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Abstract 

We are all familiar with the sound which can be viewed as a wave motion in air or other 

elastic media. In this case, sound is a stimulus. Sound can also be viewed as an excitation 

of the hearing mechanism that results in the perception of sound. The interaction between 

the physical properties of sound, and our perception of them, poses delicate and complex 

issues. It is this complexity in audio and acoustics that creates such interesting problems. 

 
Acoustic echo is inevitable whenever a speaker is placed near to a microphone in a 

general full-duplex communication application. The most common communication 

scenario is the hands-free mobile communication kits for a car. For example, the voice 

from the loudspeaker is unavoidably picked up by the microphone and transmitted back 

to the remote speaker. This makes the remote speaker hear his/her own voice distorted 

and delayed by the communication channel or called end to end delay, which is known as 

echo. Obviously, the longer the channel delay, the more annoying the echo resulting a 

decrease in the perceived quality of the communication service such as VoIP conference 

call. 

 

In the thesis, we propose to use different approaches to perform acoustic echo 

cancellation. In addition, we exploit the idea of blind source separation (BSS) which can 

estimate source signals using only information about their mixtures observed in each 

input signal. In addition, we provide a wide theoretical analysis of models and 

algorithmic aspects of the widely used adaptive algorithm Least Mean Square (LMS). 

We compare these with Non-negative Matrix Factorization (NMF), and their various 

extensions and modifications, especially for the purpose of performing AEC by 

employing techniques developed for monaural sound source separation.  
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Optimal Algorithms for Blind Source Separation 
-Application to Acoustic Echo Cancellation 

1. Introduction 

This thesis will address some of the aims of signal processing and machine learning 

techniques, including extracting an interesting knowledge from experimental raw 

datasets. In particular, we focus on the techniques related to blind source separation 

(BSS) to solve one of its applications: Acoustic echo cancellation (AEC). The purpose 

of this project focuses on finding a high quality and efficient technique to perform AEC. 

Furthermore, to address the issue of sound dataset structure, we explore a recent 

iterative technique called Non negative Matrix Factorization (NMF) [Daniel 01], also 

we place particular emphasis on the initialization of current NMF algorithms for 

efficiently computing NMF.  

 

An aforementioned research area is blind source separation method. The sources 

separation problems arise when a number of sources emit signals that mix and 

propagate to one or more sensors. The objective is to identify the underlying source 

signals based on measurements of the mixed sources. We have studied the feasibility of 

various source separation techniques such as Independent Component Analysis (ICA), 

Principal Component Analysis (PCA), and Degenerate Unmixing Estimation Technique 

(DUET). In this thesis, we use both different types of LMS algorithms and 

Non-negative Matrix Factorization (NMF) model to derive and implement in MATLAB, 

using efficient and relatively simple iterative algorithms that work well in practice for 

real-world data. Finally, we present an echo effect and echo control experiment on 

real-time DSP board Texas Instruments Develop Start Kits (TMS320C6713 DSK) in 

order to demonstrate a simple AEC solution.  

1.1 Research problem description 

This project aims to use different conventional mathematical techniques to perform 

Acoustic Echo Cancellation. We will review the adaptive algorithms which are discussed 

in later chapters and introduce a new optimal computational algorithm called NMF to 

find the best suitable solution for AEC problem.  

 

As the theory and applications of NMF is still being developed. In this project we choose 

NMF algorithm to perform AEC using various divergence as a general cost function of 

NMF, and find the optimal method that can give the best performance of AEC problem. 
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In addition, the workhorse in this project related NMF include initialization problem and 

morphological constraints. These constrains include nonnegativity, sparsity, 

orthogonality and smoothness. This research we also implement and optimize algorithm 

for NMF and provide psedu-source code and efficient source code in MATLAB.  

 

1.2 Thesis organization and overview 

The focus of this thesis is the Acoustic Echo Cancellation using widely used adaptive 

algorithm LMS and sound separation technique – NMF. Special emphasis is provided 

coverage of the models and algorithms for nonnegative matrix factorizations both from 

a theoretical and practical point of view. The main objective is to derive and implement 

in MATLAB simulation. Actually, almost all of the experiments presented in this thesis 

have been implemented in MATLAB and extensively tested. The layout of the thesis is 

as follows. 

 

In chapter two we provide the necessary background information and theory in sound 

source separation and includes the different BSS generative mixing model. . In addition, 

we also discuss the general principle of acoustic echo cancellation. It is main 

application we have it involved in this project. And, we introduce the optimum solution 

for the conversional acoustic echo canceller limitation at the end of this chapter. 

 

In chapter three we discuss the blind source separation (BSS) and related methods 

which present various optimization techniques and statistical methods to derive efficient 

and robust learning or update rules. We present the conventional optimize algorithms 

(i.e. ICA, PCA, DUET ADRess). This section discussed using different mathematical 

techniques to perform sound source separation.  

 

In chapter four we introduce the learning algorithms for Nonnegative Matrix 

Factorization (NMF) and its properties of a large family of generalized and flexible 

divergences between two nonnegative sequences or matrices. This chapter puts 

particular emphasis on discussing NMF numerical approaches and various useful cost 

functions and regulations of NMF, including those based on generalized 

Kullback-Leibler, Pearson and Neyman Chi-squared divergences etc. Many of these 

measures belong to the class of Alpha-divergences and Beta-divergences. In addition, 
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we give novel experiments on acoustic echo cancellation using extended NMF 

algorithms. 

 

In chapter five, two MATLAB simulation experiments present the requirements for 

implementing the algorithms discussed in chapter three and four, and the measurements 

that used to examine the output speech quality. We focus on Non-negative Matrix 

Factorization algorithm implementation. Also the main contribution of this work is the 

development a version of the NMF algorithm that combined the BSS principle, 

represented the best route for tacking the AEC problem. 

 

In chapter six, we extended the AEC problem on real-time implementation, and 

demonstrated a simple straightforward echo control experiment based on TI C6713 DSP 

start kits. 

 

Chapter seven then contains conclusion on the work done and also highlights areas for 

the future research in the area of NMF algorithm for blind source separation. 
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2. Acoustic Blind Source Separation background and theory 

What is the blind source separation? The technique for estimation of individual source 

components from their mixtures at multiple sensors is known as blind source separation 

(BSS). In a real room environment, one well known BSS application is the separation of 

audio sources which have been mixed and then captured by multiple sensors or 

microphones. These sources could be different output signals from speakers in the same 

room. Therefore, each sensor acquires a slightly different mixture of the original source 

signals. One of the examples is solving the cocktail party problem [Bronkhorst 00]; we 

will discuss it in chapter two. The term “blind” stresses the fact that the original source 

signals and the generic mixing system are assumed to be unknown. Additionally, the 

estimation is performed blindly, in other words, if the sources are to be separated blindly, 

they should have some distinct characteristics, such as nonstationarity, non- Gaussianity. 

One optimal learning algorithm: Independent component analysis (ICA) can calculate the 

separation matrix, which is sometimes regarded as synonymous with BSS, relies on non- 

Gaussianity [Lee 98][ Haykin 00][  Hyvärinen 01].  

 

Furthermore, the fundamental assumption necessary for applying blind source separation 

methods is that the original source signals are mutually statistically independent. The 

fundamental problem of BSS refers to finding a demixing system whose outputs are 

statistically independent. We will explain in detail the different mixture and separation 

models for which most early BSS algorithms were designed in this chapter. 

2.1 BSS Generative Model 

One of the difficulties of the blind source separation task more particularly rely on the 

way in which the signals are mixed within the physical environment. The simplest mixing 

scenario deals with an instantaneous mixing model, for where no delayed versions of the 

sources signals appear. This is the ideal case for which most early BSS algorithms were 

designed, but such algorithms have limited practical applicability in real time speech 

separation problems. In real world acoustical paths lead to convolutive mixing of the 

sources when measured at acoustic sensors. It is an extension of the instantaneous mixing 

model by considering also delayed versions of the source signals leading to a mixing 

system. The system generally can be modelled by finite impulse response (FIR) filters. 
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When measuring the convolutive mixing of the sources, the degree of mixing is 

significant since the reverberation time of the room space is large.  

2.1.1 Instantaneous mixture model 

In instantaneous mixing, they can be described as a set of m unknown source 
signals{ ( )}is k , where 1 i m≤ ≤ are combined to yield the n measured sensor 

signals{ ( )}jx k , where1 j n≤ ≤  as: 

                  
1

( ) ( ) ( )
m

j ji i j
i

x k a s k v k
=

= +∑                            (2.1) 

 
FIGURE 2.1: BLOCK DIAGRAM OF THE INSTANTANEOUS BSS TASK 

From Eq. 2.1 where { }jia are the coefficients of the linear time-invariant mixing system 

represented by the ( )n m× matrixA and ( )jv k is additive noise signal at the jth sensor. 

The goal of BSS for instantaneous mixtures is to adjust the coefficients of a 

m n× separation or demixing matrixB , which recover estimates( )iy k , of the original 

sources ( )jx k from 

                        
1

( ) ( ) ( )
n

i ij j
j

y k b k x k
=

=∑                         (2.2) 

The block diagram of this task is shown in Fig. 2.1. 

 

There are several applications where the instantaneous mixture model is applicable. For 

example, in brain science BSS helps to identify underlying components of brain activity 

from recordings of brain activity as given by an electroencephalogram (EEG) [Cichocki 

02]. In other fields like image processing applications, which are the extraction of 

independent features in image and improving the image quality. A comprehensive 

treatment of the instantaneous BSS case and related algorithms can be found in 

[Hyvärinen 01]. However, the practical algorithm for speech separation must take the 

convolutive mixing of the acoustic paths into account. In this thesis we deal with BSS 
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for acoustic environments and thus the instantaneous mixture model is not appropriate 

as no delayed versions of the source signals are considered. Therefore, in the next 

section we extend this model and show how the convolutive mixture model works in 

practical acoustic scenario. 

2.1.2 Convolutive mixture model 

In acoustic scenario, we extend the instantaneous mixture model by considering the 

time delays resulting from sound propagation over space and probably the multipath 

generated by reflections of sound off different objects, particularly in large rooms and 

other enclosed settings. Normally, the convolutive mixing system consists of finite 

impulse response filters. As a result, the m sources are mixed by a time-dispersive 

multichannel system , described by 

                     
1

( ) ( ) ( )
m

j jil i j
l i

x k a s k l v k
∞

=−∞ =
= − +∑∑                    (2.3) 

where{ ( )}jx k ,1 j n≤ ≤  are the n sensor signals. The parameter m also denotes the FIR 

filter length of the demixing filter jila or we call the coefficients of the discrete-time 

linear time-invariant mixing system{ }l l
∞
=−∞A , where each matrix lA is of 

dimension( )n m× . 

 

 FIGURE 2.2: BLOCK DIAGRAM OF THE CONVOLUTIVE BSS TASK 
 

In the above diagram, ( ) l
ll

z z
∞ −
=−∞

=∑A A and ( , ) ( ) l
ll

z k k z
∞ −
=−∞

=∑B B represent the z 

transform of the sequences of the system{ }lA and{ ( )}l kB . 

 

Most commonly, BSS algorithms are developed under the assumption that the number 

m of simultaneously active source signal( )is k  equals the number n of the sensor 
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signals ( )jx k . The number of unknown source signals m plays an important role in BSS 

algorithms in that, under reasonable constraints on the mixing system, the separation 

problem remains linear if the number of mixture signals n is greater than or equal to 

m( )n m≥ . This case that the sensors outnumber the sources is termed overdetermined 

BSS. The main approach to simplify the separation problem in this case is to apply 

principal component analysis (PCA) [Hyvärinen 01]. In order to perform matrix 

dimension reduction by extracting the first m components and then use a standard BSS 

algorithm. A situation is called underdetermined BSS or BSS with overcomplete bases, 

which means that the sources outnumber the sensors( )n m≤ . This is the significantly 

more difficult case. Mostly the sparseness of the sources in the time-frequency domain 

is used to determine clusters which correspond to the separated sources (e.g. 

[Zibulevsky 01] [Bofill 03]. Currently, many researchers proposed methods to estimate 

the sparseness of the sources based on modelling the human auditory system and then 

subsequently apply time-frequency masking to separate the sources. 

2.2 Speech source signal characteristics and BSS criteria 

In this section we are going to discuss the signal properties of acoustic source signals 

such as speech signals and their relevant utilization for BSS algorithms. 

 

As we know, speech signals are feature-rich and possess certain characteristics that 

enable BSS algorithm to be applied. 

2.2.1 Basic signal properties of acoustic signals 

Statistical properties: a good statistical model of a signal in the time domain is a 

zero-mean Gaussian process ( , )N Nµ σℕ with a given variation 2
Nσ , mean 0Nµ = and 

normal probability density function (PDF) given by: 

                 
2

2

1
( / , ) exp

22
N N

NN

x
p x µ σ

σσ π
 

= − 
 

                   (2.4) 

In the discrete time domain this simple model means that every sample has a random 

value with a Gaussian PDF, also called Gaussian noise or Gaussian distribution. 

 

Temporal properties: one of the widely used temporal properties of a noise signal is the 

assumption that the noise is a stationary signal. In most cases in this thesis this is a 
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human speech signal. In other words, it is called “temporal dependencies” which means 

audio signals are in general showing temporal dependencies, for example, the speech 

signals by the vocal tract. Speech can also be separated using second-order statistics 

alone if the source signals have unique temporal structures with distinct autocorrelation 

functions. In other words, if the temporal sample of a signal is uncorrelated, then the 

signal exhibits strict-sense whiteness. 

 

Stationarity: speech is also a highly non-stationary signal due to the amplitude 

modulations inherent in the voiced portions of speech and to the intermingling of voiced 

and unvoiced speech patterns in most dialects [Scott 07]. The non-stationary 

characteristics of individual talks (sources) are not likely to be similar. The majority of 

audio signals are considered in literature as non-stationary signals, but strict-sense 

stationarity is only assumed. 

2.2.2 Criteria for BSS in Speech Separation 

• Nonstationarity. BSS algorithms can be designed to exploit the statistical 

independence of different talkers in an acoustic environment. It is known that 

the statistic of jointly-Gaussian random processes can be completely specified 

by their first or second order statistic; hence, the higher and lower order 

statistical features do not carry any additional information about Gaussian 

signals. Therefore, in most acoustic BSS applications nonstationarity of the 

source signals can be exploited by simultaneous diagonalization of short-term 

output correlation matrices at different time instants [Weinstein 93]. 

• Non-Gaussianity, in such case, statistical independence of the individual talker’s 

signals need not be assumed, and the non-Gaussian nature of the speech signals 

are not very important when these statistics are used. Additionally, the 

non-gaussianity can be exploited by using higher-order statistics yielding a 

statistical decoupling of higher-order joint moment of the BSS output signals. 

BSS algorithms utilizing higher-order statistics are also termed independent 

component analysis (ICA) algorithm [Cardoso 89][Jutten 91][Comon 91]. 

• Non-whiteness. As audio signals exhibit temporal dependencies this can be 

exploited by the BSS criterion. Therefore, it can be assumed that samples of 

each source signal are not independent along the time axis however; the signal 
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samples from different sources are mutually independent. Based on the 

assumption of mutual statistical independence for non-white sources several 

algorithms can be found in the literature. Mainly the non-whiteness is exploited 

using second-order statistics by simultaneous diagonalization of output 

correlation matrices over multiple time-lags. It notes that convolution based BSS 

algorithm which is based on the mutual statistical independence for temporally 

white signals. 

2.3 Acoustic echo cancellation 

2.3.1 General Principle 

The effect of sound reflection from objects is called “reverberation.” Echoes are distinct 

copies of the reflected sound. Humans can hear echoes when the difference between 

arrival times of the direct signal and the reflection is more than 100ms, but even with 

differences of 50ms the audio still sounds echoic. Most acoustic echo reduction 

applications do not supress the echoes in the room environment, however, it actually 

supresses the effect when the local sound source is captured by the receive device such 

as microphone, transmitted through the communication line, reproduced by the 

loudspeaker in the receiving room, captured by the microphone there, returned back 

through the communication line, reproduced from the local loudspeaker, and so on. That 

is the simple entire system converts to a signal generator, reproducing an annoying 

constant one. 

 

In addition, acoustic echo is inevitable whenever a speaker is placed near to a microphone 

in a general full-duplex communication application. The most common communication 

scenario is the hands-free mobile communication kits for the cars. For example, the voice 

from the loudspeaker is unavoidable to be picked up by the microphone and transmitted 

back to the remote speaker. This makes the remote speaker hear his/her own voice 

distorted and delayed by the communication channel or called end to end delay, which is 

known as echo. Obviously, the longer the channel delay, the more annoying the echo  

and the worse is the perceived quality of the communication service such as VoIP 

conference call. 

 

There are some properties of acoustic echo: 
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� It is not stationary, and is varies based on a multitude of external factors – 

intensity and position of the sound source. 

� It is a non-linear signal; the non-linearity might be created by the analogue 

circuitry. 

� It is more dispersive, with dispersion times up to 100ms. 

2.3.2 Joint Blind Source Separation and Echo Cancellation 

2.3.2.1 Cause of Echo in digital network 

In most situations, background noise is generated through the network when we use 

digital phones operated in hands-free mode. In the real-time environment, the additional 

sounds are directly and indirectly transmitted to the microphone, so the multipath audio is 

created and transmitted back to the talker. These additional sounds pass through the 

digital cellular vocoder and cause distortion of speech. Meanwhile, the digital processing 

delays and speech-compression applied further contribution of the echo generation and 

degraded voice quality. 

 

Under this circumstance, the echo-control systems are required in today’s digital wireless 

networks. Because of the speech process delays ranging from 80ms to 100ms are 

introduced, and then resulting in total end-to-end delay of approximately 160ms to 

200ms. At this stage, the echo cancellation devices are required within the wireless 

network. 

 

There are two main echo cancellation types: line echo cancelation and acoustic 

cancellation. General speaking, line echo is created by a telephone hybrid which 

transforms a 4 wire line to a 2 wire line. Usually there are two hybrids in the telephone 

line. One corresponds to the near end terminal and the other one corresponds to the far 

end (remote) terminal. See the figure 2.3 for the line echo flow diagram. 
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FIGURE 2.3: L INE ECHO CANCELLER INTEGRATION  FLOW DIAGRAM  
Line echo canceller features include: fast convergence, fast re-convergence after echo 

path change, robustness in respect to background noise and non-linear distortion, 

maximal echo path up to 256ms, reliable work in networks with VoIP segments. 

 

Additionally, acoustic echo cancellation compares with line echo cancellation, both of 

them address the similar problems, and are often based on the same technology. 

However, a line echo canceller generally cannot replace an acoustic echo canceller; due 

to acoustic echo cancellation is a more difficult problem. With line echo cancellation 

there are generally less than two reflections from telephone hybrids or impedance 

mismatches in the telephone line. These echoes are usually delayed by less than 32 ms, 

and do not change very frequently. As mentioned before, with acoustic echo 

cancellation, the echo path is complex and also varies continuously as the speaker 

moves around the room.  

2.3.2.2 The Process of Echo Cancellation and performance measurement 

Today’s digital cellular network technologies require significantly more processing 

power to transmit signals through the channels.  

Simply said, the process of cancelling echo involves two steps. 

� Calling set up: the echo canceller employs a digital adaptive filter to set up a 

model of voice signal and echo passing through the echo canceller. As a voice 

path passes back through the cancellation system, the echo canceller compared 

the original signal and “modelled” signal to cancel existing echo dynamically. 
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� The second process utilizes a non-linear processor to eliminate the remaining 

residual echo by attenuating the signal to achieve the lower noise level. 

 

FIGURE 2.4: STRUCTURE OF ACOUSTIC ECHO CANCELLER IN THE ROOM 

ENVIRONMENT  
 

In Figure 2.3 the acoustic echo canceller estimates the transfer path loudspeaker 

microphone and subtracts the estimated portion of the loudspeaker signal from the 

microphone signal. One important evaluation parameter is called the “Echo Return Loss 

Enhancement (ERLE). It is used in evaluating the residual energy or echo residual. We 

suppose the signal captured from the loudspeaker will be completely suppressed. Owing 

to the near-end noise, shorter filters than the actual reverberation, and estimation errors, 

a portion of the captured loudspeaker signal will remain. This portion is called the echo 

residual. 

 

A measure of the AEC performance is the Echo Return Loss Enhancement (ERLE) 

which is defined as follows: 

 

                     
{ }
{ }

2

10 2

( )
( ) 10 log

( )

E y t
ERLE dB

E e t

 
 =
 
 

                   (2.5) 

where ( )y t is the echo signal and ( )e t is the echo left after processing. In next chapter a 

simulation experiment will plot an example output from the two optimal algorithms - 

NMF and LMS. 
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2.3.2.3 AEC applications with BSS algorithm 

In some applications such as teleconferencing and voiced-controlled machinery, AEC has 

been widely used in this kind of real applications. However, this straightforward 

approach would be to use multichannel AEC which has two important drawbacks: 

� The AEC can only operate reliably when one of the speakers are talking; it means it 

will not work properly when there is double talk. As louder speakers to microphone 

fast adaptation is required which cannot be obtained in the presence of double talk. 

� The BSS algorithm is obstructed by contributions of the loud speaker signals that 

remain present in the microphone signal despite the AEC. Because BSS can only be 

applied on independent signals, otherwise the overall system performance 

deteriorates accordingly [Kwong 92]. 

 

 

 

 

 

 

 

 

An alternative way is that applying BSS to both the microphone signals (near end signals) 

and the far- end signals would overcome these drawbacks but it will cause the higher 

computational complexity. 

 

In the real-time scenario, the problem of recovering source signals from mixtures of them 

which are contaminated by acoustic echo. We assumed that the original sources (near-end 

sources) to be independent of each other, but far-end signals that are reproduced in the 

same room and they are generally not independent. Therefore, Kwong introduced a 

correlation estimator which measures the cross-correlations among all microphone 

(modelled) signals include known input signals. Thus, this will be resulting updated 

outputs which are passed by multichannel filters. More algorithm detail processing can be 

found in [Kwong 92]. 

 

Far end signals 
 
 
 

    _                          To far end 
Near end signals   

 + 
 

 
FIGURE 2.5: ECHO CANCELLATION FOLLOWED BY BLIND SIGNAL 

SEPARATION  

AEC 

 
BSS 
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The above example is taking advantage of BSS algorithm over conventional echo 

cancellation is that can operate in many suitable applications such as teleconferencing 

and hands free telephony. 

2.3.3 Limitation of conventional Acoustic Echo Canceller 

Much work has be carried out aimed at [Kwong 92][Makino 93][Mathews 93] 

improving the convergence speed of LMS type algorithm. Ideally, an acoustic echo 

canceller is to completely remove any signal emanating from a loudspeaker from the 

signal picked up by a closely coupled microphone. In short conclusion of limitations of 

echo cancellers for speakerphones includes: 

• Acoustic, thermal and DSP related noise 

• Inaccurate modelling of the room impulse response 

• Slow convergence and dynamic tracking 

• Nonlinearities in the transfer function caused mainly due to the loudspeaker 

• Resonances and vibration in the plastic enclosure. 

 
To be commercially viable the AEC needs to be developed in products for a 

self-contained handsfree device in a typical room environment. An important part of the 

acoustic each canceller evaluation is the convergence time and it is necessary to be set 

on the order of 100ms with Echo Return Loss Enhancement (ERLE) on the order of 

30dB. 

2.3.4 Conclusions 

Acoustic echo cancellation is useful in any hands-free or other telecommunications 

situation involving two or more locations. Acoustic echo is most noticeable and 

annoying when delay is present in the transmission path. This would happen primarily 

in long distance circuits, or systems utilizing speech compression such as VoIP 

application. However the echo might not be as annoying when there is no delay (e.g. 

with short links between conference rooms in the same building or distance learning 

over high speed fibre-optic cable connection. As the existence of imperfection of speech 

quality in the modern telecommunication, acoustic echo cancellation techniques will 

have large commercial potential in the future. 
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3 Optimum Algorithms for Blind Source Separation 

3.1 Independent Component Analysis (ICA) 

3.1.1 Background Theory of Independent Component Analysis 

Blind source separation (BSS) is the problem of recovering signals from several observed 

linear mixtures. These signals could be from different directions or they could have 

different pitch levels along the same directions. When we deal with the BSS, there is no 

need for information on the source signals or mixing system (location or room acoustics) 

[Makino 07a]. Here, we should point out that the characteristics of the source signals are 

statistically independent, as well as independent from the noise components. Therefore 

the goal of BSS is to separate an instantaneous linear even-determined mixture of 

non-Gaussian independent sources [Paul 05]. 

 

As we mix independent components (random independent variables) the resulting mix 

tends towards having a Gaussian distribution, making the Independent Components 

Analysis (ICA) method impossible. ICA is the classical blind source separation method to 

deal with problems that are closely related to the cocktail-party problem. The following 

simple model shows what the Blind Source Separation is: 

 

FIGURE 3.1: MODEL OF BLIND SOURCE SEPARATION  
 

In detail, this model has five main parts: Source signals 1S , 2S , mixing systemH , 

observed signals 1X , 2X , separation system W and separated signals1Y  , 2Y . Initially, 

the source signals 1S 2S are independent, and then in the mixing systemH , it delays, 

attenuates and reverberations the source signals. During the separation processing, the 
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separation systemW only uses the observed signals1X , 2X to estimate 1S , 2S . The 

separated signals1Y  , 2Y should become mutually independent. 

Ideally, the aim of the source separation is not necessarily to recover the originally source 

signal. Instead, the aim is to recover the model sources without interferences from the 

other source. Therefore, each model source signal can be a filtered version of the original 

source signals. 

3.1.2 Notation of Blind Source Separation 

In the Blind Source Separation problem, for example, m mixed signals are linear 

combinations of n unknown mutually statistically, independent, zero-mean source signal, 

and are noise-contaminated source signals. So this is can be written as: 

                         
1

( ) ( ) ( )    1...
n

i ij j i
j

x t h s t n t i m
=

= + =∑                         (3.1) 

Its matrix notation: 

                             X(t) = HS(t) + N(t)                                 (3.2)                                             

Where T
1 2 mX(t) = [x (t), x (t), ..., x (t)] , is a vector of sensor signals, N(k) is the vector of 

additive noise. H is the unknown full rank n m× mixing matrix. The block diagram as 

shown below: 

 

FIGURE 3.2: BLOCK DIAGRAMS ILLUSTRATING BLIND SIGNAL PROCESSING PROBLEM  
We consider equation (3.1) as a linear function in most cases, and every component 

( )ix t is expressed as a linear combination of the observed variables ( )js t . 
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3.1.3 Definition of ICA 

There are several definitions of ICA and all include the above linear mixing model. In the 

literature, we will review the different three basic definitions of linear ICA as follows. 

1) Temporal ICA: it is the first general definition of ICA. The mathematical model 

can be expressed as: 

                        i iy = Wx                         (3.3)                            

It is the ICA of a noisy random vector ( )x k  is obtained by finding the output of a 

linear transform iy with the full rank separating matrix W ( )n m× . And such that 

the output signal vector 1 2[ , ,..., ]Ti ny y y y= contains the estimated source 

component is which are as independent as possible, because we try to maximize 

some function 1( ,..., )mF s s of source independence. [Hyvarinen 99][ Cichocki 

02]. 

2) Random noisy model ICA is defined by: 

                        i i ix s + n= H                                 (3.4)                                                  

Where H is a( )n m× mixing matrix, 1 2[ , ,..., ]Ti ns s s s= is a source vector of 

statistically independent signals, 1 2[ , ,..., ]Ti mn n n n= is a vector of uncorrelated 

noise terms. ICA is obtained by estimating both the mixing matrix H and the 

independent source (vectors) components.  

3) Noise-free ICA model: it is a simplified definition in which the noise vectors 

(components) are omitted. 

And it is can be expressed as: 

                          i jx s= H                             (3.5)                                                                               

The matrix form is:X = HS . In many applications, especially when a large 

number of Independent Components (ICs) occur and they have sparse 

distribution. It is more convenient to use this noisy-free ICA model (the 

equivalent form: T T TX = S H )[ Hyvarinen 99][ Cichocki 02]. 

Note: The temporal ICA and Noise-free ICA. They are asymptotically equivalent. 

Generally, the natural relation -1W = H is used with n=m which is the unique matrix.  
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From the definition 3, the basic noisy-free ICA model is a generative model [Hyvarinen 

99b], which means that it describes how the observed data are generated by a process of 

mixing the components js (sources), and these components are latent variables, meaning 

that they cannot be directly observed. All we observe are the random variablesix , and we 

must estimate both the mixing coefficientsH , and the ICs is (estimated sources) usingix . 

Here we have dropped the time index t and this is because in the basic ICA model, we 

assume that each mixture ix as well as each independent component js (sources) is a 

random variable, instead of a proper time signal or time series. We also neglect any time 

delays during the mixing. So this is often called the instantaneous mixing model. 

3.1.4 Restrictions in ICA 

There are three certain assumptions and restrictions to make sure the basic ICA model can 

be estimated. 

1) The independent components are assumed statistically independent. 

The random variables are said to be independent if the source componentis does 

not give any information on the value of another source component js  for i j≠ . 

Technically, the independence can be defined by the probability densities. 

(Note: more details relate joint pdf and marginal pdf, see section 2.3 on ICA 

[Hyvarinen 99c]) 

2) The independent components must have Non-Gaussian distributions. 

The Gaussian components mix the independent components and cannot be 

separated from each other. In other words, some of the estimated components will 

be arbitrary linear combinations of the Gaussian components and in the 

Non-Gaussian distributions we can find the independent components. Thus, ICA 

is essentially impossible if the observed mixtures ix (variables) have Gaussian 

distributions. 

3) We can assume that the unknown, mixing matrix is square. 

This assumption means, the number of independent components is  is equal to 

the number of observed mixtureix . This simplifies the estimation (from original 

source) very much. 
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3.1.5 Background theory of ICA 

There are three basic and intuitive principles for estimating the model of independent 

component analysis. 

1) ICA by minimization of mutual information. 

There is a basic definition of information-theoretic concepts explained in this 

section.  

The differential entropyH of a random vector y with density p(y) is defined as 

[Hyvarinen 99c]: 

                         ( ) ( ) log ( )H y p y p y dy= −∫                       (3.6)                                                 

The entropy is closely related to the code length of the random vector. Basically, 

the mutual informationI between m (scalar) random variables , 1....iy i m= is 

defined as follows: 

                        1 2
1

( , ,..., ) ( ) ( )
m

m i
i

y y y y y
=

= −∑I H H              (3.7)                                                    

Here is the simple diagram to illustrate what is mutual information between two 

random variables: 

 

FIGURE 3.3: MUTUAL INFORMATION BETWEEN TWO RANDOM VARIABLES  

The mutual information is: 
2

1 2 1 2
1

( , ) ( ) ( , )i
i

y y y y y
=

= −∑I H H , where 
2

1

( )i
i

y
=
∑H is 

marginal entropy and 1 2( , )y yH is joint entropy. The mutual information is a 

natural measure of the dependence between random variables. It is always 

nonnegative, and zero if and only if the variables are statistically independent. 

Therefore, we can use mutual information as the criterion for finding the ICA 
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representation, i.e. to make the output “decorrelated”. In any case, minimization 

of mutual information can be interpreted as giving the maximally independent 

components [Hyvarinen 99c]. 

2) ICA by maximization of Non-Gaussianity.   

Non-Gaussianity is actually most important in ICA estimation. In classic 

statistical theory, random variables are assumed to have Gaussian distributions. 

So we start by motivating the maximization of Non-Gaussianity by the central 

limit theorem. It has important consequences in independent component analysis 

and blind source separation. As mentioned in the first section, a typical mixture of 

the random data vectorx , is of the form
1

m

i ij j
j

a
=

=∑x s , where , 1,....,ija j m= , are 

constant mixing coefficients and, 1,...,j j m=s , are the m unknown source signals. 

Even for a small number of sources the distribution of the mixture is usually close 

to Gaussian. 

Simply explained as follows: 

Let us assume that the data vector x is distributed according to the ICA data 

model:x s= H , it is a mixture of independent components. Estimating the 

independent components can be accomplished by finding the right linear 

combinations of the mixture variables.  We can invert the mixing model as: 

-1s = H x , so the linear combination is ix . In other words, we can denote this by 

.∑T
i i

i=1

y = b x = b x We could take b as a vector that maximizes the 

Non-Gaussianity ofTb x . This means that Ty = b x equals one of the independent 

components. Therefore, maximizing the Non-Gaussianity of Tb x  gives us one of 

the independent components. [Hyvarinen 99c] To find several independent 

components, we need to find all these local maxima. This is not difficult, because 

the different independent components are uncorrelated: We can always constrain 

the search to the space that gives estimates uncorrelated with the previous ones. 

[Hyvarrinen 04] 

3) ICA by maximization of likelihood. 

Maximization of likelihood is one of the popular approaches to estimate the 

independent components analysis model. Maximum likelihood (ML) estimator 
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assumes that the unknown parameters are constants if there is no prior 

information available on them. It usually applies to large numbers of samples. 

One interpretation of ML estimation is calculating parameter values as estimates 

that give the highest probability for the observations. 

There are two algorithms to perform the maximum likelihood estimation: 

• Gradient algorithm: this is the algorithms for maximizing likelihood 

obtained by the gradient method. (Further Ref. See [Hyvarinen 99d]) 

• Fast fixed-point algorithm [Ella 00]: the basic principle is to maximize the 

measures of Non-Gaussianity used for ICA estimation. Actually, the 

FastICA algorithm (gradient-based algorithm but converge very fast and 

reliably) can be directly applied to maximization of the likelihood. 

3.2 Principal Component Analysis (PCA) 

3.2.1 Introduction 

Principal Component Analysis is one of the simplest and better known data analysis 

techniques. The main purpose of PCA analytic techniques are: a) to reduce the number of 

variables. b) to detect structure in the relationships between variables, that is to classify 

variables. In other words, PCA is combining two or more variables into a single factor 

where these variables might be highly correlated with each other. 

1)  Scatter plot for PCA 

The results of PCA can be summarized in a scatter plot (diagram). A regression line can 

be fitted that represents the “best” summary of the linear relationship between the 

variables. Essentially, we have reduced the two variables to one factor and the new factor 

is actually a linear combination of the two variables. The scatter plot can show various 

kinds of relationships, including positive (rising), negative (falling), and no relationship 

(independent)[Utts 05]. If we extend the two variables to multiple variables, then the 

computations become more involved, but the basic principle of expressing two or more 

variables by a single factor remain the same. When we have three variables, we could plot 

a three dimensional scatter plot and we could fit a plane through the data. 

2)  PCA Factor Analysis 

The computational aspect of PCA is the extraction of principal components which 

amounts to a variance maximizing rotation of the original variable spaces. In PCA, the 

criterion for the rotation is: 
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• Maximize the variance of the “new” variables (factor). 

• Minimizing the variance around the new variable. 

After the first regression line has been found through the data, we iteratively continue to 

define other lines that maximize the remaining variability. In this manner, consecutive 

factors are extracted and these factors are independent of each other. In other words, 

consecutive factors are uncorrelated or orthogonal to each other [Dinov 04]. Note that the 

decision of when to stop extracting factors basically depends on when there is only very 

little random variability left. Also the variances extracted by the factor are called the 

eigenvalues. As expected, the sum of the eigenvalues is equal to the number of variables. 

We will discuss more about eigenvalues in the next section. 

3.2.2 Mathematics Background 

• Eigenvalue and Eigenvector 

Calculating Eigenvalues and Eigenvectors is the key point in PCA. PCA involves 

determining of these two parameters of the covariance matrix. We will talk in more detail 

about the covariance matrix in the next section. 

Eigenvalues are a special set of scalars associated with a linear system of equations that 

are sometimes also known as characteristic roots. Each eigenvalue is paired with a 

corresponding so-called eigenvector. The determination of the eigenvalues and 

eigenvectors of a system is very important in engineering, where it is equivalent to matrix 

diagonalization.  

 

Matrix diagonalization is the process of taking a square matrix and converting it into a 

so-called diagonal matrix that shares the same fundamental properties of the underlying 

matrix. The relationship between a diagonalized matrix, eigenvalues, and eigenvectors 

follows from the great mathematical identity. For example, a square matrix A  can be 

decomposed into the very special form: 1−=A PDP , where P is a matrix composed of the 

eigenvectors ofA ; D  is the diagonal matrix constructed from the corresponding 

eigenvalues, and the 1−P is the inverse matrix of P [George 97].   

• Covariance 

Firstly we need to understand what covariance is. The covariance of two datasets Cx,y (x 

and y) can be defined as their tendency to vary together. We usually define these two 
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datasets as a two dimensional dataset. In statistics, the variability of the data set around its  

mean is called the data standard deviation. In the same way, covariance can describe 

variability—as the product of the averages of the deviation of the data points from the 

mean value. There are three possible results which can indicate the relationship between 

the two datasets. 

Cx,y value will be larger than 0 (positive) if x and y tend to increase together. 

Cx,y value will be less than 0 (negative) if x and y tend to decrease together. 

Cx,y value will equal 0  if x and y are independent.  

Since the covariance value can be calculated between any 2 dimensions in the data set, 

this technique is often used to find relationships between dimensions in high-dimensional 

data sets where visualisation is difficult. 

Also measuring the covariance between x and y would give us the variance of the x, y 

dimensions respectively. The formula for covariance is: 

                   1
( )( )

cov( , )
1

n

i ii
x x y y

x y
n

=
− −

=
−

∑
                         (3.8) 

For each item, multiply the difference between the x value and the mean of x, by the 

difference between the y value and the mean of y and add all these up, and divide by n-1. 

• Covariance matrix 

In fact, for an n-dimensional data, there are 
!

( 2)!*2

n

n−
 different covariance values. 

Generally, a useful way to get all the possible covariance values between all the different 

dimensions is to calculated them all and put them in a matrix. For example, for 2D data 

the covariance matrix has two dimensions, and the values are this: 

                           
cov( , ) cov( , )

cov( , ) cov( , )

x x x y

y x y y

 
=  
 

C                            (3.9) 

Basically, if we have an n-dimensional data set, then the matrix has n rows and n columns 

(must be square) and each entry in the matrix is the result of calculating the covariance 

between two separate dimensions. 

3.2.3 PCA Methodology  

The dimension of the data is the number of variables that are measured on each 

observation. A high dimensional dataset contains more information compared with a low 
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dimension counterpart. To reduce the dimensionality of the data while retaining as much 

as possible of the variation present in the original dataset is the goal of PCA. In 

mathematical terms, we can state this as follows: 

Given the p-dimensional random variable 1( ,..., )Tpx x=x , find a lower dimensional 

representation of it, 1( ,..., )Tks s=s  withk p≤ , that captures the content in the original 

data. But dimensionality reduction implies information loss; our task is to preserve as 

much information as possible and determine the best lower dimensional space. 

Technically, the best low-dimensional space can be determined by the “best” 

eigenvectors of the covariance matrix of x (i.e. the “best” eigenvectors corresponding to 

the “largest” eigenvalues – also called “principak components”) [Simth 02]. 

3.2.4 Procedure of PCA 

Step1: Collect and prepare a set of data and obtain the mean value 

            Suppose 1 2, ,..., mx x x  are 1m× vector, and mean is 
1

1 m

i
i

x x
m =

= ∑  

 

Step2: Subtract the mean value from each data element ( )( )x x y y− −  

The mean subtracted is the average across each dimension and it produces a data set 

whose mean is zero. So, all thex  values have x subtracted, and y values have 

y subtracted from them. 

 

Step3: Calculate the covariance matrix 

This is done in the same way as was discussed in the previous section. 

 

Step4: Determine the eigenvalues and eigenvectors of the covariance matrix 

Since the covariance matrix is square, we can calculate the eigenvalues and eigenvectors 

for this matrix. It is important to tell us useful relationship information about the data – 

increase, decrease together or independent. Each eigenvalue is a measure of how much 

variance each successive factor extracts, and associated the eigenvector shows us how 

these dataset are related along a regression line. The process of taking the eigenvector of 

the covariance matrix, we have been able to extract lines that characterise the scatter of 

the data. 
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Step5: Choosing components and forming a feature vector 

It is import to choose the components in terms of the eigenvalues which are determined 

by the covariance matrix. In general, we order the eigenvectors by eigenvalue from 

highest to lowest. This gives us the components in order of significance. If there are a 

large number of components, we could ignore the components of much lesser 

significance. However, this means we will lose some information and the final data set 

will have fewer dimensions than the original.  

 

Here, the feature vector is constructed by taking the eigenvectors that we want to keep 

from the list of original eigenvectors, and forming a matrix with these eigenvectors in the 

columns. 

FeatureVector = (eig_vec1   eig_vec2   eig_vec3   ...   eig_vecn) 

Step6: Deriving the final new data set 

The final step of PCA is generating the new final data set. It is also an easy way to 

calculate. We simply take the transpose of the feature vector and multiply it on the left of 

the original data set transposed. 

FinalData = FeatureVector (Transposed) x MeanAdjustData (Transposed) 

 

Where the mean-adjust-data vector is the original data vector with the mean subtracted 

from each dimension. Here, what will we get? It will give us the original data solely in 

terms of the vectors we choose. In the case of when the new data set has reduced 

dimensionality, the new data is only in terms of the vectors that we choose.  For 

example, we could take only the eigenvector with the largest eigenvalue. As expected, it 

only has a single dimension compared with the one resulting from using more 

eigenvectors; we will notice that this data set is exactly the first column of the other. But 

the single-eigenvector decomposition has removed the contribution due to the smaller 

eigenvectors. The contribution means the combination of contributions from each of the 

lines (patterns) which most closely describe the relationships between the data [Smith 

02]. 

Step7: Reconstruction of the original data 

If we want the original data back, we just reverse the steps that we took above and we will 

get the original data set back. Note that if we discarded some eigenvectors in steps, we 

will lose that information in the retrieved data. 
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TransDataAdjust = TransFeatureVector-1×FinalData 

After calculating the adjusted data set, we need to add the mean to each dimension of the 

data set to retrieve the original data set.  

TransOriginalData = TransDataAdjust + OriginalMean 

The following figure shows the essential procedure of PCA. 

 
FIGURE 3.4A: ORIGINAL TWO DIMENSIONAL DATA  

 

 

 

FIGURE 3.4B: NORMALIZED TWO DIMENSIONAL DATA  
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FIGURE 3.4C: DATA BY APPLYING THE PCA ANALYSIS USING BOTH EIGENVECTORS  

                

 
FIGURE 3.4D: THE RECONSTRUCTION FROM THE DATA THAT WAS DERIVED USING 

ONLY A SINGLE EIGENVECTOR  

3.3 Degenerate unmixing estimation technique (DUET) 

3.3.1 Introduction to DUET 

Degenerate Unmixing estimation technique (DUET) is one of the demixing algorithms in 

the fields of blind source separation (BSS). It can separate any number of sources using 

only two mixtures [Scott 01][ Makino 07]. This method is based on the sources being 



   
   

   
 

 28  

Optimal Algorithms for Blind Source Separation 
-Application to Acoustic Echo Cancellation 

w-disjoint orthogonal. Common assumptions about the statistical properties of the 

sources are statistically independent [Bell 05][Cardoso 97], are statistically orthogonal 

[Weinstein 93], are nonstationary [Parra 00], or can be generated by finite dimensional 

model spaces [Broman 99]. Moreover, the DUET algorithm is efficient for sources 

having a property of sparseness in the time-frequency domain, such as speech signal, that 

is, the target speech signal in a noisy environment can be effectively recognised using the 

DUET algorithm for Blind Source Separation. 

However, in many cases there are more sources than mixtures so we refer to such a case 

as degenerate. In degenerate Blind Source Separation poses a challenge because the 

mixing matrix is not invertible. Basically, the traditional method such as Independent 

Component Analysis (ICA) of demixing by estimating the inverse mixing matrix does not 

work.  Therefore, most blind source separation research has focussed on the square or 

non-degenerate case [Scott 01][ Makino 07]. Despite the difficulties, there are several 

approaches for dealing with degenerate mixtures.  We will review these approaches in 

the next few sections.  

Generally, DUET solves the degenerate demixing problem in an efficient and robust 

manner. We can summarized in one sentence as a definition: DUET makes it possible to 

blindly separate an arbitrary number of sources given just two anechoic mixtures provide 

the time-frequency representations of the sources do not overlap too much, which is ideal 

for speech [Makino 07]. 

3.3.2 Sources assumptions and mathematics background 

• Anechoic Mixing 

Consider the mixture of N source signals,( ), 1,...,t j N=js , being received at a pair of 

microphones on a direct path. Suppose we can absorb the attenuation and delay 

parameters of the first mixture (t)1x  into the definition of the sources without loss of 

generality. Then the two anechoic mixtures can be expressed as: 

                                    
1

( ) ( ) 
N

j

t t
=

=∑1 jx s                               (3.10)                    

                                   
1

( ) ( )
N

j j
j

t a t δ
=

= −∑2 jx s                          (3.11)                              

Where ja is a relative attenuation factor corresponding to the ratio of the attenuations of 

the paths between sources and sensors, jδ is the arrival delay between the sensors. 
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Actually the DUET method, which is based on the anechoic model is quite robust even 

when applied to echoic mixtures.  

• W-Disjoint Orthogonality 

In mathematics, disjoint means if two or more sets are disjoint they have no element in 

common, or say their intersection is the empty set.  

W-disjoint orthogonality is crucial to DUET because it allows for the separation of a 

mixture into its component sources using a binary mask. (Note: a binary mask is used to 

change specific bits in the original value in the time-frequency plane to the desired 

setting(s) or to create a specific output value). 

We can call two functions ( )js t and ( )ks t W-disjoint orthogonal. For a given windowing 

function ( )W t , the supports of the windowed Fourier transform of ( )js t and ( )ks t are 

disjoint. The windowed Fourier transform of ( )js t is defined as: 

                    
1

ˆ ( , ) : ( ) ( )
2

i t
j js W t s t e dtωτ ω τ

π
∞ −

−∞
= −∫               (3.11) 

We can state the W-disjoint orthogonality assumption concisely as the following 

expression: 

                    ̂ ˆ( , ) ( , ) 0,   , ,   .j ks s j kτ ω τ ω τ ω= ∀ ∀ ≠                 (3.12) 

This assumption is a mathematical idealization of the condition (Note: Idealization is the 

over-estimation of the desirable qualities and underestimation of the limitations of a 

desired thing [Changing 00] .) In other words, it is likely that every time-frequency point 

in the mixture with significant energy is dominated by the contribution of one source. In 

this case, W-disjoint orthogonality can be expressed as, 

                     ̂ ˆ( ) ( ) 0,    ,     j ks s j kω ω ω= ∀ ∀ ≠                        (3.13) 

As mentioned before, the binary mask can be used to separate the mixture. So consider 

the mask function for the support ofˆ js , 

                      
ˆ0  ( , ) 0

( , ) :
1 otherwise

j
j

s
M

τ ω
τ ω

≠
= 


                         (3.14) 

jM separates ̂ js from the mixture via 

                     1ˆ ˆ( , ) ( , ) ( , ),     ,j js M xτ ω τ ω τ ω τ ω= ∀                    (3.15) 
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We must determine the masks which are the indicator functions ( , )jM τ ω  for each 

source and separate the sources by partitioning. The question is: how do we determine the 

masks? We will review and discuss it shortly. 

3.3.3 Local stationarity and Microphones close together 

Local stationarity can be viewed as a form of narrowband assumption. It is necessary for 

DUET that for all arrival delay timeδ , δ ≤ ∆ , where ∆ is the maximum time difference 

possible in the mixing model (Maximum distance of two microphones divided by the 

speed of signal propagation), even when the window function ( )W t has finite support. 

Additionally, in the common array processing literature [Krim 96] , the physical 

separation of the sensors is small such that the relative delay between the sensors can be 

expressed as a phase shift of the signal. 

 

We can utilize the local stationarity assumption to turn the delay in time into a 

multiplicative factor in time-frequency. Basically, this multiplicative factor ie ωδ− only 

uniquely specifies δ if ωδ π<  as otherwise we have an ambiguity due to phase-wrap 

[Makino 07b]. So we require, , , ,j jωδ π ω< ∀ ∀  avoiding phase ambiguity. Therefore, 

this is guaranteed when two microphones are separated by less than 

max/cπ ω where maxω is the maximum frequency present in the sources and c is the speed 

of sound.  

3.3.4 DUET demixing model and parameters 

The assumptions of anechoic mixing and local stationarity allow us to rewrite the mixing 

equations (1) and (2) in the time- frequency domain as, 

                
1

1
1

2 1

ˆ ( , )
11ˆ ( , ) ...

ˆ ( , ) ...
ˆ ( , )

Nii
N

N

s
x

x a ea e
s

ωδωδ

τ ω
τ ω
τ ω

τ ω
−−

 
    =     

      

⋮               (3.16)                                  

This is the mixing model for two sources and if the number of sources is equal to the 

number of mixtures, the non-degenerate case or the standard demixing method is to invert 

the mixing matrix from the above equation. When the number of sources is greater than 

the number of mixtures, we can demix by partitioning the time-frequency plane using one 
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of the mixtures based on estimates of the mixing parameters between mixture [Jourjing 

00]. 

With the further assumption of W-disjoint orthogonality, at most one source is active at 

every( , )τ ω , and the mixing process can be described as, 

               1

2

1ˆ ( , )
ˆ ( , ),  for some 

ˆ ( , ) ji j

j

x
s j

x a e ωδ

τ ω
τ ω

τ ω −

  
=   

    
                     (3.17) 

In the above equation, j is the index of the source active at( , )τ ω . The main DUET 

observation which is the ratio of the time-frequency representations of the mixtures does 

not depend on the source components but only on the mixing parameters associated with 

the active source component.  

The mixing parameters associated with each time-frequency point can be calculated as, 

                     2 1ˆ ˆ( , ) : ( , ) / ( , )a x xτ ω τ ω τ ω=ɶ                           (3.18) 

                  2 1ˆ ˆ( , ) : ( 1/ ) ( ( , ) / ( , ))x xδ τ ω ω τ ω τ ω= − ∠ɶ                     (3.19) 

Under the assumption that if the two sensors are sufficiently close then the delay 

estimation can be ignored, the local attenuation estimator ( , )a τ ωɶ and the local delay 

estimator ( , )δ τ ωɶ can only take on the values of the actual mixing parameters. As we saw 

in equation (7), we can demix via binary masking by determining the indicator function 

of each source. So the indicator functions are determined via, 

                
0 ( ( , ), ( , )) ( , )

( , ) :
1 otherwise

j j
j

a a
M

τ ω δ τ ω δτ ω
 =

= 


ɶɶ
                  (3.20) 

And then demix using the masks. Where ( ( , ), ( , )) ( , )j ja aτ ω δ τ ω δ=ɶɶ is the mixing 

parameter pairs which take over all the time-frequency plane( , )τ ω . 

3.3.5 Construction of the 2D weighted histogram  

Histogram is the key structure used for localization and separation. By using 

( ( , ), ( , ))a τ ω δ τ ωɶɶ  pairs to indicate the indices into the histogram, clusters of weight will 

emerge centred on the actual mixing parameter pairs [Makino 07b]. Figure 3.5 shows the 

two-dimensional weighted histogram. 
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FIGURE 3.5: DUET TWO-DIMENSIONAL CROSS POWER WEIGHTED HISTOGRAM OF 

SYMMETRIC ATTENUATION ( 1/ )j ja a−  AND DELAY ESTIMATE PAIRS FROM TWO 

MIXTURES OF FIVE SOURCES. EACH PEAK CORRESPONDS TO ONE SOURCE AND THE 

PEAK LOCATIONS REVEAL THE SOURCE MIXING PARAMETERS . 

We can formally define that the weighted histogram separates and clusters the parameter 

estimates of each source. The number of peaks corresponding to the number of sources, 

and the peak locations reveal the associated source’s anechoic mixing parameters.  

There are several different automatic peak identification methods including weighted 

k-means, model-based peak removal, and peak tracking [Rickard 01]. Once the peaks 

have been identified, our goal is to determine the time-frequency masks which will 

separate each source from the mixtures. 

3.3.6 Maximum-likelihood (ML) estimators 

Our assumptions made previously will not be satisfied in real-time (real signals with 

noise) cases, we need a mechanism for clustering the relative attenuation- delay 

estimates. Thus, we considered the ‘’maximum likelihood (ML) estimators’’ for the ja  

attenuation factor and the jδ  delay factor in the following mixing model: 

                   1 1

2 2

1ˆ ˆ( , ) ( , )
ˆ ( , )

ˆ ˆ( , ) ( , )ji j

j

x n
s

x na e ωδ

τ ω τ ω
τ ω

τ ω τ ω−

    
= +    

     
                    (3.21)                                          

Where 1̂n and 2n̂ are noise terms which represent the assumption inaccuracies. One thing 

we need to point out is: rather than estimatingja , we estimate 
1

:j j
j

a a
a

= − which we call 
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the “symmetric attenuation”. That is, the attenuation is reflected symmetrically about a 

centre point ( ja =0) because it has the property that the two microphone (sensor) signals 

can be swapped [Makino 07b]. We can define the local symmetric attenuation estimate, 

                     2 1

1 2

ˆ ˆ( , ) ( , )
( , ) :

ˆ ˆ( , ) ( , )

x x
a

x x

τ ω τ ωτ ω
τ ω τ ω

= −ɶ                         (3.22) 

It is motivated by the form of the ML estimators. 

However, the difficulty with the estimators is that they require knowledge of 

time-frequency supports of each source. On the other hand, the local symmetric 

attenuation and delay observation estimates will cluster around the actual symmetric 

attenuation and delay mixing parameters of the original sources, so we need a mechanism 

for determining these clusters. 

The estimators suggest the construction of a two-dimensional weighted histogram to 

determine the clusters and the estimated mixing parameters( , )j ja δ . Thus, the mixing 

parameters can be extracted by locating the peaks in the histogram. In this review, we 

won’t go over much mathematics involved in the mixing model, but well explained the 

basic DUET BSS algorithm theory  

3.3.7 Summary of DUET Algorithm 

1)  Construct time-frequency representations 1̂( , )x τ ω and 2ˆ ( , )x τ ω from anechoic 

matrix 1( )x t and 2( )x t . 

2) Calculate the mixing 

parameters 2 1 2

1 2 1

ˆ ˆ ˆ( , ) ( , ) ( , )1
( ( , ), ( , )) ,

ˆ ˆ ˆ( , ) ( , ) ( , )

x x x
a

x x x

τ ω τ ω τ ωτ ω δ τ ω
τ ω τ ω ω τ ω

  −= − ∠   
  

ɶɶ . 

3) Construct a 2D smoothed weighted histogram for all weights associated with 

time-frequency plant. 

4) Locate peaks and find peak centres which determine the mixing parameter estimates 

5) Construct time-frequency binary masks for each peak centre ( , )j ja δɶɶ via indicator 

functions ( , )jM τ ω  for each source and separate the sources by partitioning. 

6) Apply each mask to the appropriately alighted mixtures.  

7) Convert each estimated source time-frequency representation back into the time 

domain. 
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3.4 Azimuth Discrimination and Resynthesis 

3.4.1 Background and Introduction 

The Azimuth Discrimination and Resynthesis is a novel sound source separation 

algorithm which was presented in [Barry 04a] to separate stereo musical recordings into 

independent constituent sources that comprise the mixture. So a typical example is 

recording stereo music, this process involves recording N sources (each instrument 

source) individually and then summing and distributing between the right and left 

channels by using a panoramic potentiometer (pan pot).  

The pan pot is a device which usually increases intensity of one source in one channel 

relative to the other by scaling the gain of source appropriately. By virtue of this, a single 

source may be virtually positioned at any point between the speakers. Therefore in this 

case is achieved by creating an interaural intensity difference (IID) [Rayleigh 76]. What 

is the IID? It is better called interaural level differences (ILD), are differences of the 

sound pressure level arriving at the two ears or sensors; and are the important cues that 

human use to localise higher frequency sounds. 

 

FIGURE 3.6: ILLUSTRATION OF INTERAURAL INTENSITY DIFFERENCE  
See above figure, there is a difference in the volume of the sound reaching either ear. 

Listeners perceive IID as the apparent location of the sources along a horizontal stereo 

field from left to right. The pan pot was devised to simulate IID’s by attenuating the 

source signal fed to one reproduction channel, causing it to be localised more in the 

opposite channel [Barry 04b] .  

 

ADRess uses gain scaling subtraction and phase cancellation in the time-frequency 

domain to spatially discriminate between the time-frequency points of a stereo mixture 

[Cahill 06]. The purpose of developing the ADRess algorithm is to perform the noise 
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reduction in mobile or other communication applications. Like other sound source 

separation algorithms, it has a mathematics model. So we will discuss more detailed in 

ADRess methodology based on its discrete time mixing model in the next chapter. 

3.4.2 ADRess Methodology 

ADRess can be described as the mixing model for a channel audio and the following 

discrete time mixing model defined as: 

                     
1

0

( ) ( ),     1,..., 1
j

i i
i

l n pl s n for n N
−

=
= = −∑                   (3.23)     

                    
1

0

( ) ( ),     1,..., 1
j

i i
i

r n prs n for n N
−

=
= = −∑                (3.24)               

Where ( )l n and ( )r n are the left and right mixed stereo signals, ipl and ipr are the 

panning coefficients for the thi independent source ( )is n (note: these two coefficients 

defined the amount we want to scale the volume (or pan) of the source in the left and right 

channels),j is the number of sources and N is the length of the mixtures in the audio 

samples. 

In fact, we can look at these signals in the frequency domain by performing a short-time 

Fourier transform (STFT) on one sample frame of the time signal. It means the algorithm 

takes these two signals as its initial input data and then divides them into short 

overlapping frames. These frames are transformed into the frequency domain using the 

Fourier Transform [Cahill 06] using the following equations:  

                    

1

0

( , ) ( ) ( )
j nN
N

f
n

l w n l n e
ω

τ ω τ
−−

=

= −∑                      (3.25) 

                    
1

0

( , ) ( ) ( )
j nN
N

f
n

r w n r n e
ω

τ ω τ
−−

=

= −∑                      (3.26) 

where 2 fω π= is sample rate, N is the frequency sampling factor and2 / Nπ is the 

frequency sampling interval. w is usually a Hamming window and τ  is the frame 

number. 

From the equation (3.23) and (3.24), the ratio of the left and right panning coefficients 

pl andpr of the thi source can be expressed as: 

                              ( ) /i ig i pl pr=                                   (3.27) 

Similarly, 
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                              ( ).l ipl g i pr=                                     (3.28) 

Where ( )g i is also called the intensity ratio. Adjust the intensity ratio to control the 

volume (or pan) between the right and left channel. Equation 3.28 implies we can scale 

the right channel to the same volume as the left channel for a given source( )is n . In fact, if 

we can expect to subtract the two audio channels after performing the scaling, then the 

source ( )is n  can be cancelled out. (i.e. ( ). 0l g i r− = ) Similarly as scaling the left 

channel which when subtracted from the right channel ( i.e. ( ). 0r g i l− = ) will be 

cancelled out as well. The question is how to define the gain scales factor when the 

panning coefficients are unknown as is the case of a stereo recording. The gain scale 

factors are defined as follows:   

                                 ( ) .(1/ )g i i β=                                  (3.29)                                                                 

for all i and for 0 i β≤ ≤ where i and β are integer values. 

From equations (3.25) (3.26)fl and fr are short time frequency domain representations of 

the left and right channel respectively and these equations also indicate to create a 

frequency-azimuth plane for the left and right channel individually. In equation (3.29) the 

azimuth resolution β refers to how many equally spaced gain scaling values of g we 

will use to construct the frequency azimuth plane. Thus, right and left channel 

azimuth-frequency planes are created according to the following equation: 

                         ( , , ) ( , ) ( ). ( , )f fAzl i r g i lτ ω τ ω τ ω= −                     (3.30)                                                  

                         ( , , ) ( , ) ( ). ( , )f fAzr i l g i rτ ω τ ω τ ω= −                     (3.31)                                       

for the integer values of i such that 0 i β≤ ≤ . Depending on the choice of β , the 

algorithm can create different resolution azimuth planes. Also large value of β  will 

achieve more accurate azimuth discrimination but will increase the Fourier 

computational load because the frequency –azimuth plane will be an N β× array for 

each channel. In equation (3.30) (3.31), combining Azl and Azrcreates the azimuth 

frequency plane of the mixture, here the “azimuth” we mentioned is purely a function of 

the intensity ration, created by the pan pot. 
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FIGURE 3.7: FREQUENCY-AZIMUTH PLANE . PHASE CANCELLATION HAS OCCURRED 

WHERE THE NULLS APPEAR AS SHOWN .  
It can be seen that the arrows point out the cancellation points along the azimuth axis. For 

each frequency, there exist peaks (see figure 3.7) of varying magnitude resulting from the 

phase cancellations or the gain scale subtraction process. These peaks converge to a 

minimum value or even null (see figure 3.8), which corresponds to the location of that 

frequency within the azimuth plane. In the ADRess algorithm, for the purpose of 

resynthesis and so we need to invert these nulls, since the amount of energy lost through 

cancellation is proportional to the actual energy contributed by the source [Coyle 07]. 

 

FIGURE 3.8: BY INVERTING THE NULLS OF THE FREQUENCY AZIMUTH COMPOSITION 

THE FREQUENCY COMPOSITION OF EACH SCORE CAN BE CLEARLY SEEN  
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The frequency azimuth spectrogram is assigned to the location of the null or minimum 

value having a magnitude equal to the difference between the value of the null and 

maximum value of the azimuth plane at the frequency. All other points in the azimuth 

plane are zeroed, also the plot in figure 3.8 and 3.9 represent the decomposition on a 

single frame basis. 

To estimate the magnitude of frequency azimuth spectrogram we define: 

         min
 ( , , ) ( , )max min( , ) ( , ) ,   

( , , )
0,   .

if Azl i AzlAzl Azl
Azl i

Otherwise

τ ω τ ωτ ω τ ω
τ ω

=−
= 


           (3.32) 

         min
 ( , , ) ( , )max min( , ) ( , ) ,   

( , , )
0,   .

if Azr i AzrAzr Azr
Azr i

Otherwise

τ ω τ ωτ ω τ ω
τ ω

=−
= 


         (3.33)                         

 

FIGURE 3.9: THE PLOT DISPLAYS THE ENERGY DISTRIBUTION OF SOURCE ACROSS THE 

STEREO FILED WITH RESPECT TO TIME . (A source in the centre can clearly be seen as 

well as several others less prominent sources in the left and right regions of the stereo 

field.) [Coyle 07] 

From figure 3.9, by summing energy at all frequencies located at different points along 

the azimuth axis an energy distribution plot emerges. These peaks are used with the 

original bin phases to synthesise the source present at that azimuth. On the other hand, the 

plot shown in figure 3.9 is the ideal case that is no harmonic overlap between two sources. 

3.4.3 Problem with ADRess 

In practice, a single frequency bin may contain energy from multiple sources and also 

each source in a mixture is not strictly orthogonal with every other source. Then the peaks 
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of these frequencies drift away from a source position and lead to locate at an erroneous 

azimuth where there may or may not be a source. In other words: there are two or more 

sources contributing to one frequency bin of the STFT and this results in sources not 

grouping perfectly on the azimuth planes. This is called “azimuth-smearing 

phenomenon” which results in frequencies being excluded from the resynthesis of the 

target source. Therefore, an “azimuth subspace width” H is defined, such that1 H β≤ ≤ . 

This permits including peaks that have drifted away from the target azimuth in the 

resynthesis of the source. Two types of “azimuth subspace width”H are: 

• A wide azimuth subspace will result in worse rejection of nearby sources. 

• A narrow azimuth subspace will lead to poor resynthesis and missing harmonics 

(peak). 

Meanwhile, an extra term the “discrimination index”d is also introduced at this point, 

where 0 d β≤ ≤ . This index, d , along with the azimuth subspace width, H , will define 

what portion of the frequency-azimuth plane is extracted for resynthesis. 

3.4.4 Resynthesis 

Collectively d and H will define what portion of the azimuth frequency plane will be 

used for resynthesis. In practice, we set the azimuth subspace to span [Barry 04b] [Barry 

04c] from ( / 2)d H− to ( / 2)d H+ . The peaks for resynthesis are extracted using, 

                          
/2

/2

( , ) ( , , )
i d H

i d H

Y Az iτ ω τ ω
= +

= −

= ∑                           (3.34) 

Where Az is the combinedAzl Azr− inverse azimuth frequency plane and Y is the output 

time frequency points. The resultant Y must be left and right channel, each channel 

containing only the bin magnitudes pertaining to a particular azimuth subspace as defined 

by d and H. The bin phases from the original FFT are used to resynthesis the extracted 

source. Thus, the magnitude and phase component of each bin are combined and 

converted from polar to complex form. The azimuth subspace is then resynthesisd using 

the Inverse Short Time Fourier Transform (ISTFT), see equation 3.35. 

                             
1

1
( ) ( , )

j nN
N

k

X n Y e
ω

τ ω
τ

+

=

= ∑                            (3.35) 

WhereX is the output signal rendition. The resynthesisd time frames are then recombined 

using a simple overlap and add scheme [Barry 04c].  
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In practice, the resynthesis is not perfect due to the fact of the power spectrum for each 

frame and source is an estimate. The windowing function (hamming window) is not 

preserved and therefore the frames at the output do not overlap perfectly. At the frame 

boundaries, there may be some distortion. Ideally, we need smoother frame transitions, so 

it can be resolved by multiplying the output frame by a suitable windowing function 

[Barry 04c]. In another words, by controlling the parameter d and H be set subjectively 

until the required separation is achieved. 

3.5 Conclusions 

ICA is a very general-purpose statistical technique that is used to find underlying factors 

by analyzing a set of observed random data. These observed random data are linearly 

transformed into components that are maximally independent of each other. ICA was 

originally developed to deal with sound source separation for audio processing, but now 

has been widely used in many different areas such as biomedical signal processing, image 

processing, telecommunications, and econometrics. In addition, ICA can be estimated as 

a latent variable model. There are two approaches that can be used to estimate ICA: 

optimization of the maximum of non-gaussianity can be used for the estimation of the 

ICA model; alternatively, maximum likelihood estimation or minimization of mutual 

information can also be used to estimate ICA. 

 

PCA is a widely used statistical technique in many applications. It can be used to perform 

data compression while it can also be used to analyse data sets. However, PCA is not 

commonly associated with sound source separation. The fact that all the eigenvectors are 

orthogonal makes this technique useless for most mixtures, except artificial constructions 

where the columns of the mixing matrix are orthogonal. Even though this method is of 

little use for the separation of audio signals, this discussion gives a geometrical 

interpretation of the separation problem that can be useful in the following discussion of 

other techniques. 

 

DUET is another technique which can be used for sound source separation. Theoretically 

it can separate any number of sources using just two mixed records if the sources are 

W-Disjoint orthogonal with each other. This technique is based on the fact that all 

frequencies coming from one source should have the same attenuation and time delay 
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relative to the microphones. DUET is well suited to human speech separation; however, 

due to its assumption that all sources are W-Disjoint orthogonal with each other, its 

performance of musical signal separation is not as good as human speech separation. 

Nevertheless, using DUET to separate anechoically mixed and stereophonic music 

streams is an interesting research topic. 

 

The ADRess algorithm is a new technique that can perform sound source separation by 

using the idea that sources occupy unique azimuth positions in the frequency-azimuth 

plane. This algorithm breaks down the sound mixture into frequency-azimuth subspaces, 

these subspaces can then be resynthesised according to different sources, resulting in 

source separation. In addition, the ADRess algorithm is able to separate multiple sources 

from only two mixtures. This feature makes it capable of enhancing sound quality in 

many areas. One of the possible applications is that by adding a second microphone in the 

mobile phone, the algorithm can perform noise reduction and sound quality enhancement 

in the mobile communication. 
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4. NMF algorithm  

4.1 Introduction 

In real-world many data or signals are non-negative and the corresponding hidden 

components have a physical meaning only when nonnegative. However, the data or 

variables with constrains such as sparsity and non-negativity is in order to seek a trade-off 

between the two goals of interpretability and statistical fidelity. In other words, we should 

make sure the estimated data components have physical sense and meaning; also need 

explain these data components are consistent and avoiding impurities (external noise). 

 

Why non-negative and sparsity constrains? In general, compositional data are natural 

representations of the variables (features) of some whole or we call it is a sample space. 

For example, in image processing, involved variables and parameters are corresponded to 

pixels, and non-negative sparse decomposition is related to extraction of relevant parts 

from the targeted image [Lee 99]. Furthermore, it is note that non-negative matrix 

factorization (NMF) is an additive model which does not allow subtraction; therefore it 

often quantitatively describes that parts that comprise the whole object. In other words, 

NMF is usually to be considered as a parts-based representation. 

 

The basic NMF problem can be stated as follows: 

Give a nonnegative data matrix M N×
+∈V ℝ and a reduced rankR, find two nonnegative 

matrices M R×
+∈W ℝ and R N×

+∈H ℝ which factorize V as well as possible. 

               ≈V WH , = +V WH E ,      
1

R

ik ij jk
j

v w h
=

≈∑                (4.1) 

where min{ , }R M N< is positive integer. The matrix M N×∈E ℝ represents approximation 

error. 

4.2 Cost function 

It is interesting to note that the NMF problem can be considered as natural extension of 

Nonnegative Least Squares (NLS) problem formulated as the following optimization 

problem. 
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In the NMF algorithm, Lee and Seung [Lee 99] suggested an approach similar to that 

used in Expectation- Maximization algorithms to iteratively update the factorization 

based on a given objective function. Two conventional NMF algorithms were introduced 

by them, each seeking to minimize a different object function or distance measure with a 

particular iterative update strategy chosen for its implementation ease and each 

optimizing its own measure of reconstruction quality: first measure is the Euclidean 

distance, 

                        
21

( , , )
2EDD = −V W H V WH                   (4.2) 

In computing an NMF using the Euclidean Distance Algorithm, we wish find factors, 

W andH , that minimize the objective function. In order to balance algorithm complexity 

and convergence speed and we use the following multiplicative update rules: 

                 

[ ]

[ ]

T
ij

ij ij T
ij

w w←
VH

WHH
,     

[ ]

[ ]

T
jk

ij ij T
jk

h h←
W V

W WH            
 (4.3) 

Where [ ] ij⋅ indicates that the noted divisions and multiplications are computed 

element-by element. 

 

The second objective function commonly used in practical measure is the divergence; we 

called a generalized version of the Kullback-Leibler divergence, (also called the 

I-divergence) [Sajda 03] 

              
( || , ) log [ ]

[ ]
ik

KL ik ik ik
ik ik

v
D v v

 
= − + 

 
∑V W H WH

WH
          (4.4) 

The above objective functionKLD  is not a distance measure due to it is not symmetric in 

V and approximation .WH  In this case, KLD reduces to the Kullback-Leibler 

information measure used in statistics that quantifies in bits how close a probability 

distributionV is to a model distributionWH , zero if the distributions match exactly and 

can potentially equal infinity. In addition, this object function is related to likelihood of 

generating the columns inV from the basisW and coefficientsH . Same again, in order to 

balance complexity and convergence speed, the following update rules are commonly 

used: 
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where the subscripts again indicate element by element division or multiplications.  

 

Currently most existing approaches minimize only one kind of cost function by 

alternately switching between sets of parameters. In this thesis we use a more general 

approach (algorithm) in which instead of one cost function we use called multi-layer 

NMF using alternating minimization of two cost functions; one of them is minimized 

with respect toW and the other one with respect toH . The following pseudo code 

represents most NMF algorithm to AEC application discussed in next two chapters. 

 

Algorithm 4.1:  Multi-layer NMF two cost function m inimization 

Input: M N×
+∈V ℝ ; input matrix data.  R: rank of factorization 

Output: M R×
+∈W ℝ and R N×

+∈H ℝ ; the given cost functions are minimized. 

1 Begin 

2    H = V , W = I  

3    for l = 1 to L do 

4        Initialize randomly ( )lW and ( )lH  

5        repeat 

6            ( ){ }
( )

( ) 1 ( ) ( )0
arg  min

l
l l lD

≥
=

W
W H W H�  for fixed ( )lH  

7            ( ){ }
( )

( ) 2 ( ) ( )0
arg  min

l
l l lD

≥
=

H
H H W H�  for fixed ( )lW  

8        until a convergence condition is met 

9        ( )l=H H  

10       ( )l←W WW  

11    end 

12 End 

 
Table 4.1: Multi-layer NMF using alternating minimi zation of two cost function 

 

Here is the MATLAB function to perform basic NMF algorithm which is mainly used 

in the rest of the thesis: 

function  [H,W] = NMF(spec,R,num_iter);  
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V = abs(spec(:,1:513))';  
  
index = size(V);   % must be nonnegative  
M = index(1,1);  
N = index(1,2);  
  
W = rand(M,R);     % random initialization  
H = rand(R,N);  
  
num_iter = 100;    % can be adjusted  
  
for  i = 1:1:num_iter  
     W = W.*((V./(W*H+1e-9))*H')./(ones(M,N)*H');  
     H = H.*(W'*(V./(W*H+1e-9)))./(W'*ones(M,N));  
end  
 

Table 4.2: Standard NMF Algrithm in MATLAB Form 

4.3 Initialization of NMF 

The motivation behind NMF is that besides the dimensionality reduction sought in 

many image or signal processing applications. As defined, the NMF problem is a more 

general instance of the case where the two nonnegative matrices whose product exactly 

equals the original matrix. In common sense, there is no guarantee that an exact 

nonnegative factorization exists for arbitrary R which is rank of approximation. It is 

known, however, that if 0≥V , then the nonnegative rank and 

nonnegativeW andH having that number as rank so thatV = WH holds exactly 

[Gregory 83]. Furthermore, NMF is a part of nonconvex optimization problem with 

inequality constraints and iterative methods become necessary for its solution 

[Bertsekas 99][Salakhutdinov 03]. However, the current NMF algorithms typically 

converge comparative slowly and then at local minima.  Most algorithms for NMF are 

iterative and required initial values ofW and H , and many authors prescribe 

initializing W andH with random non-negative numbers. A suitable chosen initialization, 

can lead to faster convergence, and since the solution of most NMF algorithm problems 

is not unique, different initializations can lead to different solutions. 

4.3.1 Optimization problem  

The solution and convergence provided by the NMF algorithm usually highly depend 

on initial conditions, typically starting guess values, especially in a multivariate context. 

Therefore, it is important to have efficient and consistent ways for initialization 

matricesW andH . Due to the iterative nature of NMF algorithms, most of them in the 
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literature use random nonnegative initialization for ( W ,H ). Iterates converge to a local 

minimum and poor initializations also often result in slow convergence, and in certain 

instances may lead even to an incorrect or irrelevant solution which we aim to. The 

problem of selecting an appropriate starting point or starting initialization matrices 

becomes even more complicated for large-scale NMF problems [Dhillon 01] and when 

certain structures or constraints are imposed on the factorized matrices involved. In the 

real time case, initialization in NMF plays a key role since the objective function to be 

minimized may have local minima, and the intrinsic alternating minimization in NMF is 

nonconvex, even though the objective function is strictly convex with respect to one set 

of variables. The issues of initialization in NMF have been widely discussed in the 

literature [Baeza 92] [Carmona 06] [Ruspini 69].  

4.3.2 Basic initialization for NMF algorithm 

As a rule of thumb, we can obtain a robust initialization using the following three steps 

which the main idea is to find better initial estimates with the multi-start initialization 

algorithm: 

• First, we can generate S (number of restarts) by a search method to initial 

matricesW andH . This could be based on random starts or the output from a 

simple conventional NMF algorithm. The parameter S depends on the number of 

required iterations. We typically set S between 15 and 20. 

• Run a specific NMF algorithm for each set of initial matrices and with a fixed 

but small number of iterations (15-20). As a result, the NMF algorithm provides 

S initial estimates of the matrices( )sW and ( )sH . 

• Select the estimates (“candidates”), we denoted that min( )sW and min( )sH  

correspond to the lowest value of the cost function (the best likelihood) among 

the R trials as initial values for the final factorization. 

The following pseudo code represents above steps: 

 

Algorithm 4.2:  Multi-start initialization 
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Input:  M N×
+∈V ℝ : input matrix data, 

       R: rank of factorization, S: number of restarts, 

       Kinit, Kfin: number of alternating steps for initialization and completion 

Output: M R×
+∈W ℝ and R N×

+∈H ℝ ; the given cost functions are minimized. 

1 Begin 

2    parfor s = 1 to S do                     % process in parallel mode 

3        Initialize randomly (0)W or (0)H  

4        { } ( )( ) ( ) ( ) ( ), nmf_algorithm , , ,s s s s
initK←W H V W H  

5        ( )( ) ( )s s
sd D= V W H�  

6     endfor 

7     min 1arg min s S ss d≤ ≤=  

8     { } ( )min min( ) ( ), nmf_algorithm , , ,s s
finK←W H V W H  

9 End 

Table 4.3: Multi-start initialization to initial NM F alogorithm 
 

Thus, the multi-start initialization selects the initial estimates forW andH  which give 

the steepest decrease in the assumed objective (cost) function ( )D V WH� via 

alternating steps. 

4.3.3 Termination condition 

In many practical situations, the iterations usually continue until some combinations of 

termination conditions or stopping criteria are satisfied. There are several possible 

stopping criteria for the iteration algorithm used in NMF: 

• The cost function achieves a zero-value or a value just below a given thresholdε , 

also during the NMF divergence updating, the stopping criterion can be adjusted, 

for example: Frobenius norm of cost function, 

      ( ) 2
( ) ( ) ( )ˆ ˆk k k
F

F
D ε= − ≤V V V V� ,  ( ) ( ) ( )ˆ k k k=V W H             (4.6) 

V̂ is estimated value. 

• There is little or no improvement between successive iterations in the 

minimization of a cost function, for example: Frobenius norm of the estimated 

matrices, 
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           ( ) 2
( 1) ( 1) ( ) ( ) ( 1)ˆ ˆ ˆ ˆk k k k k
F

F
D ε+ + += − ≤V V V V�                 (4.7) 

or Ratio of the distance 

                       
( ) ( 1)

( )

k k
F F

k
F

D D

D
ε

−−
≤                        (4.8) 

• There is little or no change in the updates for factor matricesW andH . 

• The number of iterations achieves or exceeds a predefined maximum number of 

iterations and the maximum number of iterations also can be adjusted. 

4.4 Convolutive NMF 

The Convolutive NMF (CNMF) is a natural extension and generalization of the 

standard NMF. The standard NMF represents regularly repeating patterns which span 

multiple columns of theV matrix using a number of different bases to describe the entire 

sequence. CNMF uses a single basis function that spans the pattern length. This kind of 

situation can be very frequently found when analysing audio signals. In the Convolutive 

NMF, we process a set of nonnegative matrices or patterns which are horizontally 

shifted (or time delayed) versions of the primary matrix W [Zass 05]. In the simplest 

form the CNMF can be defined as (see Figure: 4.1) 

 

FIGURE 4.1: ILLUSTRATION OF CONVOLUTION NMF 
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In the previous section, we saw the NMF uses a matrix product ≈V WH  to reconstruct 

the estimated data matrixV , in the convolutive Non-Negative Matrix Factorization they 

extend this expression to: 

                                  
1

0

T t

t
t

− →

=
≈ ⋅ +∑V W H E                              (4.9) 

where M N×
+∈V ℝ is a given input data matrix to be decomposed, M R

t
×

+∈W ℝ is a set of 

unknown nonnegative matrices,
0

R N
→

×
+= ∈H H ℝ is the matrix representing coding 

information of the source (such as position of activation and it’s amplitude). Here
t→
H is a 

t column shifted version ofH . In other words, 
t→
H  denotes the t positions (columns) 

shifting operator to the right, with the columns shifted in from outside the matrix set to 

zero. This shift (sample-delay) is performed by a basic operator denoted as( )
i→

i . 

( )
i←

i performs the reverse. The matrix M N×∈E ℝ represents approximation error. 

 

The i th column of tW  describes the spectrum of the i object t time steps after the object 

has begun. 

 
Equation 4.12 is a summation of convolution operations between corresponding elements 

from a set of two-dimensional basesW and a set of weightsH . 

The set of i th columns of ( )tW defines a two-dimensional structure. This matrix will be 

shifted and scaled by convolution across the axis of t with the i th row ofH . The resulting 

reconstruction will be a summation of all the basis convolution results for each of the R 

bases. 

The estimation of the appropriate set of matrices( )tW and H  to approximate V is based 

on the framework of NMF that Lee and Seung used in [Lee 99]. In accordance to the 

NMF cost function, they defined the Convolutive NMF cost function as: 

                             ˆ|| | ||
ˆ FD In

 = • − + 
 

V
V V V

V
                       (4.10) 

Where V̂ is the approximation of V defined as: 
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1

0

ˆ ( )
T t

t

t
− →

=
= ⋅∑V W H                               (4.11) 

They decomposed the above cost function to a series of simultaneous NMF 

approximations according to the linearity property, one for each value of t. Then they 

optimized the above cost function by optimizing this set of T NMF approximations. For 

each NMF approximation they updated the equivalent W(t) and the appropriately shifted 

H. This gives the convolutive NMF updates equations which are: 

                   
( )

ˆ ˆ
, ( ) ( )

( ) 1
1

Tt
T

TT t

t
t t

t

→

→

   ⋅ ⋅      = • = •
⋅ ⋅

V V
W H

V VH H W W
W

H
           (4.12) 

They updated H and W(t) in every updating iteration and each t. Actually for each t, W(t) 

is updated by the corresponding NMF, but H is shared and shifted across all t’s in an 

iteration. Update W(t) and H for each t may result in a mistaken estimate of H with the 

update for t = T −1 dominating over others. Therefore it is best to update all W(t) first and 

then assign to H the average of all the NMF sub-problems: 

                   

( )
ˆ

,
( ) 1

t

T

T

t
t

t

← 
  ⋅    = • ∀ ⋅ 

 
 

V
W

VH H
W

                   (4.13) 

In terms of computational complexity this technique depends mostly on T. If T = 1 then it 

reduces to standard NMF, otherwise it is burdened with extra matrix updates equivalent 

to one NMF per unit of T [Smaragdis 07].  

In addition, we utilize this idea, realize it in the MATLAB simulation environment and 

implement it to perform the specific application which is Acoustic Echo Cancellation. 

Experimental results are presented in chapter 6 and we will show both NMF and CNMF 

approached to acoustic echo cancellation. 

4.5 Conclusions 

In this chapter we have presented two different models (NMF and CNMF), graphical and 

mathematical representations for NMF and the related matrix factorizations and 

decompositions. Our emphasis has been on the formulation of the problems and 

establishing relationships and links among different models. Each model usually provides 

a different interpretation of the data and may have different applications. Various 
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equivalent representations have been presented which will serve as a basis for the 

development of learning algorithms in next two chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
   

   
 

 52  

Optimal Algorithms for Blind Source Separation 
-Application to Acoustic Echo Cancellation 

5. Acoustic echo cancellation MATLAB experiment 

This chapter is organized as follows: in section 5.1 we present a detailed description of 

numerical aspects of the Least Mean Square (LMS) algorithm. The second section is 

focused on the different versions of the LMS algorithm simulation in MATLAB and an 

experiment result will be presented. In section 6.3, we use two set of NMF experiments 

(standard NMF and convolution NMF) to perform AEC. The convolution NMF 

experiment is based on the process of using standard NMF. The purpose of these 

experiments is finding a better solution for AEC and comparing the results with LMS 

counterparts.  

5.1 Least Mean Square Solution for Acoustic Echo Cancellation 

5.1.1 Steepest Decent Algorithm 

The Steepest Decent algorithm is a method of gradient decent minimization or an 

“adaptive” approach. We can find a single global minimum corresponding to the 

optimum weights based on the quadratic cost function. 

 

Formally the gradient is defined as: 

                            
J

J
∂= ∇ =
∂wg
w

                                 (5.1) 

Sinceg is the direction of steepest ascent−g gives us the direction of steepest descent. 

The iterative procedure of the steepest or gradient descent method as follows: 

Start with an arbitrary initial weights vectors , 0k k =w  

Calculate the gradient 2[ ]k k
k

J∂= = −
∂

g Rw p
w

 

Update the weights vector in the direction of steepest descent using the rule: 

                            1k k kµ+ = −w w g                                (5.2) 

Whereµ is a positive constant known as the step size or learning rate. 

Set 1k k= + and repeat until the algorithm converges. 
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5.1.2 LMS Derivation 

It is simple to derive the Least-Mean-Square based on the steepest decent algorithm. We 

have Mean Square Error (MSE) cost function 2( ) [ ] 2 T T
kJ E d= − +w w p w Rw , 

both kd and kx are jointly wide-sense stationary. Also we have the Wiener Solution (Eq. 

5.3) * 1−=w R p . 

Therefore, a steepest-decent-based algorithm can be used to search the Wiener solution as 

follows: 

                     

1

       [ 2 2 ]

       2 [ ]

       2

k
k k

k k k k

T
k k k k k k

k k k

d

e

µ
µ

µ
µ

+ = −
= − − +

= + −
= +

ww w g

w p R w

w x x x w

w x

                         (5.3) 

This is the Least-mean-square algorithm that was proposed by Bernard Widrow in the late 

1960s [Widrow 60]. 

5.1.3 Gradient behaviour 

The ideal search direction is on the MSE surface for the optimum coefficient vector 

solution (Eq. 5.8). In the LMS algorithm, instantaneous estimates ofR andp are used to 

determine the search direction: 

                         ̂ 2[ ]k T
k k k k kd= −wg x x w x                             (5.4) 

In general, the LMS gradient direction has the tendency to approach the ideal gradient 

direction since for a fixed coefficient vector (filter weight factor)w and its convergence 

behaviour is different from the steepest-decent algorithm counterpart. Hence, 

                       
{ }ˆ( ) 2 [ ] [ ]

          

k T
k k k kE E E d= −

=
w

w

g x x w x

g
                     (5.5) 

Under an ergodic condition, the average direction tends to wg with a fixedw vector when 

calculated for a large number of inputs and reference signals. 

5.1.4 Condition for the LMS convergence 

Determine the range of convergence factorµ of the LMS algorithm. Firstly, we should 

know the error in the filter coefficients as related to the ideal coefficient vector*w , then 

gives:  

                              *k k∆ = −w w w .                             (5.6) 
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Using Eq.5.6 the gradientkg is given by: 

                              2k k= ∆g R w                                 (5.7) 

and the steepest-decent update rule,1k k kµ+ = − ∆w w R w , we have: 

                             1 2k k kµ+ = − ∆w w R w                          (5.8) 

Subtracting *w from both sides and colleting terms gives: 

                        1

1

* * 2

   2
k k k

k k k

µ
µ

+

+

⇒ − = − − ∆
⇒ ∆ = ∆ − ∆
w w w w R w

w w R w
                  (5.9) 

Finally we obtain: 

                        1 [ 2 ]k kI µ+∆ = − ∆w R w                          (5.10) 

If it is assumed that the elements ofkx are statistically independent of the element 

of k∆w and ke ; the expected error in the coefficient vector from Eq. 5.10 is simplified as 

follows: 

                          1[ ] ( 2 ) [ ]k kE I Eµ+∆ = − ∆w R w                   (5.11) 

Starting with an initial weight deviation *o o∆ = −w w w and it is in order to guarantee 

convergence, so the condition we require islim 0k
k→∞

∆ =w  and hence: 

                           lim[ 2 ] 0k

k
I µ

→∞
− =R                            (5.12) 

To find acceptable values forµ , we can use the eigenvalue/eigenvector decomposition of 

R . 

SoR can be written as TΛQ Q whereΛ is the diagonal eigenvalue matrix of R andQ is the 

corresponding orthonormal eigenvector matrix. Thus Eq.5.12 becomes: 

                           lim[ 2 ( )] 0T k

k
µ

→∞
− Λ =I Q Q                        (5.13) 

We can rewrite Eq.5.13 using the matrix calculation fact 

that T T= =QQ Q Q I and[ ]T k k T=QRQ MR M : 

                          

lim[ 2 ( )] 0

 lim[ [ 2 ] ] 0

  lim[ [ 2 ] ] 0

T T k

k

T k

k

k T

k

µ

αµ

µ

→∞

→∞

→∞

− Λ =

⇒ − Λ =

⇒ − Λ =

QQ Q Q

Q I Q

Q I Q

                   (5.14) 

Since is the constant eigenvector matrix, we can simplify Eq.5.14 and gives: 
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1

2

lim[ 2 ] 0

[1 2 ] 0 0

0 [1 2 ] 0
 lim 0

0 0 [1 2 ]

k

k

k

k

k

k
N

I µ

µλ
µλ

µλ

→∞

→∞

− Λ =

 −
 − ⇒ =
 
 

−  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

        (5.15) 

Therefore, for the convergence we require: 

                         lim[1 2 ] 0  for all k
i i

k
µλ λ

→∞
− =                        (5.16) 

Thus, it provides: max1 2 1µλ− < . 

The condition for convergence (stability) of the mean of the weight vector is: 

                            
max

1
0 µ

λ
< <                                  (5.17) 

Here maxλ is the largest eigenvalue of the input correlation matrix T
k k=R x x .The value 

of µ in this range guarantees that all elements of the diagonal matrix in the Eq.5.15 tend to 

zero ask → ∞ . The critically damped point is given by 1 2 0iµλ− = which we get a step 

size:
1

2 i

µ
λ

= . 

5.1.5 Rate of convergence of LMS algorithm 

The rate of convergence of LMS algorithm is identical to the Steepest-Decent algorithm. 

A useful way of quantifying rate of convergence is to measure it in terms of equivalent 

weight error exponential decay time constant along each of the principal axes, gives: 

                        exp [1 2 ]ki
i

k µλ
τ

 
− = − 
 

                            (5.18) 

Then solving for the time constant in terms of maxτ  gives, 

                          max
min

1

ln[1 2 ]
τ

µλ
−=

−
                            (5.19) 

The largest time constant corresponds to the smallest eigenvalue and it can determine the 

rate of convergence of the overall algorithm. By defining a normalized step size 

(convergence factor) 
max

λµµ
λ

=  where0 1λµ< < for stability. Eq.5.19 can be rewritten as: 
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                max

min

max

1 1

2
ln 1ln 1 2

( )C
λ

λ

τ
µλµ

λ

− −= =
   −−   

   R

                      (5.20) 

Here min

max

( )C
λ
λ

=R is called condition number ofR . By approximationln(1 )x x− = − for 

smallx , Eq.5.20 gives:max

( )

2

C

λ

τ
µ

≅ R
 for poorly conditioned problem. W of the can see 

that the rate of convergence of the LMS algorithm is directly proportional to the condition 

number of the input correlation matrix and inversely proportional to the normalized step 

size. 

 

We can rewrite Eq. 5.19 as: 

                             max
min

1

2
τ

µλ
=                                (5.21) 

The constant above is for the convergence of the weights to their optimum values. In 

addition, the corresponding learning curve time constant is defined as: 

                           max

min

1

2 4MSE

ττ
µλ

= =                           (5.22) 

5.1.6 Steps associated with the NLMS algorithm 

An alternative formulation of LMS-based algorithm known as the Normalized Least 

Mean Square algorithm (NLMS).The convergence factor is chosen with the objective of 

achieving a faster convergence. The weight update rule is defined as: 

                          1 2 k k
k k T

k k

eµ+ = + x
w w

x x
                     (5.23) 

and guarantees the convergence when0 1µ< < . The normalized LMS algorithm usually 

converges faster than the conventional LMS algorithm, since it utilizes a variable 

convergence factor to obtain the reduction of instantaneous output error. The major 

advantage of NLMS is that the learning rate is independent of T
k kx x . However, the 

convergence factorµ is usually chosen as fixed value in the NLMS in order to control the 

misadjustment (see eq. 5.29) since all the derivations are based on instantaneous values 

of the squared errors and not on the MSE. Additional, a parameterγ should be added in 

order to avoid large steps whenTk kx x becomes small. The parameterγ  also means it can 
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overcome potential numerical instability in the update of the weights. In practise, a small 

positive adaption constant ε  (usually far smaller than 1) multiplies the step size to 

achieve a proper compromise between the convergence rate and the misadjustment 

[Haykin 02]. The updated coefficient of NLMS is given by: 

                        1 2 k k
k k T

k k

eµ
εγ+ = +

+
x

w w
x x

                     (5.24) 

In summary, there are similar processes to the LMS algorithm as follows: 

1) Initial condition: input signalx and weight vector [0, ,0]Tk =w ⋯ , 0,1,2,....k =  

2) The convergence factor is0 1µ< < . 

3) γ is a small constant. 

Calculate the output for the current training input: T
k ky = w x  

Estimate the error: k k ke d y= −  

Update the weight vector: 1 2 k k
k k T

k k

eµ
εγ+ = +

+
x

w w
x x

 with positive constant step sizeµ .      

5.1.7 Excess Mean-Square Error and Misadjustment 

The LMS algorithm uses a noisy estimate of the gradient the Mean Square error (MSE). 

Thus, misadjustment is defined as the ratio of the excess MSE to the minimum MSE and 

is a measure the performance of the adaptive process tracks the true Wiener solution – i.e. 

it is a measure of the “cost of adaptability”. 

 

The excess in the Mean Square Error is given by:  

     Excess MSE = min[ ] [ ] [ ]T T
k k k kE J J E E− = ∆ ∆ = Λw w R w m m                  (5.25) 

Since *k k∆ = −w w w  and Λ is diagonal as mentioned before, this can be written as a 

sum (non-matrix form): 

                          
1

2

1

[ ]
N

MSE i ik
i

J E mλ
+

=
=∑                               (5.26) 

If the LMS has converged the only variation in the weights will be due to gradient noise 

causing the weights to the wander around the minimum value. Therefore, 

                           2
min[ ]ikE m Jµ≈                                  (5.27) 

And the excess MSE formula becomes: 
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1

min min
1

[ ]
N

MSE i
i

J J Jµ λ µ
+

=
= =∑ tr R                         (5.28) 

Finally, we obtain the NLMS misadjustment M ,is defined as 

             min

min min

[ ]Excess MSE
[ ]

J
M

J J

µ µ= = =tr R
tr R                        (5.29) 

The trade-off analysis among the rate of convergence, the amount of excess mean-square 

error, and the ability of the adaption to track the signal is important. Thus misadjustment 

is directly proportional to step-size. We therefore have to trade rate of adaption with 

accuracy as measured by misadjustment.                                    

5.2 Using different LMS Algorithms to Perform AEC 

5.2.1 Experiment principles and procedure 

The experiment is about the normalized least mean square (LMS) algorithm. The 

application in this experiment is echo cancellation in real-time VoIP scenario. Actually, 

we recorded the speech data into MATLAB as testing data. Here we need to point out, 

is that echo can’t origin from a VoIP network. But delay time due to codec and 

buffering quickly makes even the slightest echo received very annoying. Echo is 

generated by digital with 4 wire to analogue with 2 wire conversions either in the public 

switched telephone network (PSTN). As aforementioned chapter five, there are a couple 

of mechanisms to prevent echo that is ERLE (Echo Return Loss Enhance). 

 

ERLE is often named echo canceller. ERLE is expressed in dB. The higher the value, the 

better the echo canceller. Furthermore, ERLE as a function of the discrete-time index n 

provides information about the convergence behaviours of the canceller. The input 

signal of an echo canceller system is often a speech signal. Speech signals are 

non-stationary, which makes the choice of step size rather difficult. One advantage of 

the NLMS algorithm is the choice of its step size. In the previous section we have 

detailed discussed LMS and NLMS in math form. In this section, we write a series 

function via MATLAB simulation to perform echo cancellation. Meanwhile, we will 

compare the ERLE-curves of LMS and NLMS to tell why the NLMS do work better 

than the stand LMS for input speech signal with strong varying amplitude. To compare 

LMS and NLMS, we also introduced another more efficient LMS algorithm named 

FastLMS.  
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In the experiment we used the setup shown in figure 6.1.  

 

FIGURE 5.1: AEC OPERATION IN THE ROOMACOUSTIC ENVIRONEMENT  
 

In the simulation, we need to create three functions which are erle.m, lms.m, nlms.m and 

flms.m to perform echo cancelation and compare results.  

1) Create a function that calculates ERLE given the residual error e(n) and the 

output signal of the speech voice d(n). 

2) Create a function, which takes an input vector u and a reference or desired signal 

d(n), both of length N, and calculates the error e(n) for all time instants. 

Furthermore, the input signal vector u is required to be a column vector. 

3) For the NLMS function, in order to lower the influence of the input signal 

amplitude on the gradient noise, the step size is scaled where it is divided by the 

variance of the input signal u(n). In case the input signal is zero, a positive 

constant in the denominator prevents the step size from being infinite. This 

modification of the standard LMS is referred to as normalized LMS. 

4) Lastly, for the FastLMS simulation, its algorithm is an alternative frequency 

domain implementation of the standard LMS which designed to avoid circular 

convolution effects [Ferrara 80]. We will plot the speech signal’s spectrum 

over time, which shows the frequency representation of the first 10k samples in 
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the time-frequency plane. There are two versions of FastLMS which are 

FastLMS without normalization and FastLMS with normalization.  

 

Additionally, in both LMS and NLMS testing function we apply to the echo canceller 

with M =128 filter length and a value for step size that guarantees convergence and 

allows the fastest adaptation possible. The input signal and the desired signal are u and 

d respectively. Again, in order to investigate the convergence behaviour, use the 

function erle. 

5.2.2 LMS and NLMS Simulation Results 

LMS vs. NLMS (full MATLAB script, see Appendix A): 
 
The following are LMS, NLMS, ERLE MATLAB function call script 
 

function  [e,w]=lms(mu,M,u,d) 

Call: 
 
Input arguments: 

  mu  = step size, dim 1x1 
  M   = filter length, dim 1x1 
  u   = input signal, dim Nx1 
  d   = desired signal, dim Nx1     
 
 Output arguments: 

   e  = estimation error, dim Nx1 
   w  = final filter coefficients, dim Mx1 
 

% LMS 
  for  n = M:N  
     uvec = u(n:-1:n-M+1);  
     e(n) = d(n)-w'*uvec;   
     w = w+mu*uvec*conj(e(n));  
  end  

Table 5.1: Least Mean Square function call 
 

function  [e,w]=nlms(mu,M,u,d,a)  
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Call: 
 
Input arguments: 

  mu  = step size, dim 1x1 
  M   = filter length, dim 1x1 
  u   = input signal, dim Nx1 
  a   = constant, dim 1x1 
 
 Output arguments: 

   e  = estimation error, dim Nx1 
   w  = final filter coefficients, dim Mx1 

 
% NLMS  

for  n = M:N  
   uvec = u(n:-1:n-M+1);  
   e(n) = d(n)-w'*uvec;   
   w = w+mu/(a+uvec'*uvec)*uvec*conj(e(n));  
end  

Table 5.2: Normalized Least Mean Square function call 
 

function  [erle]=erle(e,d);  

Call: 
 
Input arguments: 

  e   = residual echo, dim Nx1 
  d   = desired signal, dim Nx1 
 
Output arguments: 

  r  = ERLE curve in dB 

 
% ERLE 
  erle = 10*log10(d./e);  
 

Table 5.3: ERLE function call 
 

In the simulation experiment, we showed the performance of acoustic echo cancellation 

by using LMS and NLMS. The speech data is collected by TI C6713 DSK real-time. 

Figure 5.2 is comparison of two algorithms and figure 5.3 is ERLE value in dB. 
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FIGURE 5.2: ECHO CANCELLATION RESULTS PERFORMED BY LMS  AND NLMS 
 

Normalized LMS usually converges much more quickly and efficiently than standard 

LMS at very little extra cost; NLMS is very commonly used in adaptive applications 

such as AEC. Furthermore, in the LMS function algorithm step size must be 

nonnegative scalar, we use max_step_size to determine a reasonable range of step size 

values for the speech signals being processed, and in the NLMS function algorithm, the 

step size must be a scalar between 0 and 2. Setting this step value to 1 provides the 

fastest convergence. 



   
   

   
 

 63  

Optimal Algorithms for Blind Source Separation 
-Application to Acoustic Echo Cancellation 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-5

0

5

10

15

20

25

30

35

40

45

Number of Iteration n

E
R

LE
 [

dB
]

ERLE Comparison

 

 

LMS

NLMS

 

FIGURE 5.3: ERLE VALUE COMPARISON (LMS  VS. NLMS)   
 

Iteration no. (*104) 0.1 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.0 

ERLE(dB) for LMS 1.412 1.322 1.318 4.121 21.881 11.97 32.88 16.84 17.01 

ERLE(dB) for NLMS 5.012 7.84 7.788 8.243 22.54 12.54 37.12 12.36 12.21 

 
Table 5.4: ERLE value comparison (LMS vs. NLMS) 

5.2.3 FastLMS and NFastLMS Simulation Results 

FastLMS vs. NFastLMS (full MATLAB script, see Appendix A): 

function  [e,w] = fastlms(st,M,u,d,gamma,P)  
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Call: 
 
Input arguments: 

st = step size, dim 1x1 
M = filter length, dim 1x1 
u = input signal, dim Nx1 
d = desired signal, dim Nx1  
P = initial value, energy, dim 2Mx1 
 
Output arguments: 

e  = estimation error, dim Nx1 
w  = final filter coefficients, dim Mx1 

 

Table 6.5: Fast Least Mean Square function call 
The Fast LMS algorithm involves three diagonal matrices of dimension 2M by 2M (see 

Table 5.5 function call), which hence contain only information in their 2M diagonal 

elements. A so called element-wise multiplication of the vectors operations are denoted 

with a dot in MATLAB. In addition, the speech signals are transformed from time 

domain to frequency domain and backwards using the FFT and the IFFT, respectively. 

Hence all vectors in MATLAB are complex valued, even though they are real valued in 

time domain. Here it is a problem when plotting the vectors. Therefore, we have a 

possible solution is to extract only the real part in MATLAB. (See the MATLAB script 

in Appendix A). We simply repeat part 1 experiment to see how Fast LMS performance 

over the LMS algorithm. And we still use the same speech signal as before. 
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FIGURE 5.4: ECHO CANCELLATION RESULTS PERFORMED BY FAST LMS 
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FIGURE 5.5: ERLE VALUE COMPARISON (FLMS  VS. NFLMS)   
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The above figures are the investigation of ERLE for the different versions of the fast 

LMS algorithm. 

 

Iteration no. (*104) 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.0 

ERLE(dB) for FLMS  0.211 0.198 2.601 4.106 2.499 8.127 3.111 4.67 

ERLE(dB) for NFLMS  4.31 3.981 5.322 17.995 11.33 33.544 13.241 16.77 

 
Table 5.6: ERLE value comparison (FLMS vs. NFLMS) 

 
 

We also observe the variation of the speech signal’s spectrum over time. It can be done 

using the MATLAB function spectrum, which shows the frequency representation of 

the first 10k samples in the time-frequency plane. Figure 5.6 shows the spectrumgram 

of residual echo using Fast LMS without normalization and figure 5.7 shows the 

spectrumgram of residual echo using Fast LMS with normalization, respectively. When 

we use Fast LMS with normalization and it is clear to see the overall results are better 

than the performance of the counterpart without normalization  

Time
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FIGURE 5.6: THE SPECTRUMGRAM OF RESIDUAL ECHO USING FAST LMS  WITHOUT 

NORMALIZATION  
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FIGURE 5.7: THE SPECTRUMGRAM OF RESIDUAL ECHO USING FAST LMS  WITH 

NORMALIZATION  

5.2.4 Summary of the performance of LMS algorithm 

• LMS: is the simplest to implement and is stable when the step size parameter is 

selected appropriately see equation 5.10. This requires prior knowledge of the 

input signal. It is not the best choice for the real-time acoustic echo cancellation 

system.  

• Normalized LMS: Simple to implement and computationally efficient. Shows 

very good attenuation and variable step size allows stable performance with 

non-stationary signals see equation 5.24. This is the obvious choice for real time 

implementation. 

• Fast LMS: is an alternative frequency domain implementation of the LMS type 

algorithm designed to avoid circular convolution effects (overlapping output). It 

provides both faster convergence and simple normalization possibilities. This is 

also the obvious choice for real time implementation. 
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5.3 Using NMF to Perform AEC 

5.3.1 Experiment Principle and procedure 

In this experiment, we choose four different speakers: two male and two female 

speakers. These pre-recorded voice speeches were chosen from audio databases TIMIT  

by their metadata. IN MATLAB, the database toolbox will save the learning time of the 

database structure and will enable us to focus on algorithmic aspects of source code. 

The TIMIT  database data can take the form of sentences words or phonemes. The 

MATLAB query or read functions will return a cell array and its waveforms will 

contain waveforms of entire sentence, words or phonemes, depends whether the query 

result is sentence, word or phoneme. For more information on TIMIT  see [Lingustic 

10]. 

 

We used both objective and subjective measurements to analyze the results of the 

experiments. In the subjective listening tests, a panel of subjects listened to the input and 

output speech to assess the effect of the algorithm. The objective analysis used three 

objective ratios based on the input and output speech to analyze the performance of the 

each value of beta of NMF to perform AEC. Two of the three ratios were taken from a 

standardized set of energy ratios defined in [Vincent 05].  

 

• Signal to Interference Ratio (SIR), which measures the amount of echo still left in 

the returning near end speech,  

                         
2

10 2

|| ||
10 log

|| ||
target

interf

s
SIR

e

 
=   

 
                        (5.23) 

• Signal to Distortion Ratio (SDR) which measures the amount of the distortion in 

the original signal depends on the algorithm applied 

 

                         
2

10 2

|| ||
10 log

|| ||
target

interf artef

s
SDR

e e

 
=   + 

               (5.24) 

 

       Where einterf is the amount of interference energy left in the output, eartef is the       

energy of processing artifacts left after processing and starget the near end speech.  

 



   
   

   
 

 69  

Optimal Algorithms for Blind Source Separation 
-Application to Acoustic Echo Cancellation 

• Signal to Artifacts energy Ratio is a measure of the level of artifacts, the signal to 

artifacts ratio (SAR) defined as follows 

                         
2

arg int
10 2

|| ||
10 log

|| ||
t et erf

artef

S e
SAR

e

 +
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 
               (5.25) 

 

In the convolutive NMF experiments, we want to measure the level of echo reduction 

during the pauses in speech recording, the energy ratio which is a measure of the level of 

echo suppression, the echo reduction loss enhancement (ERLE) was employed (same 

measurement in previous LMS experiments). It is defined as follows 

                          
2

10 2

{ ( )}
10 log

{ ( )}

E y t
ERLE

E e t

 
=  

 
                  (5.26) 

where y(t) is the echo signal and e(t) is the echo after processing. 

 
Each experimental testing mixture, consists of a nearend speaker contribution and a 

main farend contribution. Both these contributions were obtained by convolving 

separate sentences of speech with the respective Room Impulse Responses (RIRs). In 

order to test the echo suppression when there is no nearend speech, also we need create 

large pause in nearend utterances leaving just the LEM response. 

5.3.2 Conventional NMF Simulation results 

In MATLAB implementation, we process mixture data frame by frame. For each frame 

we perform these two steps. In the training step, firstly we train the near-end basis matrix 

nB , we define two random matricesnB and nH of size M x R and R x N, perform update 

formulae to calculate get the suitable value ofnB . The original NMF uses 

Kullback-Leibler divergence as the optimized cost function, the update rules to calculate 

nB and nH is given as: 

                   ,
1 1

T T

T T

   ⋅ ⋅      = • = •
⋅ ⋅

V V
W H

WH WHH H W W
W H

                  (5.27) 

Secondly perform the same procedure to calculate the far-end basis, i.e. the echo basis Be. 

 
for  i = 1:1:train_num_iter_v  
        B n = B n.*((V./( B n *H n+1e-9))* H n ')./(ones(M,N)* H n '+1e-9);  
        H n = H n.*( B n '*(V./( B n * H n +1e-9)))./( B n '*ones(M,N)+1e-9);  
end 
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Table 5.7: Update rules of training basis using conventional NMF algorithm 

 
After both near-end and far-end basis are trained, next step is forming the mixture basis. 

This mixture basis contain both near-end and far-end echo basis and used to remove echo 

from the input mixture dataV . 

Next step is matching, matches echo and near-end basis to the correlated parts in the 

mixture dataV . The procedure is as follows: 

• Using the mixture basismB and input mixture datamV train mH  

• Get the near-end output matrix by multiplying the near-end parts of the mixture 

basis mB with the correlated parts of the contribution matrix mH . 

• Get the far-end echo matrix by multiplying the far-end parts of the mixture basis 

mB with the correlated parts of the contribution matrix mH .  

 

 
for i = 1:1:match_num_iter  
        Hm = Hm.*( Bm'*(Vm./(Bm*Hm+1e-9)))./((Bm'*o nes(Mx,1))+1e-9);  
        if  (i == match_num_iter-1)  
          Hnolate = Hm;  
        end  
        if  (i == match_num_iter-1)|(i == match_num_iter)  
          Bm  = Bm .*((Vm./(Bm *Hm+1e 9))*Hm')./((o nes(Mx,1)*Hm')+1e-9);  
        end           
 end  
    Nearend(NumberOfFrame,:) = Bm(:,NearendFrames)*Hm( NearendFrames,:);  
    Echo(NumberOfFrame,:) = Bm(:,EchoFrame)*Hm(Echo Frame,:);  
 

 
Table 5.8: Update rules of matching and removing process with original NMF 

 

Finally we resynthesis, take IFFT translation of the near-end data matrix and resynthesis 

it for audio. Calculate the objective ratios using the three objective measures described in 

next section. 

 
 
Nearend  = [Nearend,fliplr(Nearend(:,2:512))];  
[xf,yf] = pol2cart(angle(mix_frames), Nearend);  
resyn = complex(xf,yf);  
 
for  i = 1:1:num_frames  
    resyn(start:stop) = real(ifft(spec(i,:))) + res yn(start:stop);  



   
   

   
 

 71  

Optimal Algorithms for Blind Source Separation 
-Application to Acoustic Echo Cancellation 

    start = start  + stepsize;  
    stop = stop + stepsize;  
    if  stop > num_samples  
        break  
    end  
end 
Output_Nearend = resyn; 

 
 

Table 5.9: Update rules of resynthesis process of output data 
 
We choose male 1 and male 2 as sample speech mixture in the following simulation 

experiments. The energy ratio measurements results are show the first line of the table 

in section 5.4. 
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FIGURE 5.8: NEAR-END SPEECH WITH NOISY PAUSE WAVEFORM  
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FIGURE 5.9: FAR-END NOISE SPEECH WAVEFORM  
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FIGURE 5.10: M IXTURE ECHO AND NEAR -END SPEECH BEFORE NMF  PROCESSING 
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FIGURE 5.11: M IXTURE ECHO AND NEAR -END SPEECH AFTER NMF  PROCESSING 

5.3.3 Convolutive NMF Simulation Results 

The implementation of convolutive NMF to perform Acoustic Echo Cancellation is using 

the similar frame work as the conventional NMF. The original NMF process the data 

frame by frame, i.e. each training and matching procedure only process one frame of data.  

The convolutive NMF uses a singleV matrix which covers t frames of data instead of 

one. In each updated iteration, first only update( )tW and shift H for one frame for t 

times, then uses the average value of ( )tW to updateH . That’s because update( )tW  

andH for each t may result in a mistaken estimate of H with the update for t = T −1 

dominating over others. 

               
( )

ˆ ˆ
, ( ) ( )

( ) 1
1

Tt
T

TT t

t
t t

t

→

→

   ⋅ ⋅      = • = •
⋅ ⋅

V V
W H

V VH H W W
W

H
                   (5.28) 

The process of convolutive NMF becomes:  

• Read in a number of frames of mixture.  

• Training near-end basis using convolutive NMF update function in Eq. 5.28. 

• Training echo basis using convolutive NMF update function. 

• Forming the mixture basis using near-end and echo basis. 
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• Using the mixture basis and input mixture data trainH . 

• Get the near-end output matrix by multiplying the near-end parts of the mixture 

basis with the correlated parts of the contribution matrixH . 

• Get the far-end echo matrix by multiplying the far-end parts of the mixture basis 

with the correlated parts of the contribution matrix H .  

• Take IFFT translation of the near-end data matrix and resynthesis it for audio 

• Start process next frames of data 

• After all the frames are processed, calculate the objective ratios of the output 

speech 

 
Hshift = H; 

 
     for  t = 1:1:4  
        Wt = Wt.*((V./(Wt*Hshift+1e-9))*Hshift')./( ones(M,N)*Hshift'+1e-9);  
        W = W + Wt;  
        Hshift = circshift(Hshift,[0,1]);  
        Hshift(:,1) = 0;  
     end  
        W = W/t;  
        H = H.*(W'*(V./(W*H+1e-9)))./(W'*ones(M,N)+ 1e-9);  
 

Table 5.10: Update rules of convolutive NMF update functions 
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FIGURE 5.12: NEAR-END SPEECH (WITH PAUSE ) WAVEFORM  
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FIGURE 5.13: FAR-END NOISE SPEECH WAVEFORM 
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FIGURE 5.14: M IXTURE ECHO AND NEAR -END SPEECH BEFORE CNMF  PROCESSING 
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FIGURE 5.15: M IXTURE ECHO AND NEAR -END SPEECH AFTER CNMF  PROCESSING 

5.4 Measurement results 

SIR, SDR were used to measure the performance on mixtures that contained both far-end 

and near-end speech together. The results of the SIR, SDR ratios are shown in the 

following Tables. Note that these results are based on the publication [Zhou 09] and 

re-do the experiment on different PC specifications and the results data have been 

changed. The output 1 SDR and SIR is speaker dependent bases results and output 2 is 

speaker independent bases. 

• Conventional NMF 

Near-end Far-end Input Input Output 1 Output 1 Output 2 Outp ut 2 

  (echo) SDR dB SIR dB SDR dB SIR dB SDR dB SIR dB 

Male 1 Male 2 2.4238 2.5251 9.2641 32.9231 9.3714 30.8999 

Male 2 Female 1 1.6504 1.6911 5.5001 25.1911 3.3133 21.4144 

Female 1 Female 2 3.5942 3.4521 8.0111 23.2422 7.7355 23.8413 

Female 2 Male 1 4.1011 4.4915 8.2955 27.0112 6.5611 28.1890 

Average   2.9424  3.0399 7.7677    27.0919 6.7453    26.0862 

 
Table 5.11: Conventional NMF Energy Ratio Measurements 
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Near-end Far-end (echo) ERLE (dB) 

Male 1 Male 2 12.1555 
Male 2 Female 1 14.3672 
Female 1 Female 2 12.6888 
Female 2 Male 1 12.0794 

Average  12.8227 

 
Table 5.12: ERLE for pauses in near end speech (Conventional NMF) 

 
• Convolutive NMF 

Near-end Far-end Input Input Output 1 Output 1 Output 2 Outp ut 2 

  (echo) SDR dB SIR dB SDR dB SIR dB SDR dB SIR dB 

Male 1 Male 2 3.0112 2.9385 9.2113 28.2301 9.0012 27.8999 

Male 2 Female 1 3.2988 3.3111 6.4223 24.1247 6.7781 23.4144 

Female 1 Female 2 2.6154 2.5908 8.7100 21.4450 7.5644 21.8413 

Female 2 Male 1 3.0881 2.6557 5.5221 18.0047 5.1229 18.1890 

Average   3.0036  2.8740 7.4664    22.9511 7.0067    22.8362 

 
Table 5.13: Convolutive NMF Energy Ratio Measurements 

 
Near-end Far-end (echo) ERLE (dB) 

Male 1 Male 2 10.5442 
Male 2 Female 1 12.1142 
Female 1 Female 2 11.0012 
Female 2 Male 1 9.9912 

Average  10.9127 

 
Table 5.14: ERLE for pauses in near end speech (Convolutive NMF) 

5.5 Discussion and conclusions 

In the above both NMF and CNMF simulation experiments, we use the randomly 

chosen speakers to form the mixtures, two male and two female speeches (Chosen from 

the TIMIT database). Each experimental mixture had a near end speaker contribution 

and a far end speaker contribution. From the results of the figures in section 5.3, we can 

find that both conventional NMF and convolutive NMF can give significant reduction 

(approximate 8 to10% see figure 5.10, 5.11 and 5.15) in the level of echo. Note that the 

convolutive NMF approach has trade-off between computational load and the level of 

echo cancellation. In other words, in CNMF to cover more frames in one mixture gives 

a more precise result or less residual echo, but it will leads to more computational load. 
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Therefore, in the experiment we found that processing eight frames can give a best 

balance between algorithms computational load. The results showed that the 

convolutive NMF approach gives comparable performance to the conventional NMF 

but not better. However, as mentioned in chapter 4 if we improve the initialization 

problem instead of randomly choosing the initial value, then both NMF algorithms can 

achieve better performance. 

 

The widely used methods are based on different types of Least Mean Squares (LMS) 

algorithms. And these methods all have limitations in different aspects. Recent research 

[Paul 07] [Cahill 08] [Zhou 09] also revealed that acoustic echo cancellation can also be 

performed by employing a monaural sound source separation technique based on 

Non-Negative Matrix Factorization (NMF), and significant echo suppression can be 

achieved using this method, so using NMF approaches there are a few advantages over 

the LMS algorithm.  

Firstly, consider the effect reverberation has on theH matrix from NMF decompositions of 

audio spectrograms. The rows ofH contain a time varying gain for each basis inW which 

contains the contribution the basis makes to the mixture over time. TheH matrix is 

normally a sparse matrix with activations occurring in single spikes for anechoic speech. 

However in echoic version, if the sameW matrix was used the activations inH become 

smeared. This is because the echoes in the speech manifest as repeated and smeared copies 

of the anechoic spectrogram. The NMF represents these echoes as repeated and scaled 

copies of the originalW basis over time. This property of the NMF audio spectrogram 

enables the basis to be trained on anechoic speech and then can be used to separate echoic 

speech. This applies to AEC as the reference signal first excites a LEM system before 

reaching the microphone.  

Secondly, the effect of misdjustments is reduced. The NMF does not estimate the LEM 

filter thus it does not require further samples of the reference signal to converge to the new 

room response like LMS, instead, it continuously adapts to the data present in the speech 

signal. This also means that the length of the impulse response is insignificant, as NMF will 

use the best available bases (the reference signal basis) to match the contribution from long 

impulse responses. In the case of long LEM filters the LMS techniques usually fix the 

length of the estimation filters.  
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Lastly using this approach Doubletalk will have less effect on this system, as this approach 

uses a local speaker basis to match any near end speech [Cahill 08]. 
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6. Real time hardware Implementation 

6.1 Introduction 

Speech echoes are normally raised from the acoustic coupling between the loudspeaker 

and microphone. Due to near(far)end acoustic coupling results in a disturbing echo at the 

far(near)end. Therefore, echo control must be used to insert sufficient echo return loss for 

comfortable and smooth conversations. There are two challenging aspects of algorithm 

convergence behaviour namely the large computational complexity and the ability of the 

filter to track the changes in the acoustic coupling.  

 

The hardware implementation of this project is designed to enable the illustration and 

demonstration of acoustic echo cancellation (C program) in real-time. The entire 

experiment is involved MATLAB SimulinkTM, Real-time workshop and Embedded 

Target for TIC6000 DSP toolboxes. They are used to link for CCS (Code composer 

Studio) which is real-time DSP IDE provided by TI. 

6.2 Workstation setup and hardware profile 

Most of the work presented in this chapter involves the development and testing of short 

programs to demonstrate DSP concepts. To perform the experiments described in the 

chapter, the following tools are used: 

The workstation is equipped with the following items:  

1) A Texas Instruments DSP starter kit (DSK) which includes: 

• The DSK package software Code Composer Studio (CCS), which provides the 

necessary software support tools. CSS provides an integrated development 

environment (IDE), bringing together the C compiler, assembler, linker, 

debugger, and so on. 

• A circuit board (the TMS320C6713 DSK is shown in Figure 6.1) containing a 

digital signal processor and a 16-bit stereo codec for analogue signal input and 

output. 

• A universal synchronous bus (USB) cable that connects the DSK board to a PC. 

2) A standalone PC. The DSK board connects to the USB port of the PC through 

the USB cable included with the DSK package 

3) An oscilloscope, spectrum analyser (optional) microphones, and speakers 
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The DSK package are powerful, yet relatively inexpensive, with the necessary 

hardware and software support tools for real-time signal processing [TI 01][TI 

02a][TI 02b]. The DSK board each include 16MB of synchronous dynamic RAM 

and 512kB of flash memory. Four connectors on the boards provide analogue input 

and output: MIC IN for microphone (it is mostly used in the experiment for speech 

input), LINE IN for line input, LINE OUT for line output, and HEADPHONE for a 

headphone output (we use this port for catch the output signal or connect to the 

external loudspeaker). 

 

(A)

 

(B) 

FIGURE 6.1: TMS3206713-BASED DSK BOARD: (A) PHYSICAL BOARD AND (B) 
BLOCK DIAGRAM  

(Courtesy of Texas Instruments) 
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The DSK C6713 evaluation board installed within a simple enclosure which consists of 

top and bottom precision machined transparent Plexiglas panels, those are then fastened 

through the DSK board. 

6.3 Real-time application setup 

6.3.1 RTDX Technology 

Real-Time Data Exchange (RTDXTM) is a technology developed by Texas Instruments 

that provides effective real-time bi-directional communication between a digital signal 

processor (DSP) or microcontroller and a host application in other words, it allows 

system developers to transfer data between a host computer (MATLAB) and targets 

device (C6713 DSK) without interfering with the target application[TI 01] . This 

bi-directional communication path provides for data collection by the host as well as 

host interaction with the running target application. RTDX also enables host systems to 

provide data stimulation to the target application and algorithms [Dustin 02a].  

6.3.2 RTDX Link to MATLAB 

In this experiment, we illustrated the interface between MATLAB and the DSK using 

RTDX. A buffer of data (i.e. speech wave file) created from MATLAB which running 

on the host PC is set to the C6713 processor. The C source program running on the 

DSK increment each data value in the buffer and sends the buffer of data back to 

MATLAB. In other words, it creates two channels through RTDX: an input channel to 

transfer data from MATLAB on the PC to the c6713 processor on the DSK and an 

output channel to transfer data from the target DSK to the PC host. When the input 

channel is enabled data are read or received as input to the DSK from MATLAB. After 

each data value in the buffer is incremented by 1, an output channel is enabled to write 

the data to MATLAB. Note that the input and output designations are from target DSK. 

There are real-time application literatures [Dustin 02][Dustin 03][Horst 05][Fu 02] 

discussed the RTDX technology throughout TI DSK project. 

6.4 Speech recognition Implementation 

Speech recognition refers to the concept of recognizing a speaker by his/her voice or 

speech sample. Simply said speech recognition systems contain two main modules: 

feature extraction and classification. 
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1) Feature extraction is a process that extracts a small amount of data from the 

voice signal that can be used to represent each speaker. Short-time spectral 

analysis to Short-time Fourier Transform (STFT) is the most common way to 

characterize a speech signal. In addition, the Mel-frequency cestrum coefficients 

[Beth 99] are used to parametrically represent the speech signal for the speaker 

recognition task. The implementation steps shown in Figure 6.2. 

 

FIGURE 6.2 STEPS FOR SPEECH RECOGNITION IMPLEMENTATION  
 

2) Classification consists of models for classifying extracted featured according to 

the individual candidate speakers whose voices have been stored. The recorded 

voice patterns of the speakers are used to derive a classification algorithm such 

as vector quantization (VQ) [Allen 01] is used. 

6.5 Echo control Implementation 

The following experiment illustrated analogue input and output using the TI DSK. They 

are included in order to introduce both the DSK hardware and the CCS development 

environment. The experiment programs demonstrated some important concepts 

associated with analogue-to-digital conversion, including sampling, aliasing, and 

reconstruction, additionally, they illustrated the use of interrupts in order to implement 

real-time applications using the DSK. Many of the concepts and techniques described in 

the previous section are used again in this chapter. 

6.5.1 On board stereo codec for input and output 

The experiment testing board C6713 DSK makes use of the AIC23 codec for analogue 

input and output. The analogue-to-digital converter (ADC), or coder, is part of the 

codec convert an analogue input signal into a sequence of sample values (16 bit signal 
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integer) to be processed by the digital signal processor (DSP). The digital-to-analogue 

converter (DAC), or decoder, is part of the codec reconstructs an analogue output signal 

from a sequence of sample value that have been processed by the DSP as well. 

 

The AIC23 is a stereo audio codec based on sigma-delta technology [Norsworthy 

97][Aziz 96][Candy 92]. Communication with the AIC23 codec for input and output 

uses two multi-channel buffered serial ports (McBSPs) on the C6713. McBSP0 is used 

as a unidirectional channel to send 16-bit control word to the AIC23. McBSP1 is used 

as a bidirectional channel to send and receive audio data. The codec can be configured 

for data-transfer word lengths of 16 up to 32 bits. 

 

In the experiment, we need to define DSK support files which can initialize the DSK. 

All the source files are written in C program. The following functions defined in support 

file and explained for testing purposes: 

Main c programme support file 6.1: c6713dskinit.c 

Uint16 inputsource = DSK6713_AIC23_INPUT_MIC;    // select input 
 
void main( ) 
{ 
  short sample_data;  // in this case we choose select real-time speech input 
 
  com_poll( );        // initialize DSK, codec, McBSP 
  while(1) 
  { 

sample_data = input_left_sample( )  // input sample 
output_left_sample(sample_data);   //output sample 

  } 
} 

Table 6.1: Loop program using polling 
Above C source file for a program, which simply copies input samples read from the 

AIC23 codec ADC back to the AIC23 codec DAC as output samples is listed in table 

6.1. Effectively, the MIC input socket is connected straight through to the 

HEADPHONE OUT socket on the DSK via the AIC23 codec and the digital signal 

processor. 
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6.5.2 Modifying program to create an echo 

In the experiment, we create a simple echo speech by feeding back a fraction of the 

output of the delay line to its input. A fading echo effect can be realized. It showed in 

Figure 6.3. 

Main c programme 6.2: echo.c 

Uint16 inputsource = DSK6713_AIC23_INPUT_MIC;    // select input 
 
#define gain 0.5         // fraction of output fed back (value between 0.0 to 1.0) 
#define BUF_SIZE 8000   // length of delay (value between 100 to 8000) 
short input, output, delayed; 
short buffer [BUF_SIZE]; 
int I; 
 
interrupt void c_int ( )      //interrupt service routine 
{ 
  input = input_left_sample ( );     // read new input sample 
  delayed = buffer [i];            // read output of delay line 
  output = input + delayed;        //output sum of new and delayed 
  output_left_sample (output);      //buffer index 
  buffer [i] = input + delayed*gain;  //store new input and fraction of  
                                //delayed value 
  if (++I >= BUF_SIZE)  I = 0;    //new input sample then increment 
  return; 
} 
 
 
void main( ) 
{ 
  for (I = 0; I < BUF_SIZE; i++) 

buffer [i] = 0; 
  comm_intr( );                  // initialize DSK, codec, McBSP 
  while (1);                     // infinite loop 
} 

Table 6.2: fading echo program 
 

The value of the constant BUF_SIZE determines the number of samples stored in the 

array buffer and hence the duration of the delay. The value of the constant gain 

determines the fraction of the output that is fed back into the delay line and hence the 

rate at which the echo effect fades away. In the experiment, we can set the value of gain 

equal to or great than unity would cause instability of the loop. Experiment with 
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different values of gain can be set as between 0 and 1 with 0.1 increment and 

BUF_SIZE can be set as between 100 and 8000 with 1 increment. 

 

FIGURE 6.3: SIMPLE BLOCK DIAGRAM REPRESENTION OF FADING ECHO PROGRAM  

6.5.3 Modifying program to create an echo control 

In the experiment we will extend the fading echo program to allow real-time adjustment 

of gain and delay parameters of the echo effect. 

Main c programme 6.3: echo_control.c 

Uint16 inputsource = DSK6713_AIC23_INPUT_MIC;    // select input 
 
#define MAX_BUF_SIZE 8000    //set maximum length of delay 
float gain = 0.5; 
short buflength = 1000; 
short buffer[MAX_BUF_SIZE];    //storage for previous samples 
short input, output, delayed; 
int I = 0; 
 
interrupt void c_int ( )      //interrupt service routine 
{ 
  input = input_left_sample ( );        // read new input sample 
  delayed = buffer [i];               // read output of delay line 
  output = input + delayed;           //output sum of new and delayed 
  output_left_sample (output);        //buffer index 
  buffer [i] = input + delayed*gain ;  //store new input and fraction of  
                                //delayed value 
  if (++I  >=  MAX_BUF_SIZE)   //new input sample then increment 

I = MAX_BUF_SIZE – buflength; 
  return; 
} 
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void main( ) 
{ 
  short sample_data;  // in this case we choose select real-time speech input 
 
  com_poll( );        // initilize DSK, codec, McBSP 
  while(1);          //infinite loop 
} 
Table 6.3: Echo programme with variable delay and feedback gain for controlling 

 
In above main echo_control.c program, array buffer is declared to be the maximum size 

required, MAX_BUF_SIZE. To achieve a variable delay, integer variable buflegth is 

used to control the length of the circular buffer implemented using array buffer. When 

the value of the index i, used to access element of the array buffer, is incremented 

beyond the maximum value allowable (MAX_BUF_SIZE). It is reset not to zero as in 

previous program see Table 6.2 but to (MAX_BUF_SIZE – buflength).  

6.6 Notes and Conclusions 

There are a few hardware setup information need to be briefly explained in this section. 

1) In the hardware implementation, we combined Code Composer Studio 

(CCStudio) and MATLAB tools to perform the echo control test. The CCStudio 

IDE provides a graphical interface for using the code generation tools. For 

example in the echo_control.prj project, CCStudio keeps track of all information 

needed to build a target program or library. A project records: 

• Filenames of source code and object libraries 

• Compiler, assembler, and linker options 

• Include file dependencies 

      When we build a project with the CCStudio IDE, the appropriate code 

generation tools are invoked to compile, assemble, and link out program. For 

more information, see [TI 01] or TI online technical document 

2) The experiment shows an echo effect based on the real-time DSK. The length of 

echo is controlled by changing the buffer size where the samples (real-time 

speech voice) are stored. A dynamic change of the echo length leads to reverb 

effect. A fading effect with delaying echo is obtained with a sider. This is the 

specific way to control the echo in the experiment. 
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7. Conclusion and future work 

An extensive review of optimum algorithms for blind source separation was presented, 

as well as a review of Non-negative Matrix Factorization (NMF) and Least Mean 

Square (LMS) based approaches. Based on these reviews it was concluded that using 

different mathematical techniques to perform Acoustic Echo Cancellation (AEC), by 

comparing results and considering the trade-off issues we can find the best suitable 

algorithm for the AEC problem. 

 

This thesis demonstrated two research sub-topics for AEC: the first employs different 

versions of Least Mean Square algorithms to perform acoustic echo cancellation, we use 

a dataset from real-time echo speech which is collected TI C6713 DSK. By comparing 

the ERLE value, we can find best suitable version of LMS algorithm which we 

discussed in the experiment; the second topic presented a new technique called 

convolutive non-negative matrix factorization to perform acoustic echo cancellation. 

The two NMF experiments were implemented in MATLAB environment by using the 

same dataset of input speeches, performing the steps of training near-end and far-end 

reference bases, forming mixture bases, using the reference bases separate the mixture 

data, and finally resynthesis the required speech part in the mixture as the output speech. 

Finally, the output speech is analysed by objective measures included SDR, SIR, ERIE 

and the comparable analytic data shown as a table form. Although the experiments of 

convolutive NMF showed the new algorithm didn’t give a better performance than 

conventional version, this can help further research in modifying the algorithm or 

combine the feature of different version of the algorithm to give better performance. 

 

Also the last part, we present a simple real-time echo control implementation. It is based 

on TI C6713 development start kit. The real-time scenario let us understand how to 

create and control echo by modifying the c program function. Also use RTDX 

Technology to connect MATLAB and DSK is another useful experimental experience.  

7.1 Future work 

Further work on the topic of Convolutive NMF includes combining features of different 

versions of NMF such as Local NMF (LNMF) or other mathematical tools, find the 

optimal or best suitable algorithm for different applications such as AEC, musical 
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separation, etc. Alternatively some of the non-linear post-processing techniques used to 

improve LMS methods such as component zeroing could be employed to improve 

performance [Virtanen 07]. 

 

The nonnegative matrix factorization has many advantages to alternative techniques for 

processing such matrices, but it must be initialized and the initialization selected is 

crucial to getting better solutions. It is an open issue [Amy 06] [Stefan 04] for NMF 

algorithms research. 

 
At present the algorithms described in this thesis are all implemented in MATLAB. A 

useful area for the future work would be the implementation of these algorithms in C or 

C++ which would result in a considerable reduction in the time required to run the 

algorithms. Additionally, to implement the algorithms into real-time is also an important 

future work. Hardware features such as computational load, delay and floating or fixed 

point operation of the hardware can affects the performance of algorithms in the real-time 

environment. Balancing and adjustment of the algorithm parameters are needed, translate 

the algorithms into C orC++ is also required 

 

In conclusion, the work undertaken has identified a number of possibilities for 

improvement in acoustic echo cancellation approaches. The technique implementations 

demonstrated using sound source separation algorithms such as NMF can be further 

improved by employing more efficient cost functions. It is hoped that future work will 

further enhance the thrust of this research. 
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Appendix A:  

Least Mean Square MATLAB Script: 
function  [e,w]=lms(mu,M,u,d)  
%           Call:  
%           [e,w]=lms(mu,M,u,d);  
% 
%           Input arguments:  
%           mu      = step size, dim 1x1  
%           M       = filter length, dim 1x1  
%           u       = input signal, dim Nx1  
%           d       = desired signal, dim Nx1     
% 
%           Output arguments:  
%           e       = estimation error, dim Nx1  
%           w       = final filter coefficients, di m Mx1 
  
%initial weights  
w=zeros(M,1);  
  
%length of input signal  
N=length(u);  
  
%make sure that u and d are column vectors  
u=u(:);  
d=d(:);  
  
%LMS 
for  n=M:N  

uvec=u(n:-1:n-M+1);  
e(n)=d(n)-w’*uvec;   
w=w+mu*uvec*conj(e(n));  

end  
e=e(:)m; 
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Normalized Least Mean Square MATLAB Script: 
function  [e,w]=nlms(mu,M,u,d,a)  
%           Normalized LMS  
%           Call:  
%           [e,w]=nlms(mu,M,u,d,a);  
% 
%           Input arguments:  
%           mu      = step size, dim 1x1  
%           M       = filter length, dim 1x1  
%           u       = input signal, dim Nx1  
%           a       = constant, dim 1x1  
% 
%           Output arguments:  
%           e       = estimation error, dim Nx1  
%           w       = final filter coefficients, di m Mx1 
  
%intial value 0  
w=zeros(M,1);  
  
%input signal length  
N=length(u);  
  
%make sure that u and d are colon vectors  
u=u(:);  
d=d(:);  
  
%NLMS 
for  n=M:N  
   uvec=u(n:-1:n-M+1);  
   e(n)=d(n)-w’*uvec;   
   w=w+mu/(a+uvec’*uvec)*uvec*conj(e(n));  
end 
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Fast Least Mean Square MATLAB Script: 
function  [e,w]=fastlms(alpha,M,u,d,gamma,P);  
%           Call:  
%           [e,w]=fastlms(alpha,M,u,d,gamma,P);  
% 
%           Input arguments:  
%           alpha       =step size, dim 1x1  
%           M           =filter length, dim 1x1  
%           u           =input signal, dim Nx1  
%           d           =desired signal, dim Nx1  
%           gamma       =forgetting factor, dim 1x1   
%           P           =initial value, energy, dim  2Mx1  
% 
%           Output arguments:  
%           e           =estimation error, dim Nx1  
%           w           =final filter vector, dim M x1  
% 
%           The length N must be chosen such that N /M is integer!  
%                
  
% initialization  
W=zeros(2*M,1);  
N=length(u);  
    
% make sure that d and u are column vectors  
d=d(:);  
u=u(:);  
    
e=d;  
    
% no.of blocks  
Blocks=N/M;  
  
% loop, FastLMS  
for  k=1:Blocks-1  
   

% block k-1, k; transformed input signal U(k)  
Uvec=fft([u((k-1)*M+1:(k+1)*M)],2*M);  

  
% block k, output signal y(k), last M elements  
yvec=ifft(Uvec.*W);  
yvec=yvec(M+1:2*M,1);  

    
% block k; desired signal  
dvec=d(k*M+1:(k+1)*M);  

  
% block k, error signal  
e(k*M+1:(k+1)*M,1)=dvec-yvec;  

    
% transformation of estimation error  
Evec=fft([zeros(M,1);e(k*M+1:(k+1)*M)],2*M);  
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% estimated power  
P=gamma*P+(1-gamma)*abs(Uvec).^2;  

    
% block k, inverse of power  
Dvec=1./P;  

  
% estimated gradient  
phivec=ifft(Dvec.*conj(Uvec).*Evec,2*M);  
phivec=phivec(1:M);  

   
% update of weights  
W=W+alpha*fft([phivec;zeros(M,1)],2*M);  

end   
  
% The error vector should have only real values.  
% Therefore, extract the real part!  
E=real(e(:));  
  
% transform of final weights to time domain.  
% 
% make sure that w is real-valued  
w=ifft(W);  
w=real(w(1:length(W)/2)); 
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ERLE Function MATLAB Script: 
function  [erle]=erle(e,d)  
%           calculation of ERLE  
%           Call:  
%           [r]=erle(e,d)  
% 
%           Input arguments:  
%           e       = residual echo, dim Nx1  
%           d       = hybrid output signal, dim Nx1  
% 
%           Output arguments:  
%           r       = ERLE curve in dB  
  
%make sure that both arguments are column vectors  
e=e(:);  
d=d(:);  
  
% filtering of squared signals (IIR-filter)  
Pd=filter(1,[1, -0.98],d.^2);  
Pe=filter(1,[1, -0.98],e.^2);  
  
% ERLE 
erle=10*log10(Pd./Pe); 
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Convolutive NMF MATLAB Script: 
/////////////////////////////////////////////////// /////////////////// 
Function name: Convolutive NMF main function 
Description: This is the main function that using c onvolutive NMF to perform 
training and matching process for AEC  
/////////////////////////////////////////////////// /////////////////// 
 
function  
[DTD,norm_vhat_energy,echo_measures,nearend_measure s,compare_measures,
erleout,output_v] = 
NMFAEC_function_subband2(x,y,y_no_v,v,nearendtrain, Thres,num_bases_v, .
..  

train_num_iter_v,num_bases_y,a,b);  
%%%%% Variables %%%%%% 
%train_num_iter_v = 50;                     %%%% Nu mber of NMF iterations 
for I training of the near end basis  
train_num_iter_y = 100;                     %%%% Number of NMF iterations 
for each trained echo basis  
match_num_iter = 250;                       %%%% Number of NMF iterations 
for matching/echo nearend separation  
for near end speech basis v.  
%%%% Number of NMF bases for each echo basis traine d from y.  
num_prev_bases = 3;                         %%%% Number of previus frames 
buffered and used in the calculation of the echo ba sis  
total_num_bases = num_bases_y + num_bases_v; %%%% Total number of NMF basis 
vectors  
a = 3;                                      %%%% Which spe ech mixture to 
use  
Thres = 0.98;                               %%%% Threshold for th e 
detection of doubletalk  
v = nearend(a,:).*Vgain;                        %%%% Clean Near end speech  
x = farendclean(a,:);                      %%%% Far end reference signal  
y = mixturechange(a,:);                    %%%% Echo + near end mixture  
yclean = farendchange(a,:);                %%%% Echo only signal  
  
%%%%%%%%%%%%%% Get near end basis Bn %%%%%%%%%%% 
win_length = 1024;      %%% Frame size  
stepsize = 512;         %%% Stepsize  
[near_train_frames,num_frames] = 
STFT(nearendtrain,win_length,stepsize);  
%%%% limits of frequency bins  
[ref_frames,num_frames] = STFT(x,win_length,stepsiz e);  
[mix_frames,num_frames2,framestart,framestop] = 
STFT(y,win_length,stepsize);  
[ideal_frames,num_frames2,framestart,framestop] = 
STFT(y_no_v,win_length,stepsize);  
[ideal_echoframes,num_frames2,framestart,framestop]  = 
STFT(v,win_length,stepsize);  
ref_magframes = abs(ref_frames(:,1:513)).’;  
mix_magframes = abs(mix_frames(:,1:513)).’;  
mix_magframes2 = abs(mix_frames(:,1:513)).’;  
ideal_magframes = abs(ideal_frames(:,a:b));  
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ideal_echomagframes = abs(ideal_echoframes(:,a:b));  
ideal_magframes2 = abs(ideal_frames(:,1:513));  
index = size(ref_magframes);  
index2 = size(ideal_magframes2);  
  
M2 = index(1,1);  
N2  = index(1,2);  
M = index(1,1);  
N = index(1,2);  
  
%%%% 
num = num_frames*stepsize; %% Only works if stepsize is half window length  
DTD = zeros(1,num);  
%%% 
  
vhat = zeros(N,M);  
yhat = zeros(N,M);  
videal = zeros(N,M);  
videal_fullband = zeros(N2,M2);  
v_energy = zeros(1,N);  
y_energy = zeros(1,N);  
videal_energy = zeros(1,N);  
vhat_energy = zeros(1,N);  
yhat_energy = zeros(1,N);  
y_no_v_energy = zeros(1,N);  
yclean_energy = zeros(1,N);  
norm_vhat_energy = zeros(1,N);  
ideal_energy = zeros(1,N);  
norm_energy =  zeros(1,N);  
freq_DTD =  zeros(1,N);  
output_v = zeros(1,length(y));  
output_v = zeros(1,length(y));  
  
CNMF_start = 1;  
CNMF_stop = 1;  
time_base = 1;  
 
initialHm = rand(total_num_bases,time_base);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
iter = floor(num_frames/time_base);  
for  j = 1:1:iter  
 V = abs(near_train_frames(CNMF_start:CNMF_stop,1:5 13)).’;  
 index = size(V);  
 M3 = index(1,1);  
 N3 = index(1,2);  
 Wt = rand(M3,num_bases_v);  
 H = rand(num_bases_v,N3);  
 W = 0;  
for  I = 1:1:train_num_iter_v  
Hshift = H;  
     for  t = 1:1:time_base;  
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        Wt = 
Wt.*((V./(Wt*Hshift+1e-9))*Hshift’)./(ones(M3,N3)*H shift’+1e-9);  
        W = W + Wt;  
        Hshift = circshift(Hshift,[0,1]);  
        Hshift(:,1) = 0;  
     end  
        W = W/time_base;  
        H = H.*(W’*(V./(W*H+1e-9)))./(W’*ones(M3,N3 )+1e-9);  
end  
  
Bn = W; %%% Near end basis  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%% Train Echo basis and form mixture basis   
Ve = ref_magframes(:,CNMF_start:CNMF_stop);  
index = size(Ve);  
M4 = index(1,1);  
N4 = index(1,2);  
initialBe = rand(M4,num_bases_y); %%% Echo basis  
initialHe = rand(num_bases_y,N4);  
Be = initialBe; %rand(M,num_bases_y); %%% Echo basis  
He = initialHe; %rand(num_bases_y,N);  

  
B = 0;  
for  I = 1:1:train_num_iter_y  

     Hshift2 = He;  
     for  t = 1:1:time_base  
        Be = 
Be.*((Ve./(Be*Hshift2+1e-9))*Hshift2’)./(ones(M4,N4 )*Hshift2’+1e-9);  
        B = B + Be;  
        Hshift2 = circshift(Hshift2,[0,1]);  
        Hshift2(:,1) = 0;  
     end  
        B = B/time_base;  
        He = He.*(Be’*(Ve./(Be*He+1e-9)))./(Be’*one s(M4,N4)+1e-9);  

end  
Be = B;  

     
Vm = mix_magframes(a:b,CNMF_start:CNMF_stop);  
Bm = zeros(M,num_bases_y+num_bases_v,time_base);  
Bm = [Bn(a:b,:),Be(a:b,:)];  %%% Mixture basis, Bn nearend basis and 

Be echo basis  
Hm = initialHm; %rand(total_num_bases,1);  
%%%%%% Echo removal stage %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% Match echo to Be and nearend to W using Bm  
Mx = b;  
for  I = 1:1:match_num_iter  

        Hm = Hm.*( 
Bm’*(Vm./(Bm*Hm+1e-9)))./((Bm’*ones(Mx,time_base))+ 1e-9);  
        if  (I == match_num_iter-1)  
            Hnolate = Hm;  
        end  
        if  (I == match_num_iter-1)|(I == match_num_iter) %|(I == num_iter-2  
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            Bm  = Bm .*((Vm./(Bm 
*Hm+1e-9))*Hm’)./((ones(Mx,time_base)*Hm’)+1e-9);  
        end   
              

end   
mat_bot = [Bn(b+1:end,:),Be(b+1:end,:)];  
Bm = [Bm;mat_bot];  
vhat(CNMF_start:CNMF_stop,:) = 

(Bm(:,1:total_num_bases-num_bases_y)*Hm(1:total_num _bases-num_bases_y,
:)).’;  

yhat(CNMF_start:CNMF_stop,:) = 
(Bm(:,num_bases_v+1:end)*Hm(num_bases_v+1:end,:)).’ ;  
     
CNMF_start = CNMF_start + time_base;  
CNMF_stop = CNMF_stop + time_base;  
end  
 
%%%% Resythesis for audio  
vhat = [vhat,fliplr(vhat(:,2:512))];  
[xf,yf] = pol2cart(angle(mix_frames),vhat);  
resyn = complex(xf,yf);  
output_v = resynthesis(resyn,win_length,stepsize);  
%%%%%%%%%%%% Objective evaluation %%%%%%%%%%%%%%%%%% 
termin = length(output_v);  
org_sources = [v(107555:termin);y_no_v(107555:termi n)];  
index = 1;  
[s_target,e_interf,e_artif] = bss_decomp_gain(outpu t_v(107555:termin), 
index, org_sources);  
[inputSDR,inputSIR,inputSAR] = bss_crit(s_target, e _interf, e_artif);  
nearend_measures = [inputSDR,inputSIR,inputSAR];  
%%%%%%%% Resythesis no late W updates  
yhat = [yhat,fliplr(yhat(:,2:512))];  
[xf,yf] = pol2cart(angle(mix_frames),yhat);  
resyn = complex(xf,yf);  
output_y = resynthesis(resyn,win_length,stepsize);  
%%%%%%%%%%%%%%%% 
org_sources = [y_no_v(107555:termin);v(107555:termi n)];  
index = 1;  
[s_target,e_interf,e_artif] = bss_decomp_gain(outpu t_y(107555:termin), 
index, org_sources);  
[inputSDR,inputSIR,inputSAR] = bss_crit(s_target, e _interf, e_artif);  
echo_measures = [inputSDR,inputSIR,inputSAR];  
%%%% Reconstruct with different phase  
[frames,num_frames] = STFT(v,win_length,stepsize);  
[framesnear,num_framesnear] = STFT(v,win_length,ste psize);  
[xf,yf] = pol2cart(angle(mix_frames),abs(framesnear ));  
resyn = complex(xf,yf);  
diffphasereconstruct = resynthesis(resyn,win_length ,stepsize);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
org_sources = [v(107555:termin);y_no_v(107555:termi n)];  
index = 1;  
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[s_target,e_interf,e_artif] = 
bss_decomp_gain(diffphasereconstruct(107555:termin) , index, 
org_sources);  
[inputSDR,inputSIR,inputSAR] = bss_crit(s_target, e _interf, e_artif);  
compare_measures = [inputSDR,inputSIR,inputSAR];  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
erleout = ERLE(y_no_v,output_v,win_length,stepsize) ;  
%%%%%%%%%% 
 
figure  
plot(real(output_v))  
figure  
plot(real(output_y))  
figure  
plot(v) 
grid on; 

 
hold  
plot(DTD, ’r’ ) 
grid on; 

 
figure  
plot(vhat_energy) 
grid on;  
hold 

 
plot(freq_DTD* 0.3, ’r’ ) 
grid on; 
figure 

 
plot(v)  
hold 
grid on;  
plot(real(output_v))  
plot(real(output_v) – v(1:length(output_v)), ’k’ ) 

 
figure  
plot(v) 
grid on; 

 
hold  
plot(diffphasereconstruct)  
plot(diffphasereconstruct – v(1:length(output_v)), ’k’ ) 
grid on; 
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Objective Measure MATLAB Script: 
/////////////////////////////////////////////////// /////////////// 
Function Name: Objective measure function 
Description: compute evaluation criteria given a de composition of an 
estimated source into target/interference/noise/art ifacts of the form  
se = s_target + e_interf (+ e_noise) + e_artif  
 
Developers:  - Cedric Fevotte (cf269@cam.ac.uk) – E mmanuel Vincent  
( incent@ircam.fr) – Remi Gribonval ( remi.gribonval@irisa.fr )  
/////////////////////////////////////////////////// ///////////////  
% Usage:  
% 
% 1) Global mode  
% 
% [SDR,SIR,(SNR,)SAR]=bss_crit(s_target,e_interf[,e _noise],e_artif)  
% 
% Input:  
%   - s_target: row vector of length T containing t he target source(s)  
%   contribution,  
%   - e_interf: row vector of length T containing t he interferences  
%   contribution,  
%   - e_noise: row vector of length T containing th e noise contribution  
%   (if any),  
%   - e_artif: row vector of length T containing th e artifacts  
%   contribution.  
% 
% Output:  
%   - SDR: Source to Distortion Ratio,  
%   - SIR: Source to Interferences Ratio,  
%   - SNR: Signal to Noise Ratio (if e_noise is pro vided),  
%   - SAR: Source to Artifacts Ratio.  
% 
% 2) Local mode  
% 
% 
[SDR,SIR,(SNR,)SAR]=bss_crit(s_target,e_interf[,e_n oise],e_artif,WINDO
W,NOVERLAP) 
% 
% Additional input:  
%   - WINDOW: 1 x W window  
%   - NOVERLAP: number of samples of overlap betwee n consecutive windows  
% 
% Output:  
%   - SDR: n_frames x 1 vector containing local Sou rce to Distortion Ratio,  
%   - SIR: n_frames x 1 vector containing local Sou rce to Interferences 
Ratio,  
%   - SNR: n_frames x 1 vector containing local Sig nal to Noise Ratio,  
%   - SAR: n_frames x 1 vector containing local Sou rce to Artifacts Ratio.  
% 
% Developers:  - Cedric Fevotte (cf269@cam.ac.uk) –  Emmanuel Vincent  
% ( incent@ircam.fr) – Remi Gribonval ( remi.gribonval@irisa.fr )  
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function  varargout=bss_crit(varargin)  
s_target=varargin{1}; e_interf=varargin{2};  
  
switch  nargin  

case  3  
        e_noise=[]; e_artif=varargin{3};  
        mode= ’global’ ;  

case  4  
        e_noise=varargin{3}; e_artif=varargin{4};  
        mode= ’global’ ;  

case  5  
        e_noise=[]; e_artif=varargin{3};  
        WINDOW=varargin{4}; NOVERLAP=varargin{5};  
        mode= ’local’ ;  

case  6  
        e_noise=varargin{3}; e_artif=varargin{4};  
        WINDOW=varargin{5}; NOVERLAP=varargin{6};  
        mode= ’local’ ;    
end  
  
T=length(s_target);  
  
switch  mode         

case  ‘global’  
        switch  isempty(e_noise)  
            case  1  
                % Computation of the energy ratios  
                
[SDR,SIR,SAR]=bss_energy_ratios(s_target,e_interf,e _artif);  
                varargout{1}=10*log10(SDR); varargo ut{2}=10*log10(SIR); 
varargout{3}=10*log10(SAR);  
            case  0  
                % Computation of the energy ratios  
                
[SDR,SIR,SNR,SAR]=bss_energy_ratios(s_target,e_inte rf,e_noise,e_artif)
;  
                varargout{1}=10*log10(SDR); varargo ut{2}=10*log10(SIR);  
                varargout{3}=10*log10(SNR); varargout{4}=10*log10(S AR);                
        end  
         

case  ‘local’  
         
        W=length(WINDOW); % Length of window  
        n_frames = fix((T-NOVERLAP)/(W-NOVERLAP)); % Number of frames  
         
        switch  isempty(e_noise)  
            case  1  
                F_s_target=bss_make_frames(s_target ,WINDOW,NOVERLAP); 
                F_e_interf=bss_make_frames(e_interf ,WINDOW,NOVERLAP); 
                F_e_artif=bss_make_frames(e_artif,W INDOW,NOVERLAP); 
                
[SDR,SIR,SAR]=bss_energy_ratios(F_s_target,F_e_inte rf,F_e_artif);  
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                varargout{1}=10*log10(SDR); varargo ut{2}=10*log10(SIR); 
varargout{3}=10*log10(SAR);  
            case  0  
                F_s_target=bss_make_frames(s_target ,WINDOW,NOVERLAP); 
                F_e_interf=bss_make_frames(e_interf ,WINDOW,NOVERLAP); 
                F_e_noise=bss_make_frames(e_noise,W INDOW,NOVERLAP); 
                F_e_artif=bss_make_frames(e_artif,W INDOW,NOVERLAP); 
                
[SDR,SIR,SNR,SAR]=bss_energy_ratios(F_s_target,F_e_ interf,F_e_noise,F_
e_artif);  
                varargout{1}=10*log10(SDR); varargo ut{2}=10*log10(SIR);  
                varargout{3}=10*log10(SNR); varargo ut{4}=10*log10(SAR);  
        end          
end  %mode 
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Resynthesis MATLAB Script: 
/////////////////////////////////////////////////// /////////////////// 
Function name: Resynthesis function 
Description: To rebuild the audible output speech f rom the matched data 
/////////////////////////////////////////////////// /////////////////// 
%%%%%%%%%%%%%%%% STFT resynthesis  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  reconstruct = resynthesis(spec,win_length,stepsize )  
dim = size(spec);  
num_frames = dim(1,1);  
N = dim(1,2);  
num_samples = num_frames*stepsize;  
reconstruct = zeros(1,num_samples);  
ham_win = hanning(win_length);  
start = 1;  
stop = win_length;  
  
for  I = 1:1:num_frames  

reconstruct(start:stop) = real(ifft(spec(I,:)))  + 
reconstruct(start:stop);  

start = start  + stepsize;  
stop = stop + stepsize;  
if  stop > num_samples  

        break  
end  

end 
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Appendix B:  

TI C6713 DSK Main C Program Implementation 

echo.c echo with fixed delay and feedback 

 
#include “DSK6713_AIC23.h”                 // codec support 
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;         // set sampling rate 
#define DSK6713_AIC23_INPUT_MIC 0x0015 
#define DSK6713_AIC23_INPUT_LINE 0x0011 
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select input 
 
#define GAIN 0.6                // fraction (0 – 1) of output fed back 
#define BUF_SIZE 2000           // this sets length of delay 
short buffer[BUF_SIZE];         // storage for previous samples 
short input,output,delayed; 
int I;                          // index into buffer 
 
interrupt void c_int11()     // interrupt service routine 
{ 
  input = input_left_sample();  // read new input sample from ADC  
  delayed = buffer[i];          // read delayed value from buffer 
  output = input + delayed;     // output sum of input and delayed values 
  output_left_sample(output);      
  buffer[i] = input + delayed*GAIN; // store new input and a fraction  
                                // of the delayed value in buffer 
  if(++I >= BUF_SIZE) i=0;      // test for end of buffer 
  return;                       // return from ISR 
} 
 
void main() 
{ 
  comm_intr();                  // init DSK, codec, McBSP 
  for(i=0 ; i<BUF_SIZE ; i++)   // clear buffer 

buffer[i] = 0; 
  while(1);                     //infinite loop 
} 
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echo_control.c echo with variable delay and feedback 

 
#include “DSK6713_AIC23.h”                 // codec support 
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;         // set sampling rate 
#define DSK6713_AIC23_INPUT_MIC 0x0015 
#define DSK6713_AIC23_INPUT_LINE 0x0011 
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select input 
 
#define MAX_BUF_SIZE 8000       // this sets maximum length of delay 
float gain = 0.5; 
short buflength = 1000; 
short buffer[MAX_BUF_SIZE];     // storage for previous samples 
short input,output,delayed; 
int I = 0;                      // index into buffer 
 
interrupt void c_int11()     // interrupt service routine 
{ 
  input = input_left_sample();  // read new input sample from ADC  
  delayed = buffer[i];          // read delayed value from buffer 
  output = input + delayed;     // output sum of input and delayed values 
  output_left_sample(output);      
  buffer[i] = input + delayed*gain; // store new input and a fraction  
                                // of the delayed value in buffer 
  if(++I >= MAX_BUF_SIZE)       // test for end of buffer 

I = MAX_BUF_SIZE – buflength; 
  return;                       // return from ISR 
} 
 
void main() 
{ 
  for(i=0 ; i<MAX_BUF_SIZE ; i++)   // clear buffer 

buffer[i] = 0; 
  comm_intr();                  // init DSK, codec, McBSP 
  while(1);                     //infinite loop 
} 
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