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Abstract. An optical implementation of the amplitude encoded double
random phase encryption/decryption technique is implemented, and
both numerical and experimental results are presented. In particular, we
examine the effect of quantization in the decryption process due to the
discrete values and quantized levels, which a spatial light modulator
�SLM� can physically display. To do this, we characterize a transmissive
SLM using Jones matrices and then map a complex image to the physi-
cally achievable levels of the SLM using the pseudorandom encoding
technique. We present both numerical and experimental results that
quantify the performance of the system. © 2009 Society of Photo-Optical Instru-
mentation Engineers. �DOI: 10.1117/1.3076208�
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Introduction
ecent technological advances, such as the availability of
igh-quality spatial light modulators �SLMs�, high-
esolution digital cameras �CCDs� and powerful desktop
omputers, coupled with the advantages of high throughput
nd computational speed of optical processing systems

091-3286/2009/$25.00 © 2009 SPIE
ptical Engineering 027001-
�arising due to their inherent parallel nature and speed of
light operation�, continue to stimulate interest, most re-
cently, in the field of information security by means of
optical encryption.1–3 Optical encryption offers the possibil-
ity of high-speed parallel encryption of two-dimensional
complex data. Such encryption techniques often involve the
capture of the full field information �i.e., both the field am-
plitude and the phase�.
February 2009/Vol. 48�2�1
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Digital holographic �DH� techniques4–7 are employed to
llow pre- and postcapture digital signal processing of the
avefront. When in digital form, these holograms can be

asily stored, transmitted, processed, and analyzed.8,9 Digi-
al compression techniques can be used to enable efficient
torage and transmission of holographic data.8,10

In order to decrypt the data optically, the complex-
alued, encrypted image must be physically displayed us-
ng an SLM and then propagated through the decryption
ystem. To date, there have been numerous optical encryp-
ion systems of this type proposed in the literature;2,11–17

owever, there have been relatively few experimental
valuations of the practical performance of SLMs in optical
ncryption/decryption systems.

Lohmann et al.18 have shown that the evolving space-
andwidth product �SBP� of a signal as it propagates
hrough an optical system cannot exceed the SBP of the
ptical system without loss of information. The signals’
igner distribution Function has been used to track the

BP of an optical signal propagating through an optical
ystem.19 By successfully tracking the SBP of a signal in
his way, one can identify the sampling rate necessary in
rder to adhere to the Nyquist sampling criteria.20 There are
any factors that affect the SBP of a signal as it propagates

hrough an optical system. These include the following:

1. the finite aperture of the elements such as lenses,
SLMs, and CCD cameras

2. the effective pixel size and fill factor of discrete op-
toelectronic input and output devices, such as SLMs
and CCD cameras,

3. the quantization effects introduced by these same op-
toelectronic devices.

These operations may also introduce systematic noise in
he signal, as opposed to random noise introduced due to
ptical scatter �speckle� and electronic noise introduced by
he SLMs, CCD, or lasers.

Typically, optical encryption techniques proposed in the
iterature involve a coherent field propagated through some
ulk optical system that consists of thin lenses and sections
f free space. Such lossless paraxial quadratic phase sys-
ems can be conveniently described mathematically using
he linear canonical transformation �LCT�.19 The optical
ourier, fractional Fourier, and Fresnel transforms are sim-
lified forms of the LCT.

Implementation of these systems often requires the use
f several SLMs. Voltages applied to individual SLM pixels
re used to discretely modulate the amplitude and/or phase
f the complex wave field at the input plane. The behavior
f SLMs are thus of considerable practical importance be-
ause they are used to present the input fields to the optical
ncryption systems or to provide the encryption/decryption
hase keys within the system.

The double random phase encoding �DRPE� technique,
s proposed by Refregier and Javidi1 in 1995, is a method
f optically encoding a primary image to stationary white
oise by the use of two statistically independent random
hase keys. One of these keys, R1, is placed in the input
lane and the other, R2, in the Fourier plane of a 2f system.
n this paper, we discuss the operation of the encryption
ystem in an amplitude encoding �AE� mode, in this case
ptical Engineering 027001-
the input image is grey scale and real, and the phase key R2
located in the Fourier plane provides the only relevant en-
cryption key.21 The AE DRPE technique can be numeri-
cally simulated using finite matrices containing discrete
complex values and the fast Fourier transform.

Figure 1 illustrates encryption/decryption using the
DRPE technique. It can be seen that the amplitude encoded
input image, fA, is multiplied by the input-plane encryption
phase key, R1. A Fourier transform is subsequently pre-
formed with the resultant complex-valued image multiplied
by the Fourier-plane encryption phase key, R2. An addi-
tional Fourier transform is then performed to produce the
encrypted image, �. This encrypted image can be math-
ematically described as

� = I�R2 � I�R1 � fA�� , �1�

and the recovered decrypted image can be described as

fA = I−1�R2
* � I−1���� � R1

*, �2�

where the asterisk denotes the complex conjugate. It should
be noted that when using the DRPE technique with an
amplitude-encoded input image, the removable or multipli-
cation of the conjugate input-plane phase key �R

1
*� is not

required because the intensity can be obtained as follows:

IfA
= �fA�2 = �I−1�R2

* � I−1�����2. �3�

This is the case because the encryption/decryption phase
keys have unit amplitude.

We perform our analysis by first numerically simulating
the optical setup, and then we physically build and test our
setup in the lab. It should be noted that in our simulations
we do not model any of the physical limitations present in
a real system other than that of quantization, which is our
primary concern in this paper. Results measured in a physi-
cal system are compared to numerical simulations in Sec-
tion 5.

When numerically implementing the DRPE technique,
complex values can easily be simulated and stored. The
experimental display or representation of complex values,
using SLMs, in an optical implementation is significantly
more complicated. SLMs can operate in an amplitude or in
a phase mode; however, for most commercial SLMs there
is no independent control of the amplitude and phase �i.e.,

Fig. 1 Let fA represent the input data to be encrypted. Let I�•� and
I−1�•� represent a Fourier and an inverse Fourier transform, respec-
tively. In �a�, the input signal fA is multiplied by a random phase key
R1, a Fourier transform is performed, it is multiplied by a second
random phase key R2 and subsequently transformed by a second
Fourier transform to provide the encrypted image ��x�. The decryp-
tion process in �b� is equivalent to the encryption process inverted.
February 2009/Vol. 48�2�2
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hey operate in a coupled mode�, and this increases the
ifficulty when trying to display complex values. Cohn22

nd Duelli et al.23 have devised a method using a pseudo-
andom encoding technique �PET� as a method of statisti-
ally approximating desired complex values with those val-
es that are achievable with a given SLM.

This paper is organized as follows: In Section 2 we dis-
uss a method using Jones algebra, of characterizing our
LM, which is a Holoeye LC2002.8,15 In Section 3, we use

he PET and apply it to our SLM using the parameters
btained from the characterization carried out in Section 2.
n Section 4, we describe our experimental decryption
etup. In Section 5, we present and compare numerical
imulations and experimental results. Finally, in Section 6,
e present a brief conclusion.

SLM Characterization
n all physical optical systems, the polarization of a light
eam can be described using a Jones vector. Similarly, the
ffect of any linear optical element on the polarization state
f a field can be described by a Jones matrix.24 Jones cal-
ulus is an extremely useful tool for describing the effect
hat linear optical elements have on the polarization state of
n incident field. The beam is described in terms of an
lectric vector24

� = �Ex�t�
Ey�t�

	 , �4�

here Ex�t� and Ey�t� are the horizontal and vertical scalar

omponents of E� , respectively. This instantaneous polariza-

ion state of E� can also be written in complex form as

= �E0xe
i�x

E0ye
i�y 	 , �5�

here �x and �y represent the horizontal and vertical
hase components, respectively. Because the Jones vector
f a beam is made up of orthogonal horizontal and vertical
olarization states, each state can be separately written as

h = �E0xe
i�x

0
	 and Ẽv = � 0

E0ye
i�y 	 . �6�

f a beam of light, which has linear polarization, is incident
n a linear optical element, it emerges with a new polariza-
ion vector. The linear optical element has transformed the
riginal vector into a new vector by a process that can be
escribed mathematically using a 2�2 Jones matrix24 Each
ixel in a transmissive SLM acts as a linear optical element
f a constant gray-scale level is displayed on it. In most
LMs, gray-scale values are set by applying a voltage and
ssociated with each voltage are amounts of both phase and
mplitude. The form of modulation of the incident beam
epends on in which mode the SLM is operating. Typically,
t can be assumed that each SLM pixel acts identically as
ong as all the pixels are set to the same constant gray-scale
evel. By finding the SLM pixel’s Jones matrix, for each
ray-scale level, we can characterize the device. In order to
haracterize the SLM, two experiments were carried out to
ptical Engineering 027001-
determine �i� the amplitude and �ii� the phase, correspond-
ing to a particular applied voltage.

The first experiment was to determine the amplitude
characteristics of the pixels of the SLM �see Fig. 2�. The
Jones vector of the incident beam in Fig. 2 can be written
as

�
I/
2


I/
2
	 = � 
I0


I90
	 , �7�

where I is the intensity of the beam, and the polarization of
the light beam has been set, by a linear polarizer, to 45 deg.
The Jones matrix that corresponds to a polarizer that is set
at either 0 or 90 deg is

�1 0

0 0
	 or �0 0

0 1
	 , �8�

respectively. Therefore, the Jones vector for the output
beam, when the polarizer and the analyzer have been set to
an angle of 0 deg, can be calculated as follows:

�A
I0

0
	 = �1 0

0 0
	 � �A B

C D
	 � �1 0

0 0
	 � � 
I0


I90
	 . �9�

By measuring the intensity of the output beam for the four
possible combinations of the orientation of the polarizer
and the analyzer �each set at either 0 or 90 deg�, we can
fully determine the 2�2 Jones matrix corresponding to
that specific grey-scale level displayed on the SLM. Using
the following formulas provides us with the amplitude
modulation of the SLM for each grey-scale level:

�A
I0

0
	 → �A�2I0 = Imeasured, �10�

Fig. 3 Experimental setup for determining the phase modulation of
our SLM for each gray-scale level voltage.

Fig. 2 Experimental setup for determining the amplitude modulation
of our SLM for each gray-scale level voltage.
February 2009/Vol. 48�2�3
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A� =
Imeasured

I0
. �11�

n order to measure the phase modulation of the SLM, we
ake use of a DH setup10 in which we capture the output

nterference pattern using a CCD camera �see Fig. 3�. We
plit the SLM screen into two areas, displaying a reference
rey scale on the top half and varying the gray-scale level
n the bottom half. This allows us to measure the relative
hase shift of the interference fringes recorded for each of
he four different combinations of the polarizer and ana-
yzer �i.e., each again being set to either 0 or 90 deg�. In
his way, we can fully determine the 2�2 Jones matrix
orresponding to the SLM for phase modulation of the pix-
ls for each grey-scale level. The polarizer/analyzer combi-
ations of 0 /0, 90 /0, 0 /90, and 90 /90 deg correspond to
he individual phase components of �1, �2, �3, and �4.
ombining this information with the amplitude modulation
easurements gives us

�A���1 �B���2

�C���3 �D���4
	 . �12�

igure 4 shows the resulting polar plot that characterizes
he SLM and clearly demonstrates that the SLM operates in
he coupled mode.

Now that the SLM is fully characterized, the next prob-
em is to map the complex numbers that we wish to display,
o the complex numbers �quantized levels� that our SLM
an physically represent. We do this using the PET.22,23,25

Pseudorandom Encoding Technique
ur SLM, which works in a coupled phase/amplitude
ode, can only display a certain range of discrete complex

alues that we have determined in Section 2. Figure 5�a�
hows a typical example of a polar plot displaying a

ig. 4 A polar plot of the states physically achievable on our SLM,
hich operates in a coupled mode �denoted by circular dots�. An

deal SLM operating in an ideal phase mode would have very little or
o amplitude modulation �denoted by stars�. Note that the circle has
radius of 0.8, only for ease of graphical presentation�.
ptical Engineering 027001-
complex-valued image. If this image where mapped di-
rectly to a lossless phase-only SLM, with 26=64 finite
quantization levels, then it would appear as the polar plot
shown in Fig. 5�b�. Because the encrypted image and the
decrypting phase key, which we wish to display on the
SLM, are normally randomly distribute in the complex
plane �i.e., having phase values spread randomly from 0 to
2��, we need to map these complex values to the discrete
complex values �quantization levels� that the SLM can dis-
play. To do this, we employ the PET,22,23,25 which is a sta-
tistical method of approximating a required complex value
using only those values that are achievable. Figure 6 shows

Fig. 5 �a� A polar plot of an encrypted image made up of complex
values and �b� the encrypted image displayed in �a� that has been
mapped to the achievable quantization levels of an ideal lossless
phase-only mode SLM.

Fig. 6 A polar plot displaying a required complex value, ac, and
three achievable values that the SLM can display.
February 2009/Vol. 48�2�4
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n example of the application of PET to display a complex
umber, ac. On a polar diagram, the distance from the ori-
in represents the amplitude, while the angle of the vector
epresents the phase. We now wish to display ac using the
hree possible SLM quantization levels, �V1, V2, and V3� as
hown in Fig. 6.

A simple minimum Euclidean distance algorithm would
ap the state ac to V2; however using the PET, a probabil-

ty is assigned to each possible mapping, which is deter-
ined by the distance from ac to each quantization level. If
e have an image that has multiple values at ac, each value

t ac is mapped to one of the SLM levels with the given
ssociated probabilities. The PET22 finds a value of the en-
emble average of a random variable, a, such that �a�=ac.
ecause this is a statistical method, the greater the number
f values is at ac, the more accurate the assignment method
ecomes.

When we increase the number of quantization levels that
an be displayed, determining the probability associated
ith each distance becomes more complicated, and a linear

elationship between Euclidean distances and probability
oes not always provide the most efficient method. In Fig.
, we have assigned a probability to each of the three
chievable levels, V1, V2, and V3, such that

P1 + P2 + P3 = 1. �13�

his implies that ac will be given by

c = P1aV1
+ P2aV2

+ P3aV3
, �14�

here aVn
is the number of points of value ac mapped to

evel, Vn. Separating Eq. �14� into its real and imaginary
arts gives

e�ac� = P1 Re�aV1
� + P2 Re�aV2

� + P3 Re�aV3
� �15�

nd

m�ac� = P1 Im�aV1
� + P2 Im�aV2

� + P3 Im �aV3
� . �16�

riting Eqs. �14�–�16� as simultaneous equations gives

Re�ac�
Im�ac�

1
� = Re�aV1

� Re�aV2
� Re�aV3

�

Im�aV1
� Im�aV2

� Im�aV3
�

1 1 1
�P1

P2

P3
� , �17�

nd using simple matrix algebra, we can determine the
hree mapping probabilities P1, P2, and P3. Expanding this
ethod, we can take a complex valued image, to be dis-

layed on an SLM with a fixed number of available levels,
nd encode the image to those levels based on the calcu-
ated probabilities. In Section 5, we discuss the results
ound when encoding a complex-valued encrypted image
nd a complex-valued decryption key to a SLM, assuming
, 8, and 16 available quantization levels.

Decryption Experimental Setup
n the DRPE technique decryption process, two Fourier
ransforms are required. In our implementation, in order to
implify the optical setup, we perform the first Fourier
ransform numerically. This first Fourier transform is an
ptical Engineering 027001-
unambiguous step because no knowledge of the decrypting
phase key is required. Figure 7 shows a diagram of our
experimental decryption setup. Using two transmissive
SLMs �both operating in a mostly phase-only mode�, which
have been imaged onto one another by means of a 4f im-
aging system, we display the inverse Fourier transform of
the encrypted image on SLM1 and the decryption phase
key R2

* on SLM2. The complex images are mapped to the
SLMs employing Cohn’s PET as described in Section 3.
The second Fourier transform is performed optically using
free-space propagation and a thin lens. The resulting inten-
sity of the wavefront is then captured using a CCD camera.

As stated, we are concerned here with AE images; there-
fore, the intensity of the wavefront is all that is required in
order to recover the encrypted image. A spatial filter �aper-
ture� is placed in the Fourier domain of the 4f imaging
system, between the two SLMs, so as to filter out the
higher-order diffraction terms introduced by the periodicity
of SLM1.

5 Results
We studied the effect of quantization in the decryption pro-
cess due to the discrete levels that an SLM can display. The
encrypted image and the random phase key R2

* are complex
valued, and when either is displayed on a practical SLM
�one that can only display a finite number of levels�, this
gives rise to errors during the decryption process. For the
experimental results �shown later in Fig. 9�d�–9�f��, a
532-nm wavelength laser was used.

Figure 8 shows a sequence of numerically simulated re-
sults in which we use an SLM that has three available
quantization levels, and we simulate the setup described in
Fig. 7. Significant differences can be noted between data
encoded to 16 levels and the same data encoded to 3 levels.
These differences correspond to a loss of information in the
desired decrypted image �Fig. 8�b�� and inaccuracy in the
phase key �Fig. 8�d��, the encoded decrypted image, �Fig.
8�c��. and the encoded phase key �Fig. 8�e��. Usually, this
loss of detailed information, due to the reduction in quan-
tization levels, has the effect of making the image appear
brighter.

Figure 9 shows two sets each of three images, decrypted
using a SLM with 4, 8, and 16 quantization levels. The first
set �see Fig. 9�a�–9�c�� has been produced numerically as
discussed the decryption setup shown in Fig. 7. The second
set �see Fig. 9�d�–9�f�� gives the corresponding experimen-
tal results generated using the setup, shown in Fig. 7, cap-
tured with an Imperx IPX-1M48 CCD camera. It should be
noted that there is a relatively strong central spot in the

Fig. 7 The experimental optical decryption setup.
February 2009/Vol. 48�2�5
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xperimental results that is due to the �100% diffraction
fficiency of the SLM. It arises due to nonideal SLM op-
ration �fill factor, mixed mode operation, etc.� and to
mplementation errors and lens aberrations. Such physical
ffects, including the low-pass filter present in the optical
ystem �see Fig. 7�, are not modeled in the numerical simu-
ation. In Table 1, normalized root mean square �NRMS�
nd cross correlation values are presented. The resultant
imulated and experimental decryptions are cross correlated
ith a perfectly decrypted image. NRMS values for the

xperimental results are not presented due to variations in
he laser power used. We have also shown the cross corre-
ation for the experimental results when a black circle is
umerically applied to cancel the large bright term in the
entre of the experimental images. We note that removing
his bright spot has little effect on the resulting cross cor-
elating values in Table 1. Despite the significant assump-
ions made when performing the simulations and the limi-

ig. 8 �a� Original image, �b� encrypted image, �c� encrypted image
s represented on SLM with three quantized levels, �d� Fourier de-
ryption phase key, �e� Fourier decryption phase key as represented
n SLM with three quantized levels, and �f� decrypted image with
hree quantized levels.

ig. 9 Images decrypted using the setup shown in Fig. 7: �a–c�
esults that have been numerically simulated for cases when we
sed a SLM with 4, 8, and 16 available values, respectively. �d–f�
xperimental results for cases when we used a SLM with 4, 8, and
6 available values, respectively.
ptical Engineering 027001-
tations of the experimental setup used, the trends
observable for the numerical and experimental results
match reasonably well.

6 Conclusions
In this paper, the effects of quantization and imperfect op-
eration of the SLM during decryption have been examined.
Employing 2�2 Jones matrices, the SLM used was char-
acterized by assuming that each pixel acts as a linear opti-
cal element. The Jones matrix was found for each voltage-
controlled gray level possible by independently measuring
both the amplitude and phase modulation of the device. By
characterizing the SLM, which operates in a coupled mode,
the complex values �quantization levels� it can display were
determined.

In Section 3, the PET is applied to our SLM using the
parameters presented in Section 2. This permits the mini-
mization of the systematic errors that occur when a
complex-valued image is displayed on the SLM. The de-
cryption setup, which is implemented for AE DRPE tech-
nique decryption, is described in Section 4. In Section 5,
both numerical and experimental results for such a system
are presented. Although there was a relatively strong cen-
tral spot in the experimental results, the trend observed in
the cross correlations for the experimental results were in
close agreement with those predicted by the numerical
simulations.

Using the PET, it is possible to systematically display
complex-valued images on a SLM that is only capable of
displaying a limited range of quantization levels. We have
shown that the PET can be applied when implementing the
AE DRPE technique and that it is possible to perform sat-
isfactory decryption.

These practical results have implications for the tech-
nique used to capture data in optical encryption systems25

and, ultimately, for the security of such systems.26 The full
implications require further detailed study.
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