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Abstract

A system has been developed for providing automated
assessment in CS1. During the academic year 2004-
2005 this system was evaluated empirically by exam-
ining a sample group of students using both the tra-
ditional assessment methods and also the automated
techniques, four times during the year. A signifi-
cant correlation was found between the performance
in both tests, however the correlation was only strong
for students who performed well during the year.

To further this study, students were interviewed
and asked their opinion on the generated questions.
The students offered reasons for the variation in their
performance and provided an insight into where the
discrepancies lie. We discovered that weaker students
were employing rote-learning and using it to score
marks in the class exams.

As this survey was conducted on paper, a large
amount of student roughwork (“doodles”) was col-
lected, the analysis of this roughwork is also dis-
cussed.
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1 Introduction

This paper discusses a study assessing the feasibility
of automated assessment performed during the aca-
demic year 2004-2005 at the NUI Maynooth. Pre-
viously a system had been developed for generat-
ing code based comprehension questions(Traynor &
Gibson 2005). This study aimed to assess the per-
formance of the tool in a rigorous manner, examining
students at regular intervals throughout the academic
year and finally interviewing them at the end of the
study. The goal of this research is to determine the
extent to which assessment in CS1 can be automated
whilst maintaining a consistent standard.

The failings of assessment in computer science
have been highlighted by group studies such as
the McCracken group (McCracken, Almstrum, Diaz,
Guzdial, Hagan, Kolikant, Laxer, Thomas, Utting &
Wilusz 2001). The conclusion of this study was that
the majority of students in computer science courses
do not possess the ability to perform basic program-
ming tasks. If the assessment procedure in Computer
Science was more accurate, this report would not have
had such a strong impact. Accurate assessment is the
key to learning(Sprinthall, Sprinthall & Oja 1998);
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this multi-national failure of assessment must be al-
leviated before computer science education can move
forward.

1.1 Motivation

Computer science education sees many successful and
unsuccessful attempts to replace educators with au-
tomated counterparts. It is not the goal of this tool
to replace educators. Teaching has always been a so-
cial process, relying heavily on the dynamics of the
teacher-student relationship. This tool aims to pro-
vide a “resource light” option to teachers for assess-
ing the ability of large class sizes. The intention is
to alleviate the difficulties of assessment detailed by
Carteret al.(Carter, Ala-Mutka, Fuller, Dick, English,
Fone & Sheard 2003) who noted that 74% of com-
puter science educators use practicals for assessment,
and almost all grading is done manually.

There are currently several systems avail-

able for automated assessment of different as-
pects of student programming ranging from input-
output testing (RoboProf(Daly 1999), Ceilidh
CourseMarker (Higgins, Symeonidis & Tsintsifas
2002)), graphical interface testing (English 2004)
and ;ode ‘style’ testing(Kirsti Ala-Mutka & Jrvinen
2004).
Ala-Mutka discussed a great number of these tools
in a survey detailing the strengths and weaknesses of
automated assessment (Ala-Mutka 2005). All of the
afmorementioned tools require the lecturer to supply
questions however, so whilst they are considered au-
tomated assessment, a more accurate name would be
automated grading.

The tool under evaluation in this study produces
questions that require students to trace the execution
of a generated piece of code, and select what they be-
lieve the output of the program to be from a generated
list of options. The generated questions are very sim-
ilar in style to those proposed by Lister and Leaney
(2003). The system receives inputs that determine
the length, difficulty, and topic for each question and
will generate a piece of code which is presented to
the students. The students must then trace the exe-
cution path of the program and select its behaviour
from a set of of possible answers. Further details of
the system can be found in Traynor & Gibson (2003).

1.2 Overview of the paper

The next section of this paper discusses the methodol-
ogy of the study, and how we constructed a fair eval-
uation of the tool. The third section shows results
achieved from the study, and discusses both student
performance and correlations with doodle data! gath-
ered during the study. The fourth section discusses

1Doodle data is a phrase coined by Lister et al. for described
the written thoughts of students whilst solving problems on paper



the information gathered from the interviews, and the
final section details our findings and future work of
this project.

2 Methodology

The assessment data was collected approximately ev-
ery six weeks. This interval was chosen as it mirrored
the frequency of the class exams. The question sets
were distributed in small booklets to the students.
To participate in the survey students signed consent
forms. Students participating in the interviews were
also required to sign a separate consent form.

Typically the surveys were performed the week af-
ter an exam. Each question set consisted of eight
generated questions and one “blankpaper” question
where the student was required to write code to solve
a problem. The surveys were given to the students on
paper, and students were asked to write only on the
paper provided, or to hand up any additional notes
taken.

The test was originally designed to be delivered
through a web browser, but it was decided that this
medium would provide less information, and also the
code based questions could easily be compiled there-
fore rendering the results meaningless.

2.1 Analysis of Sample

The first year CS100 (aka CS1) module in Maynooth
provides an “Introduction to programming” for stu-
dents from a variety of disciplines. In 2004-2005 there
were 118 students undertaking the module. 85% of
the students enrolled are taking either a 4 year course
in “Computer Science & Software Engineering”, or
are taking a degree in Science with Computer Sci-
ence being one of their elective modules. There are
however students from Arts and Biotechnology also
enrolled for the module.

The study began 2 weeks into term, with 58
students(= 50% of class) volunteering to partici-
pate. After the students had taken 2 class ex-
ams, a t-test was performed along with an equal-
ity of variance test(Levine test) which verified that
there was no significant difference in the mean per-
formance of the sample group and the remainder of
the class. In addition, assumptions of normality were
tested(Kolmogorov-Smirnov) which showed the sam-
ple to be normally distributed. All statistical analysis
was performed using the SPSS sample analysis soft-
ware.

2.2 Interviews

At the completion of the final question set, students
were asked to participate in interviews regarding their
experiences of assessment in CS100 and how it com-
pares with the question sets that had been used in the
surveys. 19 students volunteered to participate in the
interviews which were performed in the final week of
the second semester.

2.3 Other Information

The programming module in XYZ is taught through
Problem Based Learning(Kelly, Bergin, Mooney,
Ghent, Gaughran & Dunne 2004) and the module
teaches Java with an “Objects Last” pedagogy. Stu-
dents have three lecture hours per week, two hours of
PBL workshops and two hours of laboratory/applied
work. The lab examinations referred to in this pa-
per were 1 hour tests during which the students had
to write programs to demonstrate their knowledge of
topics recently covered during lectures.
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Figure 1: Histograms of Students’ Performance in
Generated Tests and Lab Exams

3 Analysis of Data

The total data gathered consisted of four sets of ques-
tions, rough work paper and 19 interview record-
ings. The data analysis consisted of four stages, firstly
checking for correlation between student performance
in the generated tests and the class exams, secondly
examining the generated questions that caused most
difficulty, thirdly analyzing “doodle” data, and fi-
nally, analyzing the difference between the students
opinions of paper based tests and their actual perfor-
mance.

3.1 Test Correlations

A Pearson correlation of .63 (p<0.05) was found when
analyzing students’ mean performance in the gener-
ated test compared against their mean performance in
the corresponding class exams (i.e. 63% of the vari-
ation in programming scores for the class could be
accounted for using generated tests). The correlation
was found to be higher (.74, p<0.01) for students in
the top quartile of the class, however students who
performed poorly in class exams tended to perform
extremely badly in the generated tests. This relation
was further examined during the interviews with the
students.

Figure 1 shows a histogram comparing the distri-
bution of grades in both tests. In the figure, 1-5 rep-
resents the different grades 1 being a score from 70
to 100 and 5 being a score of 15 or below. It can be
seen in the histogram that 14 students score a grade
2 (57-69) in the class exam, whilst only 3 students
score likewise in the generated tests. It is also clear
that more students fail badly in the class exam(grade
5=20% or lower) than in the generated exam. We
believe this is due to the nature of the questions. The
class exams were not solely multiple choice questions,
and as a result scores of 0-20 were possible when stu-
dents possessed no knowledge of the concepts being
examined. However, across 32 MCQs, even random
guessing would usually yield a score of 20-25% since
we were not using negative marking(Eisner 1998).

The initial findings from the survey performed this
year would indicate that automated assessment is
possible for students (and in particular high perform-
ing students), however the variation in student per-
formance is an area that requires further study. The
interview data discussed in section four offers some
potential explanations.

3.2 Question Analysis

The tool used to generate each question also gener-
ates feasible distractors to appeal to the weaker stu-
dents. The majority of the questions generated had
one reasonable distractor that weak students chose,



String s = "Life, if you will is

full of funny surprises";

int x = s.index0f(’f’);

switch (x) {

case -1:
System.out.println("Well Hi!");
break;

case 2:
System.out.println("Pleased to meet you");
x=21;

case 7:
System.out.println("Good day to you sir");
break;

case 21:
System.out.println("Who on earth are you?");
break;

default:

System.out.println("Bonjour");

x-—;

}

Q: What is the output of this program?

a) Who on earth are you

b) Pleased to meet you followed by Who on earth are you?
c¢) Bonjour

d) Pleased to meet you, followed by Good day to you sir

e) Pleased to meet you, followed by Good day to you sir,
followed by Who on earth are you?

Figure 2: A Generated Question regarding the Switch
Statement
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Figure 3: Answers chosen for the Question in Fig.2

and several highly infeasible distractors which com-
bined would account for 10% of the answers. The
methodology for developing feasible distractors is still
in an early stage of development, and as such its per-
formance is not yet highly effective.

Some of the generated distractors however were
capable of misleading almost the entire class. Fig-
ure 2 demonstrates a generated question to test stu-
dents’ knowledge of the switch statement, assuming
the students had a prior knowledge of Strings. The
question tests whether the students understand the
internal workings of a Java switch statement and in
particular the break keyword. As Figure 3 shows, the
majority of students went for the generated distrac-
tor ‘b’. Only 4 students in 59 answered the question
correctly.

Most questions exhibited the desirable traits dis-
cussed by Lister et al.(Lister, Adams, Fitzger-
ald, Fone, Hamer, Lindholm, McCartney, Mostrom,
Sanders, Seppild, Simon & Thomas 2004), in that
the correct answer should be must popular amongst
the good students, and the lower groups show no bias
toward any particular answer. An example of a well
formed question on for-loops can be seen in Figure 4
and its corresponding analysis of the answer trends

int sum = 0;
for(int i=0;i<10;i+=3)
{
i--;
sum+=i;
System.out.println("Sum = " + sum);
Q: What is the output of this program?
a) sum=30
b) sum=15
c) sum=12
d) sum=17
e) sum=14

Figure 4: Generated Question on For-loops
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Figure 5: Analysis of Answer Trends for Question in
Fig.4

for this question can be see in Figure 5.

3.3 Doodle Data

When performing this survey we wanted to ensure
that we collected as much data as possible, this in-
cluded any notes that students may take whilst solv-
ing the problems. Analysis of student “doodling” was
performed by Lister et al(Lister et al. 2004) on the
multi-national study of students’ ability to trace the
execution of programs. The doodle data that we gath-
ered was largely similar in categories to the twelve
found in the multi-national study. The most frequent
occurring we found to be synchronized trace and rule
out(see Figure 6) and position trace (see Figure 7).
On the rough work sheets provided many of the doo-
dles appear to be a combination of a computation and
number trace. Figure 8 shows a good example of this.

The significance of the doodles themselves was also
analyzed, yielding some interesting results. The sur-
vey contained approximately 980 questions that were
attempted (we define attempted as being some marks
made on the question sheet, or an answer given). Due
to time restrictions we analysed only one question
from each set of questions for doodles, and collected
doodle data from 113 questions. Of these, 92 were
answered correctly(81%). The distribution of doo-
dles across the class is not arbitrary, typically the
students who perform best doodle the most. Table
1 shows the amount of doodles performed by each
section of the class. It is not clear whether this is
a cause or effect however. It could be argued that
only good students doodle, or that students perform
well because of their doodling.This was revisited dur-
ing the interviews, where students were asked if they
believed they could score equally well without doo-
dling. It was also noted that the majority(69%) of
the doodle data collected was from females.
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Figure 6: A synchronized trace and “rule out”

Question 5) Consider the following plece of code...

2 11 1k s5E&¥RG L
String s = "I Am An L;_gié_.w-;
String sl = "Ragé Against the Machine";
& = B.toLowerCase()};
e = s.replace('a','a');

Figure 7: Position Trace for indexing

mmj[@h u_ﬂuj[o}, 1 |
Mtr.j{‘]-r; Maf'&j[ol | o 17 -l:
aitan (2 1= o] 187 =2
oiai(s) t =wtax o) 41734
orrc 4 ) t :t,«.,c}?:.j@} 43 +7= 54

747 -

Figure 8: Computation and Number Trace

4 Interviews

Nineteen students were interviewed during the final
week of term. This subgroup was not perfectly rep-
resentative of our sample group, it had a slight bias
toward students with high grades (8 students from the
top grade were included). We believe this to be un-
avoidable as we were requesting students to volunteer
for interviews on programming. It seems inevitable
that good students are most willing to discuss their
experiences of programming in CS1.

The average duration of an interview was 25 min-
utes. The interviews were carried out by postgrad-
uates with whom the student had no prior interac-
tion (either as lab demonstrator or invigilator) to en-
sure they would speak freely about their experiences
in CS100. This paper will only discuss the ques-
tions asked that are relevant to the work described
here, namely the student’s opinions of the question
style, the student’s performance in the survey ques-
tions compared to class tests, and finally questions
regarding the rough work they performed whilst solv-
ing the questions.

4.1 On Generated Code Questions

Whilst the top students regarded the questions as
“easy and nice, because they were so short”, the
weaker students complained that the feasibility of the
program made it difficult to comprehend...

Student: “Its hard to say what the program
does, the variable names don’t mean any-
thing, and the program itself doesn’t do any-
thing. Its just a load of numbers going up
and down.”

The feasibility of generated code questions seems to
be a persistent problem; naming schemes are planned
for the next generation of the system that aim to add
some semantics to variable names. Whilst weak stu-
dents struggle to comprehend code when it is void
of semantics, the high performing students appear to
experience no additional difficulty.

4.2 On Differences in Performance

As previously mentioned in Section 3.1, the high per-
forming students performed equally well in both the
generated exams and the class exams, as a result these
questions were mainly intended for students who ex-
perienced a drop in performance when answering gen-
erated questions.

The weaker students complained about the rigidity
of the marking in multiple choice questions. Many
students complained that programming knowledge is
not “black and white”. The opinion is best expressed
by one student who scored 55% on a class exam on
iteration, but 10% on the generated test for the same
topic.

Interviewer:“Why do you think you
scored so low on the for loops survey?”
Subject:“I know for-loops pretty well, I
can write them for exam questions, I have a
good idea how they work. But I get zero on
these tests if I don’t know the exact answer.
When I am writing code in class exams I
know T'll get some marks for getting the
loop right, but here I get none. Thats what
the difference is.”

This seems similar to what Lister describes as “fragile
knowledge”. The students can, when requested, ar-
ticulate a description of a particular piece of knowl-
edge, but only when explicitly asked to do so. It



would appear that this fragile knowledge is earning
them marks in class tests, but certainly not in mul-
tiple choice questions. It is also possible that this
is due the inherent differences between holistic as-
sessment as employed in the class exams and the an-
alytical assessment which is used in the automated
assessment. It has previously been noted that holis-
tic and analytical marking schemes can yield dif-
ferent results(Olson 1988), and in particular how a
student’s code can score reasonably high holistically
whilst failing in simple analytical categories e.g. com-
pilation/functionality.

Some students confessed to rote learning code,
which is certainly troublesome. Rote learning as-
sumes that the student has no comprehension (as per
Bloom(Bloom 1956)) of the code, nor are they capa-
ble of applying the code to a given problem. Accord-
ing to the students it is the marking scheme which
encourages rote-learning...

Interviewer: “When you say you ‘learn
off’ the code, what do you mean?”
Subject:“Well, most of the questions are
looking for the same thing, and you usually
get the marks for making the answer look
correct. Like if its a searching problem, you
put down a loop, and you have an array
and an if statement. That usually gets you
the marks. ”

Interviewer: “What do you mean by ‘the
marks’?”

Subject:“Not all of them, but definitely a
pass”

This habit of rote-learning is consistent with
Mayer’s contrast of rote learning versus meaningful
learning where he says novice programmers will rote-
learn) if they lack ‘appropriate anchoring ideas’(Mayer
1981).

Ausubel(Ausubel, Novak & Hanesian 1978) ex-
plains that in order for comprehension (and hence
meaningful learning) to occur, the new information
in the short term memory must link to information
in the long term memory and establish itself in the
learner’s knowledge network. If this does not happen
the learner is reduced to memorizing each piece of
information as if they were simply items on a list.

It is possible that this is what is happening with
the weaker students; they are lacking the knowledge
anchors for new concepts, and proceed to rote-learn
as it is their only option.

4.3 On Doodling

As we had previously noted that doodling tended to
correlate to a correct answer, so during interview it
was decided to discuss this habit with students. Out
of the 19 students interviewed 11 had previously pro-
vided some doodle data. The question asked was sim-
ply “Could you have done as well without using rough
work?”. Seven of the students answered yes, explain-
ing that they were only using the rough work to make
sure their answer was correct, the remainder said that
without doodling they most likely would have made
mistakes at some point. All students explained that
they knew exactly how to solve the question when
they began doodling, they just found it is easier to
write numbers down rather than remember them.

Due to the high scoring of questions with doodle
data, it would appear that students doodle because
they are methodical and careful. It appears to be a
good indicator of students with a good ethic. They
may find the problems difficult, but they are meticu-
lous enough to ensure they do not make any simple
errors when attempting to solve them.

5 Conclusions

Having conducted an empirical study of the 59 stu-
dents throughout the year, we have learned much
about the nature of assessment in computer science.
The automated assessment tool was evaluated thor-
oughly and proved to be successful for a large per-
centage of the class. It was successful in that these
students did not comment in a negative manner about
the tool, and their performance was consistent across
both the tool and the class exams. However, this is
true only for top students in the class(students with a
grade 2 or higher). The students in the lower grades
scored far less in the generated questions than they
did in their corresponding class exams.

Based on data gathered during the interviews
MCQs seem to provide a more accurate indication of a
student’s programming ability. The class tests where
students were required to write programs to solve
problems award marks for effort, which seems to pro-
mote rote-learning and as a result, fragile knowledge.
If programming must be examined on paper, then it
is best done through MCQs as devising a marking
scheme for programs that does not have these failings
has proven to be very difficult.

Our findings on the doodle data are largely in line
with those proposed by Lister et al., in that 80% of the
doodles resulted in the correct answer being chosen.
Whilst again, not surprising, it is important informa-
tion. During interviews students who doodled con-
fessed to being ‘perfectionists’ and ‘thorough’ when
approaching problems. These are traits that are ex-
pected of good programmers, and should be encour-
aged by educators.

5.1 Future Work

The future work for this project involves a modifi-
cation of the system itself and secondly scaling the
project up to cover more universities in an attempt
to replicate and generalize the work. The system will
be modified to choose reasonable or at least familiar
variable names in the code in the hope of alleviat-
ing the main complaint from students thus far. In
addition we would also like to perform experiments
to assess the validity of this complaint, by measuring
the difference in students’ performance when seman-
tically accurate variable names are provided.
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