
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005 1477

Design and Analysis of a General Recurrent Neural
Network Model for Time-Varying Matrix Inversion

Yunong Zhang, Member, IEEE, and Shuzhi Sam Ge, Senior Member, IEEE

Abstract—Following the idea of using first-order time deriva-
tives, this paper presents a general recurrent neural network
(RNN) model for online inversion of time-varying matrices. Dif-
ferent kinds of activation functions are investigated to guarantee
the global exponential convergence of the neural model to the
exact inverse of a given time-varying matrix. The robustness of
the proposed neural model is also studied with respect to different
activation functions and various implementation errors. Simu-
lation results, including the application to kinematic control of
redundant manipulators, substantiate the theoretical analysis and
demonstrate the efficacy of the neural model on time-varying ma-
trix inversion, especially when using a power-sigmoid activation
function.

Index Terms—Activation function, implicit dynamics, inverse
kinematics, recurrent neural network (RNN), time-varying matrix
inversion.

I. INTRODUCTION

THE problem of finding the inverse of a time varying matrix
online arises in numerous fields of science, engineering,

and business. It is usually an essential part of many solutions,
e.g., as preliminary steps for optimization [1], signal processing
[2], electromagnetic systems [3], and robot kinematics [4].
Since the mid-1980s, efforts have been directed toward compu-
tational aspects of fast matrix inversion and many algorithms
have been proposed [5]–[8]. For many numerical methods,
the minimal arithmetic operations are usually proportional to
the cube of the matrix dimension [9], and consequently such
algorithms performed on digital computers may not be efficient
enough in large-scale online applications. In view of this,
parallel computation schemes have been investigated for matrix
inversion.

The dynamical approach is one of the important methods for
solving matrix inversion problems [4], [10], [11]. Recently, due
to the in-depth research in neural networks, numerous dynamic
solvers based on recurrent neural networks (RNNs) have been
developed and investigated [2], [12]–[20]. Particularly, a simple
neural network was proposed to solve linear programming prob-
lems in real time and implemented on analog circuits [12]. The
neural approach is now regarded as a powerful alternative for

Manuscript received March 11, 2003; revised April 17, 2005.
Y. Zhang was with the Department of Electrical and Computer Engineering,

National University of Singapore, Singapore 117576, Singapore. He is now
with the Hamilton Institute, National University of Ireland, Maynooth, Ireland
(e-mail: ynzhang@ieee.org).

S. S. Ge is with the Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 117576, Singapore (e-mail:
elegesz@nus.edu.sg).

Digital Object Identifier 10.1109/TNN.2005.857946

online computation because of its parallel distributed nature and
convenience of hardware implementation.

However, almost all the aforementioned numerical, dynam-
ical and neural computation schemes were designed intrinsi-
cally for constant matrices rather than time-varying ones. They
are in general related to the gradient descent method in opti-
mization [1], where a scalar-valued cost function is first con-
structed such that its minimum point is the matrix inverse, and
then an algorithm is designed to evolve along a descent direc-
tion of this cost function until a minimum is reached. The typ-
ical descent direction is the negative gradient. Since the ma-
trix to be inverted online is usually time varying, such a gra-
dient-based method only works approximately and with appre-
ciable residual errors, as shown in [21, Figs. 4 and 5]. More-
over, the gradient-based method also requires much faster con-
vergence in comparison with the time scale of time-varying ma-
trices or imposes very stringent restrictions on design parame-
ters [22].

In this paper, following the idea of using first-order time
derivatives [21], a general RNN model with implicit dy-
namics is developed and analyzed for solving the problem of
time-varying matrix inversion. Neural dynamics are elegantly
introduced by defining the matrix-valued error-monitoring
function rather than the usual scalar-valued cost function such
that the computation error can be made decreasing to zero
globally and asymptotically. As noted, nonlinearity and errors
always exist. Even if a linear activation function is used, the
nonlinear phenomenon may appear in its hardware implemen-
tation. For superior convergence and better robustness, different
kinds of activation functions (linear, sigmoid, power functions,
and/or their variants, e.g., power-sigmoid function) are investi-
gated. Theoretical and simulation results both demonstrate the
efficacy of the proposed neural approach. To the best of our
knowledge, there is little work dealing with such a problem in
the literature at present stage, except some preliminary results
presented in [21]. The main contributions of the paper are as
follows:

i) the establishment of a general nonlinear RNN model is
introduced for time-varying matrix inversion by using
monotonically increasing odd functions as activation
functions;

ii) the utilization of time derivative of given time-varying
matrices plays an important role for efficient online
matrix inversion;

iii) the computational deviation caused by possible dif-
ferentiation and implementation errors can be made
arbitrarily small by increasing the design parameters
through robustness analysis; and

1045-9227/$20.00 © 2005 IEEE



1478 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

iv) the proposed scheme is applied to inverse kinematic
control of redundant manipulators via online solution
of time-varying pseudoinverse.

The remainder of this paper is organized as follows. Sec-
tion II presents the problem formulation and preliminaries. In
Section III, the general RNN model with implicit dynamics is
described in detail. Corresponding to different activation func-
tions, convergence and robustness results are studied in Sec-
tion IV. Section V presents an illustrative example of solving
time-varying matrix inverse in real time. In Section VI, the pro-
posed neural model is applied to inverse kinematic control of
redundant manipulators.

II. PROBLEM FORMULATION

Consider a smooth time-varying matrix . We
are to find such that the following matrix equa-
tion holds

(1)

where is the identity matrix. The objective of this
paper is to invert time-varying matrices in real time and in an
error-free manner.

Without loss of generality, and its time derivative
are assumed to be known or measurable. As a basis of discus-
sion, the existence of the inverse at any time instant
is also assumed. To facilitate the convergence and robustness
analysis, the following condition is introduced to guarantee the
existence of :

Invertibility Condition: There exists a positive real number
such that

(2)

where denotes the th eigenvalue of matrix .
If the invertibility condition holds, it is clear that there exists

a unique solution to (1). Let denote the
Frobenius norm. Then, the invertibility condition leads to the
following Lemma on the boundedness of and .

Lemma 1: If satisfies the invertibility condition (2) with
its norm uniformly upper bounded by (i.e., ,

), then is uniformly upper bounded by a
scalar , where

.
Proof: See the Appendix for details.

It is worth mentioning that the invertibility condition, param-
eter in (2), and Lemma 1 are used only for analytic pur-
poses, and that there is no need to know the exact value of

. Instead, in a practical application via the proposed neural
network model, we could check the invertibility condition by
simply monitoring whether or not the value of is
becoming very small (near zero) after network started. For ex-
ample, in view of the existence of exponential convergence, after

seconds, should be less than 1.85% of
[22], where is to be defined as the standard

convergence rate and also a design parameter of the neural net-
work, and constant . If , such an exponential-con-

Fig. 1. Block diagram of general RNN model (4) for online matrix inversion.

vergence time is around . Otherwise, the matrix could
be singular.

III. A GENERAL RNN MODEL

In the literature, traditional gradient-based neural network
approaches [2], [10], [13], [15], [17], [19] have been devel-
oped to compute the inverse of a time-invariant matrix. For
the time-varying case, much faster convergence rate of the gra-
dient-based networks is usually required in comparison with
the time scale of time-varying matrices. Otherwise, the gra-
dient-based networks often yield relatively large computational
errors. To solve time-varying Sylvester equations online, an ele-
gant RNN was first proposed in [21] by utilizing the time deriva-
tives of the coefficient matrices. The following general RNN
design method is an important extension of the aforementioned
neural network approach [21] to a time-varying one with gen-
eral nonlinear activation functions and various implementation
errors considered.

To monitor the matrix-inversion process, the following ma-
trix-valued error function is defined instead of the usual scalar-
valued cost functions

The error-function derivative should be made such
that every entry , , of converges
to zero. Specifically, can be described in the general
form

(3)

where is in general a positive-definite matrix used to scale the
convergence rate of the solution, and
denotes a matrix mapping of neural networks in the context of
this paper. The RNN design formula (3) leads to the following
implicit dynamic equation of the generalized neural model

(4)

where , staring from an initial condition
, is the activation state matrix corresponding to the theo-

retical solution of (1).



ZHANG AND GE: GENERAL RNN MODEL 1479

Fig. 2. Activation functions f(�) for the proposed neural network model (4). (a) Linear function. (b) Sigmoid function. (c) Power function.

Similar to the usual neural approaches, the matrix parameter
in (4), like a set of inductance parameters or reciprocals of

capacitive parameters, is set as large as the hardware permits
(e.g., in analog circuits or VLSI [23]) or selected appropriately
for experimental/simulative purposes. In comparison with the
classical Hopfield-type RNN (termed as differential neural net-
work in [24]) described by an explicit set of differential equa-
tions, the proposed general neural model is described by an im-
plicit dynamic equation which arises frequently in analog elec-
tric circuits and systems due to Kirchhoff’s rules. In addition,
the model methodically exploits the time derivative of matrix

during its inverting process.
The block diagram realization of the neural model (4) is

shown in Fig. 1 in the most general form. In view of (4) and
Fig. 1, different choices for and will lead to different
performance. In general, any monotonically increasing odd
activation function , being the th element of matrix
mapping , can be used for the construction of the neural
network. To demonstrate the main ideas and results of the
paper, however, only three basic types of activation functions
are focused on: linear function , bipolar sigmoid
function with ,
and power function with integer as shown in
Fig. 2. New activation-function variants can thus be generated
readily based on these three basic types.

IV. CONVERGENCE AND ROBUSTNESS

While Section III only gives a general framework to solve this
kind of problem, detailed design consideration and main theo-
retical results are given in this section. To keep the differential
equation well conditioned, it is desired to keep well condi-
tioned, i.e., its eigenvalues of are in the same scale. For sim-
plicity, in this paper, we assume . As a consequence, we
would be able to keep every , , converge
at the same rate and at the same time, to simplify the network
design and analysis.

A. Convergence Analysis

The following theoretical results on global convergence and
exponential convergence are presented.

Theorem 1: Given time-varying matrix sat-
isfying the invertibility condition (2), if a monotonically in-
creasing odd function array is used, then the state ma-
trix of neural system (4) starting from any initial state

converges to the time-varying theoretical inverse
of matrix . In addition, the neural system (4) pos-

sesses

i) exponential convergence with the rate if using linear
activation function;

ii) exponential convergence with the rate for error
range if using bipolar sig-
moid function; and

iii) superior convergence for error range to
cases (i) and (ii), if using power activation function.

Proof: Let denote the difference
between the solution generated by the proposed neural net-
work and the theoretical solution of (1). By using the
identity which is the time deriva-
tive of (1), it follows that is the solution to the ensuing
dynamics with the initial state

(5)

Since , (5) can be rewritten as
, which is a compact matrix form of the following

set of equations

(6)

Clearly, we can define a Lyapunov function candidate
for the th subsystem (6) with its time derivative

(7)

Because monotonically increasing odd functions are used as ac-
tivation functions, we have , and

if
if
if

which guarantees the negative definiteness of ; i.e.,
for and for . By the Lyapunov



1480 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

stability theory [25], globally converges to zero for any
. Thus, in view of and (2),

we have as , i.e., the neural state
is globally convergent to the theoretical inverse .

The proof on global convergence is thus complete.
In view of , (2) and Lemma 1, we have

, which implies the computation error
and the network convergence can be estimated by those of
maximum entry error in (6) [22], [26]. We now come to
prove the additional convergence properties corresponding to
specific kinds of activation function .

(i) For the simple linear case, , and the entry
error is . Thus there exists a con-
stant such that

. This means that neural network (4) possesses the
exponential convergence with rate when using linear activa-
tion function .

(ii) For the bipolar sigmoid function
, define the constant

. The solution to (6) is
given as where

(8)
Using the Taylor series expansion formula

and the algebraic formula
for , we have

It follows from the formulas’ requirement, , that the error
range is defined as . From (8), we have

In view of the global convergence of and to zero,
there exists such that

which means the neural network (4) possesses the exponential
convergence with rate for when using
the sigmoid activation function.

(iii) For the th power activation function , (6)
becomes and its general solution is

Specifically, when , the entry error

. Clearly, as , .

Review the Lyapunov function and its time deriva-
tive in (7). For the error range ,
we have . In other words, the deceleration
magnitude of power activation function is much greater than
those of linear function and sigmoid function. This means when
using power function, much faster convergence is achieved by
the network for in comparison with cases (i) and
(ii).

Remark 1: It follows from the above theorem that to achieve
superior convergence, a high-performance neural network can
be developed by switching power activation function to sigmoid
or linear activation function at the switching points ,

. For example, the following power-sigmoid
activation function is preferable if the hardware permits

if
otherwise (9)

with suitable design parameters and . One more advantage
of using the sigmoid function over the linear function lies in the
extra parameter , which is a multiplier of the exponential con-
vergence rate. When there is an upper bound on due to hard-
ware implementation, the parameter will be another effective
factor expediting the network convergence. For example, the
convergence for nonlinear activation functions could be much
faster than that for linear functions when using the same level
of and for the power and sigmoid activation function as that
of design parameter for linear function (e.g., 10 100).

Remark 2: Nonlinearity always exists, which is one of the
main motivations for us to investigate different activation func-
tions. Even if the linear activation function is used, the nonlinear
phenomenon may appear in its hardware implementation; e.g.,
in the form of saturation and/or inconsistency of the linear slope,
and in digital realization due to truncation and round-off errors
[14], [23]. The investigation of different activation functions
(like the sigmoid function and the power function) gives much
insights into the problems and effects of imperfections/nonlin-
earities existing in implementing linear activation functions.

For graphical interpretation, the convergence characteristics
of entry errors is illustrated in Fig. 3 for using different
activation functions where . Note that to draw all the
curves in the same one plot, the minimal values of design pa-
rameters of nonlinear activation functions (like , ,
or ) are used.

B. Robustness Analysis

In the realization of neural networks, there may be some er-
rors involved. Regarding the linear network for solving time-
varying Sylvester equation [21], robustness results were given
for coefficient matrix perturbation only. For matrix-inversion,



ZHANG AND GE: GENERAL RNN MODEL 1481

Fig. 3. Convergence characteristics of entry errors for different kinds of
activation functions.

if in (4) is perturbed with an additive term where
for any , then the following lemma

can be similarly generalized from [21].
Lemma 2: Consider the perturbed RNN model

with . The steady-state
residual error is uniformly upper
bounded by , provided that the
invertibility condition (2) still holds with
instead of for matrix .

Proof: It can be easily obtained by following the proof
of Theorem 2 in [21] and taking into account the inequality

, Lemma 1, and Theorem 1 of this
paper.

Lemma 2 guarantees that the coefficient perturbation will not
derail the neural network if the invertibility condition still holds
true. However, such a result does not cover the differentiation
error and the model-implementation error, which may appear
more frequently than matrix perturbation does in neural net-
work realization [23]. In the remainder of this subsection, the
following dynamics are considered for the general robustness
properties of the proposed neural system (4)

(10)

where and denote respec-
tively the differentiation error and the model-implementation
error, which result from truncating/roundoff errors in digital re-
alization or high-order residual errors of circuit components in
analog realization.

Theorem 2: Consider the general RNN model with imple-
mentation errors and in (10). If and

for any , then the computation
error is bounded with steady-state residual error
as under the design-parameter re-
quirement , where the parameter is defined
between and . Furthermore, as the design
parameter tends to positive infinity, the steady-state residual
error can be diminished to zero.

Proof: By defining the error matrix
with , (10) is finally reformulated as

. This is equivalent
to the following vector form [27]

(11)

where denotes a column vector obtained
by stacking all column vectors of together, and the activa-
tion-function array is here of dimension due to the
vectorization. In addition, and

with the symbol denoting
the Kronecker product; i.e., is a large matrix made by
replacing the th entry of with the matrix . For de-
tailed properties of Kronecker product, see [21], [27].

Define the Lyapunov function candidate
for the error dynamics (11). The

time derivative of is

It follows from the inequality and
Lemma 1 that

Similarly, it follows from that
,

. Thus, .
In view of the above facts and the symmetry property of ,
we finally have

(12)

During the time evolution of , the above equation falls
into two situations: , ,

or , ,
.



1482 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Fig. 4. Online inversion of A(t) using power-sigmoid function (9).

If in the time interval the trajectory of the system (10)
is in the first situation, and (12) implies converges
to as time evolves.

For any time that the trajectory falls into the second situ-
ation, the distance between and may not decrease
again. But, even in the worst case, the entry error is also
upper bounded by the steady-state entry residual error

[24], where the insensitivity parameter
is defined between and , and the

design parameter is required as

(13)

Thus, it follows that

(14)

and evidently, this steady-state residual error caused by imple-
mentation errors can be made arbitrarily small as design param-
eter increases.

Corollary 2.1: In addition to the general robustness results
in Theorem 2, the imprecisely constructed general RNN model
(10) possesses the following properties that

i) if linear activation function used, then the entry
residual error under the
requirement ;

ii) if sigmoid activation function used, then the steady-
state residual error can be made smaller by increasing

or , and superior robustness property exists for
, , as compared to linear function; and

iii) if power activation function used, then the design-pa-
rameter requirement (13) always holds true for any
positive and superior robustness property exists for

, as compared to linear function.
Proof: It follows from (12) that ,

(15)

is a sufficient condition for ensuring .
(i) For the linear activation function, the insensitivity param-

eter and the design-parameter require-
ment on becomes . From Theorem 2 and its proof,
we have the steady-state entry residual error

.
(ii) For the bipolar sigmoid function, as , the

value changes smoothly from
to . In view of and , there exists

such that . Denoting as
, we have the insensitivity parameter for the error

range , which, compared to the linear case
, means easier satisfaction of (15) and a smaller steady-state

residual error in (14), i.e., . In
addition, the design-parameter requirement (13) is also relaxed
by a factor of . Especially, when the implementation error

is small (e.g., when the steady-state entry residual
error is near zero), the insensitivity parameter is evaluated as

, which means much superior robustness property to
the linear/power activation function cases.



ZHANG AND GE: GENERAL RNN MODEL 1483

Fig. 5. Convergence comparison of kX(t) � A (t)k using different activation functions.

(iii) For the power-function case, (15) becomes
. Clearly, there always exists

such that both the previous equation and
hold true for . Thus, the design-parameter inequality
(13) always holds and such a requirement can be removed in
this case. In the situation that the differentiation/implementation
error is so large that , the insensitivity parameter

. This means easier satisfaction of (15) and
smaller steady-state residual error (14), as compared to linear or
sigmoid case under the same design specification.

Remark 3: From the above theoretical analysis, for large
matrix-inversion error, using the power activation function
has much better convergence and robustness than using the
linear function. This is because for large entry error (e.g.,

), the power activation function could amplify the
signal , automatically eliminate the
insensitivity condition (13), and also expedite the network
convergence. On the other hand, for small matrix-inversion
error, using a sigmoid activation function has much better
convergence and robustness than using the linear function. This
is because of the larger slope of the sigmoid function near the
origin, which implies the stronger insenstivity/robustness of
the sigmoid-based neural model (4), as compared to the linear
ones. It follows from Remark 1 and the above analysis that
for superior convergence and robustness, the power-sigmoid
activation function in (9) might be a better choice than other
functions. Details about activation functions implementation
can be found in [4]–[6], [10]–[18], [23], [24].

V. ILLUSTRATIVE EXAMPLE

For illustration and comparison, let us consider the same
time-varying matrix as in [21]:

The RNN (4) is thus in this specific form

where the array is constituted by the power-sigmoid activa-
tion function as in (9) with and , and the design
parameter for illustration purposes.

A. Convergence Discussion

As seen from Figs. 4 and 5, starting from any initial states ran-
domly selected in [ 2,2], state matrices of the proposed neural
model all converge to the theoretical inverse . The con-
vergence can be expedited by increasing . For example, if is
increased to , the convergence time is within 6 s. Note that,
for the case of using pure power activation function shown in the



1484 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Fig. 6. Performance of gradient-based neural network methods, where dashed lines denote entries of the exact inverse.

Fig. 7. Online inversion of A(t) with 
 = 1 and using power-sigmoid activation function in the presence of differentiation and model-implementation errors.

third subplot of Fig. 5, the convergence is only asymptotic and
thus apparently slower than that for other cases which possess
exponential convergence.

For comparison with traditional neural approaches,
the gradient-based neural network [17], [21],

, is also simulated for



ZHANG AND GE: GENERAL RNN MODEL 1485

Fig. 8. Computing errors kX(t)� A (t)k with 
 = 1 in the presence of differentiation and model-implementation errors.

time-varying matrix inversion. Its performance is depicted
in Fig. 6 under the same design parameters and initial states
as in Fig. 4. Clearly, the steady-state error of the solution
computed by the traditional neural model is considerably large.
This is because the information has not been utilized in
the traditional gradient-based scheme.

B. Robustness Discussion

To show the robustness characteristics of the proposed neural
model (4), the following differentiation error and model-imple-
mentation error are considered in a higher-frequency sinusoidal
form

with .
As can be seen from Figs. 7 and 8, even with large differenti-

ation and implementation errors, the computing error
synthesized by the neural model (4) is bounded and

very small, and using power-sigmoid function or sigmoid func-
tion has smaller steady-state residual error than using linear
or pure power function. Moreover, as the design parameter
increases from 1 to 10, the convergence is expedited and the
steady-state computation error is decreased, which is shown in
Figs. 9 and 10. It is observed from other simulation data that
when using power-sigmoid activation function, the maximum
steady-state residual error is only and re-
spectively for and . Clearly, compared to
linear or pure power function case, superior performance can

be achieved by using power-sigmoid or sigmoid activation func-
tions under the same design specification. These simulation re-
sults have confirmed the theoretical analysis presented in the
previous sections.

VI. APPLICATION TO ROBOT KINEMATIC CONTROL

This section presents the application of the proposed neural
model (4) to kinematic control of redundant manipulators via
online solution of time-varying pseudoinverse.

A. Preliminaries on Inverse Kinematics

Consider a redundant manipulator of which the end-effector
position/orientation vector in Cartesian space is re-
lated to the joint-space vector through the following
forward kinematic equation

(16)

where is a continuous nonlinear mapping function with a
known structure and parameters for any given manipulator. The
inverse kinematics problem is to find the joint variable for
any given through the inverse mapping of (16), i.e.,

.
Unfortunately, it is usually impossible to find an analytic so-

lution of due to the serious nonlinearity. The inverse kine-
matics problem is thus usually solved at the velocity level. Dif-
ferentiating (16) with respect to time yields a linear relation be-
tween velocities and :

(17)



1486 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Fig. 9. Online inversion of A(t) with 
 = 10 and using power-sigmoid activation function in the presence of differentiation and model-implementation errors.

where is the Jacobian matrix defined as
. Since in a redundant manipulator, (17) is

underdetermined and may admit an infinite number of solutions.
The pseudoinverse/nullspace-type solution to (17), widely

used by most of the current researchers, is generally formulated
as a minimum-norm particular solution plus a homogeneous
solution [25], [28]

(18)

where denotes the pseudoinverse of . The
vector is arbitrary and can be chosen as the nega-
tive gradient of a performance index to be minimized, e.g., the
optimization criteria of avoiding joint limits, singularity, and/or
obstacles.

In the sense of Moore-Penrose generalized inverse, is de-
fined as if is of full row rank [27]. However, like
solving matrix inverse, the usual numerical ways for solving

are in general computationally intensive and with large
relative computational error because of no information of
considered. In addition, with multiple tasks and constraints in-
cluded by (18) via , the heavy-burden -computing proce-
dure may hinder on-line applications, especially in high-DOF
sensor-based robotic systems [28], [29].

Defining , we could re-exploit the neural
model (4) to solve in the parallel manner so as to expedite
the computation process and achieve better control precision.
That is, where is the state matrix
generated online by the proposed RNN (4).

B. Simulation Based on PUMA560 Robot Arm

The Unimation PUMA560 robot arm has six joints [30].
When we consider only the positioning of the end-effector,
the PUMA560 becomes a redundant manipulator with the
dimensionality of being 3 6 [31].

In this subsection, the proposed neural model (4) is first ap-
plied to the PUMA560 robot arm with the design parameter

and . The desired
motion of the end-effector is a circle of radius and
with the revolute angle about -axis being . The motion
duration is 10 seconds, and the initial joint variables

in radians. Fig. 11(a) illustrates the simulated
motion of the robot arm in the 3-dimensional work space, which
is sufficiently close to the desired one. Specifically, as shown in
Fig. 12, the maximal Cartesian position and velocity tracking
errors at the end-effector are respectively less than
and . The corresponding joint variables and joint
velocities are depicted in the subplots (b) and (c) of Fig. 11. The
network states of the proposed neural model (4) is shown
in Fig. 13.

For comparison, the traditional gradient-based neural net-
work, mentioned in Section V-A, is also simulated for solving

online. Under the same design condition ,
the end-effector position and velocity errors in this case are
considerably large (i.e., and 1.5 cm/s, respectively).
In addition, to achieve the similar precision of the proposed
neural model, the traditional gradient-based neural network re-
quires , which is a very stringent restriction on system
design, either analog or digital. To facilitate the comparison



ZHANG AND GE: GENERAL RNN MODEL 1487

Fig. 10. Computing errors kX(t)� A (t)k with 
 = 10 in the presence of differentiation and model-implementation errors.

Fig. 11. Motion trajectories of the PUMA560 manipulator synthesized by the proposed neural model (4). (a) Simulated motion. (b) Joint variables in rad.
(c) Joint velocities in rad/s.

with the proposed model, the states of the traditional
gradient-based neural network are also depicted, i.e., in Fig. 14.
Clearly, in the solution generated by traditional neural network,
the state does not equals violating the symmetric
property of , and the settling time-period from initial
states to steady states is relatively long (about 0.6 s). These
lead to the considerably larger Cartesian positioning error at
the PUMA560 end-effector as in Fig. 15. The reason is also
that the information has not been utilized in the traditional
gradient-based neural approach.

The above simulation results based on PUMA560 robot arm
substantiate the advantages of the proposed neural model (4)
over traditional gradient-based approaches in terms of compu-

tational accuracy and convergence rate. Before ending this nu-
merical study, it is also worth mentioning the availability and
acquisition of the derivative information, . In some situa-
tions such as in Sections V and VI, the analytical form of
could be given directly or derived from . If unknown,
could be measured from by using analog differentiation
circuits or finite-difference technique in digital realization [14],
[23]. The possible -measuring error (termed differentiation
error in Section IV-B) is actually a motivation for us to provide
the robustness analysis. Theorem 2 shows that even in the pres-
ence of the -measuring error, the inverse-computing error
is still bounded and could be diminished to zero as design pa-
rameter tends to positive infinity.



1488 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Fig. 12. End-effector errors of the PUMA560 manipulator tracking a 10-cm-radius circle. (a) Position error in m. (b) Velocity error in m/s.

Fig. 13. States of the proposed neural model (4) for kinematic control of the
PUMA560, where x = x shows the symmetry.

VII. CONCLUDING REMARKS

A general RNN model with implicit dynamics has been pre-
sented in this paper for solving the inverse of time-varying ma-
trix in real time. Different from the traditional gradient-based
methods used in time-varying cases, the proposed neural ap-
proach fully and methodically utilizes the time-derivative in-
formation of the matrix to be inverted. It is thus able to guar-
antee the global exponential convergence of the proposed neural
model to the exact inverse of such a given time-varying matrix.
Moreover, it has been shown that superior convergence and ro-
bustness can be achieved by using sigmoid or power-sigmoid ac-
tivation functions. Simulation results including kinematic con-
trol of the PUMA560 manipulator have demonstrated the effec-
tiveness and efficiency of the proposed RNN model. Further ef-
forts are to be directed at the design and analysis of discrete-time
neural networks, numerical algorithms, and electronic circuits
for solving the inverse of time-varying matrix.

Fig. 14. States of the traditional gradient-based neural network for kinematic
control of the PUMA560.

Fig. 15. End-effector motion trajectory of the PUMA560 synthesized by the
traditional gradient-based neural network, where the dotted curve denotes the
desired circular path.



ZHANG AND GE: GENERAL RNN MODEL 1489

APPENDIX

Proof of Lemma 1

By the Cayley-Hamilton Theorem [27], matrix satisfies its
characteristic polynomial

(19)

where are coefficients defined below in terms of the eigen-
values of

Specifically, and due to the invertibility
condition (2). It follows from (19) that

(20)
where the coefficients are

In view of (2), by defining the operator
for any , we have

It follows from the above inequalities and (20) that

which completes the proof of Lemma 1.

REFERENCES

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Program-
ming—Theory and Algorithms. New York: Wiley, 1993.

[2] R. J. Steriti and M. A. Fiddy, “Regularized image reconstruction using
SVD and a neural network method for matrix inversion,” IEEE Trans.
Signal Process., vol. 41, no. 10, pp. 3074–3077, 1993.

[3] T. Sarkar, K. Siarkiewicz, and R. Stratton, “Survey of numerical methods
for solution of large systems of linear equations for electromagnetic field
problems,” IEEE Trans. Antennas Propag., vol. 29, no. 6, pp. 847–856,
1981.

[4] R. H. Sturges Jr, “Analog matrix inversion (robot kinematics),” IEEE J.
Robot. Automat., vol. 4, no. 2, pp. 157–162, 1988.

[5] K. S. Yeung and F. Kumbi, “Symbolic matrix inversion with applica-
tion to electronic circuits,” IEEE Trans. Circuits Syst., vol. 35, no. 2, pp.
235–238, 1988.

[6] A. El-Amawy, “A systolic architecture for fast dense matrix inversion,”
IEEE Trans. Comput., vol. 38, no. 3, pp. 449–455, 1989.

[7] V.-E. Neagoe, “Inversion of the Van der Monde matrix,” IEEE Signal
Process. Lett., vol. 3, no. 4, pp. 119–120, 1996.

[8] Y. Q. Wang and H. B. Gooi, “New ordering methods for space matrix
inversion via diagonaliztion,” IEEE Trans. Power Syst., vol. 12, no. 3,
pp. 1298–1305, 1997.

[9] C. K. Koc and G. Chen, “Inversion of all principal submatrices of a ma-
trix,” IEEE Trans. Aerosp. Electr. Syst., vol. 30, no. 1, pp. 280–281, 1994.

[10] R. K. Manherz, B. W. Jordan, and S. L. Hakimi, “Analog methods for
computation of the generalized inverse,” IEEE Trans. Autom. Contol,
vol. 13, no. 5, pp. 582–585, 1968.

[11] N. C. F. Carneiro and L. P. Caloba, “A new algorithm for analog matrix
inversion,” in Proc. 38th Midwest Symp. Circuits Syst., vol. 1, 1995, pp.
401–404.

[12] D. Tank and J. Hopfield, “Simple neural optimization networks: an A/D
converter, signal decision circuit, and a linear programming circuit,”
IEEE Trans. Circuits Syst., vol. 33, no. 5, pp. 533–541, 1986.

[13] J. Jang, S. Lee, and S. Shin, “An optimization network for matrix inver-
sion,” in Neural Inform. Process. Comput.. New York: Amer. Inst. of
Phys., 1988, pp. 397–401.

[14] J. A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of Re-
search. Cambridge: The MIT Press, 1988.

[15] F. L. Luo and B. Zheng, “Neural network approach to computing matrix
inversion,” Appl. Math. Comput., vol. 47, pp. 109–120, 1992.

[16] A. Cichocki and R. Unbehauen, “Neural network for solving systems of
linear equations and related problems,” IEEE Trans. Circuits Syst., vol.
39, pp. 124–138, 1992.

[17] J. Wang, “A recurrent neural network for real-time matrix inversion,”
Applied Math. Comput., vol. 55, pp. 89–100, 1993.

[18] , “Recurrent neural networks for computing pseudoinverses of
rank-deficient matrices,” SIAM J. Sci. Comput., vol. 18, pp. 1479–1493,
1997.

[19] J. Song and Y. Yam, “Complex recurrent neural network for computing
the inverse and pseudo-inverse of the complex matrix,” Applied Math.
Comput., vol. 93, pp. 195–205, 1998.

[20] S. S. Ge and C. C. Hang, “Structural network modeling and control
of rigid body robots,” IEEE Trans. Robot. Autom., vol. 14, no. 5, pp.
823–827, 1998.

[21] Y. Zhang, D. Jiang, and J. Wang, “A recurrent neural network for solving
Sylvester equation with time-varying coefficients,” IEEE Trans. Neural
Netw., vol. 13, no. 5, pp. 1053–1063, 2002.

[22] Y. Zhang and J. Wang, “Global exponential stability of recurrent neural
networks for synthesizing linear feedback control systems via pole as-
signment,” IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 633–644, 2002.

[23] C. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-
Wesley, 1989.

[24] S. Poznyak, E. N. Sanchez, and W. Yu, Differential Neural Networks for
Robust Nonlinear Control (Identification, State Estimation and Trajec-
tory Tracking). Singapore: World Scientific, 2001.

[25] S. S. Ge, T. H. Lee, and C. J. Harris, Adaptive Neural Network Control
of Robotic Manipulators. London, U.K.: World Scientific, 1998.

[26] Y. Zhang, P. A. Heng, and A. W. C. Fu, “Estimate of exponential conver-
gence rate and exponential stability for neural networks,” IEEE Trans.
Neural Netw., vol. 10, no. 6, pp. 1487–1493, 1999.

[27] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge:
Cambridge University Press, 1991.

[28] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manipu-
lators. London, U.K.: Springer-Verlag, 2000.



1490 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

[29] Y. Zhang, J. Wang, and Y. Xu, “A dual neural network for bi-criteria
kinematic control of redundant manipulators,” IEEE Trans. Robot. Au-
tomat., vol. 18, no. 6, pp. 923–931, 2002.

[30] P. I. Corke and B. Armstrong-Helouvry, “A search for consensus among
model parameters reported for the PUMA 560 robot,” in Proc. IEEE Int.
Conf. Robotics and Automation, vol. 2, 1994, pp. 1608–1613.

[31] Y. Zhang and J. Wang, “A dual neural network for constrained joint
torque optimization of kinematically redundant manipulators,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 5, pp. 654–662,
2002.

Yunong Zhang (S’02–M’03) received the B.E. de-
gree from the Huangzhong University of Science and
Technology (HUST), China, in 1996, the M.E. de-
gree from the South China University of Technology
(SCUT) in 1999, and the Ph.D. degree from the Chi-
nese University of Hong Kong (CUHK) in 2002.

He was a Research Fellow with both the National
University of Singapore (NUS) and the University
of Strathclyde, U.K., in 2003 and 2004, respec-
tively. Since 2005, he has been with the National
University of Ireland, Maynooth, as a Research

Scientist. His current research interests are recurrent neural networks and
their hardware/circuits implementation, redundant robot manipulators and the
related biomechanics research, and scientific computing and optimization such
as Gaussian process regression.

Shuzhi Sam Ge (S’90–M’92–SM’00) received the
B.Sc. degree from Beijing University of Aeronautics
and Astronautics (BUAA), China, in 1986, and the
Ph.D. degree and the Diploma of Imperial College
(DIC) from Imperial College of Science, Technology
and Medicine, in 1993.

He has been with the Department of Electrical
and Computer Engineering, the National University
of Singapore since 1993, where he is now a Full
Professor. He has authored and coauthored more
than 200 international journal and conference papers,

three monographs, and coinvented three patents. His current research interests
are control of nonlinear systems, neural/fuzzy systems, robotics, hybrid
systems, sensor fusion, and system development. He serves as a technical
consultant for local industry.

Dr. Ge has served as a Member of the Technical Committee on Intelligent
Control since 2000. In 2004, he was a Member of the Board of Governors
(BOGs), IEEE Control Systems Society. He served as an Associate Editor
on the Conference Editorial Board of the IEEE Control Systems Society in
1998 and 1999. He currently serves as Editor of the International Journal
of Control, Automation, and Systems, Corresponding Editor for Asia and
Australia of the IEEE Control Systems Magazine, and an Associate Editor of
the IEEE TRANSACTIONS ON NEURAL NETWORKS, the IEEE TRANSACTIONS

ON AUTOMATIC CONTROL, The Automatica, and the IEEE TRANSACTIONS ON

CONTROL SYSTEMS TECHNOLOGY.


	toc
	Design and Analysis of a General Recurrent Neural Network Model 
	Yunong Zhang, Member, IEEE, and Shuzhi Sam Ge, Senior Member, IE
	I. I NTRODUCTION
	II. P ROBLEM F ORMULATION
	Invertibility Condition: There exists a positive real number $\a
	Lemma 1: If $A(t)$ satisfies the invertibility condition (2) wit
	Proof: See the Appendix for details. $\hfill\square$



	Fig.€1. Block diagram of general RNN model (4) for online matrix
	III. A G ENERAL RNN M ODEL

	Fig.€2. Activation functions $f(\cdot)$ for the proposed neural 
	IV. C ONVERGENCE AND R OBUSTNESS
	A. Convergence Analysis
	Theorem 1: Given time-varying matrix $A(t)\in R^{n\times n}$ sat
	Proof: Let $\mathtilde{X}(t):=X(t)-X^{\ast}(t)$ denote the diffe

	Remark 1: It follows from the above theorem that to achieve supe
	Remark 2: Nonlinearity always exists, which is one of the main m

	B. Robustness Analysis


	Fig.€3. Convergence characteristics of entry errors for differen
	Lemma 2: Consider the perturbed RNN model $\mathhat{A}\mathdot{X
	Proof: It can be easily obtained by following the proof of Theor

	Theorem 2: Consider the general RNN model with implementation er
	Proof: By defining the error matrix $E(t)=A(t)(X(t)-X^{\ast}(t))


	Fig.€4. Online inversion of $A(t)$ using power-sigmoid function 
	Corollary 2.1: In addition to the general robustness results in 
	Proof: It follows from (12) that $\forall i$, $j\in\{1,\cdots,n\


	Fig. 5. Convergence comparison of $\Vert X(t)-A^{-1}(t)\Vert_{F}
	Remark 3: From the above theoretical analysis, for large matrix-
	V. I LLUSTRATIVE E XAMPLE
	A. Convergence Discussion


	Fig.€6. Performance of gradient-based neural network methods, wh
	Fig.€7. Online inversion of $A(t)$ with $\gamma=1$ and using pow
	Fig. 8. Computing errors $\Vert X(t)-A^{-1}(t)\Vert_{F}$ with $\
	B. Robustness Discussion
	VI. A PPLICATION TO R OBOT K INEMATIC C ONTROL
	A. Preliminaries on Inverse Kinematics


	Fig.€9. Online inversion of $A(t)$ with $\gamma=10$ and using po
	B. Simulation Based on PUMA560 Robot Arm

	Fig. 10. Computing errors $\Vert X(t)-A^{-1}(t)\Vert_{F}$ with $
	Fig.€11. Motion trajectories of the PUMA560 manipulator synthesi
	Fig.€12. End-effector errors of the PUMA560 manipulator tracking
	Fig.€13. States of the proposed neural model (4) for kinematic c
	VII. C ONCLUDING R EMARKS

	Fig.€14. States of the traditional gradient-based neural network
	Fig.€15. End-effector motion trajectory of the PUMA560 synthesiz
	Proof of Lemma 1
	M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Progra
	R. J. Steriti and M. A. Fiddy, Regularized image reconstruction 
	T. Sarkar, K. Siarkiewicz, and R. Stratton, Survey of numerical 
	R. H. Sturges Jr, Analog matrix inversion (robot kinematics), IE
	K. S. Yeung and F. Kumbi, Symbolic matrix inversion with applica
	A. El-Amawy, A systolic architecture for fast dense matrix inver
	V.-E. Neagoe, Inversion of the Van der Monde matrix, IEEE Signal
	Y. Q. Wang and H. B. Gooi, New ordering methods for space matrix
	C. K. Koc and G. Chen, Inversion of all principal submatrices of
	R. K. Manherz, B. W. Jordan, and S. L. Hakimi, Analog methods fo
	N. C. F. Carneiro and L. P. Caloba, A new algorithm for analog m
	D. Tank and J. Hopfield, Simple neural optimization networks: an
	J. Jang, S. Lee, and S. Shin, An optimization network for matrix
	J. A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of 
	F. L. Luo and B. Zheng, Neural network approach to computing mat
	A. Cichocki and R. Unbehauen, Neural network for solving systems
	J. Wang, A recurrent neural network for real-time matrix inversi
	J. Song and Y. Yam, Complex recurrent neural network for computi
	S. S. Ge and C. C. Hang, Structural network modeling and control
	Y. Zhang, D. Jiang, and J. Wang, A recurrent neural network for 
	Y. Zhang and J. Wang, Global exponential stability of recurrent 
	C. Mead, Analog VLSI and Neural Systems . Reading, MA: Addison-W
	S. Poznyak, E. N. Sanchez, and W. Yu, Differential Neural Networ
	S. S. Ge, T. H. Lee, and C. J. Harris, Adaptive Neural Network C
	Y. Zhang, P. A. Heng, and A. W. C. Fu, Estimate of exponential c
	R. A. Horn and C. R. Johnson, Topics in Matrix Analysis . Cambri
	L. Sciavicco and B. Siciliano, Modeling and Control of Robot Man
	Y. Zhang, J. Wang, and Y. Xu, A dual neural network for bi-crite
	P. I. Corke and B. Armstrong-Helouvry, A search for consensus am
	Y. Zhang and J. Wang, A dual neural network for constrained join



