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Abstract

We show that Mach bands and a number of other low-level bragt illu-
sions can be accounted for by assuming that the percepstehsyerforms simple
Bayesian inference using a Gaussian image prior with neisgal gangion cells.
This theory accounts for phenomena which have proven pradiie for simple
energy-based and lateral-interaction models while amgidhe complexities of
mid-level vision theories that involve the estimation afisture and albedo.

1 Introduction

Hartline shared the 1967 Nobel Prize in Physiology and Maditor his discovery of
lateral inhibition in the retina (Hartline et al., 1956). i$tphysiological phenomenon
was interpreted as performing “sharpening of contrast ab fdbrms stand out more
clearly” (Bernhard, 1967), and accounting for low-leveightness illusions such as
Mach bands (Ratliff, 1965). Ernst Mach himself proposed placian derivative op-
erator as an explanation of these phenomena, following &EW#ating. More recent
theories of lateral inhibition in the retina eschew “costranhancement” as an expla-
nation and are instead based on coding theory under the tieeraasumption that the
retina attempts to encode images so as to maximize fidelithevitansmitting them
through the optic nerve (Atick and Redlich, 1990b,a). Thesory and its elaborations
(Atick et al., 1992; Linsker, 1993; Li, 1996) have enjoyedeanous success at ac-
counting for receptive field properties. They do howeveuassthat the rest of the
brain knows the point-spread function of the retina, andefoge, in contrast to simple
retinal lateral inhibition models, do not predict that pepts will correspond to simply
applying the retinal transfer function to the image.

For this and other reasons, lateral inhibition in the remeo longer taken seriously
as an explanation of brightness illusions by experts indnea, although it does con-
tinue to dominate survey courses and textbooks. Modermtmss illusion theories
fall into three classes, none of which ascribes a directtmletinal effects. The first,



so-called energy-based models, are the philosophicakddsat of the retinal lateral
inhibition theory. These assume that a post-retinal rélemgrocess constructed to
minimize a conflict (or energy) measure leads to brightnessgpts. This relaxation
process in the end results in (cortical) lateral inhibitidBuch energy-based models
have elaborate architectures carefully tuned to the phenarthey attempt to explain.

The second class, constancy models, are cast at a higheofeaestraction and
hold that brightness and color illusions result from medsas the visual system uses
to obtain stable veridical percepts in the face of varyihgiination (Adelson, 2000,
1993; Sun and Perona, 1996a,b). Constancy models havéemteaiplanatory power
for a broad class of images, particularly those with apparansparency or geometric
structure, but when faced with low-level brightness iltus such as Mach bands and
simultaneous contrast effects they resort to special pigazbncerning non-veridical
geometric structure and albedo supposedly inferred byleviel-visual processes.

The third, physiological models, start with measurementshysiological activ-
ity in visual areas during presentation of an ensemble ofidtithat includes stimuli
known to produce illusions and show that the measured naueativity, interpreted
using a posited representation, are consistent with knosvogpts (Albright, 1994,
1995; Rossi et al., 1996; Rossi and Paradiso, 1996; Newsbalg £989). Although
such work elucidates mechanism and representation, iedigiive only to the extent
that the neurophysiology is fully understood.

The study of motion perception has revealed a rich set of sggyncounterin-
tuitive non-veridical percepts. These motion illusions aell explained by a recent
theory which posits that the visual system performs optipgteptual inference in
estimating motion, and that this processing necessakifystanto account both signal
and noise (Weiss et al., 2002). Here we introduce a theolggphically similar to
the constancy and optimal motion estimation theories. Tikery proposed here ex-
tends the optimal perception hypothesis to encompassédwel-brightness illusions
without invoking complex priors that involve three-dimé@sal structure, grouping,
illumination, transparency, or albedo.

2 Methods

Van Beers et al. (2002) posit th&ateural signals are corrupted by noise and this
places limits on information processingfi the context of sensorimotor control. In
this section we calculate such a limit in a perceptual sydbgrfinding the optimal
Bayesian reconstruction of an image presented to the netidar a set of assumptions
concerning noise between transduction and transmissamgahe optic nerve, and
using a simple generic prior.

The input to the model presented here is a one-dimensios@iade signal (corre-
sponding, for example, to one row of an image) which reprssise lightness of the
stimulus. The intensity range of the pixels is centered i gepresenting mid-level
gray). Negative values correspond to darker tones, andiymsalues to lighter tones.

The transformation of the stimulusat our one-dimensional annular retina is mod-
eled as

y=®x+1n (1)
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Figure 1: Transformation and inference process. The stisn{iéft) is convolved with
the Mexican hatvector to produced a new signal (middle). The brain has tsgtie
original pattern (here usingraaximum a-posteriogstimation approach) from a noisy
version of the transformed signal.

where® is a circulant matrix ang is the noise due to transduction and transmission.
Each row of® corresponds to a shifted version dfi@xican hatshaped vectddefined
by
o(k) = a(b - k*)e /> )

wherea determines the power of the signal alndefines the area ratio between the
positive and negative lobes. This transformation thusesponds to convolving the
input with a Mexican hat function. We assume that the ngise white, Gaussian,
zero-mean, and uncorrelated with the input signal. The riavee matrix is simply
C, = 071, wherel is the identity matrix.

Giveny as the signal received from the retina, we assume that tireloraws how
to estimate the stimulus that maximizes the posterior probability

p(x]y) x p(y[x)p(x) 3)

We assume a zero-mean white Gaussian prior on stimuli, wéhothal covariance
matrix Cyx = 021
TeH—1
p(x) o e O X/ (4)

Given our simple assumptions the likelihood can be written a

Plyl) oc e~ =70, -2 ©)

The estimated stimulus which maximizes the consequent log-posterior

1 1
log p(x|y) = —F(y — ®x)T(y — ®x) — FXTX — const. (6)
n x

must then satisfy the linear equation

(a;2<I>T<I> +o%D)x = 0;2{>Ty (7)

1Expression (2) defines a wave centered at zero, with efeestioport(—5, 5). The vector used in
the model consists of a discrete shifted version of this wawth sampling step depending on the desired
effective width.
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Figure 2: Optimal perceptual inference for 3 differenteats. The top row (a) presents
the stimuli as images. The middle row (b) shows the transéorpattern after being
convolved with the Mexican hat function. The actual widthtloé Mexican hat is
shown on the top-left corner of each plot. The bottom row (@spnts the inferred
pattern (solid) for each stimulus (dotted).

which is equivalent to the Wiener filter for the deconvolatad a noisy signal. Figure 1
shows an example of the transformation and inference psdoes strip of a natural
image.

For the simulations presented in the next section, we useganameter values
a = 0.15 andb = 1.1 for the Mexican hat transformation (see eq. 2). This value
of b makes the total area of the two negative side lobes equal% &2he area of
the positive central lobe. The Gaussian prior had standevthtiono, = 1 and the
standard deviation of the ganglion cell noise wgs= 0.1.

The stimuli consist of 256 pixels, with the maximum lightaeset too,. The
effective support (non-zero region) of the Mexican hat algrsed for these simulations
is approximately one tenth of the length of the input pat{ee® figure 2, top-left corner
of each plot in the middle row).

3 Reaults

We applied this simple cartoon model of the retina to theeghrest popular one-
dimensional brightness illusion stimuli. None involve dvaid-level visual elements
like perceived transparency or obvious geometric strectisigure 2 shows the stimuli
along with the inferred pattern following the retinal trégrfunction (without any noise



actually being injected) and Bayesian reconstruction.

Changes in the simulation parameters result in the follgwjumalitative behavior. If
the variance of the noise increases (approaching the vathe wariance of the prior)
the inferred signal is pulled toward zero. In contrast, & ttariance of the noise is very
small, the reconstructed pattern becomes closer to thmatigtimulus.

4 Discussion

The results from Figure 2 are consistent with reported grsc®r each of these pat-
terns. In the Chevreul/Staircase pattern the bars with lyemeous lightness are per-
ceived as ramps. Mach Bands (peaks of brightness) appéared¢es between a ramp
and a plateau. And, for the simultaneous contrast stimwasperceive the gray bar
on the light background as darker than the other one, evemgththey have the same
actual intensity.

Due to the simple linear imaging model and Gaussian priotiorud, the forward
process and the optimal estimation process are both lirEais means that just as
the Mexican hat function can be calculated as the impulggorese function of the
forward process, we can calculate the impulse response dfilhmodel consisting of
the composition of the forward process and the optimal egion process. The result
is shown in Figure 3.

Changing the magnitude of the noise or the prior modifies tifierénce process
in the intuitively expected fashion. As the noise becomagelathe prior is weighted
more heavily, which in our case indicates that pixels at tleamlightness become
more probable. On the other hand, if the noise is small enthegmference consist of
inverting the retinal transfer function, obtaining a pattaearly identical to the actual
stimulus. It is important to note that spike rates in retigahglion cells are not high,
and the visual system must estimate image properties yagtaten if the retina itself
is nearly deterministic, shot noise introduces considerahcertainty concerning the
activity level of a ganglion cell as estimated by a brief alsagon of its spike train.

This theory challenges the traditional edge-enhancenientof retinal lateral in-
hibition. According to the currently accepted theorietetal inhibition in the retina is
optimized to encode Gaussian signals of limited frequemyent, using an optimal
lossy encoder. Sharp edges or sudden gradient changesaszlagly unlikely under
the Gaussian image hypothesis, and an optimal lossy enedliéntroduce greater
distortion into low probability inputs. Hence one might expsharp edges to cause
local distortion of the estimated brightness. Far from ‘@mting edges” as the tradi-
tional theory holds, lateral inhibition in the retina prags a code that performs well
on Gaussian images but poorly on images containing shagptbess or gradient dis-
continuities.

This account of low-level brightness illusions is an opfiparception theory in
that it posits optimal interpretation of the signals thaatethe brain through the optic
nerve. This differs from the optimal perception account aition illusions (Weiss
et al., 2002), which result from optimal interpretation loé tvisual stimuli themselves.
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Figure 3: The retinal processing impulse response is shdatted line) along with the
impulse response function of the composition of the refimatessing and the optimal
reconstructor (solid line). In all three panels = 1, while moving from left to right
o, = 0.01,0.1, 1.0. The center panel corresponds to the simulations of Figure 2

5 Conclusion

We have seen that a number of low-level brightness illusiars be accounted for
by assuming that the perceptual system performs simple sayénference using a
Gaussian image prior, and positing measurement noise oautpeits of the retinal
gangion cells. This theory accounts for phenomena whick pasven problematic for
simple energy-based and lateral-interaction models vetwibeding the complexities of
mid-level vision theories that involve the estimation afisture and albedo.

As in other sensory domains, a general Bayesian principleaasimple generic
prior has proven surprisingly powerful at accounting fardevel brightness illusions.

6 FutureWork

Because this model is easily extensible within the Gausiéiar framework, our
agenda is straightforward: we will retain the model’s siitipt while making firmer
contact with the physiology, in order to sharpen the modakslictions and broaden
its range of applicability:

e Two dimensional stimuli.

Construction of novel brightness illusions via optiminatiof measure of non-
veridicality.

Calibration of the model using realistic ganglion cell netbee fields.

Physiologically realistic levels of shot noise in gangla®il outputs, which will
make the noise of a ganglion cell vary with its activity level

Inclusion of color.



e Incorporation of physiologically plausible saturatioffieets, since saturation of
a neuron constitutes an additional source of noise.

e Incorporation of brightness and local contrast adaptation

Once the simple model has been exhausted, one could comsaang beyond the
Gaussian framework by including for example an edge prdogse prior.
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