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The amplitude-encoding case of the double random phase encoding technique is examined by defining a cost
function as a metric to compare an attempted decryption against the corresponding original input image. For
the case when a cipher—text pair has been obtained and the correct decryption key is unknown, an iterative
attack technique can be employed to ascertain the key. During such an attack the noise in the output field for
an attempted decryption can be used as a measure of a possible decryption key’s correctness. For relatively
small systems, i.e., systems involving fewer than 5 X5 pixels, the output decryption of every possible key can
be examined to evaluate the distribution of the keys in key space in relation to their relative performance when
carrying out decryption. However, in order to do this for large systems, checking every single key is currently
impractical. One metric used to quantify the correctness of a decryption key is the normalized root mean
squared (NRMS) error. The NRMS is a measure of the cumulative intensity difference between the input and
decrypted images. We identify a core term in the NRMS, which we refer to as the difference parameter, d.
Expressions for the expected value (or mean) and variance of d are derived in terms of the mean and variance
of the output field noise, which is shown to be circular Gaussian. These expressions assume a large sample set
(number of pixels and keys). We show that as we increase the number of samples used, the decryption error
obeys the statistically predicted characteristic values. Finally, we corroborate previously reported simulations
in the literature by using the statistically derived expressions. © 2009 Optical Society of America
OCIS codes: 200.4740, 100.2000, 070.2580, 030.6600.
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1. INTRODUCTION

Cryptography [1-4] has been recognized as important by
governments and individuals throughout history. With re-
cent technological advances in computer networking and
global communication, information security has become
ever more significant. Access to powerful desktop comput-
ers, which can be used to attack such systems, is there-
fore accompanied by a demand for higher security, and
this leads to increasingly powerful encryption techniques
being developed.

Information security based on optical encryption [5-13]
is of particular interest, as it offers the possibility of high-
speed parallel encryption of 2D image data. One such
method of optical encryption is known as the double ran-
dom phase encryption (DRPE) technique [5]. DRPE in-
volves the use of two 2D random phase keys, one placed in
the input image domain and one placed in the Fourier do-
main of an optical 2f imaging system. If the two phase
keys are generated by using statistically independent
white noises, then the encrypted image is also stationary
white noise. Since its introduction in 1995, the DRPE has
generated much interest and has been the focus of many
studies [14-21]. The physical implementation of such an
optical system gives rise to many practical issues; how-
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ever, a thorough analysis of the DRPE technique itself is
extremely important if it is to be utilized.

Depending on the form of the input data to be en-
crypted, two modes of operation of the DRPE technique
can be identified:

1. Amplitude encoding (AE), with a grayscale input im-
age, and

2. Phase encoding (PE), where the input phase is
modulated.

While the optical systems used to encrypt the data in both
cases are very similar, there are significant differences in
the decryption, analysis, and breaking of these encoding
systems.

In the case when a PE input image (phase data) is
used, both the image and the Fourier plane encryption
keys, Rq.=exp[+j27 a(x,y)] and Ry, =exp[+j27 b(u,v)],
are needed during the decryption process [21], where x
and y denote spatial coordinates, u and v denote coordi-
nates in the frequency domain, and a and b are the input
and the Fourier plane phase key values, respectively. For
the AE case discussed here, it is only necessary to know
the Fourier plane key, Ry, for decryption [22].

In the analysis presented below it is always assumed
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that the phase key will be the same size (have the same
number of pixels) as the input image. It is possible, when
using a DRPE system, to get partial (imperfect) decryp-
tions using keys unrelated to the correct key. In order to
have a complete overview of the decryption capabilities of
all the keys in key space [22] one should evaluate the out-
put decryption produced by every possible key. For rela-
tively small systems, i.e., systems with an input image of
up to 5X5 pixels, this can easily be done; however, for
larger systems examining the key space is numerically
impractical.

An encryption algorithm’s key space is the set of all
possible keys that can be used to encode data by using
that algorithm. For instance, a simple combination lock
with three dials, each with ten digits, has a key space of
1000 keys, i.e., 10%. The number of possible combinations
grows exponentially with the number of dials (equivalent
to the number of pixels in our study). The size of the key
space determines the number of possible unique keys that
can be used by the DRPE algorithm. The number of keys
in the key space is given by the number of quantization
levels used in the key, raised to the power of the number
of pixels in the key. Thus, for example, a system with N
=5 X5 pixels and 2 quantization levels has 225 keys, or
33,554,432 keys in its key space. Recently reported simu-
lations for such a system have shown [23] that there is
minimal security improvement if keys with more than 16
quantization levels are employed. However, for larger sys-
tems, i.e., 256 X256 pixels with 16 quantization levels
(having 169536 keys in the key space), checking every
single key is currently not practical. Like most encryption
techniques DRPE relies heavily on the large size of its key
space to provide security from brute-force attacks, i.e.,
that the probability of randomly guessing a correct key is
statistically insignificant.

The way in which the wrongness of the decryption key
is quantified is of great significance in estimating both the
robustness to noise and the security of the system. Typi-
cally, in the DRPE literature, the deviation of the de-
crypted image from the input image is quantified by using
the normalized root mean squared (NRMS) error. It is
popular since, given a cipher—text pair, the success of at-
tempts at decryption can be quantified naturally by using
the intensity-error-based NRMS. Heuristic attempts to
break the DRPE have been implemented in which the
NRMS error is used as the Cost Function (CF) in an it-
erative search procedure [19]. Thus the NRMS value as-
signs a quantitative level of validity, or correctness, to
each possible decryption key in the key space.

The presence of an incorrect Fourier key will introduce
errors in both the amplitude and the phase of the output
field. In this paper we begin by verifying that this com-
plex noise is circular Gaussian. Given the statistical prop-
erties of this noise we then derive analytic expressions for
the mean and variance of the sum of the square of the dif-
ference between the intensity values of the pixels in the
original input image and the decrypted image. This is the
difference parameter d, which we explicitly define in Sec-
tion 3.

Should the attacker have access to a cipher—text pair, it
has already been shown that in the case of AE, heuristic
methods [19] can be used to extract the DRPE Fourier
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key, Ry,, with an NMRS error less than 10%, within a
reasonable amount of time, i.e., within less than an hour,
by using a standard PC (Intel P4 2.5 GHz). Extensions of
this method can also be used if several cipher—text pairs
are available when the system is attacked, and such tech-
niques can be very effective [24,25].

We wish to study the errors in the output (decrypted)
image intensity for a sample set of keys in a large system
(256 X 256 pixels). In previous work [22] we examined the
DRPE technique’s key space, using histograms showing
the number of keys that decrypt an encoded message to
particular NRMS values. As noted, this analysis was per-
formed only for small input image sizes, ie., <5
X 5 pixels. By deriving statistical expressions for the
mean and the variance of the intensity difference param-
eter d, which is closely related to the NRMS, we aim to
facilitate study and analysis of the key space for larger in-
put images.

In [22] (see Fig. 7 in Ref. [22]), we presented the results
of a simulation where one million random phase keys
were used in an attempt to decrypt a large system (256
X 256 pixels with 8 phase quantization levels) via a brute-
force method. In [22] it is shown that for such a large key
space the mean value of the NRMS is ~1 and that the
variance of the NRMS, which is related to the distribution
of the keys in key space, decreases significantly from that
observed for smaller key spaces. However, these results
were based on examining the results from a very small
number of possible keys from the total key space. To
verify this result a statistical analysis must be used. In
this paper it is shown that as the number of samples is
increased (i.e., the number of pixels in a phase key or im-
age increases, and/or the number of simulation runs for a
large number of possible decryption keys increases), the
NRMS values tend toward the statistically predicted lim-
iting results. In this way we verify the validity of the sta-
tistical results derived and presented here and also con-
firm the observations made in [22] regarding the
differences between the results for large and small sys-
tems.

At the heart of this paper are d and the NRMS, which
we use as metrics to quantify key error. One other pos-
sible metric might be the Euclidean distance in key space
between an incorrect decryption key and the correct key.
However, such a distance is not a good measure of the cor-
rectness of the key, as it does not predict the resulting
NMRS error in the decrypted image. To prove this we note
that in a previous paper [22] we showed that, for AE
DRPE, the key space for a system with 256 quantization
levels will have 256 valid keys that decrypt the system
with zero NRMS error. All but one of these keys are large
Euclidean distances from the encryption key, Ry ,. There-
fore, given the typical assumption that a potential at-
tacker may have access to a cipher—text pair but defi-
nitely does not have access to the correct decryption key,
the NRMS clearly has a practical role in providing an in-
direct measure of a possible decryption key’s accuracy.

This paper is organized as follows: In Section 2 some
statistical results, regarding the properties of circular
Gaussian noise, are provided. In Section 3 the NRMS CF
and the difference parameter d, for use in relation to the
DRPE technique are presented. A significant conjecture is
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also made in this section regarding the mathematical de-
scription of such a field. In Section 4, assuming power
conservation, we derive analytic expressions for the mean
and variance of d in terms of the circular Gaussian noise
in the decrypted output field. In Section 5 we provide the
results of some numerical simulations which, for a large
number of samples, confirm both the circular Gaussian
nature of the output field noise and support the validity of
the conjecture made in Section 3, (when errors are ran-
domly introduced in the Fourier plane key). In this sec-
tion we also show that when the errors in Ry ; are ran-
domly distributed spatially there is a highly correlated
linear relationship between the number of pixels in error
in Ry 4 and the expected value of the parameter \, Eqp[\],
(used in our conjecture, in Section 3), calculated for a sub-
set of keys from the key-space in which the percentage of
pixels in error are the same. In Section 6 we make some
comparisons with previous results in the literature [22],
and in Section 7 we present our overall conclusions.

2. STATISTICS: DEFINITIONS AND
NOTATION

Some statistical definitions and mathematical results
used throughout this paper are presented.

A. Mean and Variance

Let us assume the existence of a real valued continuous
function, f(x), which has been sampled discretely K times,
0<k<K+1. Denoting this sampled function as f(k), if it is
real, then f(k)=f*(k), where * denotes complex conjuga-
tion. For a real valued random variable, the mean can be
defined as the expectation of that random variable. For a
large number of samples, the population mean, or ex-
pected value of the data set f, is given by

1 k=K
Elfl=p= 1?2 fik). (1)
k=1

The variance of the data set f is a measure of the statis-
tical dispersion of data about the mean and is calculated
by averaging the squared distances of the possible values
from the expected value, i.e., it is the square of the stan-
dard deviation, and for K>1 it is given by

k=K

VIfl=o?= 7{2 {f(k) - E[f1}. (2)
k=1

The variance of f can also be written as
VIf1=E[f*]- E[fP. 3)

B. Properties of Gaussian Noise

Let us assume we have a set, g, of samples, g(k), whose
statistical properties are well described by a normalized
Gaussian probability distribution function (PDF) of mean
E[g]=p, and variance V[g]=02. The PDF of g is of the
form
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1 (o — p)?
N(u,03x) = oo exp| 5 | (4)

where x represents a particular value taken by g(k) when
K is very large, and the probability distribution function
indicates the probability (frequency) of such a value oc-
curring.

Gaussian distributions obey the Gaussian moment
theorem. If we define the nth moment of the Gaussian
random variable x about the value z as

40
M nz=—
then E[x] =M1,(), and V[x] =M2,,u,'
The assumption of the presence of Gaussian noise has
important ramifications:

(x = 2)"N(u,0;x)dx, (5)

1. First, and equivalent to Eq. (3), we note that the
mean of the data values squared is equal to the sum of the
square of their mean and their variance:

E[g®]=p* + 0" (6)

2. Second, and of particular significance to our analy-
sis, when the noise is complex valued it is referred to as
circular Gaussian noise. In this case we define a complex
noise function, n, and a sampled version, n(k)=n,(k)
+jn;(k). Both n, and n; are assumed to be two uncorre-
lated white noises with zero means, u,=u;=0, and identi-
cal standard variations, o,=0;=0, where r denotes the
real, and i denotes the imaginary parts.

We can summarize the statistical properties of such
noise as follows:

E[n] = E[nr,i] = 0’ (7)

Vin, 1= o*=E[n’ . (8)

The positive real valued intensity (magnitude squared) of
the noise is defined as

= nn = ol = 2+ ©
therefore
E[|n[]= E[|n,* + [n;|*1 = E[In,"] + E[|n;[*] = 26*. (10)

Some further properties are discussed in Section 3. First
we define and examine the NRMS.

3. NORMALIZED ROOT MEAN SQUARED
ERROR

We first recall that all incorrect phase keys are in the sys-
tem key space and can be used as possible decryption
keys. We wish to compare an image (data array) and a
perturbed or noisy version of that image. In this paper
these noisy output images arise because an incorrect Fou-
rier decryption key, Ry ;=exp[—j27b’(u,v)], is used follow-
ing perfect encryption. For perfect decryption 6=56', im-
plying that R2,d=R;e- Such a comparison corresponds to
one step (iteration) of a process by which an attacker at-
tempts to acquire the correct decryption key. In this case
the attacker knows a priori the number of pixels and
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quantization levels, but applying an incorrect phase key,
from within the key space, achieves only partial or incom-
plete decryption. In our case the output data sets corre-
spond to intensities (images) captured by a CCD. More
specifically, the two 2D data sets, that we compare (i.e.,
use to generate the NRMS CF) correspond to the intensi-
ties (images) input to the encryption system and the re-
sulting decrypted image at the output of the decryption
system. We denote the original image by I and the de-
crypted image by I;, where I; can be a correctly or incor-
rectly decrypted image. It should be noted, for clarity, that
if the correct Ry, is used then the NRMS error value
should be 0; however, for an Ry, containing randomly
chosen pixel values, i.e., typically an incorrect key from
the key space of the system, the NRMS error value has
been numerically observed to be on average ~1 [22].

We note that the effects on the output of perturbations
away from the exact encryption key can be analogous to
the effects of noise accumulated in the system during any
experimental implementation. Analyzing such effects
therefore also provides insights into the robustness
against noise of the DRPE technique.

As stated, the metric employed to quantify the quality
of the decryption is the NRMS:

\/zzzﬁv I(p) - 1,(p)?
2=V (p)?

; 11)

where N is the number of pixels in the image. Central to
this metric is the difference term

p=N

d= [I(p) - I(p)*. (12)
p=1

This difference term is used to form the basis of the fol-
lowing analysis of the effects of the noise in I; on the per-
formance of the DRPE technique for the AE case.

The decrypted complex field data is given by

Ag=T 0TI X Ry )T © THITI(Re)]} © T (Ro,0)
(13)

=[f>< Rl,e] ® [j(RZ,d) S j(RZ,e)]a (14)

where ® and & denote the convolution and correlation op-
erations.

Following [15] we now make a conjecture regarding the
form of the output decrypted complex field. We propose
that the amplitude of an attempted decryption can be
written as

Ag(-) =M ) +n(-), (15)

where \ is a different constant for each decryption key ex-
amined, f'is the input signal (image), and n represents cir-
cular white Gaussian noise with zero mean; see Section 2.
In [21] it was reported that an incorrect Ry 4 key resulted
in such Gaussian noise n being observed in the output im-
age. The parameter A plays a significant role in our later
analysis; see Section 5.

In the case of AE the input intensity is given by I=|f]?
=f2. Applying our conjecture, Eq. (15), the corresponding
output decrypted image intensity is given by
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L= A+ 0=\ + M2n,] + |n|?. (16)

Since our encryption system is lossless, power will be con-
served and the total input intensity must be equal to the
total output intensity. The implications of this require-
ment are examined later in Subsection 4.B; however, we
first return to our definition of d, given in Eq. (12). For
each particular case, i.e., an input image and decryption
key, we substitute from Eq. (16) and then rewrite Eq. (12)
in terms of the individual image pixel values (1<p=<N),
giving
p=N

d= >, |\ = D) + 2M(p)n,(p) + [n@)P2.  (17)
p=1

Expanding Eq. (17) this gives
p=N p=N

d=02=12 {F )+ 402 - 1) > {Fp)n,(p)}
p=1 p=1

p=N p=N

+200% = 1) >, {A(p)n ()]} + 42D {2(p)n(p)}
p=1 p=1

p=N p=N

+4N D {fp)n, ) n@)3 + 2 {in(p)|*}. (18)
p=1 p=1

The mean and variance of d are now discussed.

4. STATISTICS OF THE DIFFERENCE TERM

A. Expected Value of d

All of the sums over the number of pixels N in Eq. (18) are
replaced by the corresponding average values multiplied
by N:

d =02 =1)2E[f*(p)IN + 4\(\2 - DE[(p)n,(p)IN
+2(0\2 = DE[fA(p)In(®)]*IN + 4NE[(p)n2(p) IN
+ ANE[f(p)n,(0)|n(p)|2IN + E[|n(p)|IN. (19)

If in Eq. (19) the expected values are calculated over the
large number of pixels, and based on the assumption that
f and n are statistically independent, we can assume [26]
that

E[f*n!]~ E[f*] X E[n], (20)

E[f*|n|*] =~ E[f*] X E[|n|*]. (21)

We note that while we use these expressions at this point
in our calculation, later we will proceed to calculate ex-
pected values, i.e., sums, over all R possible keys in key
space, and this should further improve the validity of Eq.
(20) and (21).

Using Eq. (20) and (21) we can rewrite Eq. (19) as

dIN = (\* = D?E[f*(p)] + 4\(\* = DE[f(p) JE[n,(p)]
+2(\* = DE[*(p)JE[|n(p)[*] + 4NE[f*(p)IE[n}(p)]
+4NE[f(p)E[n,(p)|n(®)*] + ElIn(p)|*]. (22)

Note that we now express d per pixel. From Eq. (1),
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p=N
fm=Elf"(p)] = —E (D), (23)
17N
(n,)" = E[n"™(p)] = NE n"™(p), (24)
p=1
12N
In,|™ = E[|n(p)|™] = ]—VE In(p)|™. (25)
p=1

Equations (23)—(25) simplify Eq. (22) to
d' =d/N=(0\2-1)%,+4\0\% - Dfsn, , + 2(\2 - 1)f2|np|2
+ 4)\2f2nfyp + AN, ln, ) + [yt (26)
The expected value of d’'=d/N is now calculated over a
large number of runs, i.e., over all R possible decryption
phase keys in key space. During each run it is assumed

that the same input image is used; however, as the de-
cryption keys change, the \ value will also change:

E[d']=E[(\* - 1)*If, + 4f3E[>\(7\2 = Dn, 1+ 2,E[(N = 1)
R R R

X|n,[*1+ 4f2E[)\2n o)+ 4f1E[)\n n, 1+ E[|n,|*].
R

rol
(27)
Expanding Eq. (27) gives that
E[d']=fy(E[\*] - 2E[\*] + 1) + 4f3E[\J(E[\*] - DE[n, ]
R R R R R R

+ 2f5(E[N*] - DE[|n,|*] + 4f:ENAE[n? ]
R R R R

+4f,E[NE[n, ,)E[|n,|*] + El|n,[*]. (28)
R R R R

Recalling that the noise is assumed to be circular Gauss-
ian, we apply the Gaussian moment theorem, using Eq.
(2.8.22) in [26], to obtain

E[|n|*] = 2E[|n*?, (29)

E[|n|>n]=0,  E[n%]#0. (30)
Recall that averaging has already taken place over N.
Substituting into Eq. (28), using Eqgs. (20), (21), (23)—(25),
(29), and (30), and assuming that R is very large (all pos-
sible keys in key space), we can write that

E[d']= (hm —E @) -2 11m —E ON2F) + 1)f4
R R; R—

R—x» F=

1k
+ 2f2(1im EE (7)) - 1)202

R—oe LV

+4f, lim EE N2(F)}o? + 80t (31)

R—» —

B. Power Conservation
In order that power be conserved, and recalling Eq. (15),
we note that
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1y 11X
_ 2_ 2
N;hﬂnl = N; If2. (32)

Calculating the expected value over R of Eq. (32) gives us
an expression for ¢2. Simplifying Eq. (32) and using Eq.
(10), We can derive Eq. (8) (see Appendix 10.1 of [27]):

= |:hm§2(1 x(~)2)}f (33)

R—oo LV 5q

It is observed from numerical simulations (see Subsection
5.B) that the expected values of A and A? (over all R keys
in key space) are very small, E[)\] E[)\z] 0, and all the

other terms in Eq. (31) are large 1n comparison. Thus,
substituting Eq. (33) back into Eq. (31) and applying the
limit as R tends to infinity, it can be shown that

E[d']={1-EIN®?H- 2BEIN®?] + f4(1 - EINF)D} = £,
R R R R

(34)

where fo and f; are as defined in Eq. (23). The assump-

tions made regarding E[\] and E[\2] are discussed later
R R
in Subsection 5.B.

C. Variance of d’
We now wish to find V[d'], therefore we must calculate

R
E[d'?]. Equation (35), derived by using Eq. (5), is em-

R
ployed to derive the higher-order expected values of the
noise terms:

o l+q
E[nf]= —=29*V[1+ (- 1)r| —— | (35)
T 2
Using this, it can be shown that
E[d'?] = - AfAf,EIN?](- 1 + E\2))% + f5(- 1+ E\?))*
R R R R

+ 4fsE[\?](4 - 5E[\?] + 2E[\%)). (36)
R R R

Applying this result, and using Egs. (3), (34), and (36), the
variance of d’ is given by

VId']=[- 4f3f,EN?](- 1 + EIN?])3 + f3(- 1+ EN?))*
R R R R
+4f3E[\?](4 - 5E[N?] + 2E[\*])] - [{1 - E[A(P)T}
R R R R

x{~ 2f%g[x(f>2] +fi(1- g[mz})}lz ~fi-fi~

(37)
In summary, E[d/N]:(l/N)EIlVIZ(p), and V[d/N]=0.
R R

5. NUMERICALLY TEST THE VALIDITY OF
THE CONJECTURE, EQ. (15): GAUSSIAN

NOISE AND A PARAMETER
The analysis presented in Section 4 assumes that Eq. (15)

is valid, i.e., that A (p) =\ {(p)+n(p). Using the mean and
variance of d’, Eq. (34) and (37), we can test the conjec-
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ture to see whether it holds true. We begin by splitting
Eq. (15) into real and imaginary parts:

Re[A4(p)] =\ Re[f(p)] + Re[n(p)], (38)

Im[A;(p)] =\ Im[f(p)] + Im[n(p)]. (39)

For the AE case Im[f(p)]=0; furthermore, if there is no
noise present, then A;(p)=f(p) and \=1. In general the
kth pixel of the decrypted image, A;(p), is a complex val-
ued random variable, and since we assume that n(p) is
circular Gaussian noise, we can calculate \ for any par-
ticular input image and decryption key as follows:

N N
A= Re[A,0)] / > f), (40)
p=1 p=1

where Re[A;(p)] is the real part of the pth pixel in the de-
crypted image.

A. Gaussian Noise and the Normalized Root

Mean Squared

Using the standard 256 X 256 pixel Lena test image [28]
simulations were run of the AE DRPE technique for de-
cryption by using incorrect random phase keys, Ry 4. Us-
ing a completely random choice of decryption keys our
simulations lead us to expect to calculate a high error
value, i.e., NRMS=1. Such a simulation was performed
1000 times using different random phase keys, both for
encryption and decryption, but always assuming perfect
encryption and performing incorrect decryption. A pseu-
dorandom number generator from Matlab [29] was used
to generate the random phase keys with the generator be-
ing initialized by a 35-element vector based on the cur-
rent state of the clock, thus avoiding repetition. For each
run, once \ was found, Re[A;(»)]-M(p) was plotted for
each of the pixels. The average is calculated over the en-
tire 1000 runs. If the noise is circular Gaussian, the result
should have a Gaussian distribution with a mean value of
zero. This is found to be the case (see Fig. 1). The corre-

2500
Number

of pixels
2000

Rel4,(p)] ~2/(p)s
and Im[4, (p)]

1500

1000

500

-1.5 -1 -0.5 0 0.5 1 1.5
Value at the pixel

Fig. 1. (Color online) Re[A,(p)]-M(p) and Im[A,(p)] averaged
over 1000 runs, for randomly chosen keys, for the 256
X 256 pixel Lena test image. The results are Gaussian and sup-
port the conjecture made in Eq. (15). As the total NRMS error
value for an attempted decryption decreases, the area under the
corresponding Gaussian noise graph decreases.
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0.99
0 200 400 600 800 1000
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Fig. 2. (Color online) NRMS, Eq. (11), error values for each of
the 1000 runs, with different keys used to generate Fig. 1. The
average NRMS value here is calculated to be 1.0001, which is
very close to 1.

sponding imaginary parts, Im[A;(p)], are also plotted,
and the two curves coincide and are visually indistin-
guishable.

Figure 2 is a plot of the individual NRMS error values
for these 1000 runs and highlights the fact that com-
pletely random key selection produces large random
NRMS error values with an average value close to ~1.

In Fig. 3 the NRMS errors (vertical axis) are plotted as
a function of the fixed percentage of the pixels in the de-
cryption key that are incorrect. For example, on the hori-
zontal axis at the 50% mark every single pixel in this par-
ticular Fourier decrypting key (65,536 pixels in total) is
assigned a value with a 50% probability that it is from the
correct decryption key and a 50% probability that it is a
pseudorandomly chosen phase value. The range of Fou-
rier keys examined includes incorrect keys, with NRMS
~1, and decryption keys resulting in almost perfect de-
cryption, i.e., NRMS=0.

It should be emphasized that the incorrect pixels in
Ry 4 are randomly distributed spatially throughout the

| ANRMS calculated using Eq. (11)

061
NRMS

Error
04

@
02 NRMS found by substituting

% 25 50 75 100

Percentage of the correct decryption
Fourier key used

Fig. 3. (Color online) The blue curve (hidden blue triangles),
plotted using Eq. (11), represents the direct NRMS calculated
from the standard error metric. The red curve (red overlapping
circles) is plotted by using Eq. (34), derived in Section 4, and is a
close approximation to the numerical NRMS values (small black
triangle). The dashed box relates to Fig. 4.



Monaghan et al.

decryption key. It has been observed from numerical
simulations that if these errors are concentrated within a
particular region of the decryption key, then results are
produced that are not consistent with those presented
later in this section.

In Fig. 3 the NRMS error values calculated by using
Eq. (11) are represented by blue triangles (nearly hidden
here). They are compared with the values calculated
when Eq. (34) is substituted back into Eq. (11), repre-
sented by red circles. The two curves in Fig. 3 deviate
slightly from one another but are very similar. In Fig. 4
an enlarged section of Fig. 3 is shown. As in Fig. 3, Fig.
4(a) is based on a single run of the simulation and high-
lights the deviations between the NRMS calculated by us-
ing Eq. (11) (blue triangles) and the NRMS calculated
when Eq. (34) is substituted back into Eq. (11) (red
circles). Figure 4(b) shows the average curves plotted,
generated for 500 individual simulations, i.e., runs using
different decryption keys.

1.01

A NRMS calculated using Eq. (11)
@® NRMS found by substituting
Eq. (34) into Eq. (11)

Jitah® N"'HW'WH

1.005

NRMS
error

0.995

0.99

0.985
0.98
0 5 10 15 20
Percentage of the correct decryption
Fourier key used
(@
1.01
A NRMS calculated using Eq. (11)
1.005 @ NRMS found by substituting
' Eq. (34) into Eq. (11)
NRMS
Error
0.995
0.99
0.985
0.98

5 10 15 20

Percentage of the correct decryption
Fourier key used
(®)

Fig. 4. (Color online) (a) Enlarged region indicated by the
dashed box in Fig. 3. The NRMS error is plotted against the per-
centage of correct pixel values retained in R, ,, during decryp-
tion. If 20% of R, 4 is correct, then it implies that 80% of R, ; is
made up of pseudorandomly generated, incorrect, quantization
levels. (a) Two curves for 1 run of the simulation, large variations
in the actual NRMS (blue curve) can be seen. (b) Curves plotted
when averaged over 500 runs.
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It can be observed that as the number of samples (pix-
els and runs) used increases, the simulated NRMS val-
ues, Eq. (11), approaches the NRMS curve based on the
values predicted by using Eq. (34). The same trend is ob-
served when, instead of averaging over many different de-
cryption key runs for an image with a small number of
pixels, averaging takes place over fewer runs but for an
image with a much larger number of pixels. This high-
lights the validity and accuracy of the theoretical expres-
sions. Different input grayscale images [28] were tested
for image sizes of up to 10° pixels. All of the trends ob-
served above using the Lena image were consistently re-
produced.

Figure 5 contains three curves: (i) (Eg[d’])?, Eq. (34)
(blue with triangle); (i) Ex[d'?], Eq. (36) (red with circle);
and (iii) Vg[d'], Eq. (37) (green with square). Examining
this figure, we can see that the variance of d’, assuming
Eg[\]=0, is very small, ie., Vg[d']=5.4%x10"7. The
curves in Figure 5 show the corresponding relationship
between the expected value squared, (Ex[d'])?, and the
variance, Vg[d']. It should be noted that in order to cal-
culate the corresponding mean of the NRMS, Ep[d’] must
be substituted back into Eq. (11).

B. A\ Parameter
Intensive numerical simulations have been performed in-
volving thousands of randomly chosen keys (though still a
small percentage of all R possible keys in the key space).
It has been observed that Ex[\]~0. However, in general,
for a particular subset of the R keys, this does not have to
be the case. To clarify, let us now examine a very particu-
lar subset of R, namely those keys in which 10% (90%) of
the pixels in the decryption Fourier key are correct (incor-
rect).

First, using the following combinatorial based expres-
sion, we calculate how many keys in the key space will
have a particular percentage of pixels in error:

x 10°
®FE[d’] Eqn (36)

A\

Average
value per 1
pixel ) "2
4 3lVIdfor EA]=0 A E[dT Eqn@34)
d'=— R R
N
2 J
1r- . < = 1
W V[d’] Eqn (37)
o 1 1 1 1
0 20 40 60 80 100

Percentage of the correct decryption
Fourier key used

Fig. 5. (Color online) (i) (Eg[d'])? (blue with triangle), (ii)
Eg[d’?] (red with circle), and (iii) Vg[d'] (green with square).
These curves are plotted by using the same input data and sys-
tem as was used to generate Fig. 3. For all possible keys, i.e.,
over all R, Vg[d']=5.4x107". It should be noted that, for any
case where the expected value for \ is not 0, the expectation has
been calculated over a subset of R.
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Fig. 6. (Color online) The diagonal line is made up of 100 runs
for each percentage correct pixel case (in total 10* points). The
cross sections shown are for the cases when (a) 10% and (b) 90%
of the correct decryption key is present. Insets, histograms show-
ing the distribution of \ values for the specific percentages of pix-
els in error (1000 runs).

N X
Ny X @1 (41)

In this expression ¢ is the number of phase quantization
levels used in the key, and x is the number of incorrect
pixels (which defines the particular subset). In a system
with 256 X 256 pixels and 16 quantization levels there are
R=1.6x1078913 pogsible keys in the key space. The large
number of keys that have 10% of the pixels correct is
4.3 X 10%2%9; however this is only 2.6 X 1072939 of the total
number of keys, R. Clearly this is an extremely small per-
centage of the total.

The expected value of \ in this case, i.e., the 10% cor-
rect subset key case, is nonzero, i.e., Eqp[\]#0 (see be-
low). This is in contrast to the expected value of \ calcu-
lated over the total set of R keys (the entire key-space),
which is as stated approximately zero, Eg[\]=0. As em-
phasized earlier, when performing this analysis we re-
quire that the incorrect keys used are generated by intro-
ducing errors at random spatially distributed positions in
the decryption keys. This extra requirement will in fact
reduce still further the number of possible keys, within
any such subset, %R, of all keys, R.

The central diagonal line appearing in Fig. 6 was gen-
erated numerically. It shows the \ values found for keys
with percentage errors introduced into Ry 4 as described
above. For each value of percentage pixels in error the re-
sulting A values for 100 such keys are plotted. As can be
observed, there is a highly correlated linear relationship
between Eqp[\] and the percentage of randomly located
pixels in errors in Ry 4.

To more closely examine the variation of N\ two histo-
grams appear as insets in Fig. 6. Each of the histograms
was generated for 1,000 runs, i.e., for the 1,000 randomly
chosen decryption Fourier keys, each of which is in a sub-
set of key space with the same percentage error. Specifi-
cally, the histograms are for the cases when (a) 10% and
(b) 90% of the pixels in the decryption Fourier keys are
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correct. In both histograms the E¢z[\] found supports the
existence of the linear relationship, while the low Vg,g[\]
values indicate the high correlation of the linear relation-
ship. Furthermore, since Vggp[\] decreases from (a) 2.3
X 1075 to (b) 5.8 X 1078, it is clear that even as Eqz[\] and
the number of keys in a particular key space subset
change, the validity of the linear relationship between the
\ value and the % of pixels in error still holds true.

In this section it has been shown that Eqz[\] is linearly
related (with high correlation) to the percentage of correct
pixels in the decryption Fourier key. Based on these nu-
merical results we now claim that if, for a particular in-
correct key, a value of \ is calculated, we know with high
certainty the percentage of correct pixels in the decryp-
tion Fourier key used. Therefore, while the NRMS error
can tell us whether or not we have a good or a bad key, the
corresponding \ value can provide us with quantitative
information regarding the percentage of correct pixels in
the decryption key.

6. COMPARISON WITH PREVIOUS
RESULTS

To proceed we ask the reader to examine Fig. 7 of [22].
This figure presents NRMS values calculated for 10° ran-
domly generated decrypting phase keys, Ry 4, applied to
perfectly encrypted image data. In a numerically inten-
sive and incomplete way these results demonstrated that
the resultant NRMS errors, when plotted, have a bell
shaped curve with a mean value of ~1.

In this paper we now have put in place all the tools
needed to provide theoretically based insights into the
above observations. We derived a set of statistical expres-
sions, which allow us to gain knowledge about NRMS
when it is used as the CF in the examination of the DRPE
technique (and thus the key space) for very large numbers
of samples (pixels or runs). Using our expression for
E[d'], given in Eq. (34), and substituting it into Eq. (11),

10°
Number of -
5 Keys, -
10 Logarithmic -
Scale rd
4 -
10 “_.é'
: &
10 &
2 "f
10 =
&~
10' =
o 0 -

0.9998  0.9999 1
NRMS error calculated by substituting in from Eq. (36)

Fig. 7. Following perfect encryption of a 256 X256 pixel, 16
quantization level Lena test image, 10% decrypting phase keys,
R, 4, are randomly generated. It can be seen that the expected
value of NRMS~ 1. Furthermore, even after attempting decryp-
tion with 106 different phase keys, the lowest NRMS value cal-
culated was 0.9998. The calculated Vy[d'] value of this curve,
with R=10°%, is 3.275x 10711,
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to calculate the mean of the NMRS error, we now repeat
the study performed to produced Fig. 7 in [22]. The result,
generated by using 108 randomly chosen decryption keys,
is presented in Fig. 7 in this paper.

Figure 7 in this paper indicates that the most likely
theoretical NRMS value expected, when a randomly gen-
erated decryption key is used, has a mean value of ~1. As
in Fig. 7 of [22], all one million randomly chosen decryp-
tion keys produced NRMS values between 0.9998 and 1.
In this case the calculated Vgy[d'], for the results pre-
sented in Fig. 7 in this paper, is 3.2751x 10", Since the
NRMS produced has a very small statistical variance and
a large mean value, this indicates that employing a brute-
force method of attack on this system would prove unsuc-
cessful. The statistical results presented therefore con-
firm the previous observation made in [22] based solely on
simulations,. Considering the very narrow variance value
of the NRMS, we can confirm that the hypothesis made in
[22], that the vast majority of keys will fall within a nar-
row range of NRMS values, i.e., (0.9998, 1] in Fig. 7 in
this paper, has been shown to be true.

Visually, the most noticeable difference between the re-
sult presented in Fig. 7 in [22] and those appearing in Fig.
7 here is that the curve here no longer has the symmetric
distribution appearing in Fig. 7 of [22]. In this paper the
highest possible error value achievable by using the sta-
tistically calculated expressions, i.e., the largest value of
the NRMS value calculated using E[d], is 1. This is be-
cause power conservation is required, which is not the
case for the unconstrained numerically calculated NRMS
value whose maximum value is \5 in [22]. This maximum
theoretical value of the NRMS occurs only when the origi-
nal input image is compared with its inverse (negative
image). We note however, that owing to our application of
the law of conservation of energy, which is explicitly built
into the methodology employed here, it is not always pos-
sible to decrypt an encrypted image to its own negative
image by using a phase key from the allowed systems key
space. In other words in this paper our possible NRMS
values are constrained by the fact that a dark low-power
image cannot be decrypted to the corresponding bright
negative.

7. CONCLUSION

The amplitude-encoding (AE) case of the double random
phase encoding (DRPE) technique is examined by using
statistical techniques. Throughout the analysis it is as-
sumed that perfect encryption takes place and the decryp-
tion process is then analyzed. This approach is of practi-
cal interest as it corresponds to the case when an attacker
has knowledge of a cipher—text pair. A cost function (CF)
is needed during such an attack to gauge a possible de-
cryption keys’ accuracy, or closeness, to a valid decryption
key. The CF typically used in the literature to quantify
the success of an attempted decryption compared with the
original input image is the normalized root mean squared
(NRMS) error. The NRMS CF, in the AE DRPE case, is
based on an intensity difference parameter, d. Thus the
amount of error in the output intensity following an at-
tempted decryption is used as a measure of the accuracy
(validity) of a particular test decryption key. The smaller
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the error present in the decrypted image, the closer the
decryption key used is to the correct key. We note that the
Euclidean distance in key space, between an incorrect
and the correct R, 4 key, is not a good measure of the va-
lidity of that key (i.e., its ability to decrypt correctly), and
is not a good predictor of the resulting NMRS error. Pre-
viously [22] it has been shown that keys that are a large
Euclidean distance away from the correct key can still de-
crypt with very low NRMS errors

To analyse the AE DRPE case we assumed that the
noise in the output field is circular Gaussian and made a
conjecture regarding the form of the output field by intro-
ducing the N\ parameter. Based on simulations we first
confirmed that the resulting output field noise is circular
Gaussian. Since the DRPE is lossless we then examined
how power conservation places restrictions on the proper-
ties of the possible output fields. We then proceeded to de-
rive analytical expressions for the mean and the variance
of the intensity difference parameter d in terms of the sta-
tistical properties of the output field. A series of simula-
tions were performed to show that as the sample size used
increases (i.e., the number of pixels and runs for different
Ry 4 keys), the numerical results tend toward the statisti-
cally derived analytic expressions. Our results verify the
validity of the theoretical expressions for large systems
and also confirm our observation that for small systems
the NRMS values can vary significantly.

We have shown for the case where the errors in Ry ; are
randomly distributed spatially that there is a highly cor-
related linear relationship between Eqz[\] and the subset
of keys with a particular percentage of pixels in error, %R.
Based on our results it can be stated that, in general, if A
is known, then, with high certainty, the percentage of cor-
rect pixels in the decryption Fourier key used is also
known. This observation might be used to significantly re-
duce the size of the key space to be searched during an
attack or conversely be used to improve AE DRPE secu-
rity.

In a previous publication [22] both small and large key
spaces were examined. The results presented here have
been shown to corroborate the previously published re-
sults based solely on intensive but limited numerical
simulations [22]. Thus the hypothesis made in [22] that
the vast majority of keys in this AE DRPE key-space, lie
on the curve formed by these one million randomly chosen
keys, has been statistically confirmed.

ACKNOWLEDGMENTS

We acknowledge the support of Enterprise Ireland (EI)
and Science Foundation Ireland (SFI). We also thank the
Irish Research Council for Science, Engineering and Tech-
nology. D. S. Monaghan acknowledges the support of The
International Society for Optical Engineering (SPIE)
through a SPIE Educational Scholarship.

REFERENCES

1. H. O. Yardley, The American Black Chamber (Naval
Institute Press, 1931).

2.  G. F. Gaines, Cryptanalysis: A Study of Ciphers and Their
Solution (Dover, 1939).



2042

3.

10.

11.

12.

13.

14.

15.

16.

J. Opt. Soc. Am. A/Vol. 26, No. 9/September 2009

W. Diffie and M. E. Hellman, “New directions in
cryptography,” IEEE Trans. Inf. Theory 22, 644-654
(1976).

C. A. Deavours, Cryptology Yesterday, Today and Tomorrow
(Artech House, 1987).

P. Réfrégier and B. Javidi, “Optical-image encryption based
on input plane and Fourier plane random encoding,” Opt.
Lett. 20, 767-769 (1995).

B. Javidi and J. L. Horner, “Optical pattern recognition for
validation and security verification,” Opt. Eng. 33, 224-230
(1994).

B. Javidi, Optical and Digital Techniques for Information
Security (Springer Verlag, 2005).

E. Tajahuerce and B. Javidi, “Encrypting three-
dimensional information with digital holography,” Appl.
Opt. 39, 6595-6601 (2000).

L. E. M. Brackenbury and K. M. Bell, “Optical encryption
of digital data,” Appl. Opt. 39, 5374-5379 (2000).

G. Unnikrishnan, J. Joseph, and K. Singh, “Optical
encryption by double-random phase encoding in the
fractional Fourier domain,” Opt. Lett. 25, 887-889 (2000).
B. M. Hennelly and J. T. Sheridan, “Optical image
encryption by random shifting in fractional Fourier
domains,” Opt. Lett. 28, 269-271 (2003).

T. J. Naughton and B. Javidi, “Compression of encrypted
three-dimensional objects using digital holography,” Opt.
Eng. 43, 2233-2238 (2004).

B. M. Hennelly and J. T. Sheridan, “Optical encryption and
the space bandwidth product,” Opt. Commun. 247, 291-305
(2005).

B. Javidi, A. Sergent, G. S. Zhang, and L. Guibert, “Fault
tolerance properties of a double phase encoding encryption
technique,” Opt. Eng. 36, 992-998 (1997).

F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier,
“Influence of a perturbation in a double phase-encoding
system,” J. Opt. Soc. Am. A 15, 2629-2638 (1998).

B. Javidi, N. Towghi, N. Maghzi, and S. C. Verrall, “Error-
reduction techniques and error analysis for fully phase-

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

Monaghan et al.

and amplitude-based encryption,” Appl. Opt. 39, 4117-4130
(2000).

B. M. Hennelly and J. T. Sheridan, “Image encryption and
the fractional Fourier transform,” Optik (Stuttgart) 114,
251-265 (2003).

B. M. Hennelly and J. T. Sheridan, “Random phase and
jigsaw encryption in the Fresnel domain,” Opt. Eng. 43,
2239-2249 (2004).

U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T.
Sheridan, “A known-plaintext heuristic attack on the
Fourier plane encryption algorithm,” Opt. Express 14,
3181-3186 (2006).

T. J. Naughton, B. Hennelly, and T. Dowling, “Introducing
secure modes of operation for optical encryption,” J. Opt.
Soc. Am. A 25, 2608-2617 (2008).

D. S. Monaghan, G. Situ, U. Gopinathan, T. J. Naughton,
and J. T. Sheridan, “Role of phase key in the double
random phase encoding technique: an error analysis,” Appl.
Opt. 47, 3808-3816 (2008).

D. S. Monaghan, U. Gopinathan, T. J. Naughton, and J. T.
Sheridan, “Key-space analysis of double random phase
encryption technique,” Appl. Opt. 46, 6641-6647 (2007).
D. S. Monaghan, G. Situ, G. Unnikrishnan, T. J. Naughton,
and J. T. Sheridan, “Analysis of phase encoding for optical
encryption,” Opt. Commun. 282, 482-492 (2008).

G. Situ, U. Gopinathan, D. S. Monaghan, and J. T.
Sheridan, “Cryptanalysis of optical security systems with
significant output images,” Appl. Opt. 46, 5257-5262
(2007).

Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi,
“Resistance of the double random phase encryption against
various attacks,” Opt. Express 15, 10253-10265 (2007).

J. W. Goodman, Statistical Optics (Wiley, 2000).

D. S. DMonaghan, “Practical implementations
theoretical analysis of optical encryption,”
dissertation (University College Dublin, 2009).

Lena Test Image, http:/sipi.usc.edu/database/.
Matlab 7.0.1, http://www.mathworks.com/.

and
Ph.D.


http://sipi.usc.edu/database/
http://www.mathworks.com/

