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VI - Abstract 

 

In this thesis I look at two different problems in bacterial genomic analysis. The first 

involves reconstructing the evolutionary history between a group of closely related 

bacteria. I addressed whether or not it is possible to separate such genomes into different 

genera, species and strains. Specifically, I addressed how different approaches such as 

the use of 16S rRNA phylogenetic trees, phylogenetic supertrees and concatenation of 

individual genes in order to construct phylogenetic trees compare with one another. 

What effect will problems associated with resolving shallow-phylogeny have on 

recovering a tree of life? Ultimately I show that for the group of genomes involved, 

different methods and data produce different results and that the true tree, if a tree-like 

structure does indeed exist for these genomes, is unrecoverable using such approaches.  

 

In the second part of my thesis I examine the phenomenon of gene clustering in bacterial 

genomes. I present a software program, GenClust, for the identification, analysis and 

visualisation of gene clusters. I show how GenClust can be used to recover and analyse 

clusters of genes involved in amino acid biosynthesis across a large !-proteobacterial 

dataset. Finally, I examine models of gene cluster and operon formation and test them 

with real data, using a combined approach of comparing clusters on both structural 

similarity and the underlying phylogenetic signals of the clustered genes. I provide a 

hypothesis for the selective forces driving cluster and operon formation in bacterial 

genomes. 
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Chapter 1 - Introduction 

 

1.1 Phylogenetic methods: 

 

1.1.1 Tree thinking: 

The use of a tree like structure to describe the evolutionary relationships between 

organisms was first illustrated by Darwin in his 1959 book “The Origin of Species” 

(Darwin, 1859). The idea was further popularised by German biologist Ernst Haeckel 

(figure 1.1) (Haeckel, 1879). Haeckel depicted a more literal tree than the mathematical 

structures used today. Haeckel imposed a hierarchy based on what he believed the 

natural progression from simple to complex, with man resting at the top of the tree. 

Nevertheless, the phylogenetic trees we draw today are remarkably similar to the 

original idea pioneered by both Darwin and Haeckel. 

 

In this section, I am going to discuss the features of phylogenetic trees along with some 

of the more commonly used methods for generating phylogenetic hypotheses. In 

particular I will examine some of the strengths and weaknesses of each method. Finally I 

will talk about methods of measuring both signal and conflict in phylogenetic 

hypotheses generated using these inference methods. 
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Figure 1.1: Haeckel’s Tree of Life from the book “The Evolution of Man” (Haeckel, 

1879). 
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1.1.2 From sequence data to phylogenetic trees: 

 

While there are many types of data that can be used to determine the evolutionary 

relationships between a group of organisms, the most commonly used is molecular 

sequence data. The process of building a phylogeny describing the relationships between 

those sequences involves a number of steps. The sequences must be aligned using 

multiple sequence alignment (MSA) software such as Clustal, Muscle or Prank 

(Thompson et al., 2002; Edgar, 2004; Löytynoja and Goldman, 2008). Alignments are 

generated by inserting gap characters, generally denoted by a ‘-’, into the sequences in 

order to bring positions that are considered to be conserved into alignment with one 

another. Once aligned, a 2d pairwise distance matrix can be generated to provide a 

measure of the distance of all the sequences in the alignment from one another. Due to 

differences in the algorithms of MSA software, the alignment generated is dependent to 

an extent on the software used. 

 

After the alignment has been completed it can be input into phylogenetic inference 

software, for example Phyml or PAUP* (Guindon and Gascuel, 2003; Swofford, 2003). 

Different software use different algorithms for the inference of the evolutionary history 

of molecular sequence data. These range from simple algorithms such as neighbor-

joining (Saitou and Nei, 1987) to more complex ones like maximum likelihood 

(Guindon and Gascuel, 2003). The important thing to consider about the resulting 

phylogeny is that, much like MSA, the result may be dependent on the method used. 

Different algorithms can produce different phylogenies for the same alignment. Some 
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algorithms produce different phylogenies for a single alignment depending on the set of 

input parameters used (Keane, 2006). This is an important point to consider when 

generating a phylogeny. In addition, MSA software will produce a result regardless of 

the quality of the data that is used as input. If the sequences input to the software show 

little to no conservation then the resulting alignment will be poor and any conclusions 

drawn from it will be unreliable. 

 

1.1.3 Structure of phylogenetic trees: 

 

Modern day phylogenetic trees are mathematical structures that propose a model for the 

evolutionary relationships between a set of units, such as organisms or genes in a gene 

family (Page and Holmes, 1998). For the purpose of this introduction I will describe 

trees in terms of species trees. Species trees are a subclass of phylogenetic trees that 

describe the evolutionary history of a group of species. However, the description holds 

true for phylogenetic trees in general. 

 

As a mathematical structure, formal definitions exist for each component of a 

phylogenetic tree (figure 1.2). Trees consist of branches, nodes and a topology. A branch 

defines a relationship between two nodes. Nodes can be subdivided into three classes: 

root nodes, internal nodes and external nodes. Root nodes represent the presumed most 

recent common ancestor (MRCA) for all the species represented on the tree. Unrooted 

trees do not have a root node and show only the relationships of the species relative to 

one another. Rooted trees have root nodes. Rooted nodes give trees direction. This 
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Figure 1.2: Features of phylogenetic trees. The top tree is rooted, as denoted by the root 

node, coloured red. Internal nodes are coloured green. Terminal nodes are represented 

by species name. The bottom tree is the same but unrooted. The three E. coli strains are 

an example of a monophyletic clade (a group of taxa to the exclusion of all others). 

Branch lengths vary, and show the relative rate of evolution of each node. Other features 

include a trifurcating, unresolved node (A), a bifurcating node (B) and a clan (C, the 

equivalent to a monophyletic clade for an unrooted tree). 
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 direction is evolutionary time, since the root is defined as the node from which all other 

nodes descend. Often a root node is defined via the use of an outgroup. For a species 

tree, an outgroup can be defined as a species, or set of species, believed to be less 

closely related to the ingroup species than the ingroup species are to one another. An 

example would be using rodent sequences as an outgroup on a primate tree. Then the 

root node is defined as the MRCA for primates and rodents. If the tree is unrooted then 

this directional information is not present, however the relationships between the species 

are still represented in the topology. Therefore, there is a maximum of one root node per 

tree, located at the base. The root is the parent node for the entire tree. Internal nodes 

correspond to the set of nodes that are both parent and child nodes. Terminal nodes, 

more often called leaf nodes (but also tips, terminal taxa or operational taxonomic units) 

represent the extant data on a tree (Page and Holmes, 1998). Mathematically speaking, 

these nodes are the set of nodes that are child nodes but not parent nodes. The branching 

pattern of the tree is known as the topology.  

 

Other common features of phylogenetic trees include: branch lengths (where the length 

of a branch corresponds to the rate at which it is evolving), clades (sub-groupings within 

the tree structure), resolution (whether the relationships at a node can be inferred or not) 

and balance (the level of bifurcation in the branching pattern). In the following sections I 

will describe the algorithms and models used in constructing a phylogeny. 
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1.1.4 Distance matrix methods: 

 

Distance matrix methods were first introduced in 1967 (Cavalli-Sforza and Edwards, 

1967; Fitch and Margoliash, 1967). Distance matrix methods convert an alignment into a 

matrix of pairwise distances, using some model for measuring the distance between two 

sequences. The resulting matrix is used to produce the branch ordering and branch 

lengths. 

  

The most basic method for calculating the distance between characters in an alignment is 

to simply count the number of observed differences across each site. This is known as 

the p-distance. No account is taken for the possibility of multiple changes at a site. To 

improve on this idea, several models were developed to calculate distances between 

DNA and amino acid sequences.  

 

The simplest model is the Jukes and Cantor (JC) model (Jukes and Cantor, 1969). The 

JC model assumes all four bases have equal frequencies and that all possible 

substitutions are equally likely. The distance between two DNA sequences is then 

calculated using the following formula: 
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where d is the distance, ln is the natural log and p is the number of nucleotide positions 

that differ between the two sequences. 
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An example of a more complex model is the general-time reversible (GTR) model 

(Lanave et al., 1984; Rodriguez et al., 1990). The GTR model has a total of 10 

parameters: six substitution rate parameters and four base frequency parameters. The 

model is symmetric and thus time reversible: 
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where Rij is the rate at which base i changes to base j and !i is the frequency of base i. 

Since the GTR model allows for variable base frequencies and reversible models can 

come close to fitting real data, the model is more robust than the JC model (Rodriguez et 

al., 1990; Yang et al., 1994).  

 

Many different models of varying complexity exist, such as Kimura’s 2-parameter 

model (K2P) (Kimura, 1980), Hasegawa, Kishino and Yano (HKY85) (Hasegawa et al., 

1985) and the LogDet model (Lockhart et al., 1994). Similarly many models exist for 

amino acid data, such as Dayhoff (Dayhoff et al., 1978) and BLOSUM (Henikoff and 

Henikoff 1992). 
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One of the main problems with models of sequence evolution in relation to 

phylogenetics is model mis-specification. If the wrong model is choosen when 

constructing a phylogenetic tree it can result in an incorrect phylogeny (Keane et al., 

2006). A major problem occurs when no pre-existing model fits the data under analysis. 

The best-fit model is not nessecarily one that accurately describes the data (Keane et al., 

2006), though tests to examine model mis-specification do exist (Goldman, 1993).  

 

1.1.5 Neighbor-joining: 

The neighbor-joining (NJ) algorithm for phylogenetic inference was first purposed by 

Saitou and Nei in 1987. The algorithm is compatible with any type of evolutionary 

distance data (Saitou and Nei, 1987).  

 

The NJ algorithm works off the concepts of ‘neighbors’, with a pair of neighbors defined 

as a pair of taxa (external nodes) connected by a single internal node. The initial 

topology is star-like (i.e. no resolution of the relationships between the taxa). Taxa are 

clustered such that of all possible pairs, the pair with the smallest sum of branch lengths 

is chosen. The chosen pair is treated as a single unit. This process is repeated until all 

interior branches are found (Saitou and Nei, 1987). 

 

The advantage of the NJ method is that it is computationally inexpensive and can often 

obtain the correct tree topology (Saitou and Nei, 1987). The method lacks the 

sophistication of more complex algorithms, as it does not consider anything other than 

distance when reconstructing a topology.  
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1.1.6 Minimum Evolution: 

 

The principle of minimum evolution (ME) was first proposed by Cavalli-Sforza and 

Edwards in 1967, however the method was later refined to decrease computation time by 

Saitou and Imanishi (Cavalli-Sforza and Edwards, 1967; Saitou and Imanishi, 1987). For 

a given tree topology the length of each branch is computed. The branch lengths are then 

summed and the tree showing the smallest sum of branch lengths is considered the 

minimum evolution tree (Saitou and Imanishi, 1987). While ME bears a resemblance to 

maximum parsimony (section 1.1.7), it is actually much more similar to neighbor-

joining, as both require distance matrices and NJ includes the principle of minimum 

evolution in its algorithm (Saitou and Imanishi, 1987; Saitou and Nei, 1987). ME and NJ 

were both found to produce similar results on test data sets, however ME has the 

advantage of searching more of tree space than NJ search and is thus more likely to find 

the best tree, though this makes it slower than NJ (Saitou and Imanishi, 1987). 

 

1.1.7 Maximum parsimony: 

 

Maximum parsimony is a character-based method of phylogenetic inference. Willi 

Hennig is attributed with the development of parsimony (Hennig, 1966). Hennig also 

proposed important concepts such as synapomorphic and symplesiomorphic characters. 

Synapomorphic characters are those that are shared by two or more groups, inherited 

from their last common ancestor (i.e. they are specific to that clade). Symplesiomorphic 
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characters are characters shared by a number or groups, but that originated before the 

last common ancestor of those groups. Hennig believed that trees should only be 

constructed from synapomorphic characters (Hennig, 1966). Publications by Edwards 

and Cavalli-Sforza, who first used the technique to analyse gene frequency data, and 

Camin and Sokal, who used it for morphological characters, further popularised 

parsimony as an inference method (Edwards and Cavalli-Sforza, 1964; Camin and 

Sokal, 1965).  

 

Maximum parsimony draws upon the principle of Occam’s razor. According to Occam’s 

razor, the explanation requiring the fewest assumptions is generally the correct one. The 

principle of parsimony is to reconstruct the evolution of a particular site using the fewest 

possible steps. Characters in an alignment are analysed on a site-by-site basis. Each 

candidate tree topology is scored based on the minimum possible number of changes in 

character states per site. The sum of these scores across all sites dictates how 

parsimonious a particular topology is. The tree requiring the least amount of changes in 

character states across all sites is considered the most parsimonious tree (Page and 

Holmes, 1998; Yang, 1996). 

 

There are some obvious flaws inherent to maximum parsimony. Parsimony favours the 

minimum number of changes per site. However by trying to maximise similarity due to 

common ancestry, characters that do not fit a given topology are assumed to be 

homoplastic. Parsimony, by definition, does not take into account the possibility of 

varying rates of substitution. Because of this, parsimony is vulnerable to long-branch 
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attraction (Felsenstein, 1978). Long branch attraction can occur between rapidly 

evolving branches on a tree (long branches). Such long branches can be placed together, 

sometimes incorrectly, on a tree simply because they are rapidly evolving. A related 

disadvantage of parsimony is that it does not allow a model of sequence evolution to be 

taken into account. Therefore if the sequences are evolving under some known process 

parismony cannot use this information to produce more accurate results. 

 

1.1.8 Maximum likelihood: 

 

Maximum likelihood is a robust method of phylogenetic inference (Whelan et al., 2001). 

Likelihood is defined as the probability of observing the data given a particular model 

(Page and Holmes, 1998). The data are fixed, the model is subject to change. In terms of 

molecular evolution, data refers to the alignment, while “the model” often refers to a 

particular tree topology combined with a model of sequence evolution. 

 

Maximum likelihood works by calculating the lengths for the branches on a tree. This is 

achieved using a series of matrix multiplications, based upon the information contained 

in the model. Optimisation occurs by calculating the set of branch lengths, for a given 

topology, that maximises the likelihood of observing the data. For all branches one or 

possibly both of the nodes connected by the branch are unknown ancestral sequences. 

As such it is necessary to calculate every possible combination of ancestral states for the 

given topology. For a four-taxon tree there are 16 possible combinations of ancestral 

states. This optimisation is performed on all possible tree topologies. ML is a 
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computationally expensive approach, particularly for large datasets (Whelan et al., 2001; 

Steel, 2005). 

 

The maximum likelihood tree, therefore, is the tree that, in combination with the model, 

has the highest likelihood of explaining the observed data. It is important to note that the 

tree selected is simply the most likely tree. This is not necessarily equivalent to the 

correct tree. In particular, the choice of the model is extremely important in recovering 

the correct phylogeny. The model can consist of many parameters, such as 

transition/transversion ratio, base composition biases, correction for differing 

substitution rates, among site rate variation and the proportion of invariant sites (Page 

and Holmes, 1998). ML offers the advantage that the best values for each of the 

parameters can be estimated based on the data. It is possible to compare nested models 

(where one model is a special case of another model) to test whether one model is 

significantly better than the other (via a chi-squared test). An example of this is keeping 

a parameter fixed in one model and letting it vary in the other (Page and Holmes, 1998). 

 

Models can be made parameter rich to more accurately model the evolution of the data. 

Increasing the complexity in the model increases the complexity of the increases the 

computation time of the analysis. Also, the more parameters that are present, the higher 

the chance of over-fitting the model to the data is. In order to speed up the likelihood 

calculations software such as ModelGenerator (Keane et al., 2006) and MODELTEST 

(Posada and Crandall, 1998) can be used to choose the model which best fits the data. 

This removes the need to test all topologies with all possible models of sequence 
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evolution, under the assumption that the software chooses the model that will lead to the 

maximum likelihood. However, computation time still remains a problem as more taxa 

are added (Page and Holmes, 1998). 

 

Maximum likelihood is a popular method because it produces consistent estimates of 

phylogeny, and if it is given a good model and enough data, maximum likelihood will 

find the correct tree (Whelan et al., 2001). 

 

1.1.9 Bayesian inference of phylogeny: 

 

Bayesian inference of phylogeny is a parameter-based method of calculating the 

probability of a data set (Huelsenbeck et al., 2001). Bayesian analysis differs from ML 

by incorporating a prior probability distribution into the calculation, i.e. it incorporates 

prior beliefs on the values of the parameters of the model that may be independent of the 

data. If all parameter values have the same prior probability then the prior probability 

distribution is flat. If the prior probability for a parameter is not flat then this implies the 

value of that parameter may have a significant impact on the analysis. The goal is to 

obtain a posterior probability distribution over all possible parameters. The posterior 

probability distribution is a combination of the prior probability distribution and the 

likelihood for each parameter value. The posterior probability distribution can be 

calculated using Bayes’ theorem. Bayes’ theorem states that, given a hypothesis H (in 

this case, a tree) and some data D, the posterior probability of the hypothesis given the 

data is: 
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! 

Prob(H |D) =
Prob(H)xProb(D |H)

Prob(D)
 

 

 

If the prior distribution is flat then the posterior probability distribution will effectively 

mimic ML where the parameter values giving the maximum likelihood will also give the 

maximum posterior probability.  

 

The posterior probability distribution can be computationally expensive to calculate, as 

it involves calculations of all possible branch length combinations and calculation of 

substitution model parameters (Huelsenbeck et al., 2001). In order to cut down the 

computational overhead, a Markov chain Monte Carlo (MCMC) approach can be used to 

calculate the posterior probability distribution. MCMC uses samples from a simulated 

distribution that is believed to be the posterior probability distribution instead of 

deriving the posterior distribution via integration (Shoemaker et al., 1999).  

 

Some caution is needed when carrying out a Bayesian analysis (Huelsenbeck et al., 

2002). It has been noted that support for nodes in trees derived through Bayesian 

analysis tend to have higher values than corresponding nodes in trees derived from the 

same data using ML and the precise cause of this trend is unclear (Huelsenbeck et al., 

2002). As the prior probability distribution is a key part of Bayesian analysis, it is not 

surprising that the use of different priors has a large effect on the posterior probability 

distribution (Shoemaker et al., 1999). 
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1.1.10 The advent of whole genome DNA sequencing: 

 

In 1995 the complete genome of Haemophilus influenzae was sequenced (Fleischmann 

et al., 1995). This was a major milestone in the field of molecular biology. The genomes 

of many other organisms followed soon after, with preference towards model organisms 

such as the nematode Caenorhabiditis elegans (The C. elegans Sequencing Consortium, 

1998) and the fruit fly Drosophila melanogaster (Adams et al., 2000). The second major 

milestone in the sequencing of complete genomes came with the sequencing of the 

human genome (Lander et al., 2001; Venter et al., 2001). 

 

As a consequence of the availability of whole genome sequences, the field of 

comparative genomics was born. To date there are 1,115 complete published genomes 

and 4,626 ongoing genome projects, spread across all three domains of life. With 

sequencing becoming faster and more affordable, these numbers are only a hint of 

what’s to come in the next decade.  

 

The emergence of comparative genomics changed the landscape of phylogenetics in 

general. Instead of being restricted to building phylogenies from one or a few genes, 

researchers were given the opportunity to use all, or at least a large fraction, of the genes 

in an organism when carrying out phylogenetic analyses. This brought many advantages 

and potential pitfalls. 
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Different methods exist for combining the information contained in different gene 

families into a single phylogeny. Popular methods include data concatenation, presence 

absence methods and supertree approaches. 

 

1.1.11 Data concatenation and supermatrix approaches: 

 

The principle of data concatenation is relatively simple (see figure 1.3). A set of genes, 

generally widely or universally distributed among the organisms under analysis, is 

selected. Genes are aligned individually using multiple sequence alignment software and 

then the alignments are concatenated together, creating a supermatrix. The ordering of 

the genes within the each supermatrix is conserved. A phylogenetic tree is then 

constructed based off the concatenated alignment. The resulting tree should display the 

combined signal of all the genes in the alignment and thus, at least in principle, should 

be more reliable than a tree constructed from an alignment of a single gene family.  

 

Data concatenation and supermatrix approaches have gained widespread popularity 

(Baldauf et al., 1999; Bapteste et al., 2002; Ciccarelli et al., 2006). However, there are a 

number of things to consider when using concatenated data. Firstly, the topology of trees 

based on the individual genes in a concatenated alignment may not match the topology 

of the tree built from the concatenated alignment itself (Bapteste et al., 2008). Software 

has been recently been developed to test incongruence in concatenated genes, in order to 

assist the selection appropriate sets of genes for concatenation (Leigh et al., 2008). 

Secondly, concatenated data are biased towards producing strongly supported trees and  
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Figure 1.3: Data concatenation. The data contained in the three gene families are 

combined into a single, concatenated alignment. 
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the trees produced are dependant on the model of sequence evolution selected (Phillips 

et al., 2004; Keane et al., 2006).  

 

1.1.12 Supertree construction: 

 

In this thesis, I describe supertree analyses of genomic data, therefore, the following 

section contains some background on supertree methods, their strengths and weaknesses. 

A supertree is a tree that represents the phylogenetic relationships of a group of input 

trees (Wilkinson et al., 2004). Like data concatenation, supertree construction (see figure 

1.4) is based on the principle of using the information contained in multiple data points 

to generate a phylogeny. The method differs from data concatenation in that a single 

alignment and phylogenetic tree are constructed for each gene family, and the 

information contained in the resulting trees is combined into a supertree. Overlap 

between taxon sets in the input trees allows relationships to be resolved in the final 

supertree. Sometimes bootstrapped data is used, with multiple alignments and trees per 

gene family, but the principle remains the same. A major advantage of supertrees is that 

there is no requirement that the set of taxa in each input tree are identical. This is an 

important feature, as the vast majority of gene families are not universally distributed. 

 

The actual algorithm for constructing the final supertree from the input trees can vary. 

Many such algorithms exist and they can be broadly separated into strict and liberal 

supertrees methods (Wilkinson et al., 2004). Strict supertrees methods are those that 

resolve common or uncontested groupings among a set of input trees. Methods include  



 20 

 

 

Figure 1.4: Supertree construction. Each alignment is used to construct a corresponding 

phylogenetic tree. The topological information contained in these trees is overlapped and 

used to construct a supertree. 
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strict, semi-strict and strict consensus merger. Strict supertree methods are decreasing in 

popularity in prokaryotic biology because the underlying processes of gene loss, gain 

and HGT mean the majority of gene phylogenies show some degree of conflict and this 

conflict is left unresolved in agreement supertrees. 

 

Liberal supertree methods are those that have the maximum fit to the input trees under 

some objective function (Wilkinson et al., 2004). The objective function differs from 

method to method. Two popular methods are matrix representation using parsimony 

(MRP) (Baum, 1992; Ragan, 1992) and most similar supertree (MSSA) (Creevey et al., 

2005). The purpose of these methods is to compare candidate supertrees to the input 

trees.  The candidate supertree is pruned so that the leaf set matches that of the current 

input tree. The tree-to-tree distance is then measured between the pruned supertree and 

the current input tree. This process is repeated for all input trees. Optimisation selects for 

the supertree that agrees best with the relationships displayed in the input trees dictates 

the topology of the final supertree (or supertrees if multiple supertree topologies 

provided the same level of optimisation to the input trees). More recently ML supertrees 

have been described (Steel and Rodrigo, 2008). ML supertrees are a liberal supertree 

method using a ML approach. Steel and Rodrigo have demonstrated that taking an ML 

approach can produce stastically consistant results, unlike MRP, which can sometimes 

produce statistically inconsistant results (Steel and Rodrigo, 2008).  

 

Liberal methods attempt to resolve the relationships in the supertree, even in the 

presence of conflict. It is important to note that a fully resolved tree can therefore be 
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produced in the absence of any strong signal, though support values can be assigned to 

nodes to assess the strength of the underlying signal. Additionally, no optimisation 

algorithm is without weakness (Creevey et al., 2005). 

 

Supertree methods have gained popularity in recent times and have been applied to a 

wide variety of phylogenies such as seabirds (Kennedy and Page, 2002), dinosaurs 

(Lloyd et al., 2008) and the origins of eukaryotes (Pisani et al. 2007). 

 

1.1.13 Gene content methods: 

 

Gene content methods compare the genetic repertoire of a set of genomes. This requires 

the identification of orthologous sets of genes. Orthology is a somewhat subjective 

matter, as it is only based on extant genes, and therefore inferred orthology is not always 

correct. However, a number of different schemes have been used to define orthologous 

genes, such as intergenomic best hits (Snel et al., 1999; Korbel et al., 2002) or sequence 

similarity to COG groups (Lin and Gerstein, 2000; Tatusov et al., 2001). 

 

Once orthology has been assigned between genomes a presence/absence matrix can be 

constructed. Presence/absence matrices are often encoded as binary strings, with a ‘1’ 

denoting the presence of a gene in a particular genome, while ‘0’ denotes absence. 

Pairwise distances are then calculated between genomes and a phylogeny can be 

constructed using simple schemes such as neighbor-joining (McCann et al., 2008).  
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The problem with gene content methods is that they are not suitable for reconstructing 

prokaryotic phylogenies in general (Wolf et al., 2002). Variation in the rate of gene loss 

between different genomes has been shown to produce incorrect phylogenies (Wolf et 

al., 2001a). This is especially true for genomes that have undergone genome reduction. 

Parasitic and endosymbotic genomes often have drastically reduced genomes, and gene 

content methods are, by nature, not designed to take this into account. Some 

workarounds to this problem have been developed such as exclusion of genomes that 

have undergone reduction or normalisation of gene content based on the size of the 

reduced genome when calculating pairwise distances between genomes (Snel et al., 

1999; Korbel et al., 2002). 

 

While gene content methods are unsuitable for the construction of phylogenies, they are 

interesting in their own right and are a useful tool for studying similarities and 

differences between genomes (Wolf et al., 2002). 

 

1.1.14 Measuring support and conflict in phylogenetic analyses: 

 

Reconstructing a phylogeny for a set of sequences is a relatively straightforward process. 

It is important to be able to measure the quality of the signal both present in a 

phylogenetic tree and in the underlying alignment. In this section I will discuss some 

common methods for measuring the statistical significance of phylogenetic signal. 
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The permutation tail probability (PTP) test (Archie, 1989) is a commonly used test to 

evaluate the level of phylogenetic signal present in an alignment of characters. The PTP 

test is a randomisation procedure used to assess whether or not an alignment contains a 

hierarchical phylogenetic signal. The algorithm permutes the character assignments 

within each character, generating a new alignment (Archie, 1989). The randomisation of 

character assignments removes phylogenetic information from the newly generated 

alignment while keeping the character state distribution the same as the original 

alignment. This process is repeated multiple times and the observed number of steps on 

the minimum length tree generated from the original alignment is compared to the mean 

number of steps on the minimum length trees derived from the permuted alignments. 

This measures if the observed signal in the original alignment is significantly better than 

random. Alignments failing the PTP test are generally considered to be void of 

phylogenetic signal and are often removed from the analysis. However it should be 

noted that the PTP test is considered somewhat weak and it has been shown that 

alignments that have no signal can get highly significant scores.  

 

Bootstrapping is a commonly used statistical measure (Efron, 1979). In a phylogenetic 

framework it measures the level of support for different nodes in a phylogenetic tree 

(Felsenstein, 1985). The algorithm works by randomly selecting sites in an alignment 

(with replacement) and generating a new alignment of the selected sites. The number of 

randomly selected sites for the new alignment is equal to the number of sites in the 

original alignment. Generally 100 or 1000 new alignments are built in this manner. A 

tree is built from each new alignment using some inference method. The information 
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contained in these trees is then amalgamated using a consensus method into a single tree. 

Nodes in this tree are assigned a support value. That value is equal to the percentage of 

times the groupings supported by a given node are present in the set of trees generated 

during the bootstrapping process. High values imply that a node is strongly supported. 

Because each alignment generated during the bootstrap is based on a random sampling 

of the signal in the original data, the stronger the signal present in the original data the 

less conflict there will be between trees inferred from the generated alignments. This 

results in higher the support values for the nodes on the final bootstrapped tree.  

Likewise, weak or conflicting signals in the original data can less to poorly supported 

nodes on the final tree. Bootstrapping is an extremely valuable tool in assessing 

confidence in phylogenies, though it is important to note that conflicting phylogenies 

can sometimes attain high levels of support through bootstrapping (Phillips et al., 2004). 

 

Paired-sites test are another method of measuring confidence in phylogenetic trees. 

These tests include the Kishino-Hasegawa (KH) test (Kishino and Hasegawa, 1989), the 

Shimodaira-Hasegawa (SH) test (Shimodaira and Hasegawa, 1999) and the 

approximately unbiased (AU) test (Shimodaira, 2002). The principle behind these tests 

is to decide whether or not one phylogenetic hypothesis (tree topology) is significantly 

better than other possible hypotheses at explaining the data. The KH test is a method of 

estimating the standard error and confidence intervals for the difference in log-

likelihoods between two different phylogenetic trees representing the same data. Initially 

the test was developed to compare trees that were specified a priori, i.e. trees that were 

derived independently of the data. However the test was adapted to compare ML trees, 
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for example the comparing the tree with the highest likelihood to the trees with the 

second or third highest likelihood (Goldman et al., 2000). It has been noted that a bias 

exists in the KH test that can lead to overconfidence being placed in an incorrect 

topology (Shimodaira and Hasegawa, 1999; Goldman et al., 2000). The SH test is 

similar in concept to the KH test but attempts to overcome the bias in the KH by using 

multiple comparisons (Shimodaira and Hasegawa, 1999). The SH test suffers from 

another kind of bias due to the fact that the number to trees included in the confidence 

set becomes large as the number of tree comparisons increases (Strimmer and Rambaut, 

2002). Because of this the SH test is considered to be conservative (Shimodaira, 2002). 

To avoid these biases Shimodaira (2002) developed the AU test. Several sets of 

bootstrap replicates are generated with varying sequence length in each set. The AU test 

counts the number of times a hypothesis is supported by the bootstrap replicates in each 

set to obtain bootstrap probability values for different sequence lengths. It then 

calculates the approximately unbiased P-value based on the change in bootstrap 

probability values along the changing sequence lengths (Shimodaira, 2002). Like the SH 

test the AU test adjusts for the selection bias present in the KH test, but it is less 

conservative than the SH test and in general works better (Shimodaira, 2002).  

 

It is imporant to bear in mind that any tree constructed using the methods described 

above is merely a point estimate and that trees have confidence interavals of varying 

sizes. Often many trees will describe the data equally well, even if their topology 

conflicts with one another it is possible that their confidence intervals will overlap. 
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1.2 Horizontal gene transfer and defining a bacterial species: 

 

Much of the work reported in this thesis focuses on horizontal gene transfer (HGT).  In 

the following sections I will discuss methods the importance of HGT in prokaryotic 

biology, the processes through which HGT occurs, preferences and barriers to HGT and 

the impact of HGT on phylogenetics. 

 

1.2.1 Introduction to horizontal gene transfer: 

In 2005 Andersson defined horizontal gene transfer (HGT) as “Lateral, or horizontal, 

gene transfer is the process of exchange of genetic material between distantly related 

species” (Andersson, 2005). This definition is perhaps too narrow in the sense that HGT 

can also occur between closely related species (Fraser et al., 2009), or strains of the 

same species (Majewski et al., 2000), or even within a single organism, as in the case of 

the transfer of genes from the chloroplast to the nucleus (Martin et al., 1998). In this 

thesis I define HGT as the transfer of genetic material from one bacterium to another via 

a means other than vertical (maternal) transfer.  

 

In 1999 Doolittle said, with reference to HGT, “Thus, there is a problem with the very 

conceptual basis of phylogenetic classification” (Doolittle, 1999b). Now, a decade later, 

HGT is recognized as a prominent force in the evolution of bacterial genomes. 

 

HGT is an incredibly versatile process. For example, HGT has occurred between 

Wolbachia, an endosymbiotic proteobacteria, and its multicellular, eukaryotic, insect 
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hosts, with evidence of transfers ranging from short sequences (< 500bp) to the entire 

Wolbachia genome (> 1mb) (Kondo et al., 2002; Hotopp et al., 2007). HGT is important 

the evolution of bacterial metabolic networks, where horizontally transferred genes are 

integrated onto the periphery of the network and help the recipient adapt to changes in 

the environment (Pal et al., 2005). Genes located in functional clusters within the 

genome are subject to orthologous replacement via HGT, i.e. replacement of the original 

gene in situ with a horizontally transferred copy that carries out the same function 

(Omelchenko et al., 2003), with the implication that conserved synteny may not imply 

conserved evolutionary history. It is even estimated that 18 percent of the open reading 

frames (ORFs) in Escherichia coli have been introduced via HGT since its divergence 

with the Salmonella lineage 100 million years ago (Lawrence and Ochman, 1998).  

 

HGT clearly a widespread process and for this reason it must be taken into consideration 

in any study involving bacterial phylogenetics. 

 

1.2.2 Methods of HGT 

 

There are three methods by which bacteria acquire genes horizontally: conjugation, 

transduction and transformation (reviewed in Syvanen and Kado, 1998; Ochman et al., 

2000; Jain et al., 2002). The primary difference between these processes is the method of 

entry of the horizontally transferred DNA to the recipient.  
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Conjugation (figure 1.5 A), effectively bacterial sex, involves exchange of a plasmid 

from donor to recipient via a tubular structure known as a pilus. The pilus docks on the 

recipient cell and the plasmid is transferred through the pilus. Plasmids may contain 

entire cassettes of genes that imbue new properties on the host. For example, Shigella 

and enteroinvasive E. coli (EIEC) are E. coli strains that have acquired a virulence 

plasmid (VP) (Pupo et al., 2000). This plasmid is the source of their pathogenicity and 

there is currently much debate as to whether the VP was introduced ancestrally or 

whether there have been multiple independent acquisitions of virulence in Shigella and 

EIEC (Pupo et al., 2000; Escobar-Paramo et al., 2003; Yang et al., 2007). 

 

Conjugation is not limited to closely related bacteria. E. coli, a proteobacterium, has 

been shown to conjugate with cyanobacteria (Wolk et al., 1984). E. coli can even 

conjugate with S. cerevisiae, a eukaryote, in an example of trans-kingdom conjugation 

(Heinemann and Sprague, 1989). It is clear that conjugation facilitates the transfer of 

genetic material over great phylogenetic distances. However, conjugation is naturally 

limited to organisms that are in close physical proximity to one another. 

 

Transduction (figure 1.5 B) is the movement of genes from one bacterium to another via 

a bacteriophage. The premise is simple, the donor cell is infected with a phage, the 

chromosome of the donor cell fragments, fragments of the chromosome become 

packaged as new viral particles and, following cell lysis, go on to infect and recombine 

within a new, potentially distantly related bacterium. The actual amount of DNA 

transferred in a single transduction event is limited by the capsid size of the  
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Figure 1.5: The three types of horizontal gene transfer. Conjugation (A) involves the 

formation of a pillus and transfer of DNA via a plasmid. Transduction (B) is where 

DNA is transferred via a bacteriophage capsid. Transformation (C) is the uptake of 

naked DNA from the surrounding environment. 
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bacteriophage, but can range upwards of 100 kb (Ochman et al., 2000). It is possible to 

find evidence of transduction in bacterial genomes by looking at the sequence 

surrounding suspected horizontally transferred genes for prophage like inserts (Kunst et 

al., 1997). Unlike conjugation, transduction does not have strict physical or temporal 

constraints, in that the donor and recipient need never come into contact. Also, because 

the transfer occurs via the phage, phage encoded proteins mediate both the delivery and 

integration of the donor DNA to the recipient (Ochman et al., 2000). The limitation of 

this process lies in the fact that transduction can only occur with bacteria expressing 

receptors recognized by the carrier bacteriophage. 

 

The third method of HGT in bacteria is transformation (figure 1.5 C). Transformation 

differs from the pervious two mechanisms in that it is solely controlled by the recipient. 

Transduction involves the uptake of naked DNA by the recipient. Some bacteria are 

perpetually competent at DNA uptake, while in others competence is regulated and 

occurs at certain physiological stages in their lifecycles (Ochman et al., 2000). Uptake 

involves the binding of naked DNA to the cell surface of the recipient and intake into the 

cell. Gram-positive and gram-negative bacteria have slightly different intake systems 

due to inherent differences in their membranes. The average size of the naked DNA 

bound to the cell surfaces of competent bacteria varies, though the upper limit appears 

lower than that of transduction (Dubnau, 1999). Another important factor to consider is 

that some bacteria require specific recognition sequences for effective transformation, 

while others show no preference for sequence composition but are capable of high levels 
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of transformation (Ochman et al., 2000). Like transduction, this implies there is no 

requirement for physical or temporal proximity between donor and recipient.  

 

1.2.3 Preferences and barriers to HGT: 

 

Genes in bacterial genomes can be divided into two classes: informational and 

operational (Rivera et al., 1998). Informational genes are genes that are involved 

transcription, translation, replication and related processes. Operational genes are ones 

that are involved in house-keeping functions such as amino acid and nucleotide 

biosynthesis. In analyzing the likelihood of a gene to undergo HGT, it is important to 

consider which of these two classes the gene belongs to.  

 

Informational genes are significantly less likely to undergo successful horizontal transfer 

than operational genes (Rivera et al., 1998). An explanation for this may lie in the 

complexity of the network in which a gene resides, dubbed the complexity hypothesis 

(Jain et al., 1999). The complexity hypothesis is based around the fact that the products 

of operational genes, on average, have far less interactions. For example, translation in 

E. coli involves interaction between at least 100 gene products, while many operational 

genes only involve a single enzyme-substrate interaction (Jain et al., 1999).  

 

However, while the complexity hypothesis is attractive from a number of perspectives, it 

is important to remember that there is a difference between HGT of certain gene being 

unlikely as opposed to impossible. The 16S rRNA, the basis of countless phylogenies 
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and long considered immune to HGT, can be horizontally transferred from Proteus 

vulgaris to E. coli, replacing the existing copy, with a growth rate reduction of 10-30 

percent (Asai et al., 1999). Indeed, evidence of such transfers occurring outside the 

laboratory has also been documented, with the identification of a possible transfer of an 

rRNA operon into Thermonospora chromogena from Thermobispora bispora or a 

related organism (Yap et al., 1999). In a 2007 work by Sorek et al. demonstrated that for 

246,045 genes, from 79 different prokaryotes, only 1,402 were impossible to transfer via 

transduction into E. coli. Informational genes accounted for a signification amount of the 

genes that resilient to transfers, in agreement with the complexity hypothesis. On the 

other hand, even for these 1,402 genes, in all cases it was possible to horizontally 

transfer orthologous copies of the genes from other species. While the study itself 

focused on the barriers to HGT, it is important to reflect on the fact that all of genes 

examined could be horizontally transferred. So while it is unlikely for informational 

genes to successfully undergo HGT, and even less likely for the transfer to be selected 

for, it is not impossible. 

 

1.2.4 Horizontal gene transfer and phylogenetics: 

 

Since the dawn of evolutionary biology one of the most fascinating goals is the recovery 

of the tree of life. While the true tree is unrecoverable, since our knowledge of species 

will never fully encompass those that did, currently and will exist, the desire to classify 

species into groups remains.  
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The first major break-through in building the tree of life came about with the advent of 

DNA sequencing. As previously discussed, it is believed that the 16S rRNA is unlikely 

to undergo HGT. This coupled with the properties of the gene being so widely 

distributed, with a universally conserved structure and both fast and slow evolving sites 

makes the 16S rRNA a seemingly ideal candidate on which to base the tree of life 

(Woese, 1987). As a result, bacterial species phylogenies have been created using a 

single gene, often the 16S rRNA or other genes considered to have properties similar to 

the 16S (Dauga, 2002; Purkhold et al., 2003; Paradis et al., 2005).  

 

However, it has long been noted that individual gene trees are often incongruent with 

16S rRNA phylogenies (Doolittle, 1999). A major factor in this is HGT. HGT does not 

conform to the path laid out by successive speciation events and thus creates problems in 

recovering the correct species phylogeny for any given bacterial group. Some have 

argued that HGT has been ascribed an ‘inflated role’ in evolution, and that its frequency 

has been overestimated, however it remains an important factor in any moderm day 

study of prokaryotic evolution (Kurland et al., 2003). 

  

To overcome this inherent weakness of single gene phylogenies, different approaches 

have been adopted over the years. Two widely used methods are data concatenation and 

supertree construction. Both methods can be used to combine the information in many 

genes into a single phylogeny (see for example Ciccarelli et al., 2006; Pisani et al., 

2007). Neither method is resistant to HGT and species phylogenies that are made via 
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these methods are generally constructed under the assumption that the ‘true’ species 

signal is stronger than that of any HGT.  

 

An ideal situation would be to identify all genes that show evidence of HGT and remove 

them for a dataset, when trying to establish a species phylogeny. This still has the 

inherent weakness that it is difficult to identify HGT with confidence when the 

phylogeny is not known in the first place (Suchard et al., 2003). While HGT is more 

readily identifiable when it occurs between distantly related species, it is much more 

difficult to identify when it is among closely related bacteria, such as different strains of 

the same species. Many attempts have been made to reliably identify HGT events 

(Lawrence and Ochman, 1998; Ragan, 2001a; Ragan, 2001b; Mirkin et al., 2003; 

Suchard et al., 2003) but ultimately the problem is a difficult one and each new method 

brings a set of strengths and weaknesses, with none offering a complete solution. 

  

Regardless of whether estimates of rampant HGT in bacterial genomes are accurate or 

not (Lerat et al., 2005), HGT is accepted as an important force to consider when 

studying bacterial evolution.  

 

1.2.5 What defines a bacterial species? 

 

For higher organisms the concept of a species is clearly defined as it is underpinned by 

evolutionary and ecological processes (Gevers et al., 2005). In prokaryotes the process 

of defining a species is itself somewhat undefined. Classical prokaryotic species 
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definitions arose from prokaryotic features of human interest. Pathogens, for example, 

were separated into species based on the diseases they caused. Other species were 

defined based on unique biochemical processes they possessed. These definitions were 

not theory based and therefore somewhat arbitrary (Gevers et al., 2005). Given the vast 

amounts of as yet unclassified data, there has been much controversy and interest 

surrounding how to define a bacterial species, especially in light of HGT (Fraser et al., 

2009). 

 

Currently prokaryotic species are defined using a consensus of genotypic and phenotypic 

properties (Vandamme et al., 1996; Stackebrandt et al., 2002). With sequence data 

available for an increasingly large volume of prokaryotes, genotypic characterisation is 

currently at the forefront of attempts for define prokaryotic species. Many methods exist 

for analysing sequences in this context.  

 

DNA-DNA hybridisation (DDH), developed used in the 1970s, was the first method of 

genotypic characterisation. DDH measures the degree to which two genomes hybridise 

and as such provides a measure of both shared gene content and nucleotide sequence 

similarity (Gevers et al., 2005). Using a DDH approach genomes showing 70% DDH or 

greater are treated as the same species, though this level of hybridisation was calibrated 

based on previously recognised phenotypic-based species (Gevers et al., 2005). DDH 

approaches have the inherent shortfall of being unable to cope non-culturable strains, 

which comprise the majority of strains in the biosphere (Amann et al., 1995). In addition 

it is a time a difficult and time consuming process (Gevers et al., 2005). 



 37 

 

Another approach is to look at the sequences of individual genes or sets of genes. The 

classical approach of using single gene phylogenies based on the 16S rRNA sequence or 

other genes with similar properties, as has been discussed earlier in the text, is 

undesirable for a number of reasons. These include potential HGT events and the fact 

that even small differences in sequence similarity of such genes can imply quite large 

differences in DDH values, with <97% sequence similarity of two 16S gene usually 

corresponding to <70% DDH (Fox et al., 1992). This makes it difficult to assign isolates 

to the same species based on high levels of 16S sequence similarity alone (Fox et al., 

1992). To bypass these weaknesses, concatenated sequence data is generally used (in 

this framework called multilocus sequence analysis or MLSA), also discussed 

previously in the text, as it provides greater resolution for clustering isolates into groups.  

 

The problem with these methods is that they are arbitrary in terms of species definition. 

They are based on some cut-off for sequence similarity with the assumption that such a 

cut-off exists and is universal to prokaryotes. This is unlikely to be the case. While 

clusters of prokaryotes are readily identifiable using these methods, at what depth does a 

cluster become a species? To advance the concept, models have been created to attempt 

to incorporate ecological, genomic and phenotypic data into the clusters resolved 

through MLSA in an attempt separate clusters into species (Gevers, 2005). These 

models provide theory based methods of species definition and while they are outside 

the context of this text to discuss in detail, they are likely a strong indication of the 

future direction of defining prokaryotic species (see Farser et al., 2009, for a review).  
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1.2.6 Yersinia, Escherichia, Shigella and Salmonella: The YESS group 

 

The group consisting of Yersinia, Escherichia, Salmonella and Shigella, sometimes 

termed the YESS group (Canback et al., 2004; Comas et al., 2007), are facultatively-

anaerobic, Gram-negative, rod shaped "-proteobacteria that are catalase-positive and 

oxidase-negative (Brenner, 1984). The group contains many important human 

pathogens. This is reflected in the large number of fully sequenced YESS group 

genomes.  

 

Yersinia pestis is the most noteworthy member of the Yersinia family as it is the 

causative agent of plague. Y. pestis infection can occur in three regions: the lymph nodes 

(bubonic plague), the blood (septicemic plague) and in the lungs (pneumonic plague). In 

the case of bubonic and septicemic plague symptoms include chills, fever, weakness, 

shock and internal bleeding. The formation of lumps, known as buboes, is specific to 

bubonic plague. Symptoms of pneumonic plague include fever, shortness of breath, 

chest pain, cough and bloody or watery sputum. An estimated 75 million people died in 

the 1300s due to the bubonic plague. Even in more recent times, outbreaks of plague 

caused by Y. pestis have occurred, such as the 1994 outbreak of plague in India (Shivaji 

et al., 2000). In addition to Y. pestis, two other types of highly pathogenic Yersinia exist: 

Y. pseudotuberculosis and Y. enterocolitica (Schubert et al., 1998). Pathogenicity is 

determined by a 70-kb virulence plasmid (VP) (Portnoy and Martinez, 1985). In Y. 

pestis full virulence requires two additional plasmids, a 100-kb plasmid and a 9.5-kb 
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plasmid both encoding genes linked to pathogenicity (Pendrak and Perry, 1993; Perry et 

al., 1993).  

 

Escherichia coli is perhaps the most well studied prokaryote; it is a model organism that 

has been critical in the advancement of the field of molecular biology. Under normal 

conditions E. coli is the dominant resident of the gastrointestinal tract of warm-blooded 

animals. It benefits the host by producing vitiman K2 (Bentley et al., 1982) and out-

competing pathogens bacteria for space (Hudault et al., 2001). There has been much 

interest in pathogenic strains of E. coli, with a lot of media attention surrounding 

outbreaks of E. coli infection (Kaper, 2005). There are many different pathotypes of 

pathogenic E. coli, including, but not limited to, enteropathogenic (EPEC), 

enterotoxigenic (ETEC), enteroinvasive (EIEC), enterohemorrhagic (EHEC) and 

enteroaggregative (EAEC) E. coli (Kaper, 2005). Many are associated with infections of 

the intestine, the main symptoms being fever, diarrhea and abdominal cramping (Kaper, 

2005). Extra intestinal infection is also possible, uropathogenic E. coli (UPEC) are 

associated with infections of the urinary infections, while avian pathogenic E. coli 

(APEC) are associated with respiratory tract infection in poultry (APEC) (Kaper, 2005). 

While E. coli infection is not usually fatal, it is nonetheless important as demonstrated 

by the 2006 outbreak of E. coli infection from contaminated spinach in America and is it 

a major problem in the developing world. 

 

Shigella is the etiological agent of bacillary dysentery or shigellosis. In the 1940s 

Shigella was defined as a genera containing four species: Sh. boydii, Sh. dysenteriae, Sh. 
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flexneri and Sh. sonnei (Ewing, 1949). Even then it was clear that Shigella closely 

resembled E. coli, with a few phenotypic characteristics such as the inability to ferment 

lactose and non-motility used for classification purposes. This classification system was 

insufficient to cover all pathogenic E. coli-like strains; some strains were found to have 

an incomplete set of phenotypic characteristics and as such were classified as pathogenic 

E. coli rather than Shigella (Pupo et al. 2000). Nowadays it is well known that Shigella 

are effectively E. coli strains that have acquired a VP (Pupo et al., 2000). Shigella strains 

cluster within the E. coli superfamily (Pupo et al., 2000). The retention of the genera 

Shigella is largely due to the medical importance of shigellosis of which there are an 

estimated 160 million cases worldwide a year, with approximately 1.1 million deaths, 

mainly in children under the age of five (Kotloff et al., 1999). The symptoms of 

shigellosis are similar to that of intestinal infection by pathogenic E. coli and include 

fever, diarrhea and abdominal cramping. From an evolutionary standpoint there is much 

debate over the origins of both Shigella and pathogenic E. coli and this will be discussed 

in more detail in the next section. 

 

Salmonella is the causative agent of salmonellosis. Members of the genera Salmonella 

are intestinal parasites and intracellular pathogens in many different hosts including 

mammals, birds, reptiles, amphibians and plants (McQuiston et al., 2008). Nontyphoidal 

salmonellae are responsible for approximately 1.4 million cases of salmonellosis a year 

in the United States, with 400 of those fatal on average (Voetsch et al., 2004). Symptoms 

are similar to those described for Shigella and pathogenic E. coli infection. The history 

of the classification of Salmonella is a complicated one, with the genera currently 
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divided into two species: S. bongori and S. enterica (McQuiston et al., 2008). S. enterica 

is further divided into six subspecies (Tindall et al., 2005). S. bongori was originally 

considered a subspecies (called Salmonella subsp. bongori) but was reclassified in the 

1980s as a separate species (Reeves et al., 1989). Much work has been done to attempt 

to recover the phylogeny of Salmonella, using methods such as DNA-DNA 

hybridisation (Corsa et al., 1973), multilocus enzyme electrophoresis (Boyd et al., 1996), 

mircoarray data (Porwollik et al., 2002) and sequence-based methods (Boyd et al., 1996, 

McQuiston et al., 2008). The different methods produced conflicting results, however 

the recent analysis by McQuiston and colleagues using more robust sequence data and 

correcting for HGT seems to have produced a well supported phylogeny (McQuiston et 

al., 2008).  

 

1.2.7 Single versus multiple origins of Shigella 

 

The nature of the relationship between Shigella and E. coli is an ongoing debate (Pupo et 

al., 2000; Escobar-Paramo et al., 2003; Yang et al., 2007). It has long been known that 

been known that Shigella is closely related to E. coli, to the point where they can be 

placed in the same species (Brenner, 1984). The reason that Shigella continues to be 

treated as a separate genera is largely due to the serious nature of shigellosis (Pupo et al., 

2000).  

 

In 1997 Pupo et al. carried out a multi locus enzyme electrophoresis study at ten enzyme 

loci and the used sequence of the housekeeping gene mdh in an attempt to understand 
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the relationships of pathogenic E. coli strains and Shigella strains (Pupo et al., 1997). 

They found that the Shigella strains formed a single cluster on their phylogenetic trees, 

grouping within E. coli. The strains showed a stronger clustering than many of the 

pathogenic E. coli strains. For this reason they suggested that it would be more 

appropriate to include the four Shigella ‘species’ as strains within E. coli. Furthermore 

they found that pathogenicity of E. coli and Shigella strains had likely arisen multiple 

times, with the acquisition of the virulence plasmid providing the potential for any strain 

of E. coli to become pathogenic. 

 

Later, in 2000, Pupo et al. continued their investigation into the origin of pathogenicity 

in E. coli (Pupo et al., 2000). Using four chromosomal regions they built phylogenetic 

trees to assess with greater confidence whether or not pathogeneticy in E. coli could be 

traced back to a single evolutionary event (presumably an initial acquisition of an 

ancestral virulence plasmid) or whether it had arisen independently in multiple strains, 

as the 1997 data suggested. In the resulting phylogenetic trees they consistently found 

three separate clusters of Shigella strains. Additionally the clusters consisted of strains 

from more than one traditional Shigella species, implying the division of Shigella into 

four species was incorrect. Their conclusion was that the Shigella phenotype arose seven 

times. The explanation of the common characteristics of Shigella strains, in light of 

multiple independent origins of the phenotype, was convergent evolution. Pupo and 

colleagues suggested that upon acquisition of the virulence plasmid Shigella strains have 

a tendency to lose various catabolic pathways and motility. These losses are a product of 

the change in environment and as such it would make sense for convergence of 
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phenotypic characteristics. They also speculated that enteroinvasive E. coli strains, 

which share many phenotypic characteristics with Shigella strains and also possess a 

virulence plasmid, may in fact be E. coli strains in an intermediary state of progressing 

to the Shigella phenotype. It was noted, however, that the enteroinvasive strains 

examined did not fall in any of the Shigella clusters and therefore the distinction was not 

arbitrary.  

 

The multiple origins theory of the evolution of the Shigella phenotype was not to go 

unchallenged. In 2003 Escobar-Paramo and co-workers revisited the question of the 

origins of Shigella by looking at the evolution of four chromosomal genes and three 

virulence plasmid genes (Escobar-Paramo et al., 2003). Under the multiple origins theory 

it was expected that phylogenetic trees based on the genes from the plasmid and the 

genes from the chromosome would produce unrelated groups. This would correspond to 

the virulence plasmid being transferred multiple times horizontally, and therefore the 

plasmid genes would not conform to a maternal pattern of inheritance while the 

chromosomal genomes would. If on the other hand the virulence plasmid had been 

acquired only once, the single origin theory, then the evolutionary histories of the 

plasmid and chromosomal genes would agree with one another. The data presented by 

Escobar-Paramo et al. supported the single origin theory, as there was very little 

disagreement between the trees of genes from the plasmid and those from the 

chromosome, with any disagreement suggested to be due to partial plasmid gene transfer. 

They rejected the multiple origins hypothesis and concluded that a single, ancestral 
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virulence plasmid arrived into an E. coli strain and this gave rise to a monophyletic group 

from which all Shigella and enteroinvasive E. coli strains descended. 

 

The story was to take a further twist however in 2007 when Yang et al. investigated 

both hypotheses with more robust data (Yang et al., 2007). They constructed three 

trees: a large chromosomal tree using 23 housekeeping genes, a chromosomal tree based 

on 4 housekeeping genes but with a larger sampling of the E. coli superfamily and a 

virulence plasmid tree using 5 genes taken from outside the entry region of the plasmid. 

For both chromosomal trees they found groupings in agreement with the results of Pupo 

et al. (2000). For the tree based on the virulence plasmid genes they found that while the 

most of the strains grouped into the three main clusters defined in the chromosomal tree, 

the relationships between these clusters did not match. This conflicting topology derived 

from the virulence plasmid genes disagreed with the predictions of the single origin 

hypothesis. They concluded that the Shigella and enteroinvasive E. coli have multiple 

origins arising from multiple horizontal transfers of ancestoral virulence plasmids. 

 

The current body of evidence lends more support the multiple origins theory. The 

increasing availability of complete genome sequences for Shigella and E. coli should lead 

to a definitive answer to the question of the origins of pathogenicity in E. coli in the near 

future. 
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1.3  Operons and gene clusters 

 

Operons and gene clusters are examples of higher-level genomic organisation. In this 

section I will discuss the discovery of the lac operon, provide a formal definition of a 

gene cluster and examine examples of gene clusters and operons in prokaryotes and 

eukaryotes. 

 

1.3.1 The discovery and mechanism of the lac operon: 

 

In 1960 Jacob and Monod elucidated the system by which the genes involved in the 

breakdown of lactose are regulated (Jacob et al., 1960). Four years later they were 

awarded the Nobel Prize for medicine, shared with Andre Lwoff, for their discoveries 

“concerning genetic control of enzyme and virus synthesis”. The regulatory system, 

known as the lac operon, has become a genetic paradigm.  

 

The lac operon in E. coli is a complex yet elegant system for the regulation of genes 

involved in the conversion of lactose to glucose or galactose (Jacob and Monod, 1960). 

It consists of four genes: a repressor gene (lacI), a !-galactosidase (lacZ), a permease 

(lacY) and a transacetylase (lacA) (see figure 1.6). The distinguishing feature of the lac 

operon (and operons in general) is co-transcription. The lacZ, Y and A genes are co-

transcribed into a single mRNA product. The system is induced in the presence of 

lactose. Under normal conditions the repressor protein will bind to the operator  
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Figure 1.6: The structure of the lac operon. The lacZ, Y and A genes are under the 

control of the same promoter and are co-transcribed into a single mRNA. The repressor 

gene, lacI, is under the control of a different promoter and is transcribed separately. 
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region, blocking the binding of RNA polymerase and preventing the transcription of 

lacZYA. When lactose enters the cell small amounts of a lactose isomer, allolactose, are 

formed. Allolactose binds to the repressor, preventing it from binding the operator, 

allowing the transcription of lacZYA. As the products of the lac operon become active, 

they begin to break down lactose and allolactose, releasing the repressor and preventing 

further synthesis of the lacZYA genes.  

 

The ultimate function of the lac operon is the formation of glucose, the preferred energy 

source of the cell. A further layer of regulation is present in the lac operon: the levels of 

glucose present in the cell also regulate the functioning of the system. The lac operon is 

at peak performance when glucose levels are low and lactose is present. This is achieved 

via a small molecule called cyclic adenosine monophosphate (cAMP) and its receptor 

protein, cyclic AMP receptor protein (CRP). cAMP levels are inversely proportional to 

glucose levels in E. coli. CRP and cAMP bind one another, forming a complex. This 

complex binds the promoter region of the lac operon and works as a transcriptional 

activator. Without the presence of this activator RNA polymerase binds weakly to the 

promoter and transcription is rarely initiated. In this way the CRP-cAMP complex 

positively regulates the lac operon and, in a broader sense, the relative levels of glucose 

and lactose regulate the system as a whole. 
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1.3.2 Operons in prokaryotic genomes: 

 

The lac operon is no evolutionary singularity; operons are common across prokaryotes 

(Ermolaeva et al., 2001; Price et al., 2005a). Roughly half of all protein-coding genes in 

a typical prokaryotic genome are in operons (Price et al., 2006). Prokaryotes show 

relatively low levels of conservation in terms of gene order and their genomes are prone 

to rearrangements (Mushegian and Koonin, 1996; Watanabe et al., 1997; Dandekar et 

al., 1998). Thus operons are generally not conserved and only 5-25% of genes belonging 

to operons in a typical prokaryotic genome are in the same operon in two or more 

distantly related species (Wolf et al., 2001b). 

 

The reason why operons form and persist is a hotly debated topic (Lawrence and Roth 

1996; Pal and Hurst, 2004; Price et al., 2005b). Regardless, they are often distributed 

across species via vertical inheritance (Itoh et al., 1999; Overbeek et al., 1999; Wolf et 

al., 2001b) and can also be transferred to distantly related species via HGT (Lawrence 

and Roth, 1996; Omelchenko et al., 2003; Xie et al., 2003a). Omelchenko and 

colleagues, in a 2003 study of the relationship between HGT and operons, found many 

examples of new operon acquisition, paralogous operon acquisition and xenologous 

operon displacement via HGT. In addition they found many cases of what they termed 

mosaic operons. Mosaic operons are operons whose genes show different evolutionary 

histories.     
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Many metabolic processes, such as pathways for the biosynthesis of amino acids, are 

organised into operon structures (Goldschmidt and Cater, 1970; Xie et al., 2003b; 

Omokoko et al., 2008). Some of these, such as the tryptophan operon, have an ancient 

origin. It is believed that the operon is ancestral to bacteria and archea (Xie et al., 

2003b). Two major evolutionary events have taken place since its formation. The first 

was the splitting of the operon in two, the second was when it was rejoined via a gene 

fusion event (Xie et al., 2003b). Other operons have formed more recently (Price et al., 

2005a), demonstrating that operons are not a remnant of some ancient gene organisation 

strategy, but rather a dynamic process of birth and dissemination that is continually 

active in prokaryotic genomes (Price et al., 2006). 

 

Perhaps the most interesting question regarding operons is how and why they form. 

Many models exist to explain the origins of operons and they will be discussed in detail 

later in the text. 

 

1.3.3 Operons in eukaryotes: 

 

Operons are defined as a cluster of genes under the control of a single promoter (Jacob 

et al., 1960). The wording of this definition is important, it does not state that a 

polycistronic mRNA is produced. Eukaryotes were originally thought not to possess 

operons. However, over the years, genetic structures that fall under the definition of 

operons have been discovered in a variety of eukaryotes (Muhich and Boothroyd, 1988; 

Lee, 1991; Spieth et al., 1993; Davis and Hodgson, 1997; Ganot et al., 2004). Much 
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work has gone into examining operons in nematodes in particular, including anaylsis of 

operon conservation and the evolution of trans-splicing, the system by which the 

transcripts of such operons are resolved into mature mRNA (Guiliano and Blaxter, 

2006). 

 

Eukaryotic operons can be divided into two classes: those that produce polycistronic 

initial transcripts that are co-transcriptionally processed to form monocistronic mRNA, 

found in nematodes, flatworms and some primitive chordates (type 1 operons), and those 

that produce dicistronic transcripts that are translated in that form, found in flies, 

vertebrates and plants (type 2 operons) (Blumenthal, 2004). 

 

Type 1 operons differ from prokaryotic operons in that the single initial polycistronic 

mRNA is split into monocistronic mRNA before translation. Potential operons are 

identified by finding genes in the same orientation with an unusually small amount of 

intervening DNA. This alone is not proof of an operon as it is difficult to eliminate the 

possibility of a promoter lying between the two genes (Blumenthal, 2004). Searching for 

the transcripts of potential operons is also a tricky task as there is often little 

accumulation the polycistronic precursor before it is trans-spliced (Blumenthal, 2004). 

In nematodes, such as C. elegans, the precursor is stable enough to be detected but this 

does not prove that the polycistronic mRNA leads to mature mRNAs. Nematode operons 

have however been successfully identified via the fact that the genes that are SL1 and 

SL2-like trans-spliced correlate strongly with true nematode operons (Blumenthal et al., 

2002). 
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Type 2 operons, found in Drosophila, vertebrates and also plants, are dicistronic 

operons. Dicistronic operons are always composed of two genes that are transcribed into 

a dicistronic mRNA (Blumenthal, 2004). This transcript does not undergo trans-splicing, 

but is instead transported to the cytoplasm and translated. In this sense dicistronic 

operons are much more similar to their prokaryotic counterparts. The exact mechanism 

of translation of the second gene in a dicistronic mRNA is not fully understood. Matsuda 

and Dreher showed that the close spacing of AUG initiation codons can confer 

dicistronic character (Matsuda and Dreher, 2006). They found that for an overlapping 

dicistronic mRNA, when the AUG codons were 7 nucleotides apart, translation of both 

genes occurred. Raising the genetic distance between the codons increased the 

expression of the upstream gene while decreasing the expression of the downstream 

gene, eventually to the point where expression was converted from dicistronic to 

monocistronic.  

 

Type 1 and type 2 operons both display patterns in terms of their gene content 

(Blumenthal, 2004). In an analysis of type 1 operons in C. elegans, Blumenthal and 

Gleason, 2003, showed that certain classes of genes were often found in operons, in 

particular genes encoding the machinery for expression, transcription, splicing and 

translation, whereas other classes, such as those related to perixisomes or cuticle 

formation, are never found in operons (Blumenthal and Gleason, 2003). Many of the 

genes of type 1 operons do have some functional relationship to one another (Page, 

1997; Treinin et al., 1998; Furst et al., 2002). Similarly, for type 2 operons functional 

relationships can be observed between dicistronic gene pairs. The "-glutamyl kinase and 
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"-glutamyl phosphate reductase in tomato form a discistronic mRNA, believed to be of 

bacterial origin (Garcia-Rios et al., 1997). The stoned A and B proteins in Drosophila, 

which are co-localised in the nerve terminals, are encoded as a discistronic mRNA 

(Andrews et al., 1996).  

 

Eukaryotic operons, particularly type 2 operons, share common features with 

prokaryotic operons. However, it is evident that while they fall under the technical 

definition of an operon, they have a markedly different rule set governing them 

compared to prokaryotic operons. 

 

1.3.4 Gene clusters: 

 

A more loosely defined and perhaps more mysterious level of organisation in both 

prokaryotes and eukaryotes is the concept of a gene cluster. For the purpose of this 

thesis I define a gene cluster as a group of functionally related genes in close physical 

proximity (figure 1.7). This definition is distinct from that of an operon in that it says 

nothing of regulation. A gene cluster could consist entirely of individually regulated 

genes, multiple operon structures or a mix of both. Under this definition all operons are 

gene clusters, but not all gene clusters are operons. 

 

One of the most notable, and ancient, examples of a gene cluster is the Hox gene cluster 

(Ferrier and Holland, 2001). Hox genes dictate the identity of an embryo along the  
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Figure 1.7: Gene clusters and operons. This example shows a hypothetical gene cluster. 

Genes are represented by arrows, with the arrow pointing in the direction of 

transcription. Genes that are coloured are functionally related. Genes that are the same 

colour are homologous. White genes denote those genes that have no functional 

relationship to the cluster. This cluster contains two operon structures, denoted by the 

coloured box behind each operon. 
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anterior-posterior axis. Hox genes contain a homeobox: a 180bp region that encodes a 

homeodomain. The homeodomain has the ability to bind DNA. Genes containing 

homeobox encode transcription factors involved in switching on large sets of genes. The 

clustering of Hox genes is widespread throughout the animal phyla (Ferrier and Holland, 

2001). Perhaps the most interesting property of the Hox cluster is that the genes display 

co-linearity. The genes located towards the 3’ end work on the anterior of the embryo, 

central genes are involved in the development of the mid section, while the 5’ genes 

function in the development of the posterior region of the embryo (Lewis, 1978). 

 

The DAL gene cluster is the largest metabolic gene cluster in yeast (Wong and Wolfe, 

2005). It consists of six genes encoding proteins that allow Saccharomyces cerevisiae to 

use allantoin as a nitrogen source (Cooper, 1996). Unlike the Hox cluster, which is 

deemed ancient, the DAL cluster formed relatively recently, assembling through a series 

of near simultaneous genomic rearrangements in the ancestor of S. cerevisiae and 

Saccharomyces castellii (Wong and Wolfe, 2005). Wong and Wolfe traced the 

formation of the cluster to a reorganisation of the purine degradation pathway, which 

switched from utilising urate to allantion.  

 

While gene clusters in eukaryotes are not unusual, clustering in prokaryotes is more 

pronounced. The phenylacetate degradation pathway provides a window onto just how 

dynamic the clustering of functionally related genes can be (Luengo et al., 2001). The 

genes of the phenylacetate degradation pathway (paa genes) encode proteins involved in 

the conversion phenylacetate into succinyl-CoA, connecting the pathway to the TCA 
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cycle (Ismail et al., 2003). Diverse clusters of the 15 genes associated with the pathway 

can be found in many bacterial genomes (Luengo et al., 2003). Perhaps the most striking 

feature is the fact that no real structural identity exists for paa gene clusters. With the 

exception of paaABCDE, whose products form a complex with one another, the contents 

and order of genes in paa clusters differ from genome to genome. Even the paa clusters 

of Escherichia coli K12 and Pseudomonas putida U (Ferrandez et al., 1998; Olivera et 

al., 1998), which clearly display recent common ancestry, contain slightly different sets 

of genes and are under different regulation schemes  (Ferrandez et al., 1998).  

 

Like operons, there are several theories concerning how and why gene clusters form. 

They will be discussed in detail in the next section. 
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1.4  Models of operon and gene cluster formation 

 

The selective forces driving the formation of gene clusters and operons are one of the 

most intriguing mysteries in modern genomics. Many models attempt to explain why 

genes are organised into clusters and operons. In this section I will discuss some of the 

more popular and recent models, in particular the evidence both for and against each of 

them. 

 

1.4.1 The Natal model:  

 

The Natal model is the simplest explanation of why functionally related genes are found 

in close physical proximity in a genome. It suggests that genes are clustered because 

they are born that way (Lawrence and Roth, 1996). The Natal model is a culmination of 

several observations on the nature of genes coding for biochemical pathways. In 1935 

Graœneberg found that adjacent duplications were frequent in Drosophila (Graœneberg, 

1935). This observation was given an evolutionary context by Lewis in 1951, who 

suggested that the divergence of duplicated genes could lead to functionally and 

physically linked gene clusters (Lewis, 1951). This idea of tandem gene duplication 

effectively growing a biochemical pathway is supported by the fact that the gene order 

of the trp and his operons in S. typhimurium reflects the order of the reactions involved 

in their biosynthesis (Lawrence and Roth, 1996). Pathways were considered to evolve 

based on the limiting effect of intermediate substrate, with gene duplication and 

divergence allowing the conversion of similar compounds into the limiting substrate. 
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Several problems exist when examining the Natal model in light of molecular sequence 

data. The major prediction of the Natal model is homology between clustered genes, 

given that genes are clustered via duplication. This is untrue for the majority of bacterial 

operons, whose sequences show no obvious homology (Lawrence and Roth, 1996). In 

addition to this, the Natal model does not account for the persistence of gene clusters 

(Lawrence and Roth, 1996). The fact that functionally related genes are found in close 

physical proximity implies that there is a selective advantage to keeping them together 

(Demerec and Hartman, 1956). Therefore, this advantage must still exist if two non-

homologous, but functionally related, genes are brought together, by some mechanism 

such as recombination or horizontal gene transfer. This observation suggests an 

alternative route for genes to cluster.  

 

Some examples of bacterial operons adhering to the Natal model are known to exist, for 

example the histidine operon (Fani et al., 1994). Also, gene clusters in eukaryotes, while 

considerably less frequent than those in prokaryotes, often fit the Natal model. The 

mammalian !-globin gene cluster evolved through duplication and divergence (Maniatis 

et al., 1980). Therefore, in a sense, the Natal model is not incorrect; rather, it is a model 

that accounts for a small percentage of gene cluster formation. 

 

1.4.2 The Fisher model: 

 

The Fisher Model postulates that clustering of genes offers the benefit that random 

recombination events will tend to disrupt co-adapted genes less often. The model is 
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named after Ronald Fisher, who noted that co-adapted alleles had higher levels of 

linkage (Fisher, 1930). Later it was suggested that selection for co-adapted alleles could 

give rise to gene clusters (Bodmer and Parsons, 1962; Stahl and Murray, 1966). As the 

distance between the co-adapted alleles decreases, so too does the probability that 

recombination events could disrupt the co-adapted alleles.  

 

The Fisher model fits well with observed gene clustering within bacteriophage genomes 

(Stahl and Murray, 1966). Genes in certain families of bacteriophages are arranged into 

functional clusters (Botstein, 1980; Campbell and Botstein, 1983; Casjens et al., 1992). 

Because the genes are arranged in discreet modules it is possible for recombination to 

occur on the limits of these functional clusters, generating new phage combinations, 

without disrupting the interacting genes contained within a cluster. Many of the genes 

within these clusters interact physically, in accordance with predictions from the Fisher 

model (Casjens, 1974; Casjens et al., 1992). 

 

According to the Fisher model two conditions are required for genes to cluster 

(Lawrence and Roth, 1996). The first is the existence of multiple variants of co-adapted 

gene complexes. Second, recombination events must frequently disrupt these co-adapted 

gene complexes. If both these requirements are met, then selection can occur to cluster 

co-adapted alleles. However, while recombination occurs in eukaryotes during meiosis 

and sexual reproduction, it is less frequent in prokaryotes (Lawrence and Roth, 1996). 

Additionally, genes involved in metabolic pathways are frequently clustered and yet do 

not necessarily interact with one another, and therefore are not clustered due to co-
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adaptation. For example the genes involved in histidine biosynthesis are clustered and 

show no evidence of physical interaction with one another (Martin et al., 1971). This 

rules out the Fisher model as a primary mechanism for the formation of gene clusters. 

 

1.4.3 The Co-regulation model: 

 

The co-regulation model draws on the fact that genes in an operon have the advantage of 

being co-transcribed. Co-regulation offers several possible benefits. All the genes in an 

operon are under the control of a single operator and are transcribed as a single mRNA 

transcript. They are therefore active and repressed at the same time. For the same reason 

they are present in equimolar amounts. Additionally there is a localised concentration of 

the gene products in prokaryotes, where transcription and translation are coupled (Svetic 

et al., 2004). In terms of genes coding for metabolic pathways, all of these factors, at 

least on the surface, suggest that having genes clustered into operons increases the 

efficiency of the associated biochemical reactions. Indeed, the discovery of operons led 

many to believe that co-regulation could be the driving force behind gene clustering 

(Pardee et al., 1959; Jacob et al., 1960; Jacob and Monod, 1962). In 2005 Price et al., 

advanced the Co-regulation model by suggesting that as the amount of regulatory 

information to control a set of functionally related genes increases, so too does the 

likelihood that the genes will form an operon (Price et al., 2005b). They supported this 

theory by observing that operons in E. coli and B. subtilis tend to have more conserved 

regulatory sequences than other genes. This is consistent with the fact that not all genes 

that reside in operons are functionally related (Rogozin et al., 2002). 
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However, the Co-regulation model has a number of substantial problems associated with 

it. Since the model provides no selective benefit for clustering until co-transcription, rare 

and precise chromosomal rearrangements would be required for every gene added to the 

operon (Lawrence and Roth, 1996), though this point has been questioned (Price et al., 

2005b) given the high rates of rearrangements in some bacterial genomes (Papadopoulos 

et al., 1999) coupled with large population sizes. The Co-regulation model provides no 

real explanation for why genes are often clustered but not in a single operon. For 

example, metabolic genes in involved in phenylacetate degradation are located in a 

single cluster in both Escherichia coli K12 and Pseudomonas putdia U (Ferrandez et al., 

1998; Olivera et al., 1998). In both genomes the single cluster is actually a collection of 

multiple operon structures. In cases like this, where physical proximity is selected for in 

the absence of co-regulation, the Co-regulation model breaks down. On top of this genes 

can be co-regulated without being clustered and the potential benefits of co-transcription 

are not necessarily benefits at all. Even when a single transcript is produced for a set of 

genes, the genes themselves can display different translation efficiencies (van de Guchte 

et al., 1991) and different mRNA half lives (Blundell et al., 1972) leading to different 

levels of protein produced from a single transcript (Whitfield et al., 1970). In addition to 

this, Zaslaver and his co-workers have found evidence of a complex temporal expression 

pattern for genes involved in amino acid biosynthesis in E. coli (Zaslaver et al., 2004). 

Their discovery of so-called ‘Just-in-time’ transcription, where the activation of 

promoters is precisely timed with the order of the steps in a metabolic pathway, further 

suggests that it is not necessarily beneficial to have a set of functionally related genes 

co-transcribed in a single mRNA. Taking all this into account, co-regulation is more 
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likely to account for persistence of some gene clusters as opposed to driving their 

formation. 

 

1.4.4 The Selfish Operon model: 

 

In 1996 Lawrence and Roth proposed the Selfish Operon model (SOM). This was a 

major departure in thinking about why genes might cluster. They suggested that genes 

cluster in order to facilitate their own horizontal transfer as a group. In the case of genes 

for weakly selected functions the SOM provides an escape route from extinction. Such 

genes can be lost over time in their native host. However, if clustered, these genes may 

be passed to a new host via HGT, conferring or regaining function in the new host. In 

this sense the SOM is different to the Co-regulation and Fisher model. The clustering of 

genes is not related to the fitness of the host, but rather the fitness of the cluster itself 

(Lawrence and Roth, 1996). Any change in host fitness is associated with the function 

provided by the acquired cluster. 

 

This alone is not enough to explain gene clusters. The selfish nature of clustering 

suggested a reason for observing clusters, but not how they form. Lawrence and Roth 

also provided a mechanism for cluster assembly. They drew their explanation on the fact 

that the spontaneous deletion of intervening DNA can bring functionally related genes 

into closer proximity (Demerec, 1960). Normally deletion of intervening DNA would 

cause deleterious effects, with the loss of any genes contained in the intervening DNA. 

However, if the DNA has been introduced to a new host horizontally, the intervening 
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DNA may be of no benefit to the host and quickly deleted, bringing the genes under 

selection closer together. 

 

Further to this Lawrence and Roth suggested that co-transcription might also be a selfish 

property. As previously noted, some problems exist with the idea that co-transcription is 

the sole reason for genes existing in operons. In light of the SOM co-transcription is a 

logical property of genes in a cluster. Co-transcription means that genes do not need 

separate promoters. This is an advantage for the survival of the cluster, because if each 

gene had a separate promoter then the probability of the cluster being non-functional 

would increase and there would be no selection in the host for retention of the cluster. 

Along a similar line of thought the authors suggest that translational coupling and the 

high frequency of trans-acting regulatory proteins found adjacent to the operon they 

regulate are also selfish properties of gene clusters. 

 

Several predictions arise from the SOM. Non-essential genes should cluster. Essential 

genes should not cluster. Recently introduced selfish operons should be detectable. 

Lawrence and Roth backed up their claims by providing an operon, the cobalamin 

biosynthesis operon, which exemplified the SOM, along with computer simulations that 

produced data in agreement with the model. Other evidence offers support for the SOM, 

such as the observation that many operons have been acquired via HGT (Omelchenko et 

al., 2003) and the fact that essential genes do not generally undergo HGT (Lerat et al., 

2003).  
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In spite of this, a large body of evidence against the SOM has amassed. Two of the 

major predictions of the model, that non-essential genes should cluster while essential 

genes should not cluster, have been shown to be untrue. In 2004 Pal and Hurst carried 

out a study of essential and non-essential genes in E. coli (Pal and Hurst, 2004). Firstly, 

they found that essential genes have a slightly higher tendency to reside in operons when 

compared to non-essential genes. This result was in line with the predictions of the Co-

regulation model and in direct conflict with the SOM. Secondly, they found that the 

clustering of essential pairs of functionally related genes was particularly pronounced. 

This conflicts with the prediction of the SOM that essential genes should not cluster. 

Price et al. in 2005 demonstrated that suspected HGT genes in E. coli are in general no 

more likely to be in an operon than to not be in an operon (Price et al., 2005b). Further 

to this they found that native genes formed new operons at the same rate as HGT genes 

and that there was no preference for HGT genes to form operons with other HGT genes 

rather than native genes. Lastly they found that essential genes formed many new 

operons. These results are not in line with the predictions of the SOM, which predicts 

that new operons should be acquired via HGT of a selfish cluster into the host genome. 

 

1.4.5 The Protein Immobility model: 

 

The Protein Immobility model (PIM) suggests that there is a thermodynamic advantage 

to clustering genes because, given that transcription and translation is coupled in 

prokaryotes, the close physical proximity of their products in the cytoplasm will allow 

biochemical reactions to proceed efficiently in a low nutrient environment (Svetic et al., 
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2004). The model assumes that because the cytoplasm of the cell is a dense population 

of macromolecules, the large size of soluble enzymes essentially fixes in the cytoplasm 

at the point of their expression. They provide a hypothetical biochemical reaction: 

 

 

 

where E1 and E2 and enzymes, A and B are substrates and C is the product. The model 

assumes that the smaller molecules, A, B and C, are free to diffuse around the cell. E1 

and E2, being much larger, are found in much higher concentrations around the point of 

their expression on the chromosome than elsewhere in the cytoplasm. Given that A is 

effectively constant through the cytoplasm, the limiting step in the reaction is the 

conversion of B to C. B will naturally be concentrated around E1, the point of its 

production, but will freely diffuse around the cytoplasm (the model assumes that the rate 

of intracellular diffusion of B is large). Under the PIM, the spatial proximity of E2 to the 

site of production of B will increase the efficiency at which B is converted to C. Since 

E1 and E2 are anchored relative to the genomic positions of their corresponding genes, 

shrinking the genetic distance between the genes for E1 and E2 should in theory 

facilitate more efficient conversion of B to C. The authors suggest that clustering genes 

in this way favours rapid growth in nutrient limited environments and that the model 

itself applies to an organism transitioning from stationary phase to an active growth 

phase. 
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One major advantage of the PIM is that it provides a straightforward selective advantage 

for the formation of gene clusters. Additionally, the selective advantage would be 

relatively weak; clusters would not be an absolute requirement, rather a slight advantage. 

This would help explain the diversity of homologous cluster structures observed in 

different genomes (Luengo et al., 2001). In many ways such an advantage parallels 

codon usage patterns, where a relatively weak selective advantage can have a major 

influence on the underlying genome (McInerney, 1998). In addition to the computer 

simulations carried out by the authors, some evidence exists to help support the PIM. 

The cytosol is crowded with macromolecules (Cayley et al., 1991; Zimmerman and 

Trach, 1991), with the experimental evidence that size effects protein mobility in the 

prokaryotic cytoplasm (Elowitz et al., 1999) along with possible binding and 

confinement effects (Konopka et al., 2006). The effects of macromolecular crowding 

should be particularly pronounced for proteins that form complexes (Arrio-Dupont et al., 

2000). 

 

The main problem with the PIM is that it has undergone very little testing with real data. 

While experimental and computational support for the model exists, there is little to 

nothing in the way of hard evidence that the model is correct. The model also makes 

many assumptions about the distribution of molecules in the cytosol that, while intuitive 

on some levels, are yet to be verified. A major prediction of the model - that genes that 

encode larger proteins should cluster more frequently - remains untested.  
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1.4.6 The Persistence Model: 

 

The persistence model explains clustering in terms of the persistence of genes in 

bacterial genomes (Fang et al., 2008). Fang et al., suggest that there are two classes of 

frequently clustered genes: highly persistent genes and rare genes. Persistent are defined 

as genes present in the majority of organisms. This class of genes not only includes 

genes that are lethal when knocked out but also genes that drastically affect the fitness of 

an organism. Rare genes are defined as those that are not widely distributed. 

 

Fang et al. suggest that the clustering of persistent genes is made possible through a 

constant flux of gene insertion and deletion events. They found that under computer 

simulation genes were less likely to be affected by a deletion event if they were clustered 

as opposed to uniformly distributed. 

 

Fang et al.’s explanation for the high levels of clustering of rare genes is that they fitted 

the “Selfish gene hypothesis” (referring to the SOM), and found that sets of genes that 

had likely been introduced via a HGT event showed a high tendency to cluster. 

 

The validity of the Persistence model is questionable. The observation that clustering 

leads to a decreased chance of deletion of a persistent gene fails to take into account that, 

following the assumption of their model that deletion is a random event, the probability 

of a deletion event removing a persistent gene is the same regardless of whether they are 

clustered or unclustered. Clustering genes makes the area of the genome lacking 
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persistent genes larger, but the cluster itself increases in length with each gene added.  

As such there is no change in the probability that a random deletion event will remove a 

persistent gene. 

 

So far no single model of either gene cluster or operon formation remains unchallenged. 

New models are being purposed regularly. The question of how and why genes are 

organised in a genome is still open. 

 

In this thesis I present an examination of the boundaries of a bacterial species. This is 

achieved through an analysis of 27 completely sequenced YESS group genomes. Using 

a variety of methods, including a 16S rRNA phylogeny, data concatenation and 

supertree construction, I look at the kind of resolution achievable between closely 

related clusters, i.e. the four genera that comprise the YESS group, and within those 

clusters. In particular I examine whether the availability of whole genome data leads to 

more robust results and the level of congruence and conflict between the different 

approaches. 

 

In addition to this I present software, GenClust, designed for finding clusters of genes in 

bacterial genomes. The user provides a set of genes and genomes of interest and 

GenClust identifies any potential homogolous clusters. I demonstrate the ease of use of 

GenClust with a simple examination of gene clusters associated with the superpathways 

of amino acid biosynthesis in 180 "-proteobacterial genomes. The software is relatively 

easy to use, fast and results can be visualised. 
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Lastly I examine genes associated with the breakdown of phenylacetate in 108 different 

bacterial genomes. The degradation of phenylacetate is interesting from an evolutionary 

standpoint because the underlying genes are often found clustered in bacterial genomes, 

though their distribution is extremely patchy, implying possible high levels of HGT. I 

identify many new phenylactetate degradation gene clusters and examine the evolution 

history of both the clusters and the genes themselves. Using this information I compare 

the data to the current models of gene cluster formation and provide a perspective on the 

selective forces and mechanisms driving gene cluster formation. 
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Chapter 2 - Gene and genome trees conflict on many 

levels: an analysis of 27 YESS genomes 

Note: 

In relation to the paper published in Philosophical Transactions of the Royal society B 

series (Haggerty et al., 2009), I am joint first author. I produced all results presented in 

this thesis, with the following exceptions, which were jointly produced by L. Haggerty 

and myself: Identification of single gene families, alignment of single gene families and 

carrying out a PTP test of all alignments. 

 

2.1 INTRODUCTION 

 

Recently, it has been questioned whether or not there is a future for the Tree of Life 

metaphor (McInerney et al., 2008). Many have gone further and feel that the time has 

long since gone when this metaphor was useful (Doolittle and Bapteste, 2007). The 

central issue is that HGT has affected all or nearly all genes in every genome at one 

stage in their evolutionary history (Dagan and Martin, 2007; Dagan et al., 2008). The 

most recent estimate is that in each genome an average of 81±15% of the genes have 

experienced a HGT event at some stage (Dagan and Martin, 2007). In the next few 

years, we must precisely describe how the prokaryotic world, in particular, is structured 

and what exactly HGT has done. 
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There are two categories of HGT events: homology-dependent and homology-

independent (though the most important factor is similarity level, not whether the 

sequences are homologous). Homologous recombination, according to Ochman et al., 

occurs mainly within a bacterial species, but there is very little recombination 

(approximately 1%) between any given species and its close relatives (Ochman et al., 

2005). However, the process of non-homologous recombination or the introduction of 

new genes that have no similarity to incumbent genes is mostly a process that involves 

organisms that we consider to be very far outside the species boundary. Non-

homologous recombination also encompasses recombination events where regions with 

no significant similarity to anywhere in the recipient genome are carried into that 

genome by flanking regions that do have similarity to the recipient genome. Lawrence 

has put forward the theory that integration of foreign non-homologous DNA into a 

genome is a driver of speciation in prokaryotes (Lawrence, 2002). 

 

On the question of what boundaries might exist that prevent a gene from being 

successfully incorporated into a recipient genome, Sorek et al., have indicated that gene 

dosage and promoter structure might be barriers (Sorek et al., 2007). In contrast, 

McInerney and Pisani suggest that the barriers to HGT, if they exist, might be very low 

(McInerney and Pisani, 2007). However, these opinions relate to the artificial scenario 

where barriers to HGT have been measured in vitro.  

 

While much of the focus on the issue of HGT has been on the long-term evolutionary 

history of prokaryotes, a number of studies have examined shallower relationships. 
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Ochman et al. analysed HGT at the shallower taxonomic levels and concluded that while 

there was relatively frequent HGT between homologous genes within species there was 

a much lower amount of HGT between homologs across the species boundary (Ochman 

et al., 2005). Given that new genomes are being sequenced on a daily basis, it is possible 

to examine what this structure means for microbiology. In particular, this might have an 

important consequence for our concept of a bacterial species. 

 

2.1.1 What is a bacterial species? 

 

What seems indisputable is that we can identify organisms that have synapomorphies, 

both genetic and phenotypic. Multi-Locus Sequence Analysis (MLSA) (Gevers et al., 

2005) has shown that there is some structure among currently defined species (Kidgell et 

al., 2002; Achtman and Wagner, 2008; Buckee et al., 2008). However, this kind of 

analysis, which has been carried out extensively in thousands of isolates, has the 

limitation that it only examines the evolutionary history of a set of core genes. Not only 

does this limit the amount of information used in the analysis, core genes are not 

representative of the rest of the genes in a genome in terms of factors such as functional 

category and rate of mutation. For a modern system of classification to work, it must use 

complete genomes and be able to accommodate HGT. 

 

The concept of prokaryotic species is difficult to address and there is considerable 

diversity of opinion on what constitutes a species among the prokaryotes. HGT might be 

considered to be a form of sex and therefore, all prokaryotes might be considered to be a 
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single species. Alternatively, we might consider a species to be an ‘irreducible cluster’ 

of organisms (Staley, 2006) and this seems in many ways to be sensible. Staley has 

advanced the idea of a genomic-phylogenetic species concept (Staley, 2006). Doolittle 

has suggested that if a species concept is not needed, it should be let it go, whereas if it 

can be found it might be useful (Doolittle and Papke, 2006; Papke et al., 2007).  

 

At the moment there is a polyphasic definition of a bacterial species. Depending on the 

data that are available, this polyphasic definition can involve the use of ribosomal RNA 

sequence identity, reciprocal DNA-DNA re-association values, biochemical traits and so 

forth. If there is a valid biological bacterial species concept, it may be possible to ask 

what drives speciation. Therefore from a number of perspectives it is interesting to 

explore evolution at the boundaries of recognized species and genera. 

 

In this study I use as an example the YESS group of "-proteobacteria and examine what 

kind of phylogenetic signals emerge when different parts of genomes, different genes 

and different analysis methods are used. At the time of writing 27 YESS genomes are 

fully sequenced, allowing an exploration of what happens if trees of genomes or subsets 

of genomes are inferred, given that the rate of homologous recombination and level of 

sequence similarity are expected to be high for many of the strains in this group. 
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2.1.2 A test dataset for exploring groups of the YESS group: 

 

The YESS group of "-proteobacteria, consisting of Yersinia, Escherichia, Salmonella 

and Shigella, are facultatively anaerobic Gram-negative rod-shaped bacteria that are 

catalase-positive and oxidase-negative (Brenner, 1984). The YESS group is of particular 

interest as many members are human pathogens. For instance, Y. pestis was the 

causative agent of the bubonic plague that killed an estimated 75 million worldwide 

during the 1300s. Shigella and enteroinvasive E. coli (EIEC) are the etiological agents of 

bacillary dysentery or shigellosis, of which there are an estimated 160 million cases 

worldwide a year, with approximately 1.1 million deaths, mainly in children under the 

age of five (Kotloff et al., 1999). Salmonella infection, known as salmonellosis, induces 

vomiting, diarrhea, fever and abdominal cramps and can last several days. Outbreaks of 

YESS group associated diseases are common (Tacket et al., 1985; Mahon et al., 1997; 

Lee et al., 2000; Varma et al., 2003) and consequently this group of prokaryotes is 

extensively sampled in genome sequencing projects. 

 

The phylogenetic relationships of different Shigella strains have been the subject of 

intense debate in recent years. Joshua Lederberg famously said that Enterohemorrhagic 

E. coli (EHEC) were “Shigella in a little cloak of E. coli antigens”. Shigella are 

essentially E. coli that have acquired a virulence plasmid (VP) (Sansonetti et al., 1981; 

Lan et al., 2001). There are two conflicting theories on the origin of Shigella. The 

multiple independent origin theory (Pupo et al., 2000) suggested that Shigella strains 

formed through multiple acquisitions of the VP, whereas the single origins theory 
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(Escobar-Paramo et al., 2003) claims that a single ancestral acquisition of the VP is 

responsible for the genus Shigella. There has been much debate on the issue, with the 

balance currently in favour of the multiple origins hypothesis (Yang et al., 2007) 

 

The issue of defining the boundary between Shigella and E. coli typifies the kind of 

problem that will become more and more commonplace as sampling density increases. 

In the case of E. coli and Shigella, the boundary between the two genera is based almost 

solely on the medical importance of Shigella and it has been suggested that the four 

‘species’ within the genus Shigella should simply be strains within the genus 

Escherichia (Pupo et al., 1997). The question is whether there are definable boundaries 

within the E. coli/Shigella group, or more precisely whether using the current methods 

and data are any sub-group boundaries identifiable? As the sequencing of bacterial 

genomes grows at a rapid pace, the classical species definitions will likely become 

outdated, so it is time to examine how current methods cope with denser taxon sampling. 

 

2.1.3 Many methods and datatypes:  

 

Phylogenies based on housekeeping genes such as gyrB, tufA and atpD, are often 

compared with those based on 16S rRNA phylogenies (Dauga, 2002; Purkhold et al., 

2003; Paradis et al., 2005). The goal of comparing genes is to examine linkage 

disequilibrium or recombination or to overcome systematic biases (Cooper and Feil, 

2004) that might be present in one molecule and not in another. Methodological 

problems that are encountered during phylogenetic analysis include artifacts related to 
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both molecular and lineage-specific differences in evolutionary rates and mutational 

saturation (Doolittle, 1999a). These processes can sometimes be detected and if an 

appropriate model of sequence evolution is available, they can be overcome (Rodriguez-

Ezpeleta et al., 2007). It should be noted however that HGT can occur in genes that have 

been cited as unlikely candidates, including ribosomal proteins (O’Neil et al., 1969). 

One study has even shown that it is possible to replace the 16S rRNA of E. coli with the 

corresponding sequence from Proteus vulgaris, though there is an associated drop in 

growth rate of between 10 to 30% (Asai et al., 1999).  

 

The technique of data concatenation is often used in order to reconstruct phylogenetic 

relationships (Sanderson et al., 2003). This usually involves multiple gene sequences 

being concatenated and aligned as a single sequence. Using this greater number of genes 

is supposed to bring out the true phylogenetic relationships, the theory being that signal, 

even when it is weak, is cumulative, whereas homoplastic noise will be dispersive 

(Sanderson et al., 2003). However, in general data concatenation is usually based on 

small sets of genes. For example Ciccarelli et al. used only 31 genes, or less than 1% of 

the genes in the average genome (Dagan and Martin, 2006), in their data set, to 

determine the relationships for 191 species (Ciccarelli et al., 2006). Also, data 

concatenation can sometimes produce misleading results (Rokas et al., 2003; Phillips et 

al., 2004). This is not the fault of concatenation per se; however, concatenation generally 

leads to long sequences, so this is an importation factor to consider when using 

concatenated data. 
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Supertree methods of inferring phylogeny address the weakness of using a tree based on 

a single alignment by combining data from several input trees into a single 

representative phylogeny (Creevey and McInereny, 2005). Supertree methods offer the 

advantage that the leaf sets of the input trees need not match each other exactly, merely 

overlap. At the level of gene families, this means that it is not necessary for every 

organism under investigation to have a copy of every gene. Additionally, it is possible to 

carry out a post hoc analysis of agreement between input trees and supertrees in order to 

assess congruence (Creevey et al., 2004). These are key points in favour of phylogenetic 

supertrees. 

 

Suitable gene families can be identified using accepted criteria for asserting homology; 

the phylogenetic relationships inferred from these homologs can be extracted and used 

to build the supertree. By using large numbers of gene families, the final supertree is 

based upon many more relationships between the genomes in a given data set than by 

simply using a small number of genes to build a phylogeny. On this basis, supertree 

based studies have become increasingly popular in recent times, see for example Pisani 

et al., 2007, and Beiko et al., 2005. However, there are limitations associated with 

supertree construction. Probably the biggest drawback is the inability of current software 

to handle gene families where paralogous sequences are present. This limits the number 

of gene families used to build the final supertree, given that paralogs are frequent, even 

in prokaryotic genomes. Some methods can be used to deal with this in part, such as 

deletion of lineage-specific duplication events, but ultimately the problem is still a 

serious one. Another problem with supertree methods is that the quality of the supertree 
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is based on the quality of the input data, in this case the input trees. If the input trees 

themselves have low levels of support for the relationships they represent, or if they do 

not overlap sufficiently (Scornavacca et al., 2008), or if some organisms are not well 

represented, then the quality of the supertree will also suffer. However, unlike the issue 

of using single-gene families, these problems can be addressed to a certain extent by 

employing various methods to ensure the input trees are of sufficient quality for 

supertree construction, such as removing poorly aligned regions (Talavera and 

Castresana, 2007), removing alignments with little signal or removing very short 

alignments. These kinds of alignments and regions of alignments are expected to 

confound phylogenetic inference (Talavera and Castresana, 2007). 

 

The purpose of this study is to demonstrate the difficulty associated with using genome 

data to construct a phylogeny of the YESS group using many of the methods listed in the 

previous paragraphs, namely single-gene phylogenies, data concatenation and supertree 

analysis. By doing this it is possible to test whether these organisms can be robustly 

classified, whether there is a meaningful phylogenetic tree that is agreed upon by a 

considerable amount of the data and whether there is general agreement across all 

methods and all data. The YESS group was specifically chosen to look at shallow-level 

relationships both inside and outside the species boundaries, as they are currently 

understood.  
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2.2 MATERIALS AND METHODS 

 

2.2.1 Genome sequences: 

The GOLD database (http://www.genomesonline.org/) was used to obtain the genome 

for 27 completed YESS group genomes. This included 8 Yersinia, 8 Escherichia, 5 

Salmonella and 6 Shigella genomes. A full list of the individual genomes can be found 

in the Supplementary Table 1 (see S. I. 2.1).  

 

2.2.2 Ribosomal RNA sequence analysis: 

All 188 16S rRNA sequences from the 27 YESS group genomes were aligned using 

ClustalW v1.83. A total of 7 copies of the 16S gene were retrieved from each YESS 

genome, with the exception of Yersinia pestis Orientalis CO-92, which only had 6 copies 

of the gene. The alignment (S. I. 2.2) was inspected by eye and ambiguously aligned 

regions were removed. Using standard methods for finding the optimal model of 

nucleotide substitution (Keane et al., 2006), the HKY+I+G model was used for all 

subsequent phylogenetic analyses. A maximum likelihood tree was constructed using 

Multiphyl (Keane et al., 2007). Confidence in phylogenetic hypotheses was assessed 

using bootstrap resampling and results are presented following 100 bootstrap replicates.  

 

2.2.3 Topological tests for randomly selected 16S rRNA sequences: 

 

One copy of the 16S rRNA gene was selected at random from each of the 27 YESS 

group genomes. These 27 randomly selected sequences were aligned and a phylogenetic 
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tree was constructed as in section 2.2.1. This process was repeated 100 times, producing 

a total 100 phylogenetic trees, each with one randomly selected copy of the 16S gene per 

genome. 

 

A pairwise AU test was carried out between all 100 trees using CONSEL (Shimodaira 

and Hasegawa, 2001). For each pair the result of the AU test was examined from both 

sides. For example, in an test between tree A and tree B, the results of the test using the 

alignment for tree A and the results of the test using the alignment for tree B were 

examined in order to determine if tree A and tree B were significantly different. Both 

trees had to fall outside each other’s confidence set for a significant difference in 

topology to exist. CONSEL performs eight different tests for significant difference 

between two topologies and if two trees had a score of 0.01 or greater for any of the tests 

then their topologies were not considered to be significantly different to one another. 

The results were displayed as a 100x100 symmetrical matrix, where ‘1’ denoted no 

significant different in topology between a pair of trees existed, while ‘0’ denoted a 

significant difference. Because no tree was significantly different to itself, the diagonal 

of the matrix consisted of ‘1’s. See S. I. 2.3 for alignments, trees and CONSEL files. 

 

2.2.4 Housekeeping gene analysis: 

 

The three housekeeping genes atpD, gyrB and trpB, were retrieved from each genome 

using BLAST. The sequences were aligned using ClustalW v1.83 (Thompson et al., 

2002). Upon inspection of the alignments no further changes were felt necessary because 
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the sequences were strongly conserved and the alignments seemed sensible. Maximum 

likelihood phylogenetic trees were built using Multiphyl (Keane et al., 2007) with the 

model selection option turned on. A concatenated alignment of all three genes was also 

constructed and a maximum likelihood phylogenetic tree was constructed as for the 

individual genes. Bootstrap resampling was carried out on all trees to assess the level of 

support for nodes in the resulting trees. See S. I. 2.2 for alignment files. 

 

2.2.5 Identification of single-gene families: 

 

Gene families were identified using the RandomBLAST method as described in 

(Fitzpatrick et al., 2006). A total of 8,736 gene families were recovered. The set of gene 

families was then filtered to remove families with fewer than four sequences, which is 

the smallest number of sequences required to build a non-trivial phylogenetic tree. This 

left 4,693 gene families. Out of these families, 3,109 were found to be single-gene 

families, with at most one representative sequence from each of the 27 genomes. 

 

2.2.6 Multiple sequence alignment of remaining single-gene families: 

 

The corresponding amino acid sequences of the 3,109 single-gene families were used as 

input to ClustalW version 1.83 (Thompson et al., 2002) for multiple sequence alignment. 

A total of 3,109 alignments were produced. Each of the 3,109 alignments was input into 

Gblocks (Talavera and Castresana, 2007) to remove poorly aligned regions. A shell 

script was created to remove badly aligned regions in a more relaxed manner than the 
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default Gblocks settings. The minimal length of a block was set to 8 amino acid 

positions, and the maximum number of allowed contiguous non-conserved amino acid 

position to 15. Gapped sites were not systematically removed; rather they were treated 

as any other site in the alignment. Perl scripts were written to remove alignments that 

had fewer than 150 residues following analysis by Gblocks. This left a total of 1,960 

alignments. 

 

The remaining alignments were converted to nexus format (Maddison et al., 1997) and a 

PAUP* block (Wilgenbusch and Swofford, 2003) for carrying out a PTP test was added 

to each nexus file. The nexus files were then executed in PAUP* and a PTP test was 

carried out on each alignment. The resulting p-values gave a measure of confidence in 

the strength of the signal within the alignment. Only alignments passing the PTP test, i.e. 

those with a p-score of <= 0.01 were retained. A total of 1,408 alignments were found to 

pass the PTP test. Nucleotide sequence alignments were then constructed based on these 

amino acid alignments (see S.I 2.2). 

 

2.2.7 Construction of phylogenetic trees: 

 

Maximum likelihood phylogenetic trees for the 1,408 alignments were constructed using 

MultiPhyl (Keane et al., 2007), with the model selection option turned on. This resulted 

in 100 bootstrapped trees for each alignment. Each set of 100 bootstrap replicates was 

then summarized as a majority-rule consensus tree using CONSEL (Shimodaira and 

Hasegawa, 2001). The default settings were changed so that only nodes receiving 70 
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percent support or greater shown to be resolved on the resultant output tree. This 

produced 1,408 consensus trees, one tree for each of the 1,408 alignments. These trees 

were used for the supertree analysis. 

 

2.2.8 Supertree construction: 

 

Clann (Creevey and McInerney, 2005) was used for supertree construction. A variety of 

different supertrees were constructed using the dfit optimization function. All other 

settings were left on their default values. Bootstrap resampling (100 replicates) of the 

input data was carried out and supertrees generated using these replicates were 

summarized using a majority-rule consensus method. See S. I. 2.8 for the 1,408 input 

tree file for Clann.  

 

2.2.9 Input tree-to-supertree distances: 

 

Clann (Creevey and McInerney, 2005) was used to measure the level of incongruence 

between the input trees and the dfit supertree. A score was generated for each of the 

1,408 input trees in terms of dissimilarity to an appropriately pruned supertree. This 

score was based on the Robinson-Foulds distance metric (Robinson and Foulds, 1981).  

 

In order to get a better understanding of the signal present in the input trees, a further 

1,408 trees of 27 taxa were ‘grown’, under the Yule model of random tree generation 

(Yule, 1924), using BioPERL (http://www.bioperl.org). For each of the 1,408 original 
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input trees, the set of taxa present in each tree was recorded and a tree with random 

branching order was grown using the set of taxa. Through this method each original 

input tree had a corresponding random tree with the same number of nodes. These 1,408 

random trees were also scored against the dfit supertree using Clann. The scores for both 

the input trees derived from the single gene families and those that were randomly 

generated were divided into 10 bins and graphed. See S. I. 2.9 for the randomly 

generated trees and tree-to-supertree distance files. 

 

2.2.10 Minimum-evolution tree: 

 

The nucleotide data for the 1,408 single-gene families was aligned by translating the 

individual sequences into their corresponding amino acid sequences, aligning the 

proteins using ClustalW version 1.83 and putting the gap characters into the nucleotide 

sequences according to where they were found in the amino acid sequences. The 

sequences were then concatenated into a single alignment. The concatenated alignment 

then analysed using PAUP* (Wilgenbusch and Swofford, 2003) using the GTR distance 

matrix method with the optimality criterion set to minimum evolution (Rzhetsky and 

Nei, 1993). Minimum evolution was used as the dataset was too large for a ML analysis 

and ME offered the advantage of being able to fit a model to the data, unlike parsimony. 
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2.3 RESULTS 

 

2.3.1 16S rRNA gene tree: 

 

All copies of the 16S rRNA gene were retrieved from the 27 genomes. This came to a 

total of 188 genes, which were then aligned. The broad topology of the 16S rRNA tree, 

as outlined in figure 2.1, is in line with expectations. Yersina and Salmonella both form 

monophyletic groups while Shigella groups within Escherichia. However, many of the 

other features of the tree are unusual. Firstly, in general the 16S rRNA genes within each 

genome do not form monophyletic groups with one another. Shigella is non-

monophyletic, with multiple Shigella groupings within the Escherichia clade. The 

simplest interpretation of the data is that homogenisation of ribosomal RNA genes is not 

sufficiently rapid that each genome has its own unique kind of 16S gene. This means 

that a genome-of-origin cannot be assigned based on the sequence of the 16S rRNA 

gene. The alternative explanation is that 16S rRNA genes are being exchanged between 

strains by some recombination mechanism. The one distinct pattern is that for this 

collection of genomes, there are three kinds of 16S rRNA – a Yersinia-type of rRNA, a 

Salmonella-type of rRNA and an Escherichia/Shigella-type of rRNA. 

 

2.3.2 Conflicting topologies of phylogenies of randomly selected 16S sequences: 

Figure 2.2 shows the results of pairwise tests of conflicts between trees constructed from 

an alignment of one randomly selected 16S sequence per genome. If the topology of two 

trees constructed in this manner differ significantly in topology, i.e. there was a  
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Figure 2.1: Phylogenetic tree of 188 16S rRNA sequences. Grey nodes denote > 50 

percent bootstrap support, black nodes denote > 70 percent bootstrap support. The 

different colours for the different branches represent the different groups with Yersina in 

purple, Escherichia in red, Shigella in green and Salmonella in blue. 
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Figure 2.2: Pairwise tests of topological conflict between 100 16S rRNA trees. The 

matrix is symmetrical. ‘1’ denotes a pair of trees shows no significant difference in 

topology for at least one test. ‘0’ denotes a pair of trees that had significantly conflicting 

topologies under all tests. 
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significant difference in all eight of CONSEL’s tests (technically 16 tests were carried 

out per entry, as the eight tests were carried out for both the alignments for each pair), 

then the corresponding entry was denoted with a ‘0’. Conversely if two trees were not 

deemed significantly different in topology by even a single test, the corresponding entry 

was denoted with a ‘1’. The matrix was symmetric with dimension 100x100. Therefore, 

after subtracting the diagonal (no tree shows conflict with itself) and dividing the results 

in half, the percentage of conflict was measured. For a total of 4950 unique pairs, 3687 

showed no significant conflict in tree topology, while 1263 pairs of trees had significantly 

conflicting topologies. This equated to 25.5 percent conflict within the matrix. In tree 

terms, by selecting random copies of the 16S rRNA from each genome there was a one-

in-four chance that a pair of trees derived from sets selected in this manner would have 

significant conflict in their topologies. 

  

2.3.3 Concatenated atpD, gyrB and trpB tree: 

 

Figure 2.3 (a-c) shows the trees for the three housekeeping genes atpD, gyrB and trpB. 

Once again, in all trees there is a monophyletic grouping of Yersina, a monophyletic 

grouping of Salmonella, and the Shigella sequences are mixed with the E. coli sequences. 

A closer analysis of these gene trees reveals some common features. Assuming a rooting 

on the split between Yersinia and the rest of the genomes, Y. enterocolitica is the deepest 

branch in each tree, followed by Y. pseudotuberculosis. Y. pestis Microtus and Y. pestis 

Mediaevalis group together in the gyrB tree and tryB tree. The relationships for the  
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Figure 2.3: Phylogenetic trees for (A) atpD, (B) gyrB, (C) trpB, (D) concatenated 

alignment for atpD, gyrB and trpB. 
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Salmonella genomes show a similar level of conflict. S. enterica Typhi Ty2 and S. 

enterica sv Typhi CT18 group together on all the trees. The other three Salmonella strains 

are found located in different positions in each tree. In the gyrB and trpB trees, E. coli 

MG, E. coli W, E. coli 0157 and E. coli Sakai from a group outside the subclade formed 

by the remaining four E. coli and six Shigella strains. The atpD tree is different; with the 

0157/Sakai group outside the Shigella, while E. coli 06 K15 moves from outside Shigella 

to a grouping with Sh. sonnei.  

 

Using the CONSEL software (Shimodaira and Hasegawa, 2001) a number of analyses of 

the significance of the difference between the trees generated from the three 

housekeeping genes were carried out (see S. I. 2.4-2.6). For each of the three alignments, 

the topology of the maximum likelihood tree was tested to see whether its topology was 

within the confidence set of trees for the other two alignments. Eight different tests of 

significant difference were carried out for the maximum likelihood tree versus the other 

two trees. So, for example, for the gyrB alignment, the topology of the gyrB tree was 

compared to that of the atpD and trpB trees. This process was repeated for each of the 

three alignments giving a total of 24 tests. In total, for each alignment, the two trees that 

were not derived using that alignment were rejected by 23 out of 24 tests. The single 

exception among the 24 tests was where the Shimodaira-Hasegawa (SH) test did not 

consider the topology of the gyrB tree to be outside the confidence set of trees for the 

trpB alignment and therefore did not reject that topology (p=0.132). Notably, all other 

tests of the significance of difference for this alignment and tree combination rejected the 

topology of the gyrB tree. Interestingly, when the test is carried out for the concatenated 
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alignment against the individual gene trees, only the atpD gene tree fell outside the 

confidence interval, doing so on all eight tests, while the gyrB and trpB genes only failed 

one of the eight tests each (see S. I. 2.7). This suggests that the gyrB and trpB genes are 

not significantly different in topology (under most tests) to the tree from the concatenated 

alignment. However, they do have a significant difference in topology with each other in 

all but one test. Little confidence can be placed in the tree for the concatenated data as a 

result. 

 

2.3.4 Supertree of 1,408 single gene families: 

 

Figure 2.4 shows a supertree constructed from 1,408 single-gene families derived from 

nucleotide alignments. The supertree recovered using these shows strong support across 

the majority of the tree. Some low support values exist in the Yersinia clade, but in 

general the tree has strongly supported relationships, probably indicative of the greater 

amount of signal in the single-gene families data. 

 

2.3.5 Tree-to-supertree distances for 1,408 source trees: 

 

One of the most interesting questions is whether or not the various phylogenetic trees 

used as input to generate the supertree are similar in topology to an appropriately pruned 

supertree. Tree-to-tree distances from the 1,408 ML input trees to the supertree were 

calculated using the Robinson-Foulds distances (Robinson and Foulds, 1981). The 

average input tree-to-supertree distance was 1.1733 (median 1.168, range 0.181-3.458) 
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Figure 2.4: Supertree of 1,408 single-gene families using nucleotide data. 
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(see figure 2.5a). Input trees based upon families with larger numbers of sequences were 

in general responsible for much of the conflict observed, though it should be noted that 

since 587 of the 1,408 families were universally distributed across the 27 genomes, some 

of this is simply a reflection of the abundance of widely distributed genes in the data. In 

terms of phylogenetic conflict, of the families with the largest tree-to-tree distances 

compared to the supertree, many were found to be ribosomal or ribosome-associated 

proteins. Because of the high level of similarity in the sequences of these genes, there is 

little statistical support for the input trees. While the groups themselves may be well 

defined, the lack of resolution of the internal relationships within a group leads to conflict 

with the supertree. 

 

When the scores of these trees were compared to scores for 1,408 randomly generated 

trees (figure 2.5b), there was a clear distinction in the scores. The average distance for the 

random trees to the pruned supertree topology was 2.53 (median 2.7, range 0.5-3.95). The 

peaks for the randomly generates trees versus the true input trees in figure 2.5 do not 

overlap, suggesting that while there is conflict in the true input trees they fit the supertree 

significantly better than the corresponding set of random tree. This was not surprising, 

but did suggest that, despite conflict persisting, there was underlying signal in the true 

input trees. 
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Figure 2.5: Tree-to-supertree distances. (A) Distances for the 1,408 input trees to the 

pruned supertree. (B) Distances for a corresponding set of 1,408 randomly grown trees, 

with the same size distribution as the original dataset to the supertree. (C) Distances for 

1,408 randomly grown trees versus a supertree constructed from these random trees. (D) 

Distances from the original 1,408 input trees to the supertree constructed from the 

random trees in C. 
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2.3.6 Minimum evolution tree of concatenated data: 

 

Figure 2.6 displays the tree recovered using the minimum evolution criterion for a 

concatenated alignment of the same 1,408 single-gene families used for the construction 

of the supertree. Minimum evolution was used instead of maximum likelihood due to the 

length of the alignment (1,537,155 bases). The concatenated data tree shows strong 

support for the majority of the nodes in the tree. Weak support is present only towards the 

base of the Yersinia clade and at the node separating the Salmonella clade with the 

Escherichia/Shigella clade. 
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Figure 2.6: Minimum evolution tree built from an alignment of 1,408 single-gene 

families. 
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2.4 DISCUSSION 

 

This study examined a set of taxa that are known to be closely-related and where there is 

some confusion over whether there is a total of three or four valid genera within the 

group. This test dataset is emblematic of the issues that crop up in employing genome-

scale data to answer questions concerning the evolutionary history of prokaryotes. 

 

Three groups were consistently recovered from the analysis, irrespective of the method 

chosen to infer phylogenetic relationships. These were the Yersinia group, the Salmonella 

group and the Escherichia/Shigella group. As these groups were recovered consistently it 

implies that the effects of HGT between genera was not a major factor, or at least 

whatever HGT has occurred between the three groups has not been substantial enough to 

overcome the underlying signal. A single origin of Shigella (Escobar-Paramo et al., 2003) 

was not observed, rather, the data suggests multiple origins, in accordance with the 

findings of Pupo et al., 2001. The three groups were not found to be a single homogenous 

entity; partitions existed. There were clear boundaries and none of the analysis methods 

broke these boundaries. These boundaries did not fully agree with traditional 

classification methods, in that Escherichia/Shigella were considered a single group. This 

result was in line with expectations (Pupo et al., 2000). 

 

Looking within each of the groups, the story is clearly somewhat different. There were 

very few recurrent themes across different analyses and different datasets, with weak 

bootstrap value present for many of the internal relationships. Unlike Ochman et al., 
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2005, the analysis was not limited to only those gene families that were found in all 

genomes; all gene-families were analysed, even those with a patchy distribution. One of 

the weak features of this kind of analysis is the sampling issue. Having relatively few 

fully sequenced genomes to work with means that the analysis is unlikely to have probed 

the boundaries of the groups as they are depicted in the figures in this study. 

 

The 16S phylogeny produced a result that might be considered contrary to expectations. 

Only one taxon, Salmonella enterica paratyphi A, had a corresponding clade of all seven 

16S genes. This clade was strongly supported, implying homogenisation of the 16S genes 

within this lineage. However, in general, homogenisation of all 16S sequences within a 

genome was not complete. In fact, multiple clades place copies of the 16S from different 

strains together with strong bootstrap support. As a result, depending on the copy of the 

16S gene used when constructing a tree for all 27 genomes, different phylogenies, often 

with significantly conflicting topologies, can be produced. This finding is in line with 

previous studies of the homogenisation of 16S rRNA genes (Cilia et al., 1996). One 

possible reason for this is that homogenisation is not fast enough that all copies of the 

sequence are the same in each genome. Another speculation is that there has been 

recombination between strains and this is the reason for the absence of within-genome 

monophyly. Given the lack of resolution on the tree due to high sequence similarity and 

the fact that the predefined barriers within each group are somewhat arbitrary, it would 

not be counter-intuitive to think of recombination and homogenisation as occurring 

within each group as a whole, not as a process that is solely restricted to each individual 

strain. Indeed, similar results have been seen in Helicobacteria pylori, where 
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recombination has been found to be frequent between unrelated strains (Falush et al., 

2001). The three major groups are recovered on this 16S rRNA tree and this suggests that 

either homogenisation is rapid enough to avoid the intermingling of sequences across the 

three major groups, or that sequence divergence has been sufficient that homologous 

recombination is much less frequent across the genome-species divide. 

 

When examining the results of concatenating the sequences of atpD, gyrB and trpB the 

same three major groups are recovered in each tree, but the internal relationships differ 

significantly (as judged by a number of tests using CONSEL) from tree to tree. In fact 

there is little to no agreement over the internal relationships of the groups. Concatenating 

the data and reconstructing a representative phylogeny produces a result that is a mixture 

of the information contained in three conflicting topologies, but it is not clear what this 

tree means and in fact, may suggest that it is meaningless. This kind of approach has been 

used previously to assess congruence with 16S rRNA phylogenies in a large number of 

Streptomyces and it has been reported that the results were “obviously superior to the 16S 

rRNA gene tree in both resolution power and topological stability” (Guo et al., 2008). 

The tree that is recovered from this concatenated alignment has low bootstrap support 

and this reflects the fact that the individual trees have conflicting histories. As an 

approach to understanding the evolutionary history of the YESS group, this method 

seems to be ambiguous. 

 

Both the 1,408 gene nucleotide-based supertree and the minimum evolution tree of the 

concatenated nucleotide data fare much better with regard to support for the hypotheses 
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that they display. The trees agree completely in terms of the relationships for the 

Salmonella clade and only minor differences exist in the Escherichia/Shigella clade with 

the position of Sh. sonnei and the relationships between the three Sh. flexneri strains 

changing between the two trees. It should be noted that even though the differences are 

minor, they receive strong support in both trees. The major area of difference between the 

trees is in the Yersinia clade. The supertree shows weak support for some of the internal 

relationships while the minimum evolution tree shows strong support for all the 

relationships bar the split between Y. enterocolitica and the rest of the clade. Do these 

trees have more meaning than the trees from the 16S rRNA gene or the housekeeping 

genes? This is a difficult question to answer and remains an open question.  

 

What does this tell us about the YESS group? Surely this is not a uniquely difficult group 

to analyse, yet after a thorough examination of the data, apart from concluding that there 

are three, not four, major groups, there are as many questions as when the analysis 

started. It has been previously argued that a tree like phylogeny may exist only at the tips 

for prokaryotes and that the deeper branches may remain a mystery (Creevey el al., 

2004). This study suggests that at the tips it may be impossible to derive a reliable 

phylogeny using current methods. 

 

An important point to note is that this analysis is specific to the YESS group. It cannot be 

guaranteed that the same can be said about other bacterial groups. Despite the fact that 

there are now more than 1,800 sequenced prokaryotic genomes, sampling is still patchy, 

usually being driven by medical or economic factors and therefore, is perhaps not 
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representative of most species. There may be phylogenetic bias in the collection of 

organisms being analysed. If in some cases we have sequenced closely related strains and 

in others we have sampled more distant strains, this can have an effect on our estimates 

of recombination rate and population structure. 

 

Assessing deep-level phylogenetic relationships is fraught with difficulties related to 

HGT, hidden paralogy, model misspecification and erosion of phylogenetic signal, 

however, assessing shallow relationships is no less difficult. 

 

In the next chapter I present a software tool for identifying gene clusters in bacterial 

genomes and use it to examine the chromosomal organisation of amino acid biosynthesis 

genes, covering not only the YESS group but also many other "-proteobacteria. 
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Chapter 3 - GenClust: a software tool for identifying, 

analysing and visualising gene clusters 

 

3.1 INTRODUCTION 

The clustering of functionally related genes is a widespread feature of bacterial genomes 

(Lawrence and Roth, 1996; Olivera et al., 1998; Rison et al., 2002). As such there is 

considerable interest in identifying gene clusters that are conserved across multiple 

genomes, and various software tools exist that allow the user to achieve this (Rutherford 

et al., 2000; Schmidt and Stoye 2008; Jensen et al. 2009). However in there is a lack of 

flexibility in the existing software, with limitations on the number of genomes examined 

at one time (Rutherford et al., 2000), the ease of use of the software (Schmidt and Stoye 

2008) and the ease of mining the relevant data for such clusters (Jensen et al. 2009). 

While the existing software all have their own merits, they lack a balance between 

usability and flexibility. 

 

Here I introduce a software tool, GenClust, which attempts to combine usability and 

flexibility. GenClust is written in PERL (http://www.perl.org/) and designed for use with 

Unix based operating systems. The user needs only PERL and the BLAST package 

(Altschul et al., 1990) installed in order to run GenClust. GenClust takes a set of query 

sequences, i.e. a set of sequences that the user wishes to examine for evidence of 

clustering, and a set of bacterial genomes in Genbank full format (Benson et al., 2008). 

GenClust uses a BLAST based method to identify clusters of genes that are homologous 

to the query sequences provided by the user. GenClust provides a detailed analysis of 
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cluster content including per-gene cluster frequency, pairwise cluster co-occurrence 

between genes, average cluster size with and without non-query sequences, a homologs 

to clusters ratio and cluster size versus frequency data. An Adobe Illustrator file (Adobe 

Systems, San José, California) showing a visual representation of all clusters in the form 

of arrow diagrams is also produced. 

 

In order to provide flexibility in the software, the user has control over two important 

parameters. The first is the number of intervening genes (IGs) allowed. IGs are defined as 

genes that are not part of the users set of query genes (see figure 3.1). By varying this 

parameter the user can affect the tightness of clustering in the result files, by setting this 

number to 0 for example, the software would only retrieve clusters that did not contain 

any IGs. Raising this number decreases the tightness of the identified clusters, setting the 

parameter to 5 would allow anywhere between 0 and 5 IGs to be present between any two 

consecutive query genes. The second parameter the user can modify is the e-value used in 

the BLAST search. Making the value smaller increases the strictness of the search, 

helping ensure only highly significant hits are considered when identifying potential 

clusters. Conversely if the user values positional evidence of clustering over strict 

sequence similarity levels, then they may raise the e-value and thus potentially identify 

more distantly related clusters. By combining the values entered into these two 

parameters the user has a high level of control over what is identified as a gene cluster. 

 

To demonstrate the robustness of GenClust, a sample data set of 180 "-proteobacterial 

genomes was downloaded from Genbank. A set of query sequences was then downloaded  
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Figure 3.1: The IG parameter. The top cluster is a hypothetical set of clustered genes. 

Coloured genes are part of the query set provided by the user. White genes are IGs. 

Setting IG to 0 returns only returns the four tightly clustered genes on the left. Setting it 

to 1 returns two clusters, as a single IG separates the two coloured genes on the right 

hand side of the top cluster. Setting it to four recovers the full cluster as no more that four 

IGs separate any two consecutive coloured genes in the top cluster. 
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from Ecocyc (Keseler et al., 2005). These query sequences represented five different 

superpathways (SPs) of amino acid biosynthesis: aspartate and asparagine biosynthesis; 

leucine, valine, and isoleucine biosynthesis; lysine, threonine and methionine 

biosynthesis; phenylalanine, tyrosine, and tryptophan biosynthesis and serine and glycine 

biosynthesis. The number of genes involved in each SP ranged from four to twenty-one 

(see table 3.1 for more details). 

 

 

These SPs of amino acid biosynthesis were selected for their diversity in terms of number 

of genes present and whether or not they were clustered in Escherichia coli K12. Because 

of the importance of the genes involved in these pathways, it was assumed they would be 

widely distributed and highly conserved across the "-proteobacteria.  

 

A large-scale analysis of each SP was carried out to determine how often the associated 

genes are found clustered across the "-proteobacteria. In particular the results were 

examined to see if homologous clusters conformed to strict ancestral structures and 

whether any of the genes under observation showed no evidence of clustering or even 

avoidance of clustering. GenClust code, its manual and sample data can be found in S. I. 

3.1. 
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Superpathway Total genes Gene names Clustered in E. coli K12 

asn, asp 7 ansA, ansB, asnA, 

asnB, aspA, aspC, 

iaaA 

Not clustered 

gly, ser 4 glyA, serA, serB, 

serC 

Not clustered 

ile, leu, val 16 ilvA, ilvB, ilvC, 

livD, ilvE, ilvG1, 

ilvG2, ilvH, ilvI, 

ilvM, ilvN, leuA, 

leuB, leuC, leuD, 

tyrB 

Multiple clusters 

lys, met, thr 21 argD, asd, aspC, 

dapA, dapB, 

dapD, dapE, 

dapF, lysA, lysC, 

malY, metA, metB, 

metC, metE, 

metH, metK, 

metL, thrA, thrB, 

thrC 

Multiple clusters 

phe, trp, tyr 20 aspC, aroA, aroB, 

aroC, aroD, aroE, 

aroF, aroG, 

aroH, aroK, aroL, 

pheA, trpA, trpB, 

trpC, trpD, trpE, 

tyrA, tyrB, ydiB 

Multiple clusters 

 

 

 

Table 3.1: Superpathways of amino acid biosynthesis in E. coli K12. The number of 

genes involved in each SP ranges from four to twenty-one. Two of the SPs have no 

corresponding gene clusters, while the remaining three are associated with multiple 

cluster structures. 
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3.2 MATERIALS AND METHODS 

 

3.2.1 "-proteobacterial data set: 

 

180 "-proteobacterial genomes were downloaded from the Genbank ftp server 

(ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria), see supplementary data 3.1 for a 

complete list. All files used in the analysis were in .gbk file format and corresponded to 

completely sequenced genomes. 

 

3.2.2 Input file parsing: 

 

GenClust was used to parse all relevant information from the .gbk files. This included 

retrieving all amino acid sequence data along with the corresponding nucleotide 

sequences. Further information corresponding to the start and end locations of the genes, 

along with their orientation was also stored for subsequent steps in the analysis. 

 

3.2.3 Superpathways of amino acid biosynthesis: 

 

The Ecocyc database was used to retrieve the amino acids sequences for the genes 

involved in each of the five SPs under consideration. For each SP, the corresponding 

amino acid sequences were downloaded in fastA format and stored individually in a 

query file.  
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3.2.4 Input files and parameters for GenClust analysis: 

 

A ‘genomes.txt’ file is required to run GenClust, containing a list of all the .gbk file 

names and a corresponding alphanumeric abbreviation for each genome (used for 

ensuring unique names for each sequence during the BLAST phase). This is in addition 

to having all query files and genome files in the working directory (see S. I. 3.1 for a 

manual along with code and sample data). As there were five SPs in the analysis, each 

with its own set of query files, the analysis was run in five different directories. Each 

directory contained a set of query files corresponding to one of the SPs. The only 

difference in the five runs of GenClust was the set of query files in each directory. For 

simplicity’s sake the remainder of the discussion will refer to a single run of GenClust. 

The e-value parameter was set to e-5. The IG parameter was set to 5. All subsequent steps 

in the analysis were carried out automatically by GenClust. 

 

3.2.5 Database creation and BLAST search of query sequences: 

 

All amino acid sequences coded by the 180 "-proteobacterial genomes were concatenated 

into a single amino acid database. This database contained a total of 636,813 amino acid 

sequences. A BLAST analysis was carried out for each query file against the database, 

creating one BLAST output file per query sequence containing hits of all potential 

homologous sequences with an e-value less than or equal to e-5. 
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3.2.6 Cluster identification and merging: 

 

The genomic location of each sequence in the BLAST output files was compared to the 

location of all other sequences in all BLAST output files for a given SP. If two genes 

were found to fulfill the condition of the IG parameter, i.e. they were separated by no 

more than five genes that were non-homologous to any query sequences, then the genes 

were considered a linked pair. For each genome, all such linked pairs were identified and 

stored in a list. After this each pair was considered to be a single entity and the process 

was repeated to find sets of linked pairs that overlapped. Once all overlapping pairs were 

identified, they were merged and any redundant information (genes that appeared in two 

different pairs) was discarded. This process ensured the largest possible clusters, in 

accordance with the IG parameter, were always identified. 

 

3.2.7 Parsing of genomic information and result files: 

 

The genomic information for each cluster was retrieved from the files created during the 

input file parsing stage. This information is required for the visualisation of the clusters. 

Each gene in a cluster is drawn as an arrow diagram, with the direction of the arrow 

corresponding to the direction of transcription. Each gene in the cluster is scaled relative 

to its length in nucleotides. Non-coding sequence between genes are scaled in the same 

way. The colouring of each arrow corresponds to the query sequence to which it is 

homologous. IGs appear as white arrows. A legend is created at the bottom of the 

visualisation to show what colour represented each query sequence. For each SP, this 
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information was output as an Adobe Illustrator format document. In cases where the 

number of clusters was too great to fit inside the maximum bounding box size of an 

Adobe Illustrator document (15000x15000 pixels), multiple output files were created for 

the pathway.  

 

Multiple output files are created by GenClust for each run. These include a file called 

‘analysisresults.txt’, which contains a variety of data on all the clusters identified, a file 

called ‘cooccurrences.txt’, containing pairwise cluster co-occurrence frequencies for all 

genes involved in the analysis, and ‘clusterfrequency.txt’, which contains the number of 

times each gene occurred in a cluster. In addition to these output files, the corresponding 

sequences are retrieved for each identified cluster and placed in fastA format files. 
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3.3 RESULTS 

 

3.3.1 Runtime analysis of algorithm: 

 

The total runtime in hours for GenClust can be seen in figure 3.2. The runtime analysis 

was carried out on three different datasets. The first dataset contained all 180 genomes, 

the second contained 100 genomes and the final dataset contained 50 genomes. The 

runtime for each dataset is plotted in figure 3.2, giving three points per SP, in order of 

increasing number of genomes. In each case the BLAST phase of the analysis was 

inconsequential in terms of overhead, with almost all computation time occurring at the 

cluster identification and assembly stage. For all SPs increase in runtime versus total 

BLAST hits followed a polynomial curve.  

 

3.3.2 BLAST searches and cluster data: 

 

BLAST searches carried out using the genes associated with each SP resulted in over a 

thousand hits per pathway (table 3.2). In general the number of genes involved in the SP 

correlated well with the total number of BLAST hits retrieved, with the exception of the 

gly and ser SP, which had a considerably higher than expected number of hits relative to 

the number of genes involved. This is attributed to multiple duplications of glyA 

homologs across the data. 
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Figure 3.2: Runtime data for varying numbers of genomes. Each SP has three points, 

corresponding in order to the 50, 100 and 180 genome datasets. Tests run on Intel(R) 

Xeon(R) CPU E7340 2.40GHz processor with 4 gigabytes of RAM available. 
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SP Total 

BLAST hits 

Total 

clusters 

Average 

genes 

without IGs 

Average 

genes 

with IGs 

Genomes 

without 

clusters 
asn, asp 1,757 38 2 3.74 144 

gly, ser 2,457 80 2.04 3.31 109 

ile, leu, val 5,301 431 3.74 4.58 18 

lys, met, thr 6,676 594 2.25 3.17 9 

phe, trp, tyr 6,210 663 2.70 3.39 8 

 

 

Table: 3.2: Numerical analysis of gene cluster data. This table shows BLAST and cluster 

data for the 180 "-proteobacterial dataset. ‘Total BLAST hits’ refers to the total number 

of matches to all query sequences for a particular SP. ‘Total clusters’ is the number of 

clusters identified per SP. ‘Average genes without IGs’ is the average number of genes 

per cluster discounting IGs. ‘Average genes with IGs’ is the average number of genes per 

cluster with IGs included in the calculation. ‘Genomes without clusters’ is the number of 

genomes where no clusters were found for a particular SP  
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The total number of clusters per genome correlated strongly with the total BLAST hits. 

However in terms of the ratio of clusters to BLAST hits, two different patterns were 

observed. The two smaller SPs, the asn and asp SP and the gly and ser SP, had a ratio of 

0.022 and 0.033 respectively. This contrasted with the three larger SPs, with ratios of 

0.081, 0.089 and 0.11. This was not altogether unexpected, the more genes per SP, the 

more possibilities available for clustering. This is contradicted by the ratio for the gly and 

ser SP being higher than that of the asn and asp SP, but again the contradiction is 

explainable by high levels of duplication of glyA homologs, with tandem duplications 

providing instant clusters and accounting for a large proportion of the gene clusters of the 

gly and ser SP. Factoring out these duplications brings the numbers back in line with 

expectations based on gene number. 

 

The average number of genes per cluster, excluding and including IGs, can be seen in 

figure 3.3 and figure 3.4 respectively. Note that when referring to excluding and 

including IGs, this only indicates whether or not the IGs were excluded or included in 

calculations, not that the clusters themselves excluded or included IGs. The clusters were 

identical for both sets of calculations, always allowing for the inclusion of IGs, with the 

maximum number of consecutive IGs set to five.  

 

The asn and asp SP had the smallest average cluster size. No clusters of more that two of 

the genes involved in the SP were found, giving an average of exactly two genes per 

cluster, the minimum number of genes possible for a cluster to exist. If there is a barrier 

to larger clusters for these genes, the nature of that barrier is unclear. When IGs were  
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Figure 3.3: Cluster size versus frequency without IGs. The x-axis denotes the number of 

functionally related genes in a cluster. The y-axis represents the number of observations 

in the data. 
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Figure 3.4: Cluster size versus frequency with IGs. The x-axis denotes the total genes, 

including IGs, in a cluster. The y-axis represents the number of observations in the data. 
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included in calculating average cluster size this figure changed to 3.74. The size of 

clusters including IGs ranged from two to six genes. 

 

The gly and ser SP clusters averaged 2.04 genes per cluster. With only four genes 

involved in the SP and duplications of glyA homologs accounting for the majority of 

observed clusters, this number was in line with expectations. Three clusters of three 

genes were observed, and these appear to be a lineage specific further duplication of the 

glyA gene. Adding in IGs changed the average size to 3.31 and the maximum cluster size 

was six genes. 

 

The ile, leu and val SP differed from all other SPs, with a significantly higher number of 

average genes per cluster at 3.74. Large clusters of up to six genes were common with 

114 six-gene clusters and 8 seven gene clusters identified. Including IGs the average 

genes per cluster grew to 4.58 and the maximum cluster size was eleven genes. 

 

The lys, met and thr SP had an average of 2.25, with the majority of clusters containing 

two genes. The maximum cluster size was four genes for this SP, observed eleven times. 

With IGs the average genes per cluster was 3.17 and the maximum cluster size was ten. 

 

The phe, trp and tyr SP showed a slightly higher than expected level of clustering, with 

an average of 2.7 genes per cluster. This was due to the fact that many larger clusters 

were identified, with 39 clusters of six genes and 2 clusters of seven genes present in the 

dataset. Adding in the IGs the average cluster size was 3.39 and the maximum cluster 
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size was 15. This was the largest cluster found in the data, in the genome of Candidatus 

blochmannia floridanus. In this cluster the trpA, trpB, trpC, trpD and trpE genes are 

flanked on either side by the aspC and trpA genes along with a number of IGs. 

 

The absence of clusters in particular genomes correlated strongly with total clusters 

observed per SP. This implies an even spread of clusters across the dataset, as opposed to 

certain genomes showing high levels of clustering. The asn and asp SP, with the least 

number of identified clusters of all the SPs also had the highest number of genomes 

without an identifiable cluster. Conversely, the phe, trp and tyr SP, which had the highest 

number of identified clusters, had the lowest number of genomes without an associated 

cluster. 

 

3.3.3 Cluster co-occurrence data: 

GenClust outputs a pairwise co-occurrence matrix for each SP. Each row and column 

represents a gene. The value in a cell represents the number of times a particular pair of 

genes was found in a cluster (the genes did not need to be side-by-side, merely both 

present). The diagonal of the matrix represents the number of times each gene was found 

in a cluster with a duplicate copy of itself. As such each matrix is symmetrical. 

 

The output files for all five SPs can be seen in tables 3.3-3.7. For the asn and asp SP all 

genes were found in at least one cluster. The least commonly clustered gene was iaaA. 

The most frequently clustered pair of homologs was asnA and aspC, found together in a  
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Table 3.3: Pairwise cluster co-occurrence data for the asn and asp SP.  
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Table 3.4: Pairwise cluster co-occurrence data for the gly and ser SP. 
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Table 3.5: Pairwise cluster co-occurrence data for the ile, leu and val SP. 
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Table 3.6: Pairwise cluster co-occurrence data for the lys, met and thr SP.  
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Table 3.7: Pairwise cluster co-occurrence data for the phe, trp and tyr SP.  
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cluster 14 times. In general clustering of pairs of genes in this SP was infrequent and out 

of 28 possible gene pairs (including a gene being paired with a duplicate copy of itself) 

only 9 were observed. 

 

In the gly and ser SP the most frequent pair was a glyA homolog clustered with another 

copy of itself. This was observed 65 times. serB was never found in a cluster. The 

remaining two genes clustered infrequently. Out of 10 possible pairs, 4 were observed. 

 

Many genes showed a strong tendency to co-occur together in the ile, leu and val SP. For 

example leuA, leuB, leuC and leuD all frequently co-occurred with one another. ilvG2 

and ilvH were also found together regularly, the pair were found in 130 different clusters 

together. 69 pairs out of a possible 128 combinations were observed. Homologs of all 

genes were found in one or more clusters. 

 

Similarly, in the data for the lys, met and thr SP all genes were found in one or more 

clusters, with the metC gene clustering least frequently (only one co-occurrence 

observations with other genes in the SP in total). The most common combinations were 

thrB and thrC, observed 112 times, thrB and metL, observed 97 times and thrC and metL, 

observed 96 times. This implies that these three genes are likely to co-occur frequently. 

67 out of 231 possible combinations were observed. 

 

The phe, trp and tyr SP had two genes, tyrB and aroL, that were never found in a cluster 

despite having a total of 182 and 234 matching hits repsectively during the BLAST 
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phase. Frequently co-occurring pairs included all combinations of the trpA, trpB, trpC, 

trpD and trpE genes with each other. For this set of genes the lowest number of observed 

cluster co-occurrences was for the trpA and trpE, which co-occurred 90 times. The 

highest co-occurrence was for trpC and trpD, which co-occurred 251 times. The 

combination of the aroB and aroK gene was also frequent, co-occurring 166 times. 53 of 

a possible 210 combinations were observed. 

 

3.3.4 Cluster content and structure: 

 

GenClust generated a visual representation of each gene cluster. This allowed for rapid 

analysis by eye of cluster content and structure. The asn and asp SP (figure 3.5 and 

supplementary data 3.3), as previously described, only has clusters of two of the seven 

genes associated with the SP. Several combinations of genes exist, though they represent 

a relatively small fraction of all potential pairs. In general there was only a single cluster 

in each of the in the 36 genomes containing a cluster for this SP, with the exception of 

Hahella chejuensis KCTC 2396 which contained three clusters, two of which appear to 

be gene duplications. A common cluster was homologs of asnA and aspC separated by 

several IGs; this structure was present in Acinetobacter sp ADP1, H. chejuensis KCTC 

2396, some strains of the Salmonella lineage and Serratia proteamaculans 568. Though 

the pairing of asnA and aspC homologs is highly conserved in the Salmonella lineage, the 

actual layout of the IGs appears to differ from strain to strain. 
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Figure 3.5: Clusters of the asn, asp SP. This figure shows all 38 clusters identified and 

visualised by GenClust. Taxon legend can be found in supplementary data 3.2. 
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The clusters associated with gly and ser SP (figure 3.6 and supplementary data 3.4) were 

dominated by a duplication of a glyA homolog. This duplication accounted for most of 

the clusters identified. Two other relatively common clusters were identifiable, glyA with 

serA and the serA with serC. The combination of glyA and serC was never observed, 

though given the relatively small number of clusters associated with the SP this was not 

altogether surprising. More interesting was the absence of serB from any cluster despite 

having 151 homologous sequences found during the BLAST searches. One potential 

explanation is that the serB gene is under strong selection to cluster with genes other than 

the ones associated with this SP. 

 

The ile, leu and val SP displayed a large amount of variability in both cluster size and 

content (figure 3.7 and supplementary data 3.5). Despite this there is a modular nature to 

their construction. Common units include the leuA, B, C and D genes, the ilvA, B, C, D, 

E, G1 and M genes and the ilvG2 and ilvH genes. However many such units exist and the 

gene sets from the different units often overlap. For example while ilvG2 and ilvH are 

often found together, another common combination has ilvG2 paired with ilvN. This 

implies that while certain combinations are preferred, they are permutable. Many large 

clusters exist for this SP, consisting of discrete units. One large cluster present in YESS 

group consists of two units. The first unit contains leuA, B, C and D genes. The second 

unit contains the ilvG2 and ilvH genes. These two units are separated by IGs. The number 

of IGs can vary depending on the genome. In the Xanthomonas lineage there is evidence 

of crossover between units. ilvA, B and C along with leuA form a unit along with a single 

IG that separates ilvA and leuA from ilvB and ilvC. All five genes are tightly packed and  
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Figure 3.6: Clusters of the gly and ser SP. This figure shows a selection of clusters 

associated with the SP (the full set of clusters can be found in supplementary data 3.4). 

Taxon legend can be found in supplementary data 3.2. 
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Figure 3.7: Clusters of the ile, leu and val SP. This figure shows a selection of clusters 

associated with the SP (the full set of clusters can be found in supplementary data 3.5). 

Taxon legend can be found in supplementary data 3.2. 
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transcribed in the same direction, indicating an operon structure. A second likely operon 

structure forms the remainder of the cluster, consisting of leuB, C and D and an IG.  This 

second unit is separated from the first by a stretch of non-coding DNA and is transcribed 

in the opposite direction. While leuA is still part of the cluster as a whole it has been 

separated from the three other leu genes. This is curious, as the benefits of rearranging 

the standard configuration of the leuA, B, C and D operon are not obvious. One 

possibility is that it is a neutral or only slightly deleterious change. 

 

The lys, met and thr SP showed diversity in terms of cluster content (figure 3.8 and 

supplementary data 3.6). While clusters were small, on average consisting of two 

functionally related genes, the combinations of genes within each cluster varied from 

genome to genome. Lineage specific patterns were observable, for example genomes 

from the Pseudomonas lineage contained clusters of thrA with thrC, dapF with lysA, 

metH with asd and metE with metH. However, even among the Pseudomonas genomes 

many other combinations of functionally related genes existed. Some clusters appeared 

frequently across the data, these included the pairing of the metL gene with the metB gene 

and clusters of metL, thrB and metC.  

 

The clusters associated with the phe, trp and tyr SP, see figure 3.9 and supplementary 

data 3.7, showed patterns in line with the lys, met and thr SP. Many small clusters of 

different gene combinations were present. Similarly several combinations were 

frequently observed across the data such as the pairing of aroB with aroK and the pairing 

of aroD with ydiB. The notable exception was a large cluster containing trpA, trpB, trpC,  
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Figure 3.8: Clusters of the lys, met and thr SP. This figure shows a selection of clusters 

associated with the SP (the full set of clusters can be found in supplementary data 3.6). 

Taxon legend can be found in supplementary data 3.2. 
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Figure 3.9: Clusters of the phe, trp and tyr SP. This figure shows a selection of clusters 

associated with the SP (the full set of clusters can be found in supplementary data 3.7). 

Taxon legend can be found in supplementary data 3.2. 
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trpD and trpE. This cluster was strongly conserved and present in most genomes, 

implying selection for conservation of gene content and order. The cluster was not 

immutable; some Coxiella burnetii strains have a deletion of the trpD gene from the 

cluster. Genomes from the Pseudomonas lineage did not contain the cluster at all, though 

sets of smaller clusters containing the genes were found to be present. Many genomes, for 

example Pseudoalteromonas atlantica and Photobacterium profundum, had a tandem 

duplication of the trpD gene again highlighting the dynamic nature of the structure and 

content of the trp gene cluster. 
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3.4 DISCUSSION 

Runtime analysis of GenClust demonstrates a polynomial increase in computation time 

with increasing numbers of BLAST hits identified (figure 3.2). The algorithm for the 

identification of linked pairs is of order O(n2) were x is the total number of BLAST hits 

to query sequences. During the identification process BLAST hits must undergo a 

pairwise comparison in order to find all possible linked pairs of genes (the diagonal is 

subtracted because a gene is not a linked pair with itself and the total comparisons are cut 

in half as all linked pairs are reciprocal). Additional overhead occurs after the initial 

BLAST linking phase, as linked pairs must be overlapped. This adds computation time of 

the same order, however the overhead is inexpensive in comparison to the BLAST phase 

in general as there are generally much fewer linked pairs to overlap. Iterative overlap 

between the linked pairs further increases the runtime, however the iterations are also 

inexpensive when compared to the initial BLAST linkage phase and the overhead is 

dependent on the sizes of the clusters identified in the end (large clusters requires more 

iterations to join all the linked pairs). Using all 180 genomes produced runtimes that 

ranged from 4 hours for the asn and asp SP to 50 hours for the lys, met and thr SP. 

Runtime correlated strongly with total BLAST hits identified, with the asn and asp SP 

and lys, met and thr SP having the minimal and maximal values of each respectively. 

This correlation held true for the two other test cases, where 100 and 50 genomes were 

randomly selected from the original set and the analysis was re-run to examine the effect 

of a reduced number of genomes on computation time. Reduction in genome number 

produced a minimal (the asn and asp SP) and maximal (the lys, met and thr SP) runtime 

of 2 and 18 hours respectively for the 100-genome dataset and a minimal (the asn and asp 
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SP) and maximal (lys, met and thr SP) runtime of 1 and 4.5 hours respectively for the 50-

genome dataset. 

 

Most of the clustering data produced by GenClust was in line with expectations based on 

the number of genes involved with each SP. The ratio of BLAST hits to the number of 

clusters identified correlated strongly with the total number of genes in the SP. The 

exception to this was the gly and ser SP, which had a higher number of clusters identified 

than the asn and asp SP despite having fewer genes involved. This is readily explainable 

by examining the content of the gly and ser clusters (figure 3.6). A duplication of the 

glyA gene homolog, not the true glyA gene itself, accounts for the majority of clusters 

identified was thus inflates the total number of clusters identified for this SP.  

 

The average number of genes per cluster per SP was 2.55 when only functionally related 

genes were considered and 3.64 when IGs were included in the calculation. This implies 

that in general clusters of functionally related genes were small across the data, with most 

clusters consisting of only two functionally related genes. The increase in average cluster 

size when the IGs are included into the calculation implies that clusters are not tightly 

packed and that IGs are common in functionally related clusters, though it should be 

noted that just because an IG was not directly involved in an SP does not mean that it is 

not functionally related. Many IGs are likely to come from related pathways.  

 

Examining the average cluster size on an SP-by-SP basis (see table 3.2) provides some 

interesting insights into variations in cluster sizes across the data. Considering only 
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functionally related genes (figure 3.3) we see that for all SPs clusters of two functionally 

related genes are the most common, or exclusive in the case of the asn and asp SP. The 

total number of genes per SP does not correlate particularly well with cluster size in 

terms of individual SPs. The lys, met and thr SP has the most genes, at 21, however the 

largest clusters are of four functionally related genes. In contrast the ile, leu and val SP 

has 16 genes but the largest clusters contained 7 functionally related genes. This SP 

appears to have a tendency towards large clusters, with a spike in the graph for clusters 

containing 6 functionally related genes. This spike in the graph was unique, with the rest 

of the data for all the SPs tailing off quickly from high numbers of observations of two 

gene clusters to low numbers of observations of larger functionally related gene clusters. 

 

Adding in IGs to the calculation (figure 3.4) reduced the sharpness of the drop in terms of 

observations versus cluster size. Most of the trends stayed the same, with larger clusters 

occurring less frequently. One exception to this was a spike for three gene clusters for the 

gly and ser SP. This is explainable by the high frequency of a three-gene cluster 

containing two copies of a glyA homolog separated by an IG. Another exception are the 

clusters for the asn and asp SP which display an almost level curve ranging from two to 

six genes. This implies that no real pattern exists in the clusters for this SP. Interestingly 

the spike for the ile, leu and val SP leveled out when IGs were included. If the spike was 

due to the presence of a strongly conserved ancestral cluster of six functionally related 

genes then it would be expected that this would still be reflected the data when IGs were 

included. However no such spike exists when IGs are included, with a gentle decrease in 

number of observations versus cluster size. One possible explanation comes from the idea 
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of the larger clusters being composed of functional modules. The genes in these modules 

may be strongly conserved, but when modules are combined into larger clusters, they 

may be separated by varying numbers of IGs. Even the modules are not immutable, for 

example the leuA, leuB, leuC and leuD genes frequently cluster together in a potential 

operon but there are still examples where there is an IG in the middle of the module. The 

general trend across the data is that the presence of IGs in clusters is frequent and 

clustering of functionally related genes is not so strong as to exclude (potentially) non-

functionally related genes. 

 

Pairwise cluster co-occurrence data shows that not all genes co-occur with one another in 

the data (table 3.3-3.7). In fact the majority of possible co-occurrences are not seen in the 

data. The phe, trp and tyr SP showed the smallest number of unique co-occurring pairs, 

with only 25 percent of the total number of possible pairs observed. The ile, leu and val 

SP showed the highest level of cluster co-occurrence, with 54 percent of all possible 

pairings observed. This suggests there is a pattern to cluster content. It is likely that for 

SPs like the phe, trp and tyr SP, where several hundred clusters contain only a quarter of 

all possible co-occurrences of genes, that conservation of smaller ancestral clusters across 

the data limits the combination of genes within those clusters. Evidence of this can be 

seen in the visual analysis the cluster data (see figure 3.9 and supplementary data 3.7). 

Clusters such as the trpA, B, C, D and E genes are repeated many times, thus limiting 

potential variation. Contrastingly, The ile, leu and val SP displayed much greater 

variation. Clusters associated with this SP were generally larger (figure 3.7 and 

supplementary data 3.5). As previously discussed, some modules of genes were prevalent 



 137 

in the data for this SP, with larger clusters often consisting of combinations of these 

modules. Given the number of genes in the SP, sixteen, and the frequency of large 

clusters, it is not surprising that a large percentage of the genes are found to co-occur 

with one another. As such the co-occurrence data by itself does not imply that the ile, leu 

and val SP shows more variation in terms of cluster content than the other SPs, merely 

that large clusters relative to the number of genes examined increases the percentage of 

genes found to co-occur.  

 

The overall picture produced by the data is one small clusters being the norm. Many of 

these two gene clusters are likely to be false positives, as in the case of the glyA homolog 

duplication, where clustered sequences represent homologs but not true orthologs of the 

query sequences. This problem reduces as cluster size increases, large clusters of 

homogous sequences, such as those found for the ile, leu and val SP, have a higher 

likelihood of representing true orthologous clusters.  

 

Large clusters, as in the case of the ile, leu and val SP, show evidence of conserved sets 

of genes, themselves small clusters, coming together to form larger structures. While 

conservation was prevalent, considerable diversity still existed, and even strongly 

conserved ancestral clusters contained taxon specific IGs, duplications or deletions. This 

implies that selection for clustering is relatively strong but is not so strong that once a set 

of genes becomes clustered the structure of the cluster becomes unchangeable. GenClust 

allowed for rapid, large-scale identification and analysis of clusters of genes homologous 

to the initial set of amino acid biosynthesis superpathway genes present in E. coli K12. 
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In the next chapter I take a specific gene cluster, the paa cluster, and examine it in detail 

with respect to models of gene cluster and operon formation. I identify paa clusters 

across a wide range of bacterial genomes, using GenClust for initial identification of 

potential clusters and manual curation of the results to recover true paa gene clusters. I 

use a phylogenetic approach to analyse the evolutionary history of clustered paa genes 

for conflicting signals. I relate this analysis to how clusters and operons are prercieved to 

form. 
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Chapter 4 - Recurring cluster and operon assembly for       

Phenylacetate degradation genes 

 

4.1 INTRODUCTION 

The aerobic degradation of phenylacetic acid in E. coli K12 occurs via a series of five 

reactions, involving eleven catabolic paa genes (Ismail et al., 2003), two of which are 

distant paralogs, with the rest showing no sequence homology to one another (figure 4.1). 

The first step of the pathway is catalysed by the product of the paaK gene, a CoA ligase 

that catalyses the conversion of phenylacetate into phenylacetyl-CoA.  The second step 

involves a ring-oxygenase complex formed from the gene products of paaABCDE.  This 

heteromer converts phenylacetyl-CoA into 2’-OH-phenylacetyl-CoA. The third step, 

where 2’-OH-phenylacetyl-CoA is converted to 3-hydroxyadipyl-CoA, is jointly 

catalysed by paaJ, paaG and paaZ.  The fourth step sees the conversion of 3-

hydroxyadipyl-CoA by paaF and paaH to -ketoadipyl-CoA.  The final step is catalysed 

by paaJ, which converts -ketoadipyl-CoA to succinyl-CoA, thereby connecting 

phenylacetate degradation with the TCA cycle (Ismail et al., 2003).  In addition to these 

11 catabolic genes, E. coli K12 has 3 other paa genes, two of which regulate the pathway 

(paaX and paaY), the other has an unknown function (paaI).  Other E. coli strains such as 

E. coli O157 and E. coli O73 do not share homologs to all 11 catabolic genes, with no 

homologs found for paaA, paaB, paaC, paaD, paaE, paaG and paaK in either of these 

two genomes.  However, previous studies have identified other bacteria as having 

homologs to paa genes, such as Pseudomonas putida U (Olivera et al., 1998).  In 
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Figure 4.1: The phenylacetate degradation pathway and the paa gene clusters of E. coli 

K12 and P. putida KT2440. Steps in the pathways are colour coded by arrows, with 

genes encoding products involved in each step connected by a correspondingly coloured 

arrow.  
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addition to these 14 genes found in E. coli K12, a further three genes associated with the 

pathway were examined in this study.  These were paaL and paaM, coding for a 

phenylacetic acid transporter protein and a phenylacetic acid specific porin respectively, 

and tetR, a transcription factor. 

 

The genes involved in phenylacetate degradation in E. coli K12 and P. putida U are 

located in clusters (Ferrandez et al., 1998; Olivera et al., 1998).  In this study I define a 

gene cluster as a set of functionally related genes located in close physical proximity in a 

genome.  The term operon refers to a set of genes under common regulatory control that 

are transcribed into a single mRNA and are all co-directional in orientation on the 

chromosome.  An operon, therefore, is a more structured instance of a cluster.  All 

operons by definition are also clusters, but not all clusters are operons.  A gene cluster 

can consist entirely of independently transcribed genes or multiple operon structures or 

combinations of both.  Clusters and operons are observed both in prokaryotes and 

eukaryotes, however, the system of operon processing in eukaryotes involves mRNA 

splicing, and is different to the system in prokaryotes (Spieth et al., 1993; Blumenthal et 

al., 1995). 

 

Clustering of genes involved in the same metabolic pathway is a widespread phenomenon 

(Siefert et al., 1997; Dandekar et al., 1998; von Mering et al., 2002; Fani et al., 2005; 

Wong et al., 2005), and the polycistronic operon is a paradigm of prokaryotic genomic 

biology (Demerec and Hartman, 1959).  However, the process of operon formation 



 142 

remains poorly understood and the precise link between clustering and operon formation 

has never been fully explained, though several models exist. 

 

The simplest model is the natal model where clusters form via tandem gene duplications 

(Lawrence, 1997). However, many operons contain genes that are not homologous, but 

have some kind of functional link.  As a general mechanism of operon formation, the 

natal model is inadequate. 

 

The Fisher model postulates that clustering of genes into operons offers the benefit that 

random recombination events will tend to separate co-adapted genes less often if they are 

clustered together.  This model has suffered criticism recently because of observations of 

orthologous replacement in situ of operon genes (Omelchenko et al., 2003; Price et al., 

2006), which suggests that the primary reason for operon formation is unlikely to be the 

preservation of co-adapted alleles. 

 

The co-regulation model (Jacob et al., 1960) states that operons are formed in order to 

facilitate the production of gene products in equal measures.  This theory only accounts 

for operon maintenance.  In order for an operon to spontaneously form, rare, highly 

specific recombination events must occur.  However, it has recently been asserted that 

operon formation is driven by co-regulation (Price et al., 2005b).  This assertion is largely 

due to the more complex regulatory regions associated with operons in some "-

proteobacteria compared with genes that are not in operons.  However, this study only 

focused on operons and not on the broader issue of cluster formation. 
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The selfish operon model (SOM) suggests that operons in prokaryotes are in some 

respect like viruses or transposons and their formation facilitates their horizontal gene 

transfer (HGT) (Lawrence, 1997).  The formation of an operon is therefore of no direct 

benefit to the organism but it means that the fitness of gene cluster itself is enhanced.  An 

extension of the SOM posits that if HGT is indeed the main reason for operon formation, 

non-essential genes are more likely to be in operons/clusters than essential genes 

(Lawrence, 1997).  However, Pál and Hurst have provided evidence that essential genes 

are more likely to be found in operons and clusters than non-essential genes, thereby 

presenting a significant problem to the SOM (Pál and Hurst, 2004). 

 

A recent proposition has been made that gene clustering is due to the relative difficulty of 

protein movement through the cellular matrix (Svetic et al., 2004).  This model, known as 

the protein immobility model (PIM), suggests that because transcription and translation 

are coupled in prokaryotes, the resulting physical proximity of enzymes minimizes the 

steady state level of reaction step intermediates thereby saving energy and reducing the 

amount of protein that needs to be produced.  The PIM has not been tested using 

empirical data, but has been supported by computer simulation.  An observation that 

indirectly supports the PIM is the study by Elowitz et al. that shows that protein diffusion 

is slower through the cytoplasm than through water, is adversely affected by the size of 

the protein, and is also reduced when expression levels are higher (Elowitz et al., 1999).  
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Lastly, Fang et al. have suggested that the clustering of genes is due to persistence (Fang 

et al., 2008). They observed that two types of genes show a high tendency to cluster 

within a genome, genes that are widely distributed, the ‘persistent’ genes, and genes that 

are very narrowly distributed, the ‘rare’ genes. The clustering of rare genes was explained 

by the SOM, as these rare genes were likely candidates for HGT. Fang et al. suggested 

that the clustering of persistent genes was due a constant flux of insertion and deletion 

events, with the probability such events disrupting a persistent gene, which would have a 

negative impact on an organisms fitness, decreasing when the genes are clustered. Fang 

et al. supported this assertion with a number of computer simulations. 

 

Because paa genes show a patchy phylogenetic distribution and previously observed paa 

clusters have diverse structures that appear to be independent of the species phylogeny, it 

was clear that the phenylacetate degradation pathway was important to study from an 

evolutionary standpoint.  Indeed, phenylacetate degradation has previously been 

identified as a potential model for understanding the evolution of metabolic pathways 

(Luengo et al., 2001).  By examining the gene content of previously studied paa clusters 

a total of 17 genes are associated with the pathway including catabolic genes, regulatory 

genes, a transporter and an exporter.  In this study I identify new paa gene clusters and 

examine the structure and distribution of paa gene clusters with respect to their evolution 

and implications for models of both cluster and operon formation. 
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4.2 MATERIALS AND METHODS: 

 

4.2.1 Homolog identification 

An iterative strategy for locating homologs to all 17 genes encoding proteins involved in 

the degradation of phenylacetate was implemented.  Initially, the genomes for taxa 

containing known paa gene clusters, previously reported in the literature, were 

downloaded from GenBank (Benson et al., 2007). A BLAST-based (Altschul et al., 1997) 

similarity search strategy was used to extract all the known paa genes from these initial 

genomes and used them in order to find homologs in other completed bacterial genomes.  

These additional bacterial genomes were downloaded from GenBank, bringing the total 

number of genomes in the dataset to 102 (see supplementary information S. I. 4.1 for the 

full list).  

 

Alignments were generated using Muscle v3.5 (Edgar, 2004) for genes where multiple 

homologs were found (see S. I. 4.2 for alignments). The exceptions were the paaL and 

paaM genes that were only found only in P. putida KT2440.  This gave a total of 15 

initial alignments.  These alignments were then used as input for PSI-BLAST using the 

default parameters (Altschul et al., 1997), with the larger dataset of 102 bacterial 

genomes as the input database.  This gave a comprehensive list of homologs, see table 4.1 

for further information. 

 

GenClust was used to analyse the PSI-BLAST results for homolgous gene clusters. 

GenClust iteratively identified sets of linked genes from the PSI-BLAST results.  If two  
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Gene From literature After PSI-BLAST 
paaA 16 25 

paaB 16 25 

paaC 16 25 

paaD 16 25 

paaE 13 23 

paaF 8 177 

paaG 11 23 

paaH 9 145 

paaI 12 19 

paaJ 11 277 

paaK 14 37 

paaL 1 1 

paaM 1 1 

paaX 6 13 

paaY 5 84 

paaZ 9 399 

tetR 8 14 

 

Table 4.1: Homolog identification. The first column contains all 17 paa genes. The 

middle column represents the number of genes taken from previous studies on known 

paa genes. The third column contains the number of homologous genes identified after an 

iterative search using PSI-BLAST. 
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genes found in the result files generated by the PSI-BLAST searches came from the same 

genome and had no more than five intervening genes between them, then such genes 

were considered to be an initial linked pair. All initial linked pairs were identified and 

then merged by the software if they overlapped. In this way, clusters of various sizes 

were identified. 

 

4.2.2 Construction of phylogenetic trees:  

The 15 gene families were used to build phylogenetic trees. paaL and paaM were 

excluded from any further analysis as no homologs to these genes were identified. The 

amino acid sequences of all homologs were extracted from their genome files and each 

family was aligned using Muscle v3.5 (Edgar, 2004) with all settings at their default 

values. Model selection was performed on the alignments using ModelGenerator (Keane 

et al., 2006) and maximum likelihood phylogenetic trees were constructed based on the 

selected models using Phyml v3.0 (Guindon and Gascuel, 2003). Confidence in 

phylogenetic hypotheses was assessed using the bootstrap resampling approach 

(Felsenstein, 1988) (see S. I. 4.3 for phylogentic trees).  

 

4.2.3 Visualisation of clusters on phylogenetic trees: 

For each gene family, it was important to be able to visualise both the relationships 

among members of the family and their cluster context simultaneously.  Visualisation of 

each gene cluster was achieved by extracting the necessary genomic location information 

for the cluster from the corresponding GenBank file.  This was carried out automatically 

using GenClust (see chapter 3).  Once this information was parsed from the GenBank 
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file, the corresponding cluster was drawn using the postscript language (Adobe Systems, 

San José, California).  Visual representations of the clusters were then merged with the 

phylogenetic trees. If, for instance, a cluster contained the genes paaA and paaB, then this 

cluster will appear on the paaA tree at the phylogenetic position of the paaA gene and on 

the paaB tree at the phylogenetic position of the paaB gene. Adobe Illustrator files 

(Adobe Systems, San José, California) can be found in S. I. 4.4 (note however that some 

trees, for example paaJ, were too large to visualise in this manner).  

 

4.2.4 Identification of HGT events: 

For the comparison of the evolutionary history of homologous genes a bootstrap 

resampling approach was used to detect potential HGT events. If two homologous genes 

from a pair of structurally similar clusters were found as close relatives on their 

corresponding phylogenetic tree then it was assumed that there was no evidence of HGT. 

If however the two genes did not group closely on the phylogenetic tree and instead 

grouped with homologous genes from clusters that showed no obvious structural 

similarity then a potential HGT event was inferred. The strength of confidence in both 

sister-group relationships and potential HGT events was determined by the bootstrap 

values for the nodes involved. A support value of 70 percent or higher for a particular 

grouping was considered strong support, while less than 70 percent support was 

considered weak support. The analysis of HGT events was carried out manually and 

further refined by considering the underlying species phylogeny of the taxa involved. 
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4.3 RESULTS: 

 

In order to test whether a cluster has been independently assembled more than once, the 

phylogenetic trees of both cluster and non-cluster homologs were examined.  If a cluster 

has originated once and has never been subsequently perturbed, then for every gene in the 

cluster the corresponding phylogenetic tree will include a clade containing all the species 

in which the cluster is present.  Given the prevalence of HGT (Kinsella et al., 2003) this 

clade does not have to correspond to any recognised phylogenetic group. The only 

relationships that are of importance are the relationships of the genes. 

 

4.3.1 Variation in cluster and operon content and context: 

Table 1 shows a summary of all 1,311 homologs identified via the PSI-BLAST searches, 

in terms of the frequency with which they were found in a paa gene cluster and if found 

in a cluster, how often they were in an operon. In the cases of paaA, B, C and D the genes 

were always found in an operon and obviously therefore, always in a cluster.  For paaE, 

in 19 out of 23 instances it was found with other paa genes.  paaI was always found in a 

cluster (19 occasions) and the majority of times (16 out of 19), in an operon.  Similarly 

paaX and tetR were found relatively rarely (13 and 14 times respectively) and were 

usually found in clusters (11 out of 13 for paaX, 12 out of 14 for tetR) and 7 times each, 

they were in operons.  paaG was found 23 times, 17 times in a cluster and 16 out of those 

17 times it was found in an operon.  paaK is found 37 times and in slightly more than 

50% of the instances (21 of 37), it is in a cluster and the majority of times that it is in a 

cluster it is in an operon (19 of 21).  The remaining five genes paaF, paaH,  
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Gene In 

cluster 

Not in 

cluster 

In 

operon 

Not in 

operon 

Total genes Alignment 

length (aa) 
paaA 25 0 25 0 25 358 

paaB 25 0 25 0 25 232 

paaC 25 0 25 0 25 324 

paaD 25 0 25 0 25 229 

paaE 19 4 19 0 23 716 

paaF 14 163 10 4 177 879 

paaG 17 6 16 1 23 401 

paaH 12 133 9 3 145 976 

paaI 19 0 16 3 19 194 

paaJ 11 266 11 0 277 1070 

paaK 21 16 19 2 37 517 

paaX 11 2 7 4 13 331 

paaY 5 79 3 2 84 357 

paaZ 22 377 8 14 399 1551 

tetR 12 2 7 5 14 308 

All 263 1048 225 38 1311 - 

 

Table 4.2:  Frequency of presence in a cluster and operon. This table shows the number 

of times potential paa genes were observed both inside and outside of clusters and 

operons. 
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paaJ, paaY and paaZ are more widely distributed and the majority of times these 

homologs are not found in clusters or operons.  The gene that is least likely to be found in 

an operon is paaY, which is only found in an operon in 3 out of 84 instances.  

Interestingly, apart from paaA, B, C, D and E, where being in a cluster automatically 

means being in an operon, most other genes are found in an operon the majority of the 

times they are found in a cluster.  The exception is paaZ, where for 14 out of 22 instances 

of the gene being in a cluster it is not in an operon. 

 

Figure 4.2 shows the set of unique operons involving two or more paa genes found in all 

identified clusters.  The most striking aspect of this analysis is the sheer diversity in terms 

of size, gene content and gene order among the operons.  A total of 33 different operons 

were identified, ranging in size from 2 to 11 genes.  Out of the 33 unique operons only 

two display identical gene content, one being paaXY, the other paaYX.  This diversity is 

not surprising from a mathematical standpoint, given that 17 genes were examined in the 

study.  Even for operons consisting of only 2 genes there are 289 possible permutations.  

Aside from the paaABCDE operon, which is clearly under strong selection (all 25 

clusters form operons), no particular operon composition or configuration is dominant.  

This result seems to indicate that operon formation (apart from paaABCDE) is not 

dependent on the composition of the genes that are present.  Operons seem to form, 

simply when members of the pathway are present and no single operon composition or 

order is obligatory. 
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Figure 4.2: An exhaustive list of all observed operons in the dataset of 102 genomes 

examined.  Each arrow represents a gene, with the name of the gene being given in the 

legend.  I.G. refers to an intervening gene, which is a gene in the cluster that is not 

involved in the degradation of phenylacetate. 
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4.3.2 Co-occurrence and intra-cluster distance: 

 

Figure 4.3 shows co-occurrence frequency and average cluster distance for paa genes. 

Some traits stand out. tetR is never found in a cluster with paaX, implying that tetR may 

serve a similar function to paaX. tetR is also a regulatory gene so this seems like a 

reasonable conjecture. tetR is also never found in a cluster with paaL and paaM. 

However, this is not unexpected as paaL and paaM are only in one cluster and this cluster 

contains a copy of paaX. Aside from these three instances, all other genes are found to 

co-occur in at least one cluster. In terms of average distances between genes in a cluster, 

some genes show a strong bias in terms of their location. paaABCDE is frequently found 

at the edge of a cluster or near an inserted non-paa gene. paaABCDE has no obvious 

affinity/bias to being close to any of the other paa genes. This high frequency of being 

close to the edge has the knock-on effect of funneling all the other genes to one side of 

paaABCDE. paaF, paaG and paaH are on average found in close proximity in a cluster. 

paaI and paaK  are also found close to each other. paaJ is generally close to paaF, paaG, 

paaH and paaI. paaL and paaM are only found in one cluster and therefore no 

conclusions could be drawn about their location in the context of a cluster. paaX, paaY 

and tetR, who function as regulators of the pathway show a preference for being located 

towards the edge of the cluster, with tetR often being found close to an insertion, while 

paaX and paaY are on average located further away from insertions than any of the other 

genes.  paaZ shows no strong relationship  in terms of distance to any of the other genes 

but does have a tendency to be found close to the edge of a cluster or close to an 
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Figure 4.3: Co-occurrence and average distance of clustered genes. The colour chart 

denotes the number of times a pair of genes co-occurs in a cluster. The colouring of the 

edge row denotes total observations of each gene, as every cluster has an edge. paaA, B, 

C, D and E are treated as a single entity. The size of the circles is inversely proportional 

to the average distance between a pair of genes when clustered. Large circles imply a 

small average distance between a pair. Edge denotes the edge of a cluster. Insertion 

denotes a non-paa gene. 
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insertion. Excluding paaL and paaM from the analysis, the genes pairs that are on 

average furthest apart are paaY with paaABCDE and paaY with paaZ. The least 

frequently observed genes across the clusters were paaL, paaM and paaY. Despite some 

patterns mentioned above, no strong signal is prevalent across the data. If a single 

original cluster structure was responsible for all the clusters examined in this study, then 

it would have been expected that some signal of that structure would still exist in the 

extant clusters, but instead there is a diversity in cluster structure and content that can be 

most parsimoniously explained from the idea of multiple independent assemblies of the 

paa gene cluster. 

 

4.3.3: Transcriptional orientation of paa genes: 

Table 4.3 shows orientation data for all paa genes found to occur in a cluster. Three 

possible orientations were considered: head-to-head, where two paa genes were side by 

side and transcribed in opposite directions pointing towards one another, head-to-tail, 

where transcription of the pair occurred in the same direction, and tail-to-tail, where 

transcription of the pair occurred in opposite directions and pointing away from one 

another. All neighbouring pairs of paa genes were examined. The most common 

orientation was head-to-tail, observed a total of 193 times. Tail-to-tail pairings were 

much less frequent, occurring only 20 times. However by far the least observed 

orientation was the head-to-head which occurred only once between a neighbouring pair 

of paa genes. 
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Pairwise orientation Observed instances 

Head-to-tail 193 

Tail-to-tail 20 

Head-to-head 1 

 

Table 4.3: The orientation of all observed paa gene pairs.  This table refers to all 

instances in the data where two paa genes were found next to one another in the genome. 
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4.3.4 Analysis of gene clusters containing all 11 catabolic paa genes: 

 

In order to establish how operons and clusters grow, the evolutionary history of the genes 

involved in the largest clusters was examined in detail. Of particular interest was whether 

for large clusters there was selection to keep co-adapted alleles together.  Five clusters 

were identified in the dataset that were almost complete and were present in genomes that 

were not thought to be each others’ closest relatives as judged using phylogenetic 

supertree methods based on completed genomes (Pisani et al., 2007).  These included the 

clusters found in E. coli, P. putida, Rhodoccoccus sp., Nocardia farcinica and 

Corynebacterium efficiens.  The evolutionary history of these clusters was examined in 

detail: phylogenetic trees and additional data are available as supplementary information 

(see S. I. 4.3 and 4.4).   

 

Figure 4.1 shows the operon structures observed in E. coli K12 and P. putida KT2440.  In 

E. coli K12, all fourteen genes involved in the pathway are clustered together and the 

cluster is broken into three operons (Ferrandez et al., 1998).  paaABCDEFGHIJK are 

present in one operon, paaXY in another and the paaZ gene is transcribed by itself. 

 

Superficially, the cluster in P. putida has high levels of similarity to the cluster in E. coli 

K12 with simple rearrangements of the order of blocks of genes accounting for the 

majority of the observed differences, at first glance (see figure 4.1). In P. putida the gene 

cluster is arranged in five operons (Ferrandez et al., 1998) with paaABCDE being in one 

operon and paaFGHIJK being in a second, where both are merged in E. coli. paaLM and  
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an unrelated gene are in another operon, paaYX is in an operon (the order is reversed in 

E. coli) and paaZ is transcribed by itself in the cluster. The gene content difference 

between the two clusters is the presence of paaL, a phenylacetic acid transporter, and 

paaM, a phenylacetic acid specific porin, along with an additional gene not known to be 

involved in phenylacetate degradation. paaL and paaM are only present in P. putida and 

in none of the other 102 genomes studied. 

 

The phylogenetic analyses of the genes in these two clusters reveal a much greater degree 

of difference. The phylogenetic trees for all genes in these clusters were examined, with 

the expectation that the individual genes would be each other's closest relatives or at least 

reasonably closely related. For the paaA, C, D, F, G, I, J, K and X genes the E. coli and 

the P. putida copies grouped closely on a phylogenetic tree (see figure 4.4). 

Contrastingly, for paaB, E, H, Y and Z there was support for the separation of the two E. 

coli sequences from the P. putida sequences on their respective phylogenetic trees (figure 

4.5). This result indicates that orthologous gene displacement has replaced a considerable 

number of genes in these clusters since the clusters separated from their common 

ancestor. Given the compositional similarity the most parsimonious explanation is that a 

complete cluster existed in the past and the two that exist in E. coli and P. putida today 

are descended with great modification, probably by rearrangement, insertion and 

orthologous displacement from the ancestral cluster. Of particular interest is the 

paaABCDE operon which is relatively invariable (see previous results), but from this 

analysis it is still subject to gene turnover and replacement. Notably these are the 
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Figure 4.4: Phylogenetic tree for the paaK gene. On the left is the gene tree for paaK, in 

the middle are the clusters of genes in which the respective paaK genes are found, with 

the paaK genes aligned to one another and facing away from the tree.  On the right are 

the taxon names (colouring representative of different bacterial groups). Strongly 

supported nodes (greater than 70 percent bootstrap support) are denoted with a ‘*’. 
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Figure 4.5: Phylogenetic tree for the paaE gene.  
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two most complete and similar clusters in the dataset. Extrapolating from this result and 

going further back through evolutionary history, assuming a similar rate of gene 

replacement, then it is likely that replacement of every single gene in this cluster – one at 

a time – can occur relatively rapidly. 

 

4.3.5 The Rhodococcus sp./Nocardia farcinica/Corynebacterium efficiens clusters: 

 

Rhodococcus sp. and Nocardia farcinica have two clusters that are very similar both in 

terms of gene content and orientation of genes within the cluster. In all phylogenetic 

analyses of the paa genes in the clusters, there is strong support for a sister group 

relationship between these two taxa (see figure 4.6). This suggests a recent common 

ancestor of both clusters. The N. farcinica cluster is split into four operons, the first is 

paaI by itself, the second contains a non-paa gene and paaZ, the third is tetR by itself and 

the fourth contains paa J, F, H, G, A, B, C, D, E and K. The Rh. sp. cluster is split into 

two operons, the difference being that paaI is in an operon with a non-paa gene and paaZ. 

This is followed by an operon consisting of paaJ, F, H, G, A, B, C, D, E, and K. These 

clusters are very different in terms of gene order when compared with either E. coli or P. 

putida. 

 

The Corynebacterium efficiens cluster has some similarities to the Rh. sp./N. farcinica 

cluster. Firstly the gene content is almost identical, the only difference being that there 

are two copies of paaF in the C. efficiens cluster while paaG is absent. Secondly, all  
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Figure 4.6: The paa gene clusters of N. farcinica, Rh. sp. and C. efficiens. The gene 

clusters of N. farcinica and Rh. sp. show share an almost completely conserved structure, 

with the presence of tetR in the N. farcinica cluster being the only difference. The C. 

efficiens cluster is more divergent but shares some subtle features in the layout of the 

genes and gene content. The non-paa genes located on the left-hand side of all three 

clusters are homologs of one another. 
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three clusters contain a gene of unknown function, and these three genes are homologs of 

one another. Thirdly, the C. efficiens cluster contains a copy of the tetR transcriptional 

regulator, as does the N. farcinica cluster. Interestingly, Rh. sp. also contains a copy of 

the tetR gene, but it does not lie in the Rh. sp. paa cluster. Examining the phylogenetic 

tree for the tetR gene shows that the non-clustered Rh. sp. tetR gene is sister to the 

clustered copy in N. farcinica (see the tetR gene tree in S. I. 4.3 for more detail). Lastly, 

there are subtle patterns of similarity in gene order with paaZ, J, G, F and H all in close 

proximity to one another in the three clusters, as were paaA, B, C, D, E and K. 

     

When the phylogenetic relationships was reconstructed between the genes on the C. 

efficiens and the Rh. sp./N. farcinica clusters a sister group relationship was recovered for 

the paaF, H, I, J, and K genes with strong bootstrap support for this arrangement (see 

figure 4.4). However, for the paaA, B, C, D, E and Z genes there is strong support for 

grouping Rh. sp./N. farcinica with Streptomyces coelicolor, although in some cases the C. 

efficiens homolog is nearby on the tree (figure 4.5, 4.7 and 4.8). S. coelicolor has a paa 

cluster consisting of paaK, I, A, B, C, D and E. The results suggest that the paaABCDE 

operon in Rh. sp./N. farcinica/S. coelicolor are each others closest relatives for all the 

genes in the operon, while for the paaK and paaI C. efficiens groups while Rh. sp. and N. 

farcinica, to the exclusion of S. coelicolor. 

 

An analysis of all five near-complete clusters does not support a single origin of these 

clusters and there are no genes that place E. coli or P. putida as sister-taxa to genes from  
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Figure 4.7: Phylogenetic tree for the paaA gene. 
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Figure 4.8: Phylogenetic tree for the paaC gene. 
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the C. efficiens or Rh. sp./N. farcinica genes. This indicates that formation of these near-

complete clusters occurred independently on at least these two occasions, one assembly 

occurring in the proteobacteria and the other in the actinobacteria. 

 

4.3.6 Comparative analysis of paaK and paaC gene trees: 

A comparative analysis of the evolutionary histories of the paaK and the paaC genes can 

be seen in figures 4.5 and 4.6. The paaC gene is always found in an operon with paaA, B 

and D. Also, there is only one instance where this operon is not found in a cluster with 

other genes from the phenylacetate degradation pathway (i.e. in the case of 

Symbiobacterium thermophilum). The paaK gene is found in a cluster of more than two 

phenylactetate degradation genes approximately half of the times it is observed, the rest 

of the time, it is found as a single gene in the genome. There are four clans (Wilkinson et 

al., 2007) (the tree is only rooted for convenience, but is really unrooted) in which the 

paaK gene is at the edge of a cluster. Overall, it can be seen that the clusters for both 

genes dynamically grow, shrink and are rearranged (additional phylogenetic trees for 

every gene are supplied in S.I 4.3 and 4.4 and the reader should consult these trees). 

 

To illustrate the variability in cluster context it is possible to take some examples from 

figure 4.8. In the paaC tree (figure 4.8), the two instances of this gene in Azoarcus sp. 

EbN1 are located in completely different areas of the genome and both are part of a paa 

gene cluster. They are not particularly closely related genes, as evidenced by their 

phylogenetic positions.  A reasonable speculation is that one or both of these genes was 
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introduced into the genome via horizontal gene transfer.  In contrast the two instances of 

paaK (figure 4.6) found in A. sp. are indeed each other’s closest relatives, indicating a 

relatively recent gene duplication event.  The Thermus thermophilus and Deinococcus 

radiodurans genes on both trees are nearest neighbors, suggesting a relatively recent 

common ancestor.  This relative recentness of common ancestry might lead to the 

expectation that the cluster context of these two genes might be similar, however, the D. 

radiodurans paaK gene is not in a cluster, whereas the D. radiodurans paaC gene is in a 

cluster. Also, Deinococcus and Thermus are thought to form a bacterial clade (Garrity 

and Holt, 2001), so this orthology might be preserved since these two taxa shared a 

common ancestor. 

 

On the paaC tree, there are three Bordetella clusters that are almost identical in terms of 

gene content and order.  However, in one of the three genomes (that of B. pertussis 

Tohama I) there are two genes in the middle of the cluster that are not found in the other 

two strains. These two genes seem to have displaced the paaE gene in B. pertussis 

Tohama I, which lacks a copy of paaE.  The other two Bordetella strains have copies of 

paaE in their clusters.  The most parsimonious reconstruction, based on the paaC tree is 

that these two genes have been inserted into the cluster in B. pertussis Tohama I. 

 

These observations demonstrate the enormous variability and rapid rate of assembly and 

disassembly of clusters as well as the semi-independent assembly of two near-complete 

clusters. 
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4.4 DISCUSSION 

 

In this work, the evolutionary history of the genes involved in the phenylacetate 

degradation pathway has been analysed, with a view to understanding the origin and 

spread of functionally related gene clusters and operons. 

 

The most surprising result from this study is the observed diversity in terms of both 

cluster and operon structure. Based on the different structures present in the data, the 

clustering of phenylacetate degradation genes has occurred repeatedly in several different 

lineages, the clusters themselves are mosaics and are generally composed of genes that 

have been acquired from other species, either recently or relatively recently. Often, 

strains of the same species have very different cluster structures and indeed in the case of 

E. coli and P. putida, even though the clusters look similar, many of the genes cannot 

trace their most recent common ancestor to the same point. In other words, orthologous 

gene displacement is quite common, as is illegitimate recombination. This has been 

reported previously (Omelchenko et al., 2003) and it indicates that the selective pressure 

to form clusters is not so strong that clusters, once formed, become immutable or that 

clusters continue to become larger. 

 

In general, operon destruction as well as operon formation is seen to occur in the dataset 

and there are a total of 33 unique operon structures. This suggests that either the selective 
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advantage that accrues as a result of operon formation is not very strong and 

recombination followed by random genetic drift can successfully break up operons (a 

neutralist explanation) or that if indeed a selection pressure exists that drives operon 

formation, there exists another opposing selection pressure to split operons. It is also 

possible that a selective advantage could exist to create an operon, but subsequently this 

advantage is no longer present as the environment changes. Irrespective of the 

explanation, it seems that for this particular pathway, the formation of large operons 

containing most or all of the genes is not necessarily hugely important, or perhaps it is 

not possible. The exception to the rule is seen in the paaABCDE operon, which is 

strongly conserved. The obvious explanation is that these proteins products physically 

interact and their existence in equimolar concentrations is necessary. Therefore, there is a 

gradient of selective pressure for co-regulation which is strongest for interacting proteins 

in our small dataset, less strong for proteins that do not physically interact and indeed co-

regulation might be a selective disadvantage in some cases (in 14 out of 22 cases paaZ is 

in a cluster but not in an operon) and may lead to the successful destruction of an operon. 

 

One strong bias present in the data is the general absence of head-to-head orientation of 

genes in these clusters (table 4.3).  There is no obvious reason for the relative absence of 

head-to-head orientation of genes, since genes are frequently found on opposite strands of 

DNA and are often in a head-to-head orientation (personal observation).  However, 

within these clusters, the number of times a head-to-head orientation of genes in this 

pathway is observed is 1 time out of a total of 214 observed paa gene pairs. Tail-to-tail 

orientations are more frequent, but also relatively rare, occurring only 20 times. Head to 
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tail orientations dominate the data, with a total of 193 such pairs. By random chance we 

would expect to observe equal numbers of head-to-head, tail-to-tail and head-to-tail 

orientations of cistrons.  Operon structures account for the majority of the bias in favour 

of a head-to-tail orientation as it is a requisite for membership in an operon. This does not 

explain the near absence of head-to-head arrangements observed and it is likely that there 

is a selective pressure that prevents particular arrangements of operons and single genes 

with respect to one another. Exactly what this selective pressure is remains unclear, but is 

possibly related to collisions of transcription apparatuses. 

 

The study also sheds some light on the various models of cluster and operon formation. 

The expectation from the natal model of operon growth is that all genes in the operon are 

evolutionarily related. This theory is clearly insufficient to account for the observations in 

this analysis. 

 

The selfish operon model (SOM) posits that operons exist so that they can be easily 

transferred via horizontal gene transfer. The analysis shows that there is evidence of gene 

replacement within a cluster and within an operon and this presents a difficulty with the 

hypothesis that operons exist in order to facilitate their transfer as a group. Additionally, 

the sheer diversity of operons present in the analysis is at odds with the SOM. There are 

33 unique operon structures. Even the clusters of E. coli K12/W and P. putida, which are 

clearly homologous, differ in gene content, order, operon structure and show evidence of 

orthologous replacement via HGT. While it is not in doubt that there is an advantage to 
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passing a set of genes horizontally, the results show little evidence of selfish operon style 

transfers. The only stable operon structure is that of paaADCDE and this is an example of 

an operon that cannot exist outside of a selfish operon framework, since the gene 

products form a complex with one another. In addition, Pál and Hurst have already shown 

that essential genes are more likely to be in an operon than non-essential genes and this is 

also incompatible with the SOM (Pál and Hurst, 2004). 

 

The Fisher model states that cluster formation is a way of keeping co-adapted alleles 

together. It is clear from the analysis that the turnover rate of alleles is high and alleles do 

not seem to spend much time being inherited together and so this model is not compatible 

with the data. 

 

The co-regulation model, while recently receiving some support from an analysis of 

operons only (Price et al., 2005b) is also insufficient to cover some of the observations of 

this analysis. Many genes present in a cluster, but not in an operon 38 times.  Genes are 

located in operons 225 times, however, 119 of those times the operon is the paaABCDE 

operon, which contains genes that form a single heteromeric complex. The co-regulation 

model only governs operon maintenance and is strongly in operation for the maintenance 

of paaABCDE but is still insufficient to explain all the data.  

 

The protein immobility model (PIM) fits with the idea that there is a small selective 
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advantage for clustering genes together. The reason for this small selective advantage is 

the effect macromolecular crowding has on the movement of proteins in the cell. 

Macromolecular crowding tends to increase the speed of biochemical reactions (Ellis, 

2001), whilst simultaneously limiting the ability of large proteins to move around the 

cell. While the cellular matrix is a dynamic environment, the movement of a protein 

through the cytoplasm of a prokaryote is slower than through water (Elowitz et al., 1999) 

and when several proteins are involved, this is likely to result in sufficient restriction of 

movement that a selective advantage accrues for an organism that synthesizes 

functionally related proteins in close proximity to one another. However, the PIM only 

covers the formation of clusters and does not cover operon formation and maintenance. 

Based on the data, operon formation and maintenance is not an inevitable consequence of 

cluster formation, perhaps simplifying transcription. 

 

The persistence model is somewhat difficult to apply to the data as it does not consider 

clustering in terms of functional relatedness but rather in terms of how widely distributed 

genes are. Given that there is a high level of clustering of paa genes with one another this 

implies that there is selection for clustering based on membership of a common metabolic 

pathway, independent of how widely distributed the genes are. The different genes 

involved in the pathway show large variation in terms of their distribution, however, 

excluding paaL and paaM, which are specific to the P. putida cluster, all genes occur in 

multiple clusters.  As such, the persistence model does not explain the observed data.  
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A number of studies have indicated that transcriptional control of independent 

transcription units (single genes and operons) is likely to have influenced genomic 

structure (Hershberg et al., 2005). This is reflected in the co-localisation of genes that are 

controlled by the same transcription factor. Additionally, the distribution and orientation 

of transcription units is not random  (Warren and ten Wolde, 2004) and is associated with 

an optimisation process. In this study it is evident that while these genome optimisation 

processes are under way, the process of horizontal gene transfer and within-cluster gene 

content perturbation is continuous and at times fairly radical. 

 

It is important to note that no one model of operon assembly completely covers the 

observations of this analysis. Perhaps a more robust model would be one that deals with 

cluster and operon formation as different levels of organisation. Operon formation occurs 

subsequent or at the same time as cluster formation, however, the data clearly show that 

operon formation is not absolutely necessary. The majority of genes in clusters also in 

operons, but this is likely to be a secondary advantage ensuring that they are transcribed 

at the same time. A more comprehensive model requires a component that provides a 

selective advantage for moving genes closer together in a genome and a separate 

component providing selective advantage for operon formation. In terms of the current 

models, the best fit would be a combination of the PIM and the co-regulation model. 

 

Perhaps more important, however, is evolutionary history of the genes of the 

phenylacetate degradation pathway. The massive diversity of the clusters and operons 
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observed, coupled with complete lack of correlation to phylogeny, provides an interesting 

insight into just how dynamic is the process rearranging the position of genes in a 

genome. While this is only a single pathway, the evidence still strongly implies the 

existence of a complicated underlying system in prokaryotes based upon a recombination 

selection balance. Even if phenylacetate degradation is unusual when compared to 

clusters associated with amino acid biosynthesis or other core pathways, it may provide a 

much deeper understanding of the principles of cluster and operon formation than static, 

widely distributed gene clusters ever could. 
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Chapter 5: Discussion 

 

 
In their 2006 paper, Ciccarelli et al. stated that “reconstructing the phylogenetic 

relationships among all living organisms is one of the fundamental challenges in biology” 

(Ciccarelli et al., 2006). However, using an alignment of 31 concatenated genes they 

produced what they deemed a “highly resolved Tree of Life”. This tree came under 

scrutiny for the small number of genes used to derive the phylogeny, less than 1 percent 

of the genes in the average prokaryotic genome (Dagan and Martin, 2006).  

 

The existence of a tree of life continues to be the center of intense debate. Some believe 

they have found it (Ciccarelli et al., 2006), many believe it cannot exist in the face of the 

processes that underpin evolution in the prokaryotic division (Dagan and Martin, 2006; 

Bapteste et al., 2008). Regardless of whether a tree of life exists, there is no denying that 

defining a tree like phylogeny for certain groups has proved troublesome. 

 

The eukaryotic domain of the tree of life has its own difficulties, typified by debates such 

as the Ecdysozoa versus Coelomata hyopotheses (Philip et al., 2005; Phillipe et al., 2005) 

and the origins of the eukaryotic genetic apparatus itself (Cox et al., 2008). Even in the 

absence of high levels of HGT and genome re-organisation seen in the prokaryotic world, 

these problems do pose serious difficulties for defining a tree of life (Rokas and Carroll, 

2006). It should be noted, however, that as methods advance and sampling density 

increases there is every chance that many of the ongoing debates concerning the 

eukaryotic groups will be settled one day.  
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For a tree of life to exist we must be able to define the relationships between all 

biological organisms while keeping within a tree-like framework. Nowhere is this more 

difficult than in the prokaryotic world, where HGT disrupts the underlying signal of 

vertical inheritance (Bapteste et al., 2008). In recent work, Bapteste et al. used careful 

methods for selecting core genes from which to build a prokaryotic phylogeny with 

(Bapteste et al., 2008). They found that only 0.7 percent of the average prokaryotic 

genome could be used to build a prokaryotic phylogeny and that even then it was safer to 

assume a “comb-like” structure rather than a tree like one. 

 

In this thesis, I look at another problem in constructing a tree of life. What happens when 

we explore a small set of closely related genera, species and strains? Can a tree like 

structure be found for a group of closely related genomes, and if not, then at what point 

does a tree-like structure break down?  

 

The answer is of course dependent on both the data and the methods, and for this reason 

different methods and different portions of the genome were examined for evidence of 

tree-like signal. Ultimately, the traditional classification of members of the YESS group 

was of little importance, the question merely distilled to finding divisions within a group 

of genomes. 

 

Using different combinations of methods and data, different answers are produced, often 

with weak support. There is little reason to trust one method over another. Using all the 
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single-gene families results in similar trees for the concatenated alignment and supertree, 

but are these methods more reliable than constructing phylogenies of 16S or 

housekeeping genes? Possibly, given that an issue with latter two approaches is that such 

genes are likely to be strongly conserved and thus provide little in the way of 

phylogenetic signal. However it is equally valid to argue that the single gene families are 

more likely to have undergone HGT and thus their phylogenies represent gene trees 

rather than species trees. Certainly by looking at tree-to-tree distances between the trees 

for the single-gene families and the supertree there is evidence of both signal and 

conflict. So in the end, the answer would appear to be that there is no answer, at least not 

using these data and methods. 

 

This has implications for the tree of life problem. While the result is specific to this group 

of genomes, at this density of sampling, it highlights nonetheless an oncoming problem in 

the world of prokaryotic phylogenetics. At some point the resolution of shallow 

phylogeny will decrease as sampling density increases. When do we consider two 

genomes different? As sampling density increases how do we continue to separate 

organisms into strains, species and genera? Is it a better idea simply to let the current 

methods define the boundaries between genomes with as much resolution as possible, 

instead of trying to fit everything into the framework laid down by traditional 

classification methods? Perhaps, but change on that scale is unlikely to occur anytime 

soon. Instead, many will continue the search for a tree of life, regardless of the difficulties 

presented along the way. 
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Examining gene organisation and clustering within a genome presents a challenge that is 

no less difficult. In chapter 3 and chapter 4 I present studies of gene clustering from two 

different perspectives.  

 

In chapter 3 the focus is identification and analysis of clusters across the "-proteobacteria, 

using genes that are known to be widely distributed. From this perspective it is clear that 

clustering is commonplace in genes involved in amino acid biosynthesis. Of all the genes 

examined across the five superpathways of amino acid biosynthesis, only three showed 

no evidence of clustering. Looking at the co-occurrence data and the structure of the 

clusters themselves it is clear that some configurations are highly conserved/strongly 

selected for. For example, the leuA, B, C and D genes, which catalyse successive steps in 

their superpathway, are almost always found clustered in an operon with one another. A 

similar scenario can be seen with the trpA, B, C, D and E genes. This is likely because of 

the benefits of co-localisation and co-regulation, i.e. the products are present in the same 

place, at the same time. 

 

The study presented in chapter 4 provides a different perspective on the process of gene 

clustering, specifically with relation to models of gene cluster and operon formation. 

Using phylogenetic analyses, a broader dataset and a set of genes showing a patchy 

phylogenetic distribution it was possible to test various hypotheses as to why genes 

cluster. Little evidence was found to support the Selfish Operon model or the Fisher 

model. Instead, given both the abundance of operons and gene clusters, it appears likely 

that a combination of co-regulation and co-localisation drive the clustering of of paa 
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genes.  

 

The movement of molecules through the cytoplasm is not yet well understood. Elowitz et 

al., have shown that the rate of diffusion is a multifactorial problem (Elowitz et al., 1998). 

They found that the rate of diffusion for green fluorescent protein (GFP) was linked to its 

concentration, which they suggested was possibly due to dimerisation of the GFP at 

higher concentrations. Interestingly they also found that a major reduction in the rate of 

diffusion was dramatically reduced by the addition of a six-histidine tag to the GFP, 

suggesting apparently small sequence changes can massively restrict motility. The 

effective viscosity of a bacterial cell is significantly higher than that of a eukaryotic cell, 

possibly due to the presence of a nucleoid (Mullineaux et al., 2006). Recently it has been 

shown that some protein clusters are localised in the cytoplasm, and this localisation 

requires regulation (Thompson et al., 2006).  

 

Clearly, movement through the cytoplasm is not always as simple as random diffusion. 

One conjecture is that the default state for proteins in the cytoplasm is that they are 

essentially non-motile due to the effects of macromolecular crowding. Proteins that need 

to move to specific areas of the cell, such as those involved in cell division, often have 

their own transport system in place, again highlighting the fact that movement through 

the cytoplasm must be difficult (Collier and Shapiro, 2007). If this is the case, then 

perhaps the selection for clustering for the co-localisation of products is actually quite 

strong. 
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However, regardless of whether or not selection for clustering is strong, it is not so strong 

that clusters become immutable. A common observation in both chapter 3 and chapter 4 

was that no cluster structure was constant. Even the paaA, B, C, D and E cluster, whose 

products form a complex with one another, had four cases where the paaE gene was 

present in the genome but not clustered and two cases where it was not present at all. 

Similarly, clusters such as the leu and trp gene clusters were not always conserved. This 

implies that even the clusters that are likely to be under the strongest selection can 

change.  

 

Moving away from genes, such as the leu and trp genes, that showed a strong tendency to 

cluster and reside in operons, other genes demonstrated the fluidic nature of clustering. 

While only a subset of all potential clusters was observed across the superpathways 

examined in chapter 3, there was still huge diversity in the clusters observed, both in 

terms of cluster size and gene content. Differences in the distribution of non-functionally 

related genes within these clusters further highlighted this fact. When examining paa 

clusters, there is evidence of large clusters of genes being assembled multiple times 

independently.  Co-occurrence data for paa genes shows that, with three exceptions (two 

of which relate to the fact that paaL and M are only present in one genome), almost all 

genes co-occur in at least one cluster. 

 

Ultimately it appears clustering is commonplace in bacterial genome. Organising genes 

that are involved in the same biochemical pathway into close physical proximity in the 

genome is often beneficial. However, other processes, such as HGT can disrupt clusters. 
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This disruption could be selected for if the retention of the new genes introduced via 

HGT provides a greater increase in fitness than retention of the cluster structure. It is 

therefore unsurprising to see so many different cluster configurations in the data. The 

dynamic nature of the bacterial gene clusters mirrors the dynamic nature of bacterial 

genome. 

 

The work presented in this thesis has added to the field of bacterial genomics in two 

areas. Firstly I have shown that shallow phylogeny is a serious problem in the YESS 

group, even with the availability of whole genome data. I have shown that different 

methods and data produce very different results for the same set of organisms. I have also 

demonstrated that using the 16S rRNA, a gene considered to be ideal for the recovery of 

species phylogenies, is unusable in this scenario due to likely horizontal gene conversion 

event between closely related strains within the YESS group. Previously, homogenisation 

of 16S rRNA genes was considered mainly to be a factor within individual genomes. This 

study suggests that it is likely to occur between closely related strains by horizontal 

processes.  

 

Finally, I have provided a new model for gene clustering, taking observed data and 

previous models into account. I have shown that existing models do not fully explain the 

observed data, that different selection forces for cluster and operon formation exist and 

that this must be taken into account when creating a model to explain why functionally 

related genes co-localise. I demonstrate that the genes associated with the phenylacetate 

degradation pathway have a diverse range of associated clusters and operons. I have 
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shown that large clusters of most or all paa genes have formed multiple times 

independently and this suggests that gene clustering is an extremely dynamic process, 

dictated by selective pressures in the environment and not a remnant of an ancestral 

genome organisation. However, a lot of questions still remain unanswered. I provide 

software that can be used to carry out future studies on gene clustering. Such studies will 

be required to refine our understanding of gene co-localisation in bacterial genomes. 

 

Future Work: 

 

A great deal of work remains to be done in the field of shallow genomics. In this thesis I 

studied the YESS group and found that there was no clear single phylogeny that 

described the group and concluded that this was a result of high levels of noise in the data 

due to HGT and gene conversion. However other questions still remain, such as how the 

problem applies to other closely related bacterial groups, what exactly the boundary is for 

resolving shallow phylogenies and what methods can we develop to increase the level of 

resolution of such phylogenies? It would be interesting to see whether the conflicting 

results were due to other problems not considered in the study, such as model mis-

specification producing incorrect phylogenies. In particular using tests such as the 

Goldman test (Goldman, 1993) might shed further light on how much influence the 

methodology had on the conflict present in the derived phylogenies.  

 

In this thesis I describe a new software tool, GenClust, for the identification of gene 

clusters in bacterial genomes and its use in the analysis of a metabolic pathway whose 
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genes are sometimes found in large clusters. Many improvements could be made it the 

GenClust algorithm. At present it is designed to show the user all potential clusters. 

However it is likely that many clusters returned from the analysis are false positives. 

While they technically fit the criteria of the search, they are not the genes the user is 

interested in. As such it is then up to the user to manually curate the results to identify 

true clusters. In future versions of GenClust this situation will be improved. This can be 

achieved by taking factors such as query-to-hit coverage levels and percent identity of hit 

into account, to compliment the current e-value based assessment of homology. Allowing 

the user to set values for coverage and percent identity would allow them much greater 

control of the strictness of the search and could greatly reduce the number of false 

positive results and therefore the level of manual curation required. A statistical measure 

of cluster significance could be added to help reduce time spent analysing the results. 

Such a measure would take into consideration gene content, individual hit coverage, 

similarity and percent identity to come up with a significance value for all reported 

clusters. In addition this could be further complemented by the option for the user to 

specify a reference cluster to search for. The significance test could then take into 

consideration gene order in addition to allowing more emphasis to be placed on gene 

content. This would allow an even higher level of distillation of meaningful results. 

 

Finally, many questions remain unanswered in terms of why gene clusters are so 

prevalent in bacterial genomes. I present in this thesis a model agrees with the observed 

data. Conversely I show that none of the previous models completely explain the 

observed data. This was achieved by looking at the genes associated with a single, though 
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very interesting, metabolic pathway. Further insight would be gained by looking at other 

evolutionarily unconserved gene clusters. Much like excluding the constant sites in a 

multiple sequence alignment, excluding highly conserved gene clusters and focusing on 

the divergent clusters may further refine our understanding of why and how gene clusters 

form. 
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