according to the manufacturer’s

instructions. Recombinant cytokines of known concentration were

used to generate standard curves.

NO produced by the adhered PEC was measured by mixing

equal amounts of supernatant with Griess reagent (1% sulfanili-

mide in 2.5% H3PO4 and 0.1% napthylethylenediamine dihy-

drochloride in 2.5% H3PO4 mixed in a 1:1 ratio just prior to

assay). Absorbance was measured at 540 nm and the amount of

nitrite was determined by comparing against a standard curve.

Serum NO concentrations were determined as described previ-

ously [34]. Briefly, serum nitrate was converted to nitrite using

5 U/ml nitrate reductase (Sigma) and 1.25 mg/ml nicotinamide

adenine dinucleotide phosphate (NADPH; Sigma) and the amount

of nitrite determined using Griess reagent as described above.

Serum nitrite was also determined by mixing serum directly with

Griess reagent. Results were expressed as micromolar concentra-

tions of reactive nitrogen intermediates (RNI).

Statistical analyses
The statistical significance of differences between groups was

determined using a Kruskal-Wallis non-parametric test. Pairs of

groups were also compared using a Mann-Whitney non-

parametric test. A P value of ,0.05 was considered significant

for both tests.
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