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Abstract

We are all familiar with the sound which can bemae as a wave motion in air or other
elastic media. In this case, sound is a stimulaan8 can also be viewed as an excitation
of the hearing mechanism that results in the péimepf sound. The interaction between
the physical properties of sound, and our percemifadhem, poses delicate and complex

issues. It is this complexity in audio and acowsti@t creates such interesting problems.

Acoustic echo is inevitable whenever a speakerlasegl near to a microphone in a
general full-duplex communication application. Thest common communication

scenario is the hands-free mobile communicatios fkit a car. For example, the voice
from the loudspeaker is unavoidably picked up keyrthicrophone and transmitted back
to the remote speaker. This makes the remote sphake his/her own voice distorted

and delayed by the communication channel or calfetito end delay, which is known as
echo. Obviously, the longer the channel delay,nloee annoying the echo resulting a
decrease in the perceived quality of the commuioicaervice such as VolP conference

call.

In the thesis, we propose to use different appremcto perform acoustic echo
cancellation. In addition, we exploit the idea ¢&ihtd source separation (BSS) which can
estimate source signals using only information alibeir mixtures observed in each
input signal. In addition, we provide a wide theéma analysis of models and
algorithmic aspects of the widely used adaptiveordigm Least Mean Square (LMS).
We compare these with Non-negative Matrix Factdiwra(NMF), and their various
extensions and modifications, especially for therppse of performing AEC by

employing techniques developed for monaural sooundcg separation.
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Optimal Algorithms for Blind Source Separation
-Application to Acoustic Echo Cancellation

1. Introduction

This thesis will address some of the aims of sigmakcessing and machine learning
techniques, including extracting an interesting Wdeolge from experimental raw
datasets. In particular, we focus on the techniqeksed to blind source separation
(BSS) to solve one of its applications: Acoustib@cancellation (AEC). The purpose
of this project focuses on finding a high qualihdaefficient technique to perform AEC.
Furthermore, to address the issue of sound datdm@tture, we explore a recent
iterative technique called Non negative Matrix Baiation (NMF)[Daniel 01], also

we place particular emphasis on the initializatioih current NMF algorithms for

efficiently computing NMF.

An aforementioned research area is blind sourcaragpn method. The sources
separation problems arise when a number of soueceis signals that mix and
propagate to one or more sensors. The objectite identify the underlying source
signals based on measurements of the mixed soWbave studied the feasibility of
various source separation techniques such as IndepeComponent Analysis (ICA),
Principal Component Analysis (PCA), and Degenedatmixing Estimation Technique
(DUET). In this thesis, we use both different types LMS algorithms and
Non-negative Matrix Factorization (NMF) model taide and implement in MATLAB,
using efficient and relatively simple iterative atijhms that work well in practice for
real-world data. Finally, we present an echo effmatl echo control experiment on
real-time DSP board Texas Instruments Develop $ast (TMS320C6713 DSK) in
order to demonstrate a simple AEC solution.

1.1 Research problem description
This project aims to use different conventional meatatical techniques to perform

Acoustic Echo Cancellation. We will review the atihggalgorithms which are discussed
in later chapters and introduce a new optimal cdatmnal algorithm called NMF to

find the best suitable solution for AEC problem.

As the theory and applications of NMF is still bggoheveloped. In this project we choose
NMF algorithm to perform AEC using various divergeras a general cost function of

NMF, and find the optimal method that can give lbest performance of AEC problem.
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In addition, the workhorse in this project reladldF include initialization problem and
morphological constraints. These constrains includennegativity, sparsity,
orthogonality and smoothness. This research weiagtement and optimize algorithm
for NMF and provide psedu-source code and efficsenirce code in MATLAB.

1.2 Thesis organization and overview
The focus of this thesis is the Acoustic Echo CHatien using widely used adaptive

algorithm LMS and sound separation technique — NBlsecial emphasis is provided
coverage of the models and algorithms for nonnegatiatrix factorizations both from

a theoretical and practical point of view. The maljective is to derive and implement
in MATLAB simulation. Actually, almost all of thexperiments presented in this thesis
have been implemented in MATLAB and extensivelygdsThe layout of the thesis is

as follows.

In chapter two we provide the necessary backgronfimation and theory in sound
source separation and includes the different B3@rgéive mixing model. . In addition,
we also discuss the general principle of acoustboecancellation. It is main
application we have it involved in this project. dyrwe introduce the optimum solution

for the conversional acoustic echo canceller litiataat the end of this chapter.

In chapter three we discuss the blind source stparéBSS) and related methods
which present various optimization techniques datissical methods to derive efficient
and robust learning or update rules. We presentdneentional optimize algorithms
(i.e. ICA, PCA, DUET ADRess). This section discubsssing different mathematical

techniques to perform sound source separation.

In chapter four we introduce the learning algorishrfor Nonnegative Matrix

Factorization (NMF) and its properties of a largenfly of generalized and flexible
divergences between two nonnegative sequences dricesa This chapter puts
particular emphasis on discussing NMF numericak@gghes and various useful cost
functions and regulations of NMF, including thoseaséd on generalized
Kullback-Leibler, Pearson and Neyman Chi-squarecgrgences etc. Many of these

measures belong to the class of Alpha-divergenndsBata-divergences. In addition,
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we give novel experiments on acoustic echo carnaeilausing extended NMF

algorithms.

In chapter five, two MATLAB simulation experimenfgesent the requirements for
implementing the algorithms discussed in chaptezettand four, and the measurements
that used to examine the output speech quality. fo¢els on Non-negative Matrix
Factorization algorithm implementation. Also theimeontribution of this work is the
development a version of the NMF algorithm that borad the BSS principle,

represented the best route for tacking the AEClprob

In chapter six, we extended the AEC problem on-ties# implementation, and
demonstrated a simple straightforward echo comtxpkeriment based on TI C6713 DSP

start kits.

Chapter seven then contains conclusion on the @one and also highlights areas for
the future research in the area of NMF algorithmblond source separation.
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2. Acoustic Blind Source Separation background and theory

What is the blind source separation? The techniguestimation of individual source
components from their mixtures at multiple senseitsnown as blind source separation
(BSS). In a real room environment, one well knov8SBapplication is the separation of
audio sources which have been mixed and then @aptby multiple sensors or
microphones. These sources could be different ogigoals from speakers in the same
room. Therefore, each sensor acquires a slightlgrdnt mixture of the original source
signals. One of the examples is solving the cokgtaty probleniBronkhorst 00]; we

will discuss it in chapter two. The term “blindresses the fact that the original source
signals and the generic mixing system are assumdx tunknown. Additionally, the
estimation is performed blindly, in other wordsthié sources are to be separated blindly,
they should have some distinct characteristicd) sascnonstationarity, non- Gaussianity.
One optimal learning algorithm: Independent compbaealysis (ICA) can calculate the
separation matrix, which is sometimes regardedmsrg/mous with BSS, relies on non-
GaussianityLee 98] Haykin 00][ Hyvarinen 01].

Furthermore, the fundamental assumption necessagpplying blind source separation
methods is that the original source signals areuallyt statistically independent. The
fundamental problem of BSS refers to finding a deng system whose outputs are
statistically independent. We will explain in détdie different mixture and separation

models for which most early BSS algorithms weragies] in this chapter.

2.1 BSS Generative Model
One of the difficulties of the blind source sepamattask more particularly rely on the

way in which the signals are mixed within the plgsenvironment. The simplest mixing
scenario deals with an instantaneous mixing mddelyhere no delayed versions of the
sources signals appear. This is the ideal casetimh most early BSS algorithms were
designed, but such algorithms have limited prattggplicability in real time speech

separation problems. In real world acoustical péthsl to convolutive mixing of the

sources when measured at acoustic sensors. leigt@nsion of the instantaneous mixing
model by considering also delayed versions of thece signals leading to a mixing

system. The system generally can be modelled litg fimpulse response (FIR) filters.
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When measuring the convolutive mixing of the sosycthe degree of mixing is

significant since the reverberation time of themogpace is large.

2.1.1 Instantaneous mixture model

In instantaneous mixing, they can be describedsat afm unknown source
signalds( K} , where1l<i<mare combined to yield themeasured sensor

signald x,(K} , wherel< j<n as:

X (=28 5B+ y(B 1)
v(K)
s(k) + x(k) (&)
—F— A® (O B >
m n n m
Mixing System Separating System

FIGURE 2.1: BLOCK DIAGRAM OF THE INSTANTANEOUS BSSTASK
From Eqg. 2.1 wherg[a;} are the coefficients of the linear time-invariarikimg system

represented by th¢nx m) matrixA andv, (k)is additive noise signal at théh sensor.

The goal of BSS for instantaneous mixtures is tgusidthe coefficients of a

mx nseparation or demixing mattfk, which recover estimatgs(k), of the original

source; (k) from

%0 =3 b (Kx(H 22)

The block diagram of this task is shown in Fig..2.1

There are several applications where the instaotenmixture model is applicable. For
example, in brain science BSS helps to identifyaulythg components of brain activity
from recordings of brain activity as given by aaatoencephalogram (EB@Cichocki
02]. In other fields like image processing applicatiomsich are the extraction of
independent features in image and improving thegemgquality. A comprehensive
treatment of the instantaneous BSS case and rekldggtithms can be found in
[Hyvarinen 01]. However, the practical algorithm for speech sepamamust take the

convolutive mixing of the acoustic paths into aauioun this thesis we deal with BSS
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for acoustic environments and thus the instantameodture model is not appropriate
as no delayed versions of the source signals amsidered. Therefore, in the next
section we extend this model and show how the dative mixture model works in

practical acoustic scenario.

2.1.2 Convolutive mixture model

In acoustic scenario, we extend the instantaneawtura model by considering the
time delays resulting from sound propagation oyece and probably the multipath
generated by reflections of sound off differentealt§, particularly in large rooms and
other enclosed settings. Normally, the convolutmixing system consists of finite
impulse response filters. As a result, timesources are mixed by a time-dispersive
multichannel system , described by

Xj(k)=|22%u s(k=)+y(R (2.3)

wherg[x,(K} ,1< j <n are then sensor signals. The parametealso denotes the FIR

filter length of the demixing filtem, or we call the coefficients of the discrete-time

ji

00

linear time-invariant mixing systerfA},

=—00 !

where each matriA, is of

dimension(nx m).

v(k)
(K + x(k)
s(k) y(k)
+> A(2) 7L: —4> Bk >
m n n m
Mixing System Separating System

FIGURE 2.2:BLOCK DIAGRAM OF THE CONVOLUTIVE BSSTASK

In the above diagramA(z)=) " A,Z'andB(z,k)=) " B, (K Z'represent the

transform of the sequences of the sygtafhandB,(K)} .

Most commonly, BSS algorithms are developed unklerassumption that the number

m of simultaneously active source siggék) equals the numben of the sensor
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signalsx; (k) . The number of unknown source signaplays an important role in BSS

algorithms in that, under reasonable constraintshenmixing system, the separation
problem remains linear if the number of mixturensilg n is greater than or equal to
m(n=m). This case that the sensors outnumber the soig¢esmed overdetermined
BSS. The main approach to simplify the separatimblpm in this case is to apply
principal component analysis (PCAMyvarinen 01]. In order to perform matrix
dimension reduction by extracting the fi,stcomponents and then use a standard BSS
algorithm. A situation is called underdeterminedSB& BSS with overcomplete bases,

which means that the sources outnumber the sefmsors) . This is the significantly

more difficult case. Mostly the sparseness of theraes in the time-frequency domain
is used to determine clusters which correspond hie $eparated sources (e.g.
[Zibulevsky 01] [Bofill 03]. Currently, many researchers proposed methodstimate

the sparseness of the sources based on modeléniguthan auditory system and then

subsequently apply time-frequency masking to seépana sources.

2.2 Speech source signal characteristics and BSS criteria
In this section we are going to discuss the sigmaperties of acoustic source signals

such as speech signals and their relevant utibizdtr BSS algorithms.

As we know, speech signals are feature-rich andgssscertain characteristics that
enable BSS algorithm to be applied.

2.2.1 Basic signal properties of acoustic signals
Statistical properties: a good statistical modelaosignal in the time domain is a
zero-mean Gaussian proced¥(,,o0,)with a given variatiow;, mean g, =0and

normal probability density function (PDF) given by:

1 X2
Xl Uy, 0,)=————exp —— 2.4

In the discrete time domain this simple model methas every sample has a random

value with a Gaussian PDF, also called Gaussiaserari Gaussian distribution.

Temporal properties: one of the widely used tempan@perties of a noise signal is the

assumption that the noise is a stationary sigmamést cases in this thesis this is a
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human speech signal. In other words, it is calledhporal dependencies” which means
audio signals are in general showing temporal dégrecies, for example, the speech
signals by the vocal tract. Speech can also beratephusing second-order statistics
alone if the source signals have unique temporatstres with distinct autocorrelation

functions. In other words, if the temporal sampleacsignal is uncorrelated, then the

signal exhibits strict-sense whiteness.

Stationarity: speech is also a highly non-statipnaignal due to the amplitude
modulations inherent in the voiced portions of shegnd to the intermingling of voiced
and unvoiced speech patterns in most diald&sott 07]. The non-stationary
characteristics of individual talks (sources) aog Iikely to be similar. The majority of
audio signals are considered in literature as nategary signals, but strict-sense

stationarity is only assumed.

2.2.2 Criteria for BSS in Speech Separation

* Nonstationarity. BSS algorithms can be designedexploit the statistical
independence of different talkers in an acoustaarenment. It is known that
the statistic of jointly-Gaussian random processas be completely specified
by their first or second order statistic; henceg thigher and lower order
statistical features do not carry any additiondbnmation about Gaussian
signals. Therefore, in most acoustic BSS applicatioonstationarity of the
source signals can be exploited by simultaneougodaization of short-term
output correlation matrices at different time imssgWeinstein 93].

* Non-Gaussianity, in such case, statistical indepeoé of the individual talker's
signals need not be assumed, and the non-Gaussiame of the speech signals
are not very important when these statistics ared.usAdditionally, the
non-gaussianity can be exploited by using highdeorstatistics yielding a
statistical decoupling of higher-order joint momefitthe BSS output signals.
BSS algorithms utilizing higher-order statistice also termed independent
component analysis (ICA) algorithf@ardoso 89][Jutten 91][Comon 91].

* Non-whiteness. As audio signals exhibit temporgbeshelencies this can be
exploited by the BSS criterion. Therefore, it cam dssumed that samples of

each source signal are not independent along rtine dixis however; the signal
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samples from different sources are mutually inddpah Based on the
assumption of mutual statistical independence fam-white sources several
algorithms can be found in the literature. Mairtig hon-whiteness is exploited
using second-order statistics by simultaneous dialggation of output

correlation matrices over multiple time-lags. Ite®that convolution based BSS
algorithm which is based on the mutual statistindependence for temporally

white signals.

2.3 Acoustic echo cancellation

2.3.1 General Principle

The effect of sound reflection from objects is edlfreverberation.” Echoes are distinct
copies of the reflected sound. Humans can hearesctihen the difference between
arrival times of the direct signal and the reflentis more than 100ms, but even with
differences of 50ms the audio still sounds echéilmst acoustic echo reduction

applications do not supress the echoes in the r@awvironment, however, it actually

supresses the effect when the local sound soum@pisired by the receive device such
as microphone, transmitted through the communicatioe, reproduced by the

loudspeaker in the receiving room, captured by rtherophone there, returned back
through the communication line, reproduced fromltizal loudspeaker, and so on. That
is the simple entire system converts to a signalegeor, reproducing an annoying

constant one.

In addition, acoustic echo is inevitable whenevepeaker is placed near to a microphone
in a general full-duplex communication applicatidine most common communication
scenario is the hands-free mobile communicationfkit the cars. For example, the voice
from the loudspeaker is unavoidable to be pickedbyuthe microphone and transmitted
back to the remote speaker. This makes the renpmaker hear his/her own voice
distorted and delayed by the communication chaoinealled end to end delay, which is
known as echo. Obviously, the longer the channklygdehe more annoying the echo
and the worse is the perceived quality of the comipaiion service such as VolP

conference call.

There are some properties of acoustic echo:
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® |t is not stationary, and is varies based on aitdi of external factors —
intensity and position of the sound source.

® It is a non-linear signal; the non-linearity mighe created by the analogue
circuitry.

® |tis more dispersive, with dispersion times ud@®ms.
2.3.2 Joint Blind Source Separation and Echo Cancellation

2.3.2.1 Cause of Echo in digital network

In most situations, background noise is generateough the network when we use
digital phones operated in hands-free mode. Ingbktime environment, the additional
sounds are directly and indirectly transmittecn®icrophone, so the multipath audio is
created and transmitted back to the talker. Theskitianal sounds pass through the
digital cellular vocoder and cause distortion cdesgh. Meanwhile, the digital processing
delays and speech-compression applied furtheribation of the echo generation and

degraded voice quality.

Under this circumstance, the echo-control systamsegjuired in today’s digital wireless
networks. Because of the speech process delaysngafigm 80ms to 100ms are
introduced, and then resulting in total end-to-eleday of approximately 160ms to
200ms. At this stage, the echo cancellation devaresrequired within the wireless

network.

There are two main echo cancellation types: lineoecancelation and acoustic
cancellation. General speaking, line echo is ctedtg a telephone hybrid which
transforms a 4 wire line to a 2 wire line. Usudhgre are two hybrids in the telephone
line. One corresponds to the near end terminaltia@ether one corresponds to the far

end (remote) terminal. See the figure 2.3 for the écho flow diagram.
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Cleared speech Near-end
from far-end echo speech

without echo - from far-end
Line echo / hY
canceller

—

2 wire line
FEcho 4/2 wire >
hybrid ——p

>

Near end 4 wire line

speech \ /

FIGURE 2.3:LINE ECHO CANCELLER INTEGRATION FLOW DIAGRAM
Line echo canceller features include: fast conwacgefast re-convergence after echo

path change, robustness in respect to backgroumsk ramd non-linear distortion,

maximal echo path up to 256ms, reliable work irwmoeks with VolP segments.

Additionally, acoustic echo cancellation comparethwne echo cancellation, both of
them address the similar problems, and are oftesedan the same technology.
However, a line echo canceller generally canndaoepan acoustic echo canceller; due
to acoustic echo cancellation is a more difficutblgem. With line echo cancellation
there are generally less than two reflections frimbephone hybrids or impedance
mismatches in the telephone line. These echoessaaly delayed by less than 32 ms,
and do not change very frequently. As mentionedoreef with acoustic echo
cancellation, the echo path is complex and alseesarontinuously as the speaker

moves around the room.

2.3.2.2 The Process of Echo Cancellation and performance measurement

Today's digital cellular network technologies reguisignificantly more processing
power to transmit signals through the channels.
Simply said, the process of cancelling echo inveltveo steps.
® Calling set up: the echo canceller employs a digitiaptive filter to set up a
model of voice signal and echo passing throughetite® canceller. As a voice
path passes back through the cancellation systemedho canceller compared

the original signal and “modelled” signal to canegisting echo dynamically.

11
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® The second process utilizes a non-linear procasseliminate the remaining

residual echo by attenuating the signal to achilbgdower noise level.

Reference Signal x(n)

Loudspeaker

a + |

Echo . Enclosure
Canceller Dll‘f.'(‘t- Path Room Reflections/
/ Structure (Air) Responese Vibrations
Microphone
Error Response
Signal -
e(n) + Echo Signal y(n)
< + )<

FIGURE 2.4: STRUCTURE OF ACOUSTIC ECHO CANCELLER IN THE ROOM
ENVIRONMENT

In Figure 2.3 the acoustic echo canceller estimabes transfer path loudspeaker
microphone and subtracts the estimated portionhefloudspeaker signal from the
microphone signal. One important evaluation paramstcalled the “Echo Return Loss
EnhancementHRLE). It is used in evaluating the residual energgadmno residual. We

suppose the signal captured from the loudspeakkeb@tcompletely suppressed. Owing
to the near-end noise, shorter filters than theadeeverberation, and estimation errors,
a portion of the captured loudspeaker signal \eithain. This portion is called the echo

residual.

A measure of the AEC performance is the Echo Rehass EnhancemenERLE
which is defined as follows:

ERLE dB =10I0g0(%} (2.5)

where y(t) is the echo signal ané(t) is the echo left after processing. In next chapter

simulation experiment will plot an example outprtgrh the two optimal algorithms -
NMF and LMS.

12
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2.3.2.3 AEC applications with BSS algorithm

In some applications such as teleconferencing aicgg-controlled machinery, AEC has

been widely used in this kind of real applicatiom$owever, this straightforward

approach would be to use multichannel AEC whichtivasimportant drawbacks:

® The AEC can only operate reliably when one of theagers are talking; it means it
will not work properly when there is double talks Pouder speakers to microphone
fast adaptation is required which cannot be obthinghe presence of double talk.

® The BSS algorithm is obstructed by contributionghaf loud speaker signals that
remain present in the microphone signal despité\th@. Because BSS can only be
applied on independent signals, otherwise the dtvesgstem performance

deteriorates according[{wong 92].

Far end signals
— 3| AEC

A

_ To far end

Nearendsignals — L 5 —
+ BSS

FIGURE 2.5: ECHO CANCELLATION FOLLOWED BY BLIND SIGNAL
SEPARATION

An alternative way is that applying BSS to bothitierophone signals (near end signals)
and the far- end signals would overcome these daek#bbut it will cause the higher
computational complexity.

In the real-time scenario, the problem of recovgsaurce signals from mixtures of them
which are contaminated by acoustic echo. We asstima¢the original sources (near-end
sources) to be independent of each other, butrfdrsegnals that are reproduced in the
same room and they are generally not independdrdrefore, Kwong introduced a
correlation estimator which measures the crosst@rons among all microphone
(modelled) signals include known input signals. §hthis will be resulting updated
outputs which are passed by multichannel filtersrévalgorithm detail processing can be
found in[Kwong 92].

13
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The above example is taking advantage of BSS &lgoriover conventional echo
cancellation is that can operate in many suitapf@ieations such as teleconferencing

and hands free telephony.

2.3.3 Limitation of conventional Acoustic Echo Canceller

Much work has be carried out aimed [#wong 92][Makino 93][Mathews 93]
improving the convergence speed of LMS type algorit Ideally, an acoustic echo
canceller is to completely remove any signal emagdrom a loudspeaker from the
signal picked up by a closely coupled microphonesHort conclusion of limitations of
echo cancellers for speakerphones includes:

* Acoustic, thermal and DSP related noise

* Inaccurate modelling of the room impulse response

» Slow convergence and dynamic tracking

* Nonlinearities in the transfer function caused ryatlue to the loudspeaker

* Resonances and vibration in the plastic enclosure.

To be commercially viable the AEC needs to be dmed in products for a
self-contained handsfree device in a typical roowirenment. An important part of the
acoustic each canceller evaluation is the convesyéme and it is necessary to be set
on the order of 100ms with Echo Return Loss Enhawece (ERLE) on the order of
30dB.

2.3.4 Conclusions

Acoustic echo cancellation is useful in any hamds-for other telecommunications
situation involving two or more locations. Acoustecho is most noticeable and
annoying when delay is present in the transmispath. This would happen primarily
in long distance circuits, or systems utilizing ege compression such as VolP
application. However the echo might not be as amgpowhen there is no delay (e.g.
with short links between conference rooms in theesduilding or distance learning
over high speed fibre-optic cable connection. Asekistence of imperfection of speech
quality in the modern telecommunication, acoustibcecancellation techniques will

have large commercial potential in the future.

14
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3 Optimum Algorithms for Blind Source Separation

3.1 Independent Component Analysis (ICA)

3.1.1 Background Theory of Independent Component Analysis

Blind source separation (BSS) is the problem ofveang signals from several observed
linear mixtures. These signals could be from défgrdirections or they could have
different pitch levels along the same directionshie®Wwe deal with the BSS, there is no
need for information on the source signals or ngsgstem (location or room acoustics)
[Makino 07a]. Here, we should point out that the characteristidhe source signals are
statistically independent, as well as independenhfthe noise components. Therefore
the goal of BSS is to separate an instantaneoesrlieven-determined mixture of

non-Gaussian independent sourjéeaul 05].

As we mix independent components (random indepéndarables) the resulting mix
tends towards having a Gaussian distribution, ngpkire Independent Components
Analysis (ICA) method impossible. ICA is the clasdiblind source separation method to
deal with problems that are closely related todbektail-party problem. The following
simple model shows what the Blind Source Separasion

Hellol He[[ol
hwumm W
o )
Morning! / . y— o N Morning!

L_i

ﬂSZ A, s Xow,, Yo
FIGURE 3.1: M ODEL OF BLIND SOURCE SEPARATION

In detail, this model has five main parts: Sour@nalsS, ,S,, mixing systenH ,
observed signalsX,, X,, separation system W and separated sighaly,. Initially,
the source signal§, S,are independent, and then in the mixing sydtenit delays,

attenuates and reverberations the source signalindthe separation processing, the

15
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separation systeW only uses the observed signXis, X, to estimates, ,S,. The
separated signa¥§ , Y, should become mutually independent.

Ideally, the aim of the source separation is noessarily to recover the originally source
signal. Instead, the aim is to recover the modefteEs without interferences from the
other source. Therefore, each model source sigmabe a filtered version of the original

source signals.

3.1.2 Notation of Blind Source Separation

In the Blind Source Separation problem, for examphemixed signals are linear
combinations oh unknown mutually statistically, independent, zerean source signal,

and are noise-contaminated source signals. Scstbhén be written as:

XO=2Hs(0+ () i=l.m (3.1)
Its matrix notation:
X(t) = HS(t) + N(t) (3.2)

Where X(t) =[x (1), x {t),...,x ()] ", is a vector of sensor signalsi(k) is the vector of

additive noiseH is the unknown full ranknx mmixing matrix. The block diagram as

shown below:

Unknown

| | Mixed
| " " - I ]

! Sources Noise + Interference | signals
‘ :

e,

Ly Las

[

Neural
Network
Model

“m

FIGURE 3.2: BLOCK DIAGRAMS ILLUSTRATING BLIND SIGNAL PROCESSING PROBLEM
We consider equation (3.Bs a linear function in most cases, and every comeio

X (t)is expressed as a linear combination of the obderagables, (t) .
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3.1.3 Definition of ICA

There are several definitions of ICA and all in@utle above linear mixing model. In the
literature, we will review the different three baslefinitions of linear ICA as follows.
1) Temporal ICA: it is the first general definition BA. The mathematical model

can be expressed as:

y, = WX, (3.3)
It is the ICA of a noisy random vectot(k) is obtained by finding the output of a
linear transforny, with the full rank separating matri/ (nx m). And such that
the output signal vectory =[y, V..., ¥,]' contains the estimated source
components which are as independent as possible, becauseyue rinaximize
some functionF(s,, ..., s, )of source independencdyvarinen 99][ Cichocki

02].
2) Random noisy model ICA is defined by:

X =Hs+1 (3.4)
Where H is a(nxm) mixing matrix, s =[s, S,..., | is a source vector of

statistically independent signals, =[n, n,,...,n ['is a vector of uncorrelated

noise terms. ICA is obtained by estimating both riging matrixH and the
independent source (vectors) components.
3) Noise-free ICA model: it is a simplified definitiom which the noise vectors

(components) are omitted.

And it is can be expressed as:

X, =Hs (3.5)

i i
The matrix form isX=HS. In many applications, especially when a large
number of Independent Components (ICs) occur arely thave sparse
distribution. It is more convenient to use this sysiree ICA model (the
equivalent form: X" = S"H" )[ Hyvarinen 99][ Cichocki 02].

Note: The temporal ICA and Noise-free ICA. They agymptotically equivalent.

Generally, the natural relatiadl = H *is used witt=m which is the unique matrix.
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From the definition 3, the basic noisy-free ICA rabid a generative modptyvarinen

99b], which means that it describes how the observel @@ generated by a process of
mixing the components, (sources), and these components are latent vasjabkaning
that they cannot be directly observed. All we obsare the random variables and we
must estimate both the mixing coefficientsand the ICss (estimated sources) usirg
Here we have dropped the time index t and thistabse in the basic ICA model, we
assume that each mixtureas well as each independent compongifsources) is a

random variable, instead of a proper time signdinoe series. We also neglect any time

delays during the mixing. So this is often calledihstantaneousnixing model.

3.1.4 Restrictions in ICA

There are three certain assumptions and restrictaomake sure the basic ICA model can
be estimated.
1) The independent components are assumed statigiindépendent.

The random variables are said to be independéhe iSource componegtoes
not give any information on the value of anothaerrse componens; fori # j .

Technically, the independence can be defined bytbkeability densities.
(Note: more details relate joint pdf and margindf, see section 2.3 on ICA
[Hyvarinen 99c])

2) The independent components must have Non-Gaussiaitvations.

The Gaussian components mix the independent comfsorand cannot be
separated from each other. In other words, sonteeagstimated components will
be arbitrary linear combinations of the Gaussiammonents and in the
Non-Gaussian distributions we can find the indepabhdomponents. Thus, ICA

is essentially impossible if the observed mixtuse¢variables) have Gaussian

distributions.

3) We can assume that the unknown, mixing matrix isse}

This assumption means, the number of independenpaeoentss is equal to
the number of observed mixtute This simplifies the estimation (from original

source) very much.
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3.1.5 Background theory of ICA

There are three basic and intuitive principlesdstimating the model of independent
component analysis.

1) ICA by minimization of mutual information.

There is a basic definition of information-theocetioncepts explained in this
section.
The differential entropid of a random vectoy with densityp(y) is defined as
[Hyvarinen 99c]:

H(y)=~[ p(y)log p(y) dy (36)
The entropy is closely related to the code lendtth® random vector. Basically,

the mutual informatioh betweenm (scalar) random variablesy,,i =1...mis

defined as follows:
L (Vi Yoo Y )= D H (¥)=H () (3.7)
i=1

Here is the simple diagram to illustrate what isumatinformation between two

random variables:

H(}’i,}’:)

Joint Entropy

H(“) Mutual H(V)

I(yLy2) Information

FIGURE 3.3: MUTUAL INFORMATION BETWEEN TWO RANDOM VARIABLES

2 2
The mutual information isl(y,, y,)=> H (y)-H (¥ %), where > H(y)is

i=1 i=1
marginal entropy andH(y,, Y,) is joint entropy. The mutual information is a
natural measure of the dependence between randoiables. It is always
nonnegative, and zero if and only if the varialdes statistically independent.

Therefore, we can use mutual information as theeroon for finding the ICA
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2)

3)

representation, i.e. to make the output “decoreelatin any case, minimization
of mutual information can be interpreted as givihg maximally independent
component$Hyvarinen 99c].

ICA by maximization of Non-Gaussianity.

Non-Gaussianity is actually most important in ICAtieation. In classic

statistical theory, random variables are assumdtht® Gaussian distributions.

So we start by motivating the maximization of NoatGsianity by the central

limit theorem. It has important consequences irpa&hdent component analysis

and blind source separation. As mentioned in tisedection, a typical mixture of
m

the random data vector is of the fornx, ZZaﬁsj , Whereg, j=1,....m, are
i=1

constant mixing coefficients asg j =1,...m, are them unknown source signals.

Even for a small number of sources the distributibtihe mixture is usually close
to Gaussian.

Simply explained as follows:

Let us assume that the data vector x is distribaiexbrding to the ICA data
model:x=Hs, it is a mixture of independent components. Ediimgathe
independent components can be accomplished byn@indne right linear

combinations of the mixture variables. We can rhtke mixing model as:

s = H'x, so the linear combination is, . In other words, we can denote this by

y:bTx:Zbixi. We could take b as a vector that maximizes the
i=1

Non-Gaussianity df'x . This means thay = b'x equals one of the independent

components. Therefore, maximizing the Non-Gaussiafib™x gives us one of

the independent componen{silyvarinen 99c] To find several independent
components, we need to find all these local maxirhas is not difficult, because
the different independent components are uncoeglat/e can always constrain
the search to the space that gives estimates @hatea with the previous ones.
[Hyvarrinen 04]

ICA by maximization of likelihood.

Maximization of likelihood is one of the popularpapaches to estimate the

independent components analysis model. Maximumniitiged (ML) estimator
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assumes that the unknown parameters are constaritseere is no prior
information available on them. It usually applieslarge numbers of samples.
One interpretation of ML estimation is calculatipgrameter values as estimates
that give the highest probability for the obserwas.
There are two algorithms to perform the maximurellkood estimation:
» Gradient algorithm: this is the algorithms for nmaxing likelihood
obtained by the gradient method. (Further Ref.[Bggarinen 99d])

* Fast fixed-point algorithnjElla 00]: the basic principle is to maximize the
measures of Non-Gaussianity used for ICA estimatidetually, the
FastICA algorithm (gradient-based algorithm butwage very fast and

reliably) can be directly applied to maximizatidnttee likelihood.

3.2 Principal Component Analysis (PCA)

3.2.1 Introduction

Principal Component Analysis is one of the simplastl better known data analysis
techniques. The main purpose of PCA analytic tepies are: a) to reduce the number of
variables. b) to detect structure in the relatigpstetween variables, that is to classify
variables. In other words, PCA is combining twonwore variables into a single factor
where these variables might be highly correlateti each other.

1) Scatter plot for PCA
The results of PCA can be summarized in a scaléi(giagram). A regression line can
be fitted that represents the “best” summary of lihear relationship between the
variables. Essentially, we have reduced the twakibas to one factor and the new factor
is actually a linear combination of the two varegbl The scatter plot can show various
kinds of relationships, including positive (risingegative (falling), and no relationship
(independeniltts 05]. If we extend the two variables to multiple vated) then the
computations become more involved, but the basiciple of expressing two or more
variables by a single factor remain the same. W\ehave three variables, we could plot
a three dimensional scatter plot and we could fitame through the data.

2) PCA Factor Analysis
The computational aspect of PCA is the extractibrprincipal components which
amounts to a variance maximizing rotation of thiginal variable spaces. In PCA, the

criterion for the rotation is:
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« Maximize the variance of the “new” variables (fagto
* Minimizing the variance around the new variable.

After the first regression line has been found tigiothe data, we iteratively continue to
define other lines that maximize the remaining afaifity. In this manner, consecutive
factors are extracted and these factors are indeperof each other. In other words,
consecutive factors are uncorrelated or orthogmnedch otheDinov 04]. Note that the
decision of when to stop extracting factors babiaépends on when there is only very
little random variability left. Also the variancextracted by the factor are called the
eigenvaluesAs expected, the sum of the eigenvalues is dquke number of variables.

We will discuss more about eigenvalues in the segtion.

3.2.2 Mathematics Background

» Eigenvalue and Eigenvector

Calculating Eigenvalues and Eigenvectors is the et in PCA. PCA involves
determining of these two parameters of the covaeamatrix. We will talk in more detail
about the covariance matrix in the next section.

Eigenvalues are a special set of scalars associdtiec linear system of equations that
are sometimes also known as characteristic roash Eeigenvalue is paired with a
corresponding so-called eigenvector. The determonabf the eigenvalues and
eigenvectors of a system is very important in eegiimg, where it is equivalent to matrix

diagonalization

Matrix diagonalization is the process of takinggaae matrix and converting it into a
so-called diagonal matrix that shares the sameaimeatal properties of the underlying
matrix. The relationship between a diagonalizedrima¢igenvalues, and eigenvectors
follows from the great mathematical identity. Faample, a square matriA can be
decomposed into the very special fof=PDP™, where Pis a matrix composed of the
eigenvectors oA ; D is the diagonal matrix constructed from the cqoesling
eigenvalues, and th@™is the inverse matrix oP [George 97]
» Covariance
Firstly we need to understand what covariancehsg. Govariance of two datasetg,@x

and y) can be defined as their tendency to vargttey. We usually define these two
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datasets as a two dimensional dataset. In statistie variability of the data set around its
mean is called the data standard deviation. Insdree way, covariance can describe
variability—as the product of the averages of teegiation of the data points from the
mean value. There are three possible results wiainhndicate the relationship between
the two datasets.

Cyy value will be larger than O (positive) if x andend to increase together.
Cyy value will be less than 0 (negative) if x and yd¢o decrease together.
Cyy value will equal 0 if x and y are independent.

Since the covariance value can be calculated bataeg 2 dimensions in the data set,
this technique is often used to find relationshigsveen dimensions in high-dimensional
data sets where visualisation is difficult.

Also measuring the covariance betweeandy would give us the variance of they
dimensions respectively. The formula for covariaisce

T =Ry -
)_
n-1

cov(x,y (3.8)

For each item, multiply the difference between thealue and the mean af by the
difference between thevalue and the mean gfand add all these up, and divider{.

+ Covariance matrix

. . n! . .
In fact, for ann-dimensional data, there am different covariance values.
n-2)!

Generally, a useful way to get all the possibleac@nce values between all the different
dimensions is to calculated them all and put thera matrix. For example, for 2D data
the covariance matrix has two dimensions, and #heeg are this:
C= (cov(x,x) cov(x,y)j

cov(y,x) cov(y,y)

Basically, if we have an-dimensional data set, then the matrix has n rowlsnecolumns

(3.9)

(must be square) and each entry in the matrixagésult of calculating the covariance

between two separate dimensions.

3.2.3 PCA Methodology

The dimension of the data is the number of varialtheg are measured on each
observation. A high dimensional dataset containgernmdormation compared with a low
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dimension counterpart. To reduce the dimensionafithe data while retaining as much
as possible of the variation present in the origmaaset is the goal of PCA. In

mathematical terms, we can state this as follows:

Given thep-dimensional random variabie= (xl,...,xp)T, find a lower dimensional

representation of its=(s,...,§ ) Wwithk < p, that captures the content in the original

data. But dimensionality reduction implies inforimatloss; our task is to preserve as
much information as possible and determine the beser dimensional space.
Technically, the best low-dimensional space can determined by the “best”
eigenvectors of the covariance matrixxafi.e. the “best” eigenvectors corresponding to

the “largest” eigenvalues — also called “princigaknponents”[Simth 02].

3.2.4 Procedure of PCA

Stepl:Collect and prepare a set of data and obtain #enraalue

Suppose, X,,...,%, are mxlvector, and mean i& 212 X
m<

Step2: Subtract the mean value from each data eleniertx)(y—y)

The mean subtracted is the average across eacsioneand it produces a data set

whose mean is zero. So, all tkevalues haveX subtracted, andy values have

y subtracted from them.

Step3: Calculate the covariance matrix

This is done in the same way as was discussea iprévious section.

Step4: Determine the eigenvalues and eigenvectors ofdkiariance matrix

Since the covariance matrix is square, we can lzkethe eigenvalues and eigenvectors
for this matrix. It is important to tell us usef@lationship information about the data —
increase, decrease together or independent. Egehwailue is a measure of how much
variance each successive factor extracts, and iagsd¢he eigenvector shows us how
these dataset are related along a regressionTleprocess of taking the eigenvector of
the covariance matrix, we have been able to exliraes that characterise the scatter of
the data.
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Step5: Choosing components and forming a feature vector

It is import to choose the components in termshefdigenvalues which are determined
by the covariance matrix. In general, we order ¢igenvectors by eigenvalue from

highest to lowest. This gives us the componentsrder of significance. If there are a
large number of components, we could ignore the pmrents of much lesser

significance. However, this means we will lose sanfermation and the final data set

will have fewer dimensions than the original.

Here, the feature vector is constructed by takirgdigenvectors that we want to keep
from the list of original eigenvectors, and formiamgnatrix with these eigenvectors in the
columns.

FeatureVector = (eig_vec eig veg eig_veg ... eig_veg

Step6: Deriving the final new data set

The final step of PCA is generating the new finatadset. It is also an easy way to
calculate. We simply take the transpose of theufeatector and multiply it on the left of
the original data set transposed.

FinalData = FeatureVector (Transposed) x MeanAdpegt (Transposed)

Where the mean-adjust-data vector is the origiagh dector with the mean subtracted
from each dimension. Here, what will we get? Itl\give us the original data solely in
terms of the vectors we choose. In the case of whennew data set has reduced
dimensionality, the new data is only in terms oé thectors that we choose. For
example, we could take only the eigenvector withltrgest eigenvalue. As expected, it
only has a single dimension compared with the oesulting from using more
eigenvectors; we will notice that this data setxactly the first column of the other. But
the single-eigenvector decomposition has removedctimtribution due to the smaller
eigenvectors. The contribution means the combinadfacontributions from each of the
lines (patterns) which most closely describe tHatimnships between the ddtamith
02].

Step7:Reconstruction of the original data

If we want the original data back, we just revehsesteps that we took above and we will
get the original data set back. Note that if wealided some eigenvectors in steps, we
will lose that information in the retrieved data.
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TransDataAdjust = TransFeatureVectoFinalData

After calculating the adjusted data set, we neextitbthe mean to each dimension of the
data set to retrieve the original data set.

TransOriginalData = TransDataAdjust + OriginalMean

The following figure shows the essential procecrBCA.
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FIGURE 3.4A: ORIGINAL TWO DIMENSIONAL DATA

FIGURE 3.4B: NORMALIZED TWO DIMENSIONAL DATA
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FIGURE 3.4cC:

DATA BY APPLYING THE PCA ANALYSIS USING BOTH EIGENVECTORS

FIGURE 3.4D: THE RECONSTRUCTION FROM THE DATA THAT WAS DERIVED USING

3.3 Degenerate

ONLY A SINGLE EIGENVECTOR

unmixing estimation technique (DUET)

3.3.1 Introduction to DUET

Degenerate Unmixing estimation technique (DUEDns of the demixing algorithms in
the fields of blind source separation (BSS). It saparate any number of sources using

only two mixturegScott 01][ Makino 07]. This method is based on the sources being
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w-disjoint orthogonal. Common assumptions about stedistical properties of the
sources are statistically independfell 05][Cardoso 97] are statistically orthogonal
[Weinstein 93], are nonstationarjParra 00], or can be generated by finite dimensional
model space$Broman 99]. Moreover, the DUET algorithm is efficient for socas
having a property of sparseness in the time-frequdomain, such as speech signal, that
is, the target speech signal in a noisy environroantbe effectively recognised using the
DUET algorithm for Blind Source Separation.

However, in many cases there are more sourcesnhduares so we refer to such a case
as degenerate. In degenerate Blind Source Sepanabises a challenge because the
mixing matrix is not invertible. Basically, the tlidional method such as Independent
Component Analysis (ICA) of demixing by estimatthg inverse mixing matrix does not
work. Therefore, most blind source separationaretehas focussed on the square or
non-degenerate cagecott 01][ Makino 07]. Despite the difficulties, there are several
approaches for dealing with degenerate mixturese VWM review these approaches in
the next few sections.

Generally, DUET solves the degenerate demixing Iprolin an efficient and robust
manner. We can summarized in one sentence asratidefi DUET makes it possible to
blindly separate an arbitrary number of sourcesmgjust two anechoic mixtures provide
the time-frequency representations of the souroe®tioverlap too much, which is ideal
for speechjMakino 07].

3.3.2 Sources assumptions and mathematics background
* Anechoic Mixing
Consider the mixture oN source signals,(t), j =1,...N , being received at a pair of

microphones on a direct path. Suppose we can altharbattenuation and delay

parameters of the first mixture,(t) into the definition of the sources without loss of

generality. Then the two anechoic mixtures canXpeessed as:

X, (t) = isj (t) (3.10)
x2(t):ZN:ajsj(t—5j) (3.11)

Where a;is a relative attenuation factor correspondinghratio of the attenuations of

the paths between sources and sensdrss the arrival delay between the sensors.
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Actually the DUET method, which is based on thecaon& model is quite robust even
when applied to echoic mixtures.

e W-Disjoint Orthogonality
In mathematics, disjoint means if two or more sgesdisjoint they have no element in
common, or say their intersection is the empty set.
W-disjoint orthogonality is crucial to DUET becausgellows for the separation of a
mixture into its component sources using a binaaghn(Note: a binary mask is used to
change specific bits in the original value in tlime-frequency plane to the desired
setting(s) or to create a specific output value).

We can call two functions, (t) and s, (t) W-disjoint orthogonal. For a given windowing
functionW(t), the supports of the windowed Fourier transformspft) and s, (t) are

disjoint. The windowed Fourier transform sf(t) is defined as:

§(r,w) = W(t-7)s() €“ d (3.11)

1 e
Tl
We can state the W-disjoint orthogonality assummptomncisely as the following
expression:

§(1,w)§ (T, w)=0, Or w, Ojz k (3.12)
This assumption is a mathematical idealizatiorhefdondition (Note: Idealization is the
over-estimation of the desirable qualities and vestenation of the limitations of a
desired thingChanging 00].) In other words, it is likely that every timesfjuency point
in the mixture with significant energy is dominategthe contribution of one source. In
this case, W-disjoint orthogonality can be exprdsss

S(Ws(w)=0, Dw, Oj%k (3.13)

As mentioned before, the binary mask can be useéparate the mixture. So consider

the mask function for the supportépf

0 SFT,w#0
M, (7, w) = \( ), (3.14)
1 otherwise
M, separatess, from the mixture via
S,(1,w) =M, (T, W)X (T,w), 07w (3.15)
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We must determine the masks which are the indicltoctions M, (7,w) for each

source and separate the sources by partitionirgquibstion is: how do we determine the

masks? We will review and discuss it shortly.

3.3.3 Local stationarity and Microphones close together

Local stationarity can be viewed as a form of nabrand assumption. It is necessary for

DUET that for all arrival delay timé,|6| <A, where Ais the maximum time difference

possible in the mixing model (Maximum distance wbtmicrophones divided by the
speed of signal propagation), even when the winflowtion W(t) has finite support.
Additionally, in the common array processing litera [Krim 96], the physical
separation of the sensors is small such that taéve delay between the sensors can be

expressed as a phase shift of the signal.

We can utilize the local stationarity assumptiontton the delay in time into a

multiplicative factor in time-frequency. Basicallthis multiplicative factore™ only

uniquely specifieso if |w5| <7 as otherwise we have an ambiguity due to phasp-wra
[Makino 07b]. So we requirela)dj‘ <m0w,[j, avoiding phase ambiguity. Therefore,

this is guaranteed when two microphones are segghraby less than

el w,, wherew, . is the maximum frequency present in the sources@sdhe speed

of sound.

3.3.4 DUET demixing model and parameters

The assumptions of anechoic mixing and local statidy allow us to rewrite the mixing
equations (1) and (2) in the time- frequency donaain

S(1,w

{%(T,@)}_{l L1 :| S.L( )

(3.16)

$,(T,0) | ae ™ .. ae“h

S (1)

This is the mixing model for two sources and if thenber of sources is equal to the
number of mixtures, the non-degenerate case @témelard demixing method is to invert
the mixing matrix from the above equation. Whenrhenber of sources is greater than

the number of mixtures, we can demix by partitigrime time-frequency plane using one
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of the mixtures based on estimates of the mixirrgmpaters between mixtufdourjing
00].
With the further assumption of W-disjoint orthogbtya at most one source is active at

every(r,w), and the mixing process can be described as,

A 1
{Xl(r’ a))} { s }éj (7,w), for somej (3.17)

a,e

%,(7, ) ]
In the above equationjis the index of the source active(aiw). The main DUET

observation which is the ratio of the time-frequergpresentations of the mixtures does
not depend on the source components but only omikiag parameters associated with
the active source component.

The mixing parameters associated with each timgufracy point can be calculated as,
(T, w) =|%,(1, ) | %(7,w) (3.18)
o1, w) = (-1 w)D (X, (T,w) | % (T ,w)) (3.19)
Under the assumption that if the two sensors afeicsmtly close then the delay
estimation can be ignored, the local attenuatidmesor &(7,w)and the local delay
estimator d(7, w) can only take on the values of the actual mixingeeters. As we saw

in equation (7), we can demix via binary maskingdieyermining the indicator function
of each source. So the indicator functions arerdeted via,

0 (A(r,w).0C.w)= (@ .3 )

) (3.20)
1 otherwise

Mj(r,a))::{

And then demix using the masks. Whefé(r,a)),é'(r,a))):(aj ,0,) is the mixing

parameter pairs which take over all the time-freqpyeplandr, w).

3.3.5 Construction of the 2D weighted histogram
Histogram is the key structure used for localizatiand separation. By using

(4(r,w),d(r,w)) pairs to indicate the indices into the histogratasters of weight will

emerge centred on the actual mixing parameter pMakino 07b]. Figure 3.5 shows the

two-dimensional weighted histogram.
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delay amplitude

FIGURE 3.5: DUET TWO-DIMENSIONAL CROSS POWER WEIGHTED HISTOGRAM OF

SYMMETRIC ATTENUATION (aj —1/61-) AND DELAY ESTIMATE PAIRS FROM TWO

MIXTURES OF FIVE SOURCES. EACH PEAK CORRESPONDS TO ONE SOURCE AND THE
PEAK LOCATIONS REVEAL THE SOURCE MIXING PARAMETERS

We can formally define that the weighted histogsseparates and clusters the parameter
estimates of each source. The number of peaksspameing to the number of sources,
and the peak locations reveal the associated seumeechoic mixing parameters.

There are several different automatic peak ideatiion methods including weighted
k-means, model-based peak removal, and peak trafiRiogard 01]. Once the peaks
have been identified, our goal is to determine tihee-frequency masks which will

separate each source from the mixtures.

3.3.6 Maximume-likelihood (ML) estimators

Our assumptions made previously will not be satkfin real-time (real signals with
noise) cases, we need a mechanism for clusteriagrétative attenuation- delay

estimates. Thus, we considered the “maximum Ii@dd (ML) estimators” for thea,

attenuation factor and thg; delay factor in the following mixing model:

f(l(r'w) = 1@ 5§ (1,0)+ fw’w) (3.21)
%(r,0)| |ae™ ™ |’ (7, w)

Where A and n,are noise terms which represent the assumptiogunacies. One thing

: : o . 1 .
we need to point out is: rather than estimadingve estimatea, := a, —— which we call

a,
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the “symmetric attenuation”. That is, the attenwratis reflected symmetrically about a

centre point & =0) because it has the property that the two mtuwap (sensor) signals

can be swappedlakino 07b]. We can define the local symmetric attenuatiomede,

|%,(r.0)|_| % (7, 0) (3.22)
20| %) |

It is motivated by the form of the ML estimators.

a(r,w) =

However, the difficulty with the estimators is th#tey require knowledge of
time-frequency supports of each source. On theroktzd, the local symmetric
attenuation and delay observation estimates wilstel around the actual symmetric
attenuation and delay mixing parameters of thamalgources, so we need a mechanism
for determining these clusters.

The estimators suggest the construction of a twwedsional weighted histogram to

determine the clusters and the estimated mixingmeterga,,d;). Thus, the mixing

parameters can be extracted by locating the peaksei histogram. In this review, we
won’'t go over much mathematics involved in the mgimodel, but well explained the
basic DUET BSS algorithm theory

3.3.7 Summary of DUET Algorithm
1) Construct time-frequency representatioRg7,w) and X,(7,w) from anechoic
matrix x (t)and x,(t) .

2) Calculate the mixing

parameter6i(r, w), o (r, w)) = p’:‘z(r’wﬂ | fﬁ(f1w)| ,‘_15( E&(T,w)D.
%(r0) %) @ | X0

3) Construct a 2D smoothed weighted histogram fbrweights associated with
time-frequency plant.

4) Locate peaks and find peak centres which determie mixing parameter estimates
5) Construct time-frequency binary masks for eaehkpcentre(éj,gj)via indicator
functions M (7, w) for each source and separate the sources byiqartg.

6) Apply each mask to the appropriately alightedtores.
7) Convert each estimated source time-frequencyeseptation back into the time

domain.
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3.4 Azimuth Discrimination and Resynthesis

3.4.1 Background and Introduction

The Azimuth Discrimination and Resynthesis is a elosound source separation
algorithm which was presented[Barry 04a] to separate stereo musical recordings into
independent constituent sources that comprise thxéura. So a typical example is
recording stereo music, this process involves dkogr N sources (each instrument
source) individually and then summing and distitbgitbetween the right and left
channels by using a panoramic potentiometer (p&n po

The pan pot is a device which usually increasemnsity of one source in one channel
relative to the other by scaling the gain of soagpropriately. By virtue of this, a single
source may be virtually positioned at any pointssn the speakers. Therefore in this
case is achieved by creating an interaural intgiéiterence (lID)[Rayleigh 76] What

is the IID? It is better called interaural levefféiences (ILD), are differences of the
sound pressure level arriving at the two ears ns@es; and are the important cues that
human use to localise higher frequency sounds.

FIGURE 3.6:|LLUSTRATION OF INTERAURAL INTENSITY DIFFERENCE
See above figure, there is a difference in the melwf the sound reaching either ear.

Listeners perceive IID as the apparent locatiothefsources along a horizontal stereo
field from left to right. The pan pot was devisedsimulate IID’s by attenuating the
source signal fed to one reproduction channel,ingus to be localised more in the

opposite channgBarry 04b].
ADRess uses gain scaling subtraction and phaseeltatimn in the time-frequency

domain to spatially discriminate between the timegtfiency points of a stereo mixture
[Cahill 06]. The purpose of developing the ADRess algorithrtoiperform the noise
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reduction in mobile or other communication appimas. Like other sound source
separation algorithms, it has a mathematics m@&@itehve will discuss more detailed in

ADRess methodology based on its discrete time rgirmodel in the next chapter.

3.4.2 ADRess Methodology

ADRess can be described as the mixing model fdnammel audio and the following

discrete time mixing model defined as:

I(n):iplis(n), for n=1,...,N-: (3.23)

r(n)=§ prs(n), for n=1,...,N-: (3.24)

i=0
Where [(n) and r(n) are the left and right mixed stereo signafd, and pr, are the

panning coefficients for thé" independent source () (note: these two coefficients

defined the amount we want to scale the volume@4al) of the source in the left and right

channels)j is the number of sources arid is the length of the mixtures in the audio

samples.

In fact, we can look at these signals in the fregyedomain by performing a short-time
Fourier transform (STFT) on one sample frame otitne signal. It means the algorithm
takes these two signals as its initial input data @hen divides them into short
overlapping frames. These frames are transformtedtie frequency domain using the

Fourier TransfornjCahill 06] using the following equations:
—jan

|, @)=Y Wn-Di([)e " (3.25)

r(r,w)= fw(n— r)r(n)e% (3.26)
n=0
where w=27rf is sample rate,N is the frequency sampling factor &2w/Nis the
frequency sampling intervalwis usually a Hamming window and is the frame
number.
From the equation (3.23) and (3.24), the ratiohef left and right panning coefficients
pl andpr of the i" source can be expressed as:
g(i) = pk / px (3.27)

Similarly,
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pl, = g(i)-px (3.28)
Where g(i)is also called the intensity ratio. Adjust the mdiy ratio to control the
volume (or pan) between the right and left chanBgluation 3.28 implies we can scale
the right channel to the same volume as the |eftobl for a given soursgn). In fact, if
we can expect to subtract the two audio channé&ds pérforming the scaling, then the
source s(n) can be cancelled out. (i.é—g(i)r =0) Similarly as scaling the left
channel which when subtracted from the right charfnee.r —g(i)l =0) will be

cancelled out as well. The question is how to aetime gain scales factor when the
panning coefficients are unknown as is the case stereo recording. The gain scale
factors are defined as follows:

g9(i) =i.A/B) (3.29)
for all iand for O<i< Swhereiand Sare integer values.
From equations (3.25) (3.26)and r, are short time frequency domain representations of
the left and right channel respectively and thegeaBons also indicate to create a

frequency-azimuth plane for the left and right amglnndividually. In equation (3.29) the
azimuth resolutionSrefers to how many equally spaced gain scalingegslf g we
will use to construct the frequency azimuth plafidéus, right and left channel

azimuth-frequency planes are created accordinigetdailowing equation:
AZ(T, ,1) = |1, (7,0)~ 9 ()] (T ) (3.30)
AzI(T, w,i) =|I, (T,0) - g ()1, ) (3.31)
for the integer values of such that &i< . Depending on the choice g, the

algorithm can create different resolution azimuthnps. Also large value of8 will

achieve more accurate azimuth discrimination butl vimcrease the Fourier
computational load because the frequency —azimlathepwill be anN x Sarray for
each channel. In equation (3.30) (3.31), combin#z) and Azrcreates the azimuth
frequency plane of the mixture, here the “azimwtle’ mentioned is purely a function of
the intensity ration, created by the pan pot.
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FIGURE 3.7: FREQUENCY-AZIMUTH PLANE.PHASE CANCELLATION HAS OCCURRED
WHERE THE NULLS APPEAR AS SHOWN.
It can be seen that the arrows point out the ctatm® points along the azimuth axis. For

each frequency, there exist peaks (see figureoBvgrying magnitude resulting from the
phase cancellations or the gain scale subtractioneps. These peaks converge to a
minimum value or even null (see figure 3.8), whathresponds to the location of that
frequency within the azimuth plane. In the ADRe$goathm, for the purpose of
resynthesis and so we need to invert these nullse $he amount of energy lost through

cancellation is proportional to the actual energytabuted by the sourd€oyle 07].

Fraquency-Azimuth Domain (Lett)

1200

Freguency (hins)

FIGURE 3.8:BY INVERTING THE NULLS OF THE FREQUENCY AZIMUTH COMPOSITION
THE FREQUENCY COMPOSITION OF EACH SCORE CAN BE CLEARLY SEEN
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The frequency azimuth spectrogram is assignedddaitation of the null or minimum

value having a magnitude equal to the differencevéen the value of the null and

maximum value of the azimuth plane at the frequeAdlyother points in the azimuth

plane are zeroed, also the plot in figure 3.8 al®dr8present the decomposition on a

single frame basis.

To estimate the magnitude of frequency azimuthtspgam we define:

AZI(7T, W) o — AZ(T, ) i1
0, Otherwise

, If AZI(T, w,i) = AZI(T, w)

AZI(T, w, 1) :{ (3.32)

Azr(r,w, i) = " (3.33)

AZI(T, W) 0y = AZIT, W) s 1 Azi(r, 0,1) = Azr(r, @)
0, Otherwise

AMPLTUDE 0
y

T

e
e
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e

FIGURE 3.9: THE PLOT DISPLAYS THE ENERGY DISTRIBUTION OF SOURCE ACROSS THE
STEREO FILED WITH RESPECT TO TIME . (A source in the centre can clearly be seen as
well as several others less prominent sourcesarieth and right regions of the stereo
field.) [Coyle 07]

From figure 3.9, by summing energy at all frequeadocated at different points along
the azimuth axis an energy distribution plot emsrgehese peaks are used with the
original bin phases to synthesise the source presémat azimuth. On the other hand, the

plot shown in figure 3.9 is the ideal case thatifarmonic overlap between two sources.

3.4.3 Problem with ADRess

In practice, a single frequency bin may containrgpérom multiple sources and also

each source in a mixture is not strictly orthogomith every other source. Then the peaks
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of these frequencies drift away from a source posiind lead to locate at an erroneous
azimuth where there may or may not be a sourcethiar words: there are two or more
sources contributing to one frequency bin of thé&=BB&nd this results in sources not
grouping perfectly on the azimuth planes. This ialled “azimuth-smearing
phenomenon” which results in frequencies beinguead from the resynthesis of the
target source. Therefore, an “azimuth subspacéhividtis defined, such thak H < .
This permits including peaks that have drifted aviieyn the target azimuth in the
resynthesis of the source. Two types of “azimuthspace width'H are:

* A wide azimuth subspace will result in worse ramtiof nearby sources.

« A narrow azimuth subspace will lead to poor resgait and missing harmonics
(peak).

Meanwhile, an extra term the “discrimination index$ also introduced at this point,
where 0<d < B. Thisindex, d , along with the azimuth subspace widtH, , will define

what portion of the frequency-azimuth plane is &otied for resynthesis.

3.4.4 Resynthesis

Collectively d and H will define what portion of the azimuth frequenchame will be
used for resynthesis. In practice, we set the ahiswbspace to spaBdrry 04b] [Barry
04d from d-(H/2)tod +(H/2). The peaks for resynthesis are extracted using,

i=d+H/2

Yaw= Y Adre) (3.34)

i=d-H/2
Where Az is the combinedzl- Azrinverse azimuth frequency plane amds the output
time frequency points. The resultantmust be left and right channel, each channel
containing only the bin magnitudes pertaining pagicular azimuth subspace as defined
by d andH. The bin phases from the original FFT are useesgnthesis the extracted
source. Thus, the magnitude and phase componeeadi bin are combined and
converted from polar to complex form. The azimuithspace is then resynthesisd using

the Inverse Short Time Fourier Transform (ISTFEg squation 3.35.

+jan
N

X(n) :%gY(r,a)) e (3.35)

WhereX is the output signal rendition. The resynthesisgetirames are then recombined

using a simple overlap and add sch¢Beary 04c].
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In practice, the resynthesis is not perfect duthéofact of the power spectrum for each
frame and source is an estimate. The windowingtfonghamming window) is not
preserved and therefore the frames at the outpuibtioverlap perfectly. At the frame
boundaries, there may be some distortion. Idealyneed smoother frame transitions, so
it can be resolved by multiplying the output fralme a suitable windowing function
[Barry 04c]. In another words, by controlling the parametieand H be set subjectively

until the required separation is achieved.

3.5 Conclusions
ICA is a very general-purpose statistical technitina is used to find underlying factors

by analyzing a set of observed random data. Thbsereed random data are linearly
transformed into components that are maximally peselent of each other. ICA was
originally developed to deal with sound source s&i@n for audio processing, but now
has been widely used in many different areas ssithoanedical signal processing, image
processing, telecommunications, and econometncaddlition, ICA can be estimated as
a latent variable model. There are two approachasdan be used to estimate ICA:
optimization of the maximum of non-gaussianity ¢enused for the estimation of the
ICA model; alternatively, maximum likelihood estititan or minimization of mutual

information can also be used to estimate ICA.

PCA is a widely used statistical technique in mapplications. It can be used to perform
data compression while it can also be used to aeahata sets. However, PCA is not
commonly associated with sound source separatiom fact that all the eigenvectors are
orthogonal makes this technique useless for moduneis, except artificial constructions

where the columns of the mixing matrix are orthao&ven though this method is of

little use for the separation of audio signalss tkiiscussion gives a geometrical
interpretation of the separation problem that camseful in the following discussion of

other techniques.

DUET is another technique which can be used fond@ource separation. Theoretically
it can separate any number of sources using justntvxed records if the sources are
W-Disjoint orthogonal with each other. This techreqis based on the fact that all

frequencies coming from one source should havesdéimee attenuation and time delay
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relative to the microphones. DUET is well suitechtonan speech separation; however,
due to its assumption that all sources are W-Disjorthogonal with each other, its
performance of musical signal separation is nofj@sd as human speech separation.
Nevertheless, using DUET to separate anechoicalkeanand stereophonic music

streams is an interesting research topic.

The ADRess algorithm is a new technique that cafopa sound source separation by
using the idea that sources occupy unique azimagitipns in the frequency-azimuth
plane. This algorithm breaks down the sound mixiint@ frequency-azimuth subspaces,
these subspaces can then be resynthesised acctwditiferent sources, resulting in
source separation. In addition, the ADRess algorighable to separate multiple sources
from only two mixtures. This feature makes it cdpabf enhancing sound quality in
many areas. One of the possible applications tdthadding a second microphone in the
mobile phone, the algorithm can perform noise rédo@nd sound quality enhancement

in the mobile communication.
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4. NMF algorithm

4.1 Introduction
In real-world many data or signals are non-negatinel the corresponding hidden

components have a physical meaning only when nativeg However, the data or
variables with constrains such as sparsity andmeativity is in order to seek a trade-off
between the two goals of interpretability and statal fidelity. In other words, we should
make sure the estimated data components have phgsicse and meaning; also need

explain these data components are consistent andiay impurities (external noise).

Why non-negative and sparsity constrains? In géneoanpositional data are natural
representations of the variables (features) of sehm@e or we call it is a sample space.
For example, in image processing, involved varigbled parameters are corresponded to
pixels, and non-negative sparse decompositionlaset to extraction of relevant parts
from the targeted imagflLee 99] Furthermore, it is note that non-negative matrix
factorization (NMF) is an additive model which doest allow subtraction; therefore it
often quantitatively describes that parts that casepthe whole object. In other words,

NMF is usually to be considered as a parts-baga@sentation.

The basic NMF problem can be stated as follows:

Give a nonnegative data matrix OR"™and a reduced rarf¥, find two nonnegative

matrices W ORY*®and H OR" which factorize V as well as possible.
R
V=WH ,V=WH +E, Vi =D W, (4.1)
=1

whereR < min{ M, N} is positive integer. The matrif JR"" represents approximation

error.

4.2 Cost function
It is interesting to note that the NMF problem ¢tenconsidered as natural extension of

Nonnegative Least Squares (NLS) problem formulasdhe following optimization

problem.
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In the NMF algorithm, Lee and Seufigee 99] suggested an approach similar to that
used in Expectation- Maximization algorithms torate/ely update the factorization
based on a given objective function. Two convergi?éMF algorithms were introduced
by them, each seeking to minimize a different abjeection or distance measure with a
particular iterative update strategy chosen for iitgplementation ease and each
optimizing its own measure of reconstruction qyalfirst measure is the Euclidean

distance,
1
Deo (V. W,H) = [V -WH I (4.2)

In computing an NMF using the Euclidean Distancgofithm, we wish find factors,
W andH , that minimize the objective function. In orde@lance algorithm complexity
and convergence speed and we use the followingpticdtive update rules:
VHT. WV
Wi = W [ —]T“ ' j < [T b (4.3)
[WHH T, [WTWH],

Where [[} indicates that the noted divisions and multiplicat are computed

element-by element.

The second objective function commonly used infzaktmeasure is the divergence; we

called a generalized version of the Kullback-Leibtivergence, (also called the

I-divergence)Sajda 03]
- Vik
D (VIIW H)=>"| v, log—%——v, +WH ], (4.4)
ik [WH]|k

The above objective functidp,, is not a distance measure due to it is not symmetric in
V and approximationVH. In this case, D,, reduces to the Kullback-Leibler

information measure used in statistics that quantifies in lowg ¢lose a probability
distributionV is to a model distributiowWH , zero if the distributions match exactly and
can potentially equal infinity. In addition, this object fuoctiis related to likelihood of
generating the columnsYhfrom the basi®V and coefficient$l . Same again, in order to
balance complexity and convergence speed, the following updatearelemmonly
used:

> w (v /[WHI,)

Zi'\:lvvii

> (v [TWHT) by

Ij J] N
Zk:l hlk

, hy < hy

(4.5)
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where the subscripts again indicate element by@hivision or multiplications.

Currently most existing approaches minimize onlye dkind of cost function by
alternately switching between sets of parametershis thesis we use a more general
approach (algorithm) in which instead of one castction we use called multi-layer
NMF using alternating minimization of two cost faionis; one of them is minimized
with respect t&V and the other one with respectHo The following pseudo code

represents most NMF algorithm to AEC applicatioscdssed in next two chapters.

Algorithm 4.1: Multi-layer NMF two cost function minimization

Input: VORY™; input matrix data. R rank of factorization

Output: W ORY®andH ORY"; the given cost functions are minimized.

1 Begin

2 H=V ,W=|

3 forl=1toLdo

4 Initialize randomlyw,, andH

5 repeat

v H(, =arg HT'EQ{ Dz(H W, H (|))} for fixedW,,
8 untila convergence condition is met
9 H=H,

10 W« WW,,

11 end

12 End

Table 4.1: Multi-layer NMF using alternating minimi zation of two cost function

Here is the MATLAB function to perform basic NMFgakithm which is mainly used

in the rest of the thesis:

function  [H,W] = NMF(spec,R,num_iter);
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V = abs(spec(;,1:513))";

index = size(V); % must be nonnegative
M = index(1,1);
N = index(1,2);

W = rand(M,R); % random initialization
H = rand(R,N);

num_iter = 100; % can be adjusted

for i=1:1:num_iter
W = W.*((V./(W*H+1e-9))*H')./(ones(M,N)*H");
H = HX(W™*(V./(W*H+1e-9)))./(W'*ones(M,N));
end

Table 4.2: Standard NMF Algrithm in MATLAB Form

4.3 Initialization of NMF
The motivation behind NMF is that besides the disi@mality reduction sought in

many image or signal processing applications. Amed, the NMF problem is a more
general instance of the case where the two nonregaitrices whose product exactly
equals the original matrix. In common sense, therano guarantee that an exact
nonnegative factorization exists for arbitrdRywhich is rank of approximation. It is
known, however, that ifVv>=0 , then the nonnegative rank and
nonnegativeNV andH having that number as rank so thNat WH holds exactly
[Gregory 83]. Furthermore, NMF is a part of nonconvex optimizatproblem with
inequality constraints and iterative methods beconezessary for its solution
[Bertsekas 99][Salakhutdinov 03].However, the current NMF algorithms typically
converge comparative slowly and then at local mainMost algorithms for NMF are
iterative and required initial values W andH , and many authors prescribe
initializing W andH with random non-negative numbers. A suitable chasiialization,
can lead to faster convergence, and since thei@olot most NMF algorithm problems
is not unique, different initializations can leaddifferent solutions.

4.3.1 Optimization problem

The solution and convergence provided by the NMjorthm usually highly depend
on initial conditions, typically starting guess was, especially in a multivariate context.
Therefore, it is important to have efficient andnsigtent ways for initialization

matricesV andH . Due to the iterative nature of NMF algorithms,shof them in the
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literature use random nonnegative initialization(fd/ ,H ). Iterates converge to a local
minimum and poor initializations also often regualtslow convergence, and in certain
instances may lead even to an incorrect or irrelegalution which we aim to. The
problem of selecting an appropriate starting pantstarting initialization matrices
becomes even more complicated for large-scale NMBIpms[Dhillon 01] and when
certain structures or constraints are imposed erfabtorized matrices involved. In the
real time case, initialization in NMF plays a keje since the objective function to be
minimized may have local minima, and the intrirgi@rnating minimization in NMF is
nonconvex, even though the objective functionrigtyy convex with respect to one set
of variables. The issues of initialization in NMRvJe been widely discussed in the

literature[Baeza 92] [Carmona 06] [Ruspini 69].

4.3.2 Basic initialization for NMF algorithm

As a rule of thumb, we can obtain a robust init@ion using the following three steps
which the main idea is to find better initial estitdés with the multi-start initialization
algorithm:

» First, we can generat® (number of restarts) by a search method to initial
matricesVandH . This could be based on random starts or the oditpm a
simple conventional NMF algorithm. The parame&elepends on the number of
required iterations. We typically s8between 15 and 20.

* Run a specific NMF algorithm for each set of ifitaatrices and with a fixed
but small number of iterations (15-20). As a resiké NMF algorithm provides
Sinitial estimates of the matrice¢ andH .

+ Select the estimates (“candidates”), we denotedt & and H
correspond to the lowest value of the cost func{tbe best likelihood) among
theRtrials as initial values for the final factorizati.

The following pseudo code represents above steps:

Algorithm 4.2:  Multi-start initialization
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Input: vV ORY™: input matrix data,

R: rank of factorization, S: number of restarts,

Kinit, Ksin: number of alternating steps for initialization asmmpletion

Output: W ORY®andH ORT"; the given cost functions are minimized.

1 Begin

2 parfor s = 1 toSdo % process in parallel mode
3 Initialize randomIyw © orH©

4 {W® HO} — nmf_algorithr{v WO H © K, )

5 d,=D(VIWOH®)

6 endfor

7 S, =arg min._.d,
8 {wW,H} nmf_algorithn'(v W (Snin) H (Snin) Kfin)

9 End

Table 4.3: Multi-start initialization to initial NM F alogorithm

Thus, the multi-start initialization selects thdial estimates foww andH which give

the steepest decrease in the assumed objective) (basction D(V [|[WH) via

alternating steps.

4.3.3 Termination condition

In many practical situations, the iterations uguatntinue until some combinations of
termination conditions or stopping criteria areiged. There are several possible
stopping criteria for the iteration algorithm usedNMF:
« The cost function achieves a zero-value or a vistebelow a given threshadd
also during the NMF divergence updating, the stogmiriterion can be adjusted,

for example: Frobenius norm of cost function,
~ ~ 2 ~
DY (VIVW)=lv V| <g, VO =wOH (4.6)
F
V is estimated value.
e There is little or no improvement between successiterations in the

minimization of a cost function, for example: Frahes norm of the estimated

matrices,
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“<e 4.7)

F

D'(:k+1) (V(k+1) 1% (k)) — ”\/ () ] (k1)

or Ratio of the distance
‘D'(:k) _ D'(:k—l)‘
o <e (4.8)
* There s little or no change in the updates fotdamatricedVV andH .
e The number of iterations achieves or exceeds aefirmdi maximum number of

iterations and the maximum number of iterations akn be adjusted.

4.4 Convolutive NMF
The Convolutive NMF (CNMF) is a natural extensiondageneralization of the

standard NMF. The standard NMF represents regutapgating patterns which span
multiple columns of th¥ matrix using a number of different bases to desdfie entire
sequence. CNMF uses a single basis function tlaatssifhe pattern length. This kind of
situation can be very frequently found when analysiudio signals. In the Convolutive
NMF, we process a set of nonnegative matrices ttenps which are horizontally
shifted (or time delayed) versions of the primargtiix W [Zass 05] In the simplest

form the CNMF can be defined as (see Figure: 4.1)

Wo

(M %R)

Wi

Wit

FIGURE 4.1:1LLUSTRATION OF CONVOLUTION NMF
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In the previous section, we saw the NMF uses aixnatoduct V =WH to reconstruct
the estimated data mathk, in the convolutive Non-Negative Matrix Factorizatithey

extend this expression to:

T1 [
V=YW, H+E (4.9)

=0

—_

where V OR"Y"is a given input data matrix to be decompos®d,(1R"Y®is a set of
0-
unknown nonnegative matriceld,=H OR™" is the matrix representing coding

to
information of the source (such as position ofvation and it's amplitude). Hekis a

t-
t column shifted version &i. In other words,H denotes the positions (columns)
shifting operator to the right, with the columnsftgd in from outside the matrix set to

zero. This shift (sample-delay) is performed by asib operator denoted @,

(-)performs the reverse. The matrk R represents approximation error.

Thei™ column of W, describes the spectrum of thebjectt time steps after the object

has begun.

Equation 4.12 is a summation of convolution operetibetween corresponding elements

from a set of two-dimensional basd/sand a set of weights .

The set of" columns of W (t) defines a two-dimensional structure. This matriX e

shifted and scaled by convolution across the axisvith thei™ row ofH . The resulting
reconstruction will be a summation of all the basiavolution results for each of te

bases.

The estimation of the appropriate set of matrilds) and H to approximaté/ is based

on the framework of NMF that Lee and Seung useflLée 99] In accordance to the

NMF cost function, they defined the Convolutive NNést function as:
V -~
D=||Ve In(vj |-V +V |} (4.10)

Where V is the approximation o¥ defined as:
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P e to
V=) W(t)H (4.11)
t=0
They decomposed the above cost function to a sesfesimultaneous NMF

approximations according to the linearity propedgge for each value df Then they
optimized the above cost function by optimizingsteet off NMF approximations. For
each NMF approximation they updated the equivaléfty and the appropriately shifted
H. This gives the convolutive NMF updates equatwhgh are:

it e
H=He— VI woy=w .Y (4.12)
W(t)" 1 1[;;

They updatedH andW(t) in every updating iteration and eactctually for each, W(t)
is updated by the corresponding NM#ut H is shared and shifted acrosstalin an
iteration. UpdateN(t) andH for eacht may result in a mistaken estimatetbfwith the
update fot = T —1 dominating over others. Therefore it is best tdatp allW(t) first and

then assign tél the average of all the NMF sub-problems:

wor 3
H=H- W) 0 , U1 (4.13)

In terms of computational complexity this technigliepends mostly oh. If T = 1 then it
reduces to standard NMF, otherwise it is burdenitd @xtra matrix updates equivalent
to one NMF per unit of [Smaragdis 07]

In addition, we utilize this idea, realize it inetMATLAB simulation environment and
implement it to perform the specific applicationiethis Acoustic Echo Cancellation.
Experimental results are presented in chapter 6rendgill show both NMF and CNMF

approached to acoustic echo cancellation.

4.5 Conclusions
In this chapter we have presented two differentel(NMF and CNMF), graphical and

mathematical representations for NMF and the rélateatrix factorizations and
decompositions. Our emphasis has been on the fatioml of the problems and
establishing relationships and links among differeadels. Each model usually provides

a different interpretation of the data and may haiféerent applications. Various
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equivalent representations have been presentedhwhit serve as a basis for the

development of learning algorithms in next two deep
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5. Acoustic echo cancellation MATLAB experiment

This chapter is organized as follows: in sectidh\se present a detailed description of
numerical aspects of the Least Mean Square (LM&rithm. The second section is
focused on the different versions of the LMS altjon simulation in MATLAB and an
experiment result will be presented. In section 6/:& use two set of NMF experiments
(standard NMF and convolution NMF) to perform AEThe convolution NMF
experiment is based on the process of using stdndMF. The purpose of these
experiments is finding a better solution for AEGlasomparing the results with LMS

counterparts.

5.1 Least Mean Square Solution for Acoustic Echo Cancellation

5.1.1 Steepest Decent Algorithm

The Steepest Decent algorithm is a method of gnadiecent minimization or an
“adaptive” approach. We can find a single globahimum corresponding to the

optimum weights based on the quadratic cost functio

Formally the gradient is defined as:

03
g=0,J=— (5.1)

Sincegis the direction of steepest asceggives us the direction of steepest descent.
The iterative procedure of the steepest or gradieatent method as follows:

Start with an arbitrary initial weights vectors, ,k =0

Calculate the gradiegf = 0‘\3/:/] =2[Rw, —p]

k

Update the weights vector in the direction of sestplescent using the rule:
Wi =Wy~ MGy (5.2)
Whereu is a positive constant known as the step sizeawnieg rate.

Set k = k+1and repeat until the algorithm converges.
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5.1.2 LMS Derivation

It is simple to derive the Least-Mean-Square basethe steepest decent algorithm. We
have Mean Square Error (MSE) cost functiohw)=Ed’]-2w'p+w'Rw ,
bothd, and x, are jointly wide-sense stationary. Also we haveWiener Solution (Eq.
53w =R7p.
Therefore, a steepest-decent-based algorithm casdiktto search the Wiener solution as
follows:
Wi =W, — 4G,

=W, ~UFP + Rw,]

=W, + 20 dx, _XTkaWk]

= Wk + Zuekxk
This is the Least-mean-square algorithm that waggeed by Bernard Widrow in the late
1960s[Widrow 60].

(5.3)

5.1.3 Gradient behaviour
The ideal search direction is on the MSE surfagettie optimum coefficient vector
solution (Eg. 5.8). In the LMS algorithm, instar¢ans estimates & andp are used to
determine the search direction:

gt =2[x, x;w, —d.x,] (5.4)
In general, the LMS gradient direction has the ¢&grmy to approach the ideal gradient

direction since for a fixed coefficient vector (@t weight factoryv and its convergence

behaviour is different from the steepest-decentritlyn counterpart. Hence,
@) = 2{ Elx 1w~ B dx]}
= gW

Under an ergodic condition, the average directamus$ tay,, with a fixedw vector when

(5.5)

calculated for a large number of inputs and refesesignals.

5.1.4 Condition for the LMS convergence

Determine the range of convergence fagtof the LMS algorithm. Firstly, we should

know the error in the filter coefficients as rethte the ideal coefficient vectar* , then
gives:

Aw, =w, —w*, (5.6)
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Using Eq.5.6 the gradiegtis given by:
0, = RAw, (5.7)
and the steepest-decent update wje,=w, — uRAw,, we have:
W,,, =W, —2URAW, (5.8)
Subtractingv* from both sides and colleting terms gives:

—\W* — —\W* =
= W,,, ~W"=w, ~W* 2 yURAwW,

(5.9)
= Aw,,, =Aw, - 2URAW

Finally we obtain:

Aw,,, =[I —2uR]Aw, (5.10)
If it is assumed that the elementsxpfire statistically independent of the element
of Aw, ande, ; the expected error in the coefficient vector frop 5.10 is simplified as
follows:

E[Aw, ] =(1 -2 4R) E[Aw,] (5.11)
Starting with an initial weight deviatiodw, =w_ —w* and it is in order to guarantee

convergence, so the condition we requir!(iawis&wk =0 and hence:
limf ! -2 uR]* =0 (5.12)

To find acceptable values far, we can use the eigenvalue/eigenvector decomposifi
R.
SoR can be written 8AQ" whereA is the diagonal eigenvalue matrix & andQ is the

corresponding orthonormal eigenvector matrix. TEq®.12 becomes:
lim[1 -24QAQ™)]* =0 (5.13)
We can rewrite Eq.5.13 using the matrix calculationfact
thatQQ" =Q'Q =1 andQRQ" [ =MR'M T:
im[QQ" ~24(QAQ)]* =0
= lim{ -2auNQ ' =0 (5.14)
= lim[Q1 -247]'Q"] =0

Since is the constant eigenvector matrix, we caipkiy Eq.5.14 and gives:
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limf | -2 uN]* =0
[1-2uA ] 0 0
= im o [1- zmz]k o “o (5.15)
0 0 o -2
Therefore, for the convergence we require:
II(i[rolo[l—z,u/li]" =0 forallA (5.16)

Thus, it provides:[1- 244,/ < 1.

The condition for convergence (stability) of theamef the weight vector is:

0<y<)li (5.17)

Here,__is the largest eigenvalue of the input correlatiatrixR = x,x, .The value
of ;in this range guarantees that all elements of idggothal matrix in the Eq.5.15 tend to
zero ak - o . The critically damped point is given dy- 244 = Owhich we get a step

size'y—i
. - 2A .

5.1.5 Rate of convergence of LMS algorithm

The rate of convergence of LMS algorithm is ideditio the Steepest-Decent algorithm.
A useful way of quantifying rate of convergencedagneasure it in terms of equivalent
weight error exponential decay time constant akesch of the principal axes, gives:

exp(—rkj = [1- 2uA | (5.18)

Then solving for the time constant in termsmf, gives,
-1
Tmax =
IN[L—2A,,]

The largest time constant corresponds to the sstaigenvalue and it can determine the

(5.19)

rate of convergence of the overall algorithm. Byfideg a normalized step size

Hr

max

(convergence factory/ = where0 <y, <1for stability. Eq.5.19 can be rewritten as:
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r = 1 = 1 (5.20)

A 2U
In|1- 24, 2o | n|1- S5
”{ ”umaj { c<R>}

HereC(R) =jﬂis called condition number &. By approximatiomn(1—x) = —xfor

max

smallx, Eq.5.20 gives,,, U C;(R)

for poorly conditioned problem. W of the can see
A

that the rate of convergence of the LMS algoritbrdirectly proportional to the condition
number of the input correlation matrix and inveysaloportional to the normalized step

size.

We can rewrite Eq. 5.19 as:

1
Tmax =
2uA

(5.21)
The constant above is for the convergence of thghteto their optimum values. In
addition, the corresponding learning curve timestant is defined as:

T 1

T =
MSE 2 4

(5.22)

min

5.1.6 Steps associated with the NLMS algorithm

An alternative formulation of LMS-based algorithmadwn as the Normalized Least
Mean Square algorithm (NLMS).The convergence faistehosen with the objective of

achieving a faster convergence. The weight updd¢eis defined as:

X
W, =W, +2u—XK (5.23)
k+1 k X'I[Xk

and guarantees the convergence whew <1. The normalized LMS algorithm usually

converges faster than the conventional LMS algorjtisince it utilizes a variable

convergence factor to obtain the reduction of mistacous output error. The major

advantage of NLMS is that the learning rate is peelent ok, x, . However, the

convergence factgris usually chosen as fixed value in the NLMS inesrib control the

misadjustment (see eq. 5.29) since all the deduatare based on instantaneous values

of the squared errors and not on the MSE. Additicm@arametershould be added in

order to avoid large steps whelx, becomes small. The parameterlso means it can
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overcome potential numerical instability in the apof the weights. In practise, a small
positive adaption constand (usually far smaller than 1) multiplies the stepesto
achieve a proper compromise between the convergeteeand the misadjustment
[Haykin 02]. The updated coefficient of NLMS is given by:

X
Wy =W, + ZuEVG;—XiX (5.24)
k™ k

In summary, there are similar processes to the aM8rithm as follows:

1) Initial condition: input signaf and weight vectow, =[0,---,0]' ,k=0,1,2,...
2) The convergence factords p<1.

3) yis a small constant.

Calculate the output for the current training ingyt=w'x,

Estimate the errorg, = d, —

GXk

Update the weight vectomw,,, =w, +2u =
EYF X X

with positive constant step size

5.1.7 Excess Mean-Square Error and Misadjustment

The LMS algorithm uses a noisy estimate of the igrdadhe Mean Square error (MSE).
Thus, misadjustment is defined as the ratio oetteess MSE to the minimum MSE and
is a measure the performance of the adaptive psdraasks the true Wiener solution —i.e.

it is a measure of the “cost of adaptability”.

The excess in the Mean Square Error is given by:
Excess MSE E[J,, - J,,] = EAw,RAW,] = Em;Am] (5.25)
Since Aw, =w, —w* and Ais diagonal as mentioned before, this can be wrii® a

sum (non-matrix form):

N+1

Juse = 2 AEIN] (5.26)

If the LMS has converged the only variation in Wngights will be due to gradient noise

causing the weights to the wander around the mimmalue. Therefore,
E[ n]lz(] = /’I‘]min (527)

And the excess MSE formula becomes:

57



Optimal Algorithms for Blind Source Separation
-Application to Acoustic Echo Cancellation

N+1

Juse zmeinZAi = HItrR] (5.28)

i=1
Finally, we obtain the NLMS misadjustmévit,is defined as

Excess MSE_ pJ,,,,tr[R]
J. J

min min

M =

= itrR] (5.29)

The trade-off analysis among the rate of converggtie amount of excess mean-square
error, and the ability of the adaption to track signal is important. Thus misadjustment
is directly proportional to step-size. We thereftuiave to trade rate of adaption with

accuracy as measured by misadjustment.

5.2 Using different LMS Algorithms to Perform AEC

5.2.1 Experiment principles and procedure

The experiment is about the normalized least meprare (LMS) algorithm. The
application in this experiment is echo cancellaiioneal-time VolP scenario. Actually,
we recorded the speech data into MATLAB as tedtiai.. Here we need to point out,
is that echo can't origin from a VolP network. Bdélay time due to codec and
buffering quickly makes even the slightest echoengad very annoying. Echo is
generated by digital with 4 wire to analogue witlviee conversions either in the public
switched telephone network (PSTM)s aforementioned chapter five, there are a couple

of mechanisms to prevent echo thaERLE (Echo Return Loss Enhance).

ERLEis often named echo cancellERLEis expressed idB. The higher the value, the
better the echo canceller. Furtherm@&®&LE as a function of the discrete-time index
provides information about the convergence behasiai the canceller. The input
signal of an echo canceller system is often a $pesgnal. Speech signals are
non-stationary, which makes the choice of step gtieer difficult. One advantage of
the NLMS algorithm is the choice of its step sike.the previous section we have
detailed discussed LMS and NLMS in math form. Irs thection, we write a series
function via MATLAB simulation to perform echo cailation. Meanwhile, we will
compare theeRLEcurves of LMS and NLMS to tell why the NLMS do Wobetter
than the stand LMS for input speech signal witbrggrvarying amplitude. To compare
LMS and NLMS, we also introduced another more &ffit LMS algorithm named
FastLMS.
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In the experiment we used the setup shown in figute
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FIGURE 5.1: AEC OPERATION IN THE ROOMACOUSTIC ENVIRONEMENT

In the simulation, we need to create three funstiwhich areerle.m Ims.m nims.mand
flms.mto perform echo cancelation and compare results.

1) Create a function that calculateéRLE given the residual errag(n) and the
output signal of the speech void@).

2) Create a function, which takes an input vectand a reference or desired signal
d(n), both of lengthN, and calculates the erra(n) for all time instants.
Furthermore, the input signal vectors required to be a column vector.

3) For the NLMS function, in order to lower the infaee of the input signal
amplitude on the gradient noise, the step sizeaked where it is divided by the
variance of the input signal(n). In case the input signal is zero, a positive
constant in the denominator prevents the step fsaa being infinite. This
modification of the standard LMS is referred tanasmalized LMS.

4) Lastly, for the FastLMS simulation, its algorithm an alternative frequency
domain implementation of the standard LMS whichiglesd to avoid circular
convolution effectgFerrara 80]. We will plot the speech signal's spectrum

over time, which shows the frequency representatfaie first 10k samples in
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the time-frequency plane. There are two versionsFa$tLMS which are

FastLMS without normalization and FastLMS with natination.

Additionally, in both LMS and NLMS testing functiome apply to the echo canceller
with M =128 filter length and a value for step stbat guarantees convergence and
allows the fastest adaptation possible. The inmas and the desired signal arand

d respectively. Again, in order to investigate thenwergence behaviour, use the
functionerle.

5.2.2 LMS and NLMS Simulation Results

LMS vs. NLMS (full MATLAB script, see Appendix A):

The following are LMS, NLMSERLEMATLAB function call script

function  [e,w]=Ims(mu,M,u,d)

Call:

Input arguments:
mu = step size, dim 1x1
M = filter length, dim 1x1
u = input signal, dim Nx1
d = desired signal, dim Nx1

Output arguments:
e = estimation error, dim Nx1
w = final filter coefficients, dim Mx1

% LMS
for n=M:N

uvec = u(n:-1:n-M+1);

e(n) = d(n)-w"*uvec;

w = w+mu*uvec*conj(e(n));
end

Table 5.1: Least Mean Square function call

function  [e,w]=nIms(mu,M,u,d,a)
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Call:

Input arguments:

mu = step size, dim 1x1
M = filter length, dim 1x1
u = input signal, dim Nx1
a = constant, dim 1x1

Output arguments:
e = estimation error, dim Nx1
w = final filter coefficients, dim Mx1

% NLMS
for n=M:N

uvec = u(n:-1:n-M+1);

e(n) = d(n)-w"*uvec;

w = w+mu/(a+uvec*uvec)*uvec*conj(e(n));
end

Table 5.2: Normalized Least Mean Square function dh

function [erle]=erle(e,d);

Call:

Input arguments:
e =residual echo, dim Nx1
d = desired signal, dim Nx1

Output arguments:
r = ERLE curve in dB

% ERLE
erle = 10*log10(d./e);

Table 5.3:ERLE function call

In the simulation experiment, we showed the perforoe of acoustic echo cancellation
by using LMS and NLMS. The speech data is colletted’l C6713 DSK real-time.
Figure 5.2 is comparison of two algorithms and ffiegb.3 isERLEvalue indB.
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Echo cancellation results
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FIGURE 5.2: ECHO CANCELLATION RESULTS PERFORMED BY LMS AND NLMS

Normalized LMS usually converges much more quickhyg efficiently than standard
LMS at very little extra cost; NLMS is very commgnlised in adaptive applications
such as AEC. Furthermore, in the LMS function athomn step size must be
nonnegative scalar, we useax_step_sizéo determine a reasonable range of step size
values for the speech signals being processednaheé NLMS function algorithm, the
step size must be a scalar between 0 and 2. Séftimgtep value to 1 provides the

fastest convergence.
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ERLE Comparison
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FIGURE 5.3: ERLE VALUE COMPARISON (LMS vs.NLMS)
lteration no. (*10% 0.1 0.4 0.6 0.8 1.2 1.4 1.4 1.J‘! 2.
ERLE(dB) for LMS | 1.412| 1.322] 1.318 4.120 21.8811.97| 32.88| 16.84| 17.01
ERLE(dB) for NLMS | 5.012| 7.84| 7.78§ 8.243 2294 12/687.12| 12.36| 12.21

Table 5.4:ERLE value comparison (LMS vs. NLMS)

5.2.3 FastLMS and NFastLMS Simulation Results

FastLMS vs. NFastLMS (full MATLAB script, see Appdir A):

function

[e,w] = fastims(st,M,u,d,gamma,P)
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Call:

Input arguments:

st = step size, dim 1x1

M = filter length, dim 1x1

u = input signal, dim Nx1

d = desired signal, dim Nx1

P = initial value, energy, dim 2Mx1

Output arguments:
e = estimation error, dim Nx1
w = final filter coefficients, dim Mx1

Table 6.5: Fast Least Mean Square function call
The Fast LMS algorithm involves three diagonal mat of dimension? by 2M (see

Table 5.5 function call), which hence contain omformation in their 21 diagonal
elements. A so called element-wise multiplicatidérth@ vectors operations are denoted
with a dot in MATLAB. In addition, the speech sigmare transformed from time
domain to frequency domain and backwards usindg-tiE and the IFFT, respectively.
Hence all vectors in MATLAB are complex valued, etbough they are real valued in
time domain. Here it is a problem when plotting trectors. Therefore, we have a
possible solution is to extract only the real pafATLAB. (See the MATLAB script

in Appendix A). We simply repeat part 1 experimensee how Fast LMS performance
over the LMS algorithm. And we still use the sampeexh signal as before.
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Echo cancellation results
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The above figures are the investigatione®LE for the different versions of the fast
LMS algorithm.

lteration no. (*10% 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.%

ERLE(dB) for FLMS 0.211) 0.198 2.601 4.10p 2.4998.127 | 3.111| 4.67

ERLE(dB) for NFLMS 431 | 3.981 5.322 17.99511.33| 33.544| 13.241] 16.77

Table 5.6:ERLE value comparison (FLMS vs. NFLMS)

We also observe the variation of the speech sigrsgéctrum over time. It can be done
using the MATLAB functionspectrum which shows the frequency representation of
the first 10k samples in the time-frequency pldfigure 5.6 shows the spectrumgram
of residual echo using Fast LMS without normaliaatiand figure 5.7 shows the
spectrumgram of residual echo using Fast LMS withhmalization, respectively. When
we use Fast LMS with normalization and it is cleasee the overall results are better

than the performance of the counterpart withoumadization

Spectrumgram of residual echo FastLMS without Normalization.
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FIGURE 5.6: THE SPECTRUMGRAM OF RESIDUAL ECHO USING FAST LMS wITHOUT
NORMALIZATION
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Spectrumgram of residual echo FastLMS with Normalization
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FIGURE 5.7: THE SPECTRUMGRAM OF RESIDUAL ECHO USING FAST LMS WITH
NORMALIZATION

5.2.4 Summary of the performance of LMS algorithm

LMS: is the simplest to implement and is stable mitee step size parameter is
selected appropriately see equation 5.10. Thisinegjyrior knowledge of the
input signal. It is not the best choice for thel{teme acoustic echo cancellation
system.

Normalized LMS: Simple to implement and computadityn efficient. Shows
very good attenuation and variable step size allstable performance with
non-stationary signals see equation 5.24. Thisaobvious choice for real time
implementation.

Fast LMS: is an alternative frequency domain imm@atation of the LMS type
algorithm designed to avoid circular convolutiofeets (overlapping output). It
provides both faster convergence and simple noratadin possibilities. This is
also the obvious choice for real time implementatio
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5.3 Using NMF to Perform AEC

5.3.1 Experiment Principle and procedure

In this experiment, we choose four different spestkéwo male and two female

speakers. These pre-recorded voice speeches wasercfrom audio databasedMIT

by their metadata. IN MATLAB, the database toollva# save the learning time of the

database structure and will enable us to focuslgorithmic aspects of source code.

The TIMIT database data can take the form of sentences veorghonemes. The

MATLAB query or read functions will return a celrray and its waveforms will

contain waveforms of entire sentence, words or phws, depends whether the query

result is sentence, word or phoneme. For more nmétion onTIMIT see[Lingustic

10].

We used both objective and subjective measurenmentmalyze the results of the

experiments. In the subjective listening testsamep of subjects listened to the input and

output speech to assess the effect of the algariffita objective analysis used three

objective ratios based on the input and output@pé® analyze the performance of the

each value of beta of NMF to perform AEC. Two aof three ratios were taken from a

standardized set of energy ratios definef/incent 05].

Signal to Interference Ratio (SIR), which meastinesamount of echo still left in

the returning near end speech,

SIR=10log,, (Hj (5.23)
nterf

Signal to Distortion Ratio (SDR) which measuresdh®unt of the distortion in

the original signal depends on the algorithm ajpiplie

_ ”Starget |F
SbR= 10'0910(”%merf + Crtef |F (524)

Wheregerf Is the amount of interference energy left in thepat, e,y er IS the
energy of processing artifacts left after procegsindsarge: the near end speech.
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» Signal to Artifacts energy Ratio is a measure eflével of artifacts, the signal to
artifacts ratio (SAR) defined as follows

1| Starget + Shert |fj

| | eartef ”?

SAR=10 Iogm( (5.25)

In the convolutive NMF experiments, we want to meashe level of echo reduction
during the pauses in speech recording, the enatgywhich is a measure of the level of
echo suppression, the echo reduction loss enhamtgERLE was employed (same

measurement in previous LMS experiments). It isnéef as follows

ERLE=10log, (%) (5.26)

wherey(t) is the echo signal are(t) is the echo after processing.

Each experimental testing mixture, consists of arereh speaker contribution and a
main farend contribution. Both these contributionere obtained by convolving
separate sentences of speech with the respectiosn Ropulse ResponseRIRS. In
order to test the echo suppression when there reeatend speech, also we need create

large pause in nearend utterances leaving judtEive response.

5.3.2 Conventional NMF Simulation results

In MATLAB implementation, we process mixture datarhe by frame. For each frame
we perform these two steps. In the training stegtly we train the near-end basis matrix
B, . we define two random matricBsandH , of size M x R and R x N, perform update
formulae to calculate get the suitable value Bqf. The original NMF uses

Kullback-Leibler divergence as the optimized castdtion, the update rules to calculate

B,and H, is given as:

W] L
H:H-TVéH,W =W-W1F!T (5.27)

Secondly perform the same procedure to calculatéathend basis, i.e. the echo basis B

for i=1:1:train_num_iter v
B n=B n.*(V./(B n*H +1le-9)*H | ")./(ones(M,N)* H n '+1e-9);
H n=H . *(B ,™*(V./(B n*H o +1e-9))./(B n "*ones(M,N)+1e-9);

end
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Table 5.7: Update rules of training basis using corentional NMF algorithm

After both near-end and far-end basis are trainegt step is forming the mixture basis.
This mixture basis contain both near-end and faresno basis and used to remove echo
from the input mixture daM .

Next step is matching, matches echo and near-esid tiathe correlated parts in the
mixture datd/ . The procedure is as follows:

* Using the mixture basB, and input mixture datd, trainH
* Get the near-end output matrix by multiplying treanrend parts of the mixture
basisB, with the correlated parts of the contribution meitti, .

» Get the far-end echo matrix by multiplying the &nd parts of the mixture basis

B,, with the correlated parts of the contribution maitti, .

for i=1:1:match_num_iter
Hm = Hm.*( Bm*(Vm./(Bm*Hm+1e-9)))./(Bm'™o nes(Mx,1))+1e-9);
if (i==match_num_iter-1)
Hnolate = Hm;

end
if (i ==match_num_iter-1)|(i == match_num_iter)
Bm =Bm . *((Vm./(Bm*Hm+1e 9))*Hm")./((o nes(Mx,1)*Hm"+1e-9);
end
end
Nearend(NumberOfFrame,:) = Bm(;,NearendFrames)*Hm( NearendFrames,:);
Echo(NumberOfFrame,:) = Bm(:,EchoFrame)*Hm(Echo Frame,:);

Table 5.8: Update rules of matching and removing pcess with original NMF

Finally we resynthesis, take IFFT translation & tiear-end data matrix and resynthesis
it for audio. Calculate the objective ratios usihg three objective measures described in

next section.

Nearend = [Nearend,fliplr(Nearend(:,2:512))];
[xf,yf] = pol2cart(angle(mix_frames), Nearend);
resyn = complex(xf,yf);

for i=1:1:num_frames
resyn(start:stop) = real(ifft(spec(i,:))) + res yn(start:stop);
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start = start + stepsize;
stop = stop + stepsize;
if stop >num_samples
break
end
end
Output_Nearend = resyn;

Table 5.9: Update rules of resynthesis process ofitput data

We choose male 1 and male 2 as sample speech enixtuhe following simulation

experiments. The energy ratio measurements regdtshow the first line of the table

in section 5.4.
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Far-end noise speech
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Mixture residual echo and near-end speech after NMF processing
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FIGURE 5.11:MIXTURE ECHO AND NEAR -END SPEECH AFTER NMF PROCESSING

5.3.3 Convolutive NMF Simulation Results

The implementation of convolutive NMF to perform@Arstic Echo Cancellation is using
the similar frame work as the conventional NMF. Tdrginal NMF process the data
frame by frame, i.e. each training and matching@dore only process one frame of data.
The convolutive NMF uses a singdamatrix which coverg frames of data instead of

one. In each updated iteration, first only upd@tg)and shift H for one frame fort
times, then uses the average valueVd(t)to updatéd . That's because updaté(t)

andH for eacht may result in a mistaken estimate dfwith the update fot = T -1

dominating over others.

W) [EV} {V} H
H=H°—V,W(t)=W(t)°V— (5.28)
w(t)' i 1[t|13|T

The process of convolutive NMF becomes:
* Read in a number of frames of mixture.
« Training near-end basis using convolutive NMF updanction in Eq. 5.28.
» Training echo basis using convolutive NMF updatecfion.

* Forming the mixture basis using near-end and eessb
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* Using the mixture basis and input mixture datantrai

* Get the near-end output matrix by multiplying treanrend parts of the mixture
basis with the correlated parts of the contributiatrixH .

» Get the far-end echo matrix by multiplying the &und parts of the mixture basis
with the correlated parts of the contribution meitti.

» Take IFFT translation of the near-end data matnck l@esynthesis it for audio

» Start process next frames of data

» Atfter all the frames are processed, calculate bjeative ratios of the output

speech

Hshift = H;

for t=1:1:4
Wt = Wtx((V./(Wt*Hshift+1e-9))*Hshift")./( ones(M,N)*Hshift'+1e-9);
W =W + Wt;
Hshift = circshift(Hshift,[0,1]);
Hshift(:,1) = 0;
end
W = WHt;
H = HX(W™*(V./(W*H+1e-9)))./(W™*ones(M,N)+ le-9);

Table 5.10: Update rules of convolutive NMF updatéunctions
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0.4

Mixture residual echo and near-end speech after CNMF processing
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FIGURE 5.15:MIXTURE ECHO AND NEAR -END SPEECH AFTER CNMF PROCESSING

5.4 Measurement results
SIR, SDR were used to measure the performance xaanms that contained both far-end

and near-end speech together. The results of tRe SIDR ratios are shown in the

following Tables. Note that these results are basedhe publicatiojZzhou 09] and

re-do the experiment on different PC specificatiamsl the results data have been
changed. The output 1 SDR and SIR is speaker depebdses results and output 2 is

speaker independent bases.

*« Conventional NMF

Near-end Far-end (Input Input [Putputl Output 1 Putput2 Outp ut 2
(echo) SDR dBSIRdB |SDRdB SIRdB |SDRdB SIRdB
Malel Male?2 [2.4238 2.5251| 9.2641  32.9233 9.3714  30.899%9
Male 2 Female 1{1.6504 1.6911| 5.5001  25.1911 3.3133 21.4144
Female 1 Female 2[3.5942 3.4521 | 8.0111  23.24223 7.7355  23.8413
Female 2 Male1l [4.1011 4.4915) 8.2955  27.011% 6.5611  28.18%0
Average 2.9424 3.0399 | 7.7677 27.091p 6.7453 26.0#62

Table 5.11: Conventional NMF Energy Ratio Measurenets
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Near-end  Far-end (echo)| ERLE (dB)
Male 1 Male 2 12.1555
Male 2 Female 1 14.3672
Female 1 Female 2 12.6888
Female 2 Male 1 12.0794
Average 12.8227

Table 5.12:ERLE for pauses in near end speech (Conventional NMF)

Convolutive NMF

Near-end Far-end (Input Input [Putputl Outputl Putput2 Outp ut 2
(echo) SDR dBSIRdB [SDRdB SIRdB [SDRdB SIR dB
Malel Male2 ([3.0112 2.9385| 9.2113  28.2303 9.0012  27.899%9
Male 2 Female 1{3.2988 3.3111| 6.4223  24.124% 6.7781  23.4144
Female 1 Female 22.6154 2.5908 | 8.7100  21.445Q 7.5644  21.8413
Female 2 Male1l ([3.0881 2.6557| 5.5221 18.0047 5.1229 18.18%0
Average 3.0036 2.8740 | 7.4664 22,9511 7.0067 22.8362

Table 5.13: Convolutive NMF Energy Ratio Measuremets

Near-end  Far-end (echo)| ERLE (dB)
Male 1 Male 2 10.5442
Male 2 Female 1 12.1142
Female 1 Female 2 11.0012
Female 2 Male 1 9.9912
Average 10.9127

Table 5.14:ERLE for pauses in near end speech (Convolutive NMF)

5.5 Discussion and conclusions
In the above both NMF and CNMF simulation experiteerwe use the randomly

chosen speakers to form the mixtures, two malenandemale speeches (Chosen from

the TIMIT database). Each experimental mixture hagear end speaker contribution

and a far end speaker contribution. From the resilthe figures in section 5.3, we can

find that both conventional NMF and convolutive NM&n give significant reduction

(approximate 8 t010% see figure 5.10, 5.11 and)5rilthe level of echo. Note that the

convolutive NMF approach has trade-off between aatadnal load and the level of

echo cancellation. In other words, in CNMF to conwre frames in one mixture gives

a more precise result or less residual echo, williteads to more computational load.
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Therefore, in the experiment we found that processight frames can give a best
balance between algorithms computational load. Thseults showed that the
convolutive NMF approach gives comparable perforreato the conventional NMF
but not better. However, as mentioned in chaptér we improve the initialization
problem instead of randomly choosing the initiduea then both NMF algorithms can

achieve better performance.

The widely used methods are based on differentstygfel east Mean Squares (LMS)
algorithms. And these methods all have limitationdifferent aspects. Recent research
[Paul 07] [Cahill 08] [Zhou 09] also revealed that acoustic echo cancellatioralsambe
performed by employing a monaural sound sourceragpa technique based on
Non-Negative Matrix Factorization (NMF), and sigo#nt echo suppression can be
achieved using this method, so using NMF approatiiere are a few advantages over
the LMS algorithm.

Firstly, consider the effect reverberation has orHmmeatrix from NMF decompositions of
audio spectrograms. The rowshbtontain a time varying gain for each basi$mwhich
contains the contribution the basis makes to thgture over time. Thél matrix is
normally a sparse matrix with activations occurringsingle spikes for anechoic speech.
However in echoic version, if the saWMematrix was used the activationsHrbecome
smeared. This is because the echoes in the spemtfest as repeated and smeared copies
of the anechoic spectrogram. The NMF representsetleehoes as repeated and scaled
copies of the origindl basis over time. This property of the NMF audio cépegram
enables the basis to be trained on anechoic sgaetthen can be used to separate echoic
speech. This applies to AEC as the reference sifiysalexcites a LEM system before

reaching the microphone.

Secondly, the effect of misdjustments is reducdte NMF does not estimate the LEM
filter thus it does not require further sampledhsf reference signal to converge to the new
room response like LMS, instead, it continuouslgd to the data present in the speech
signal. This also means that the length of the isgresponse is insignificant, as NMF will
use the best available bases (the reference digsad) to match the contribution from long
impulse responses. In the case of long LEM filtgrs LMS techniques usually fix the

length of the estimation filters.
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Lastly using this approach Doubletalk will havesledfect on this system, as this approach

uses a local speaker basis to match any near eedi§gahill 08].
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6. Real time hardware Implementation

6.1 Introduction
Speech echoes are normally raised from the acotmtigling between the loudspeaker

and microphone. Due to near(far)end acoustic cogpbsults in a disturbing echo at the
far(near)end. Therefore, echo control must be tsetsert sufficient echo return loss for
comfortable and smooth conversations. There arectvadlenging aspects of algorithm
convergence behaviour namely the large computdtemmaplexity and the ability of the

filter to track the changes in the acoustic couplin

The hardware implementation of this project is giesd to enable the illustration and
demonstration of acoustic echo cancellation (C faogy in real-time. The entire

experiment is involved MATLAB Simulink!, Real-time workshop and Embedded
Target for TIC6000 DSP toolboxes. They are usetinto for CCS (Code composer

Studio) which is real-time DSP IDE provided by TI.

6.2 Workstation setup and hardware profile
Most of the work presented in this chapter involtresdevelopment and testing of short

programs to demonstrate DSP concepts. To perfoerexiperiments described in the
chapter, the following tools are used:
The workstation is equipped with the following item

1) A Texas Instruments DSP starter kit (DSK) whichudes:

* The DSK package software Code Composer Studio (C@dth provides the
necessary software support tools. CSS providesntegrated development
environment (IDE), bringing together the C compilerssembler, linker,
debugger, and so on.

e A circuit board (the TMS320C6713 DSK is shown igute 6.1) containing a
digital signal processor and a 16-bit stereo cdde@nalogue signal input and
output.

* A universal synchronous bus (USB) cable that cotsnibe DSK board to a PC.

2) A standalone PC. The DSK board connects to the p@Bof the PC through
the USB cable included with the DSK package

3) An oscilloscope, spectrum analyser (optional) npbianes, and speakers
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The DSK package are powerful, yet relatively inexgee, with the necessary
hardware and software support tools for real-tingna processindTl O1][TI
02a][TI 02b]. The DSK board each include 16MB of synchronous dyoeRAM
and 512kB of flash memory. Four connectors on therdis provide analogue input
and output: MIC IN for microphone (it is mostly ase the experiment for speech
input), LINE IN for line input, LINE OUT for line otput, and HEADPHONE for a
headphone output (we use this port for catch thpubusignal or connect to the
external loudspeaker).

» !g’ii. y

TMS320C6713 DSK g,y

43
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THilTs
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FIGURE 6.1: TMS3206713BASED DSK BOARD: (A) PHYSICAL BOARD AND (B)
BLOCK DIAGRAM
(Courtesy of Texas Instruments)
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The DSK C6713 evaluation board installed withinmapde enclosure which consists of
top and bottom precision machined transparent glxipanels, those are then fastened
through the DSK board.

6.3 Real-time application setup

6.3.1 RTDX Technology

Real-Time Data Exchange (RTDY) is a technology developed by Texas Instruments
that provides effective real-time bi-directionalnomunication between a digital signal
processor (DSP) or microcontroller and a host appbn in other words, it allows
system developers to transfer data between a losputer (MATLAB) and targets
device (C6713 DSK) without interfering with the dat applicatiofirl 01]. This
bi-directional communication path provides for datdlection by the host as well as
host interaction with the running target applicati@TDX also enables host systems to

provide data stimulation to the target applicatdmal algorithmgDustin 02a].

6.3.2 RTDX Link to MATLAB

In this experiment, we illustrated the interfacéewsen MATLAB and the DSK using
RTDX. A buffer of data (i.e. speech wave file) aeghfrom MATLAB which running
on the host PC is set to the C6713 processor. Tkeutce program running on the
DSK increment each data value in the buffer andiseahe buffer of data back to
MATLAB. In other words, it creates two channelsaibigh RTDX: an input channel to
transfer data from MATLAB on the PC to the c671®gassor on the DSK and an
output channel to transfer data from the target D8Khe PC host. When the input
channel is enabled data are read or received as iomphe DSK from MATLAB. After
each data value in the buffer is incremented bgnloutput channel is enabled to write
the data to MATLAB. Note that the input and outgesignations are from target DSK.
There are real-time application literatuf@ustin 02][Dustin 03][Horst 05][Fu 02]
discussed the RTDX technology throughout Tl DSKgxh

6.4 Speech recognition Implementation
Speech recognition refers to the concept of reagmia speaker by his/her voice or

speech sample. Simply said speech recognition mgstntain two main modules:

feature extraction and classification.

82



Optimal Algorithms for Blind Source Separation
-Application to Acoustic Echo Cancellation

1) Feature extraction is a process that extracts dl smmount of data from the
voice signal that can be used to represent eachkspeShort-time spectral
analysis to Short-time Fourier Transform (STFT)YHe most common way to
characterize a speech signal. In addition, the fkégjuency cestrumoefficients
[Beth 99] are used to parametrically represent the speedalsigr the speaker

recognition task. The implementation steps showFigure 6.2.

Input Speech Sampling Framing/ - .
— e o —pp| Window
(Analog) (Digital) Blocking mdowing

Code Word Computing Computing ‘ FFT .
4—— Code Vector |g——— Mel < (Conversion
Using VQ Frequency to Frequency

Coefficients domain)

FIGURE 6.2 STEPS FOR SPEECH RECOGNITION IMPLEMENTATION

2) Classification consists of models for classifyindracted featured according to
the individual candidate speakers whose voices baea stored. The recorded
voice patterns of the speakers are used to derolasaification algorithm such

as vector quantization (VQAllen 01] is used.

6.5 Echo control Implementation
The following experiment illustrated analogue inpatd output using the TI DSK. They

are included in order to introduce both the DSKdiare and the CCS development
environment. The experiment programs demonstrateshes important concepts
associated with analogue-to-digital conversion,luding sampling, aliasing, and
reconstruction, additionally, they illustrated tiige of interrupts in order to implement
real-time applications using the DSK. Many of tlea@epts and techniques described in

the previous section are used again in this chapter

6.5.1 On board stereo codec for input and output

The experiment testing board C6713 DSK makes uskeoAIC23 codec for analogue
input and output. The analogue-to-digital conve®DC), or coder, is part of the

codec convert an analogue input signal into a seguef sample values (16 bit signal
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integer) to be processed by the digital signal @ssor (DSP). The digital-to-analogue
converter (DAC), or decoder, is part of the codmmnstructs an analogue output signal

from a sequence of sample value that have beeegsed by the DSP as well.

The AIC23 is a stereo audio codec based on sigita-technology[Norsworthy
97][Aziz 96][Candy 92]. Communication with the AIC23 codec for input andpuud
uses two multi-channel buffered serial ports (McBfSéh the C6713. McBSPO is used
as a unidirectional channel to send 16-bit controfd to the AIC23. McBSP1 is used
as a bidirectional channel to send and receivecadigtia. The codec can be configured

for data-transfer word lengths of 16 up to 32 bits.

In the experiment, we need to define DSK suppdes fivhich can initialize the DSK.
All the source files are written in C program. Th#owing functions defined in support

file and explained for testing purposes:

Main ¢ programme support file 6.1:c6713dskinit.c
Uintl6 inputsource = DSK6713 AIC23 INPUT_MIC;  s#lect input

void main()
{
short sample_data; //in this case we choosetsedal-time speech input
com_poll(); [l initialize DSK, codec, M&®
while(1)
{

sample_data = input_left_sample() // input sample
output_left sample(sample_data); //output sample
}
}

Table 6.1: Loop program using polling
Above C source file for a program, which simply iespinput samples read from the

AIC23 codec ADC back to the AIC23 codec DAC as atugamples is listed in table
6.1. Effectively, the MIC input socket is connectedraight through to the
HEADPHONE OUT socket on the DSK via the AIC23 coder the digital signal

processaor.

84



Optimal Algorithms for Blind Source Separation
-Application to Acoustic Echo Cancellation

6.5.2 Modifying program to create an echo

In the experiment, we create a simple echo spegdedding back a fraction of the
output of the delay line to its input. A fading ecéffect can be realized. It showed in

Figure 6.3.

Main ¢ programme 6.2:echo.c
Uintl6 inputsource = DSK6713 AIC23 INPUT_MIC;  s#lect input

#define gain 0.5 /I fraction of output feack (value between 0.0 to 1.0)
#define BUF_SIZE 8000 // length of delay (valwdvizeen 100 to 8000)

short input, output, delayed;

short buffer [BUF_SIZE];

int [;

interrupt void c_int () /linterrupt serviceutine

{
input = input_left_sample (); /l read neypuhsample
delayed = buffer [i]; /I read outpdtdelay line
output = input + delayed; /loutput surmetv and delayed
output_left_sample (output); /[buffer index

buffer [i] = input + delayed*gain; //store nemput and fraction of
//delayed value

if (++1 >= BUF_SIZE) 1=0; /Inew input sangthen increment

return;

}
void main()
{
for (I = 0; | < BUF_SIZE; i++)
buffer [i] = 0;
comm_intr(); [/l initialize DSKpdec, McBSP
while (1); I infinite loop
}

Table 6.2: fading echo program

The value of the constant BUF_SIZE determines taber of samples stored in the
array buffer and hence the duration of the delay. The valughef constantgain
determines the fraction of the output that is fedkbinto the delay line and hence the
rate at which the echo effect fades away. In thEeerent, we can set the valuegaiin

equal to or great than unity would cause instabitif the loop. Experiment with
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different values ofgain can be set as between 0 and 1 with 0.1 incremedt a
BUF_SIZE can be set as between 100 and 8000 witbrément.

+ - output
Time delay —b

input

gain

FIGURE 6.3: SIMPLE BLOCK DIAGRAM REPRESENTION OF FADING ECHO PROGRAM

6.5.3 Modifying program to create an echo control

In the experiment we will extend the fading echogoam to allow real-time adjustment

of gain and delay parameters of the echo effect.

Main ¢ programme 6.3:echo_control.c
Uintl6 inputsource = DSK6713 AIC23 INPUT_MIC;  s#lect input

#define MAX_BUF_SIZE 8000 //[set maximum lengfidelay
float gain = 0.5;

short buflength = 1000;

short buffer[MAX_BUF_SIZE]; /Istorage for prewis samples
short input, output, delayed;

intl=0;

interrupt void c_int () /linterrupt serviceutine

{
input = input_left_sample (); /l read nieyput sample
delayed = buffer [i]; /l read outmd delay line
output = input + delayed; //output sofmew and delayed
output_left_sample (output); /Ibuffer imde

buffer [i] = input + delayed*gain ; //store nemput and fraction of
//delayed value
if (++I >= MAX_BUF_SIZE) //new input samplaen increment
| = MAX_BUF_SIZE - buflength;
return;
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void main()

{
short sample_data; //in this case we choosetsidal-time speech input
com_poll(); [l initilize DSK, codec, McPS
while(1); /linfinite loop

}

Table 6.3: Echo programme with variable delay anddedback gain for controlling

In above mairecho_control.qorogram, array buffer is declared to be the maxrnsize
required, MAX_BUF_SIZE. To achieve a variable delayeger variabléuflegthis
used to control the length of the circular bufi@plemented using arrdyuffer. When
the value of the index, used to access element of the adpayfer, is incremented
beyond the maximum value allowable (MAX_BUF_SIZE)is reset not to zero as in
previous program see Table 6.2 but to (MAX_BUF_SHAitflength).

6.6 Notes and Conclusions
There are a few hardware setup information nedxzt toriefly explained in this section.

1) In the hardware implementation, we combined Codemg@ser Studio
(CCStudio) and MATLAB tools to perform the echo ttohtest. The CCStudio
IDE provides a graphical interface for using theleayeneration tools. For
example in thecho_control.prproject, CCStudio keeps track of all information
needed to build a target program or library. A ecbjrecords:

* Filenames of source code and object libraries

» Compiler, assembler, and linker options

* Include file dependencies
When we build a project with the CCStudio |Dthe appropriate code
generation tools are invoked to compile, assemndoté, link out program. For
more information, se@’1 01] or Tl online technical document

2) The experiment shows an echo effect based on étdimee DSK. The length of
echo is controlled by changing the buffer size whtte samples (real-time
speech voice) are stored. A dynamic change of the &ngth leads to reverb
effect. A fading effect with delaying echo is oloied with a sider. This is the

specific way to control the echo in the experiment.
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7. Conclusion and future work

An extensive review of optimum algorithms for bliedurce separation was presented,
as well as a review of Non-negative Matrix Factatizn (NMF) and Least Mean
Square (LMS) based approaches. Based on thesaveeitisvas concluded that using
different mathematical techniques to perform Acmugicho Cancellation (AEC), by
comparing results and considering the trade-offigsswe can find the best suitable
algorithm for the AEC problem.

This thesis demonstrated two research sub-topicdBL: the first employs different
versions of Least Mean Square algorithms to perfacoustic echo cancellation, we use
a dataset from real-time echo speech which is @ekeTl C6713 DSK. By comparing
the ERLE value, we can find best suitable version of LM$oathm which we
discussed in the experiment; the second topic ptedea new technique called
convolutive non-negative matrix factorization torfpem acoustic echo cancellation.
The two NMF experiments were implemented in MATLA&Bvironment by using the
same dataset of input speeches, performing the stefraining near-end and far-end
reference bases, forming mixture bases, usingdfezence bases separate the mixture
data, and finally resynthesis the required speeachip the mixture as the output speech.
Finally, the output speech is analysed by objeatmeasures included SDR, SIRRIE
and the comparable analytic data shown as a tabte. fAlthough the experiments of
convolutive NMF showed the new algorithm didn’t g@ia better performance than
conventional version, this can help further redearc modifying the algorithm or
combine the feature of different version of theoaiitym to give better performance.

Also the last part, we present a simple real-tigtf@econtrol implementation. It is based
on Tl C6713 development start kit. The real-timensgio let us understand how to
create and control echo by modifying the c¢ programction. Also use RTDX

Technology to connect MATLAB and DSK is anotherfusexperimental experience.

7.1 Future work
Further work on the topic of Convolutive NMF inckglcombining features of different

versions of NMF such as Local NMF (LNMF) or otheamttmematical tools, find the

optimal or best suitable algorithm for differentpépations such as AEC, musical
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separation, etc. Alternatively some of the nondimpost-processing techniques used to
improve LMS methods such as component zeroing cbeldemployed to improve

performancgVirtanen 07].

The nonnegative matrix factorization has many athges to alternative techniques for
processing such matrices, but it must be initidlized the initialization selected is
crucial to getting better solutions. It is an opssue[Amy 06] [Stefan 04]for NMF
algorithms research.

At present the algorithms described in this thesesall implemented in MATLAB. A
useful area for the future work would be the impdamation of these algorithms in C or
C++ which would result in a considerable reductionthe time required to run the
algorithms. Additionally, to implement the algornitk into real-time is also an important
future work. Hardware features such as computdtioaal, delay and floating or fixed
point operation of the hardware can affects théopeance of algorithms in the real-time
environment. Balancing and adjustment of the atgoriparameters are needed, translate

the algorithms into C orC++ is also required

In conclusion, the work undertaken has identifiednamber of possibilities for
improvement in acoustic echo cancellation approschiee technique implementations
demonstrated using sound source separation algwiguch as NMF can be further
improved by employing more efficient cost functioftsis hoped that future work will

further enhance the thrust of this research.
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Appendix A:

Least Mean Square MATLAB Script:
function [e,w]=Ims(mu,M,u,d)

% Call:

% [e,w]=Ims(mu,M,u,d);

%

% Input arguments:

% mu = step size, dim 1x1

% M = filter length, dim 1x1

% u =inputsignal, dim Nx1

% d = desired signal, dim Nx1

%

% Output arguments:

% e = estimation error, dim Nx1

% w = final filter coefficients, di m Mx1

%initial weights
w=zeros(M,1);

%length of input signal
N=length(u);

%make sure that u and d are column vectors
u=u(y);
d=d(:);

%LMS

for n=M:N
uvec=u(n:-1:n-M+1);
e(n)=d(n)-w*uvec;
w=w+mu*uvec*conj(e(n));

end

e=e(:)m;
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Normalized Least Mean Square MATLAB Script:
function  [e,w]=nlms(mu,M,u,d,a)

% Normalized LMS

% Call:

% [e,w]=nlms(mu,M,u,d,a);

%

% Input arguments:

% mu = step size, dim 1x1

% M = filter length, dim 1x1

% u =input signal, dim Nx1

% a =constant, dim 1x1

%

% Output arguments:

% e = estimation error, dim Nx1

% w = final filter coefficients, di m Mx1

%intial value 0
w=zeros(M,1);

%input signal length
N=length(u);

%make sure that u and d are colon vectors
u=u(:);
d=d(:);

%NLMS
for n=M:N
uvec=u(n:-1:n-M+1);
e(n)=d(n)-w™*uvec;
w=w+mu/(a+uvec™*uvec)*uvec*conj(e(n));
end
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Fast Least Mean Square MATLAB Script:
function [e,w]=fastims(alpha,M,u,d,gamma,P);
% Call:

% [e,w]=fastims(alpha,M,u,d,gamma,P);

%

% Input arguments:

% alpha =step size, dim 1x1

% M =filter length, dim 1x1

% u =input signal, dim Nx1

% d =desired signal, dim Nx1

% gamma =forgetting factor, dim 1x1

% P =initial value, energy, dim

%

% Output arguments:

% e =estimation error, dim Nx1

% w =final filter vector, dim M

%

% The length N must be chosen such that N
%

% initialization
W=zeros(2*M,1);
N=length(u);

% make sure that d and u are column vectors
d=d(y);
u=u(:);

e=d;

% no.of blocks
Blocks=N/M;

% loop, FastLMS
for k=1:Blocks-1

% block k-1, k; transformed input signal U(k)
Uvec=fft([u((k-1)*M+1:(k+1)*M)],2*M);

% block k, output signal y(k), last M elements
yvec=ifft(Uvec.*W);
yvec=yvec(M+1:2*M,1);

% block k; desired signal
dvec=d(k*M+1:(k+1)*M);

% block k, error signal
e(k*M+1:(k+1)*M,1)=dvec-yvec;

% transformation of estimation error
Evec=fft([zeros(M,1);e(k*M+1:(k+1)*M)],2*M);
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% estimated power
P=gamma*P+(1-gamma)*abs(Uvec)."2;

% block k, inverse of power
Dvec=L1./P;

% estimated gradient
phivec=ifft(Dvec.*conj(Uvec).*Evec,2*M);
phivec=phivec(1:M);

% update of weights
W=W-+alpha*fft([phivec;zeros(M,1)],2*M);
end

% The error vector should have only real values.
% Therefore, extract the real part!
E=real(e(:));

% transform of final weights to time domain.
%

% make sure that w is real-valued
w=ifft(W);

w=real(w(1:length(W)/2));
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ERLE Function MATLAB Script:

function [erle]=erle(e,d)

%
%
%
%
%
%
%
%
%
%

calculation of ERLE
Call:
[r]=erle(e,d)

Input arguments:
e =residual echo, dim Nx1
d = hybrid output signal, dim Nx1

Output arguments:
r =ERLE curveindB

%make sure that both arguments are column vectors

e=e(’);
d=d(:);

% filtering of squared signals (lIR-filter)
Pd=filter(1,[1, -0.98],d."2);
Pe=filter(1,[1, -0.98],e.”2);

% ERLE
erle=10*log10(Pd./Pe);
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Convolutive NMF MATLAB Script:

T I

Function name: Convolutive NMF main function

Description: Thisisthemainfunctionthatusingc onvolutiveNMFtoperform
training and matching process for AEC

T T i

function

[DTD,norm_vhat_energy,echo_measures,nearend_measure s,compare_measures,
erleout,output_v] =

NMFAEC_function_subband2(x,y,y_no_v,v,nearendtrain, Thres,num_bases_v,

train_num_iter_v,num_bases_y,a,b);
%%%%% Variables %%%%%%

%train_num_iter_v=50; %%%%Nu mberofNMFiterations
for | training of the near end basis

train_num_iter_y=100; %%%% NumberofNMFiterations
for each trained echo basis

match_num_iter=250; %%%%NumberofNMFiterations

for matching/echo nearend separation
for near end speech basis v.

%%%% Number of NMF bases for each echo basis traine dfromy.
num_prev_bases=3; %%%% Numberofpreviusframes
buffered and used in the calculation of the echo ba sis
total_num_bases=num_bases_y+num_bases_v; %%%% TotalnumberofNMFbasis
vectors

a=3; %%%% Which spe ech mixture to
use

Thres = 0.98; %%%% Threshold for th e
detection of doubletalk

v=nearend(a,:).*Vgain; %%%% CleanNearendspeech

x = farendclean(a,:); %%%% Far end reference signal

y = mixturechange(a,:); %%%% Echo + near end mixture

yclean = farendchange(a,:); %%%% Echo only signal

%%%%%%%%%%%%%% Get near end basis Bn %%%%%%%%%%%
win_length = 1024; %%% Frame size

stepsize = 512; %%% Stepsize
[near_train_frames,num_frames] =
STFT(nearendtrain,win_length,stepsize);

%% %% limits of frequency bins

[ref_frames,num_frames] = STFT(x,win_length,stepsiz e);
[mix_frames,num_frames2,framestart,framestop] =
STFT(y,win_length,stepsize);
[ideal_frames,num_frames2,framestart,framestop] =
STFT(y_no_v,win_length,stepsize);
[ideal_echoframes,num_frames2,framestart,framestop] =
STFT(v,win_length,stepsize);

ref_magframes = abs(ref_frames(:,1:513)).’;

mix_magframes = abs(mix_frames(:;,1:513)).;

mix_magframes2 = abs(mix_frames(:;,1:513)).’;

ideal_magframes = abs(ideal_frames(:,a:b));
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ideal_echomagframes = abs(ideal_echoframes(;,a:b));
ideal_magframes2 = abs(ideal_frames(:,1:513));
index = size(ref_magframes);

index2 = size(ideal_magframes?2);

M2 = index(1,1);
N2 =index(1,2);
M = index(1,1);
N = index(1,2);

%%%%

num=num_frames*stepsize; %% Onlyworksif stepsizeis halfwindow length
DTD = zeros(1,num);

%%%

vhat = zeros(N,M);

yhat = zeros(N,M);

videal = zeros(N,M);
videal_fullband = zeros(N2,M2);
v_energy = zeros(1,N);
y_energy = zeros(1,N);
videal_energy = zeros(1,N);
vhat_energy = zeros(1,N);
yhat_energy = zeros(1,N);
y_no_v_energy = zeros(1,N);
yclean_energy = zeros(1,N);
norm_vhat_energy = zeros(1,N);
ideal_energy = zeros(1,N);
norm_energy = zeros(1,N);
freq_DTD = zeros(1,N);
output_v = zeros(1,length(y));
output_v = zeros(1,length(y));

CNMF_start = 1;
CNMF_stop = 1;
time_base = 1;

initialHM = rand(total_num_bases,time_base);

%%%%%%% %% %% %% %% % %% %% %% % % %% %% %% %% %%

iter = floor(num_frames/time_base);

for j=1:l:ter

V = abs(near_train_frames(CNMF_start: CNMF_stop,1:5 13)).%;
index = size(V);

M3 = index(1,1);

N3 = index(1,2);

Wt = rand(M3,num_bases_v);

H = rand(num_bases_v,N3);

W =0;
for | =1:1:train_num_iter_v
Hshift = H;

for t=1:1:time_base;
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Wt =
Wt*((V./(Wt*Hshift+1e-9))*Hshift")./(ones(M3,N3)*H shift'+1e-9);

W =W + Wt;

Hshift = circshift(Hshift,[0,1]);

Hshift(;,1) = 0;

end

W = W/time_base;

H = H*X(W™*(V./(W*H+1e-9)))./(W*ones(M3,N3 )+1le-9);
end

Bn=W,; %%% Near end basis
%%%%%%% %% %% %% %% % %% %% % %% % % %% % % %% % % %0 %%88888%808986%0% %0 %% %% % %%
%%%%%%%%%%% Train Echo basis and form mixture basis
Ve = ref_magframes(:;,CNMF_start: CNMF_stop);
index = size(Ve);
M4 = index(1,1);
N4 = index(1,2);

initialBe = rand(M4,num_bases_y); %%% Echo basis
initialHe = rand(num_bases_y,N4);
Be = initialBe; %rand(M,num_bases_y); %%% Echo basis
He = initialHe; %rand(num_bases_y,N);
B=0;
for | =1:1:itrain_num_iter_y
Hshift2 = He;
for t=1:1:time_base
Be =
Be.*((Ve./(Be*Hshift2+1e-9))*Hshift2")./(ones(M4,N4 )*Hshift2'+1e-9);
B =B + Be;
Hshift2 = circshift(Hshift2,[0,1]);
Hshift2(;,1) = 0;
end
B = B/time_base;
He = He.*(Be'*(Ve./(Be*He+1e-9)))./(Be*one s(M4,N4)+1e-9);
end
Be = B;

Vm = mix_magframes(a:b,CNMF_start: CNMF_stop);
Bm = zeros(M,num_bases_y+num_bases_v,time_base);

Bm=[Bn(a:b,:),Be(a:b,)]; %%% Mixture basis, Bn nearend basis and
Be echo basis
Hm = initialHm; %rand(total_num_bases,1);

%%%%%% Echo removal stage %%%%%%%%%%%%%%%%%%%%% %% %%
%%%%%% Match echo to Be and nearend to W using Bm

Mx = b;
for I =1:1:match_num_iter
Hm = Hm.*(
Bm™(Vm./(Bm*Hm+1e-9)))./((Bm*ones(Mx,time_base))+ 1le-9);

if (I ==match_num_iter-1)
Hnolate = Hm;
end

if (I==match_num_iter-1)|(I==match_num_iter) %|(I==num_iter-2
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Bm =Bm .*((Vm./(Bm
*Hm+1e-9))*Hm’)./((ones(Mx,time_base)*Hm’)+1e-9);
end

end

mat_bot = [Bn(b+1:end,:),Be(b+1:end,:)];

Bm = [Bm;mat_bot];

vhat(CNMF_start: CNMF_stop,:) =
(Bm(:,1:total_num_bases-num_bases_y)*Hm(1:total_num _bases-num_bases vy,
D) R

yhat(CNMF_start: CNMF_stop,:) =
(Bm(:;,num_bases_v+1:end)*Hm(num_bases_v+1:end,:)).’ ;

CNMF_start = CNMF_start + time_base;
CNMF_stop = CNMF_stop + time_base;
end

%%%% Resythesis for audio

vhat = [vhat,fliplr(vhat(:,2:512))];

[xf,yf] = pol2cart(angle(mix_frames),vhat);

resyn = complex(xf,yf);

output_v = resynthesis(resyn,win_length,stepsize);

%%%%%%%%%%%% Objective evaluation %%%%%%%%% %% %% %% %%
termin = length(output_v);

org_sources = [v(107555:termin);y_no_v(107555:termi n)J;

index = 1;

[s_target,e_interf,e_artif] = bss_decomp_gain(outpu t v(107555:termin),
index, org_sources);

[inputSDR,inputSIR,inputSAR] = bss_crit(s_target, e _interf, e_artif);

nearend_measures = [inputSDR,inputSIR,inputSAR];
%%%%%%%% Resythesis no late W updates

yhat = [yhat,fliplr(yhat(:,2:512))];

[xf,yf] = pol2cart(angle(mix_frames),yhat);

resyn = complex(xf,yf);

output_y = resynthesis(resyn,win_length,stepsize);
%%%%%%% %% %% %% %% %

org_sources = [y_no_v(107555:termin);v(107555:termi n)J;

index = 1;

[s_target,e_interf,e_artif] = bss_decomp_gain(outpu t_y(107555:termin),
index, org_sources);

[inputSDR,inputSIR,inputSAR] = bss_crit(s_target, e _interf, e_artif);

echo_measures = [inputSDR,inputSIR,inputSAR];
%%%% Reconstruct with different phase
[frames,num_frames] = STFT(v,win_length,stepsize);

[framesnear,num_framesnear] = STFT(v,win_length,ste psize);
[xf,yf] = pol2cart(angle(mix_frames),abs(framesnear );

resyn = complex(xf,yf);

diffphasereconstruct = resynthesis(resyn,win_length ,stepsize);
%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %

org_sources = [v(107555:termin);y_no_v(107555:termi n)J;

index = 1;
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[s_target,e_interf,e_artif] =

bss_decomp_gain(diffphasereconstruct(107555:termin) , index,
org_sources);
[inputSDR,inputSIR,inputSAR] = bss_crit(s_target, e _interf, e_artif);

compare_measures = [inputSDR,inputSIR,inputSAR];
%%6%%%%%%% %% %% %% % %% %% %% %% %% %% %% %% % % %
erleout = ERLE(y_no_v,output_v,win_length,stepsize) ;
%%%%%%%% %%

figure
plot(real(output_v))
figure
plot(real(output_y))
figure

plot(v)

grid on;

hold
plot(DTD, 't )
grid on;

figure
plot(vhat_energy)
grid on;

hold

plot(freq_DTD* 0.3, )
grid on;
figure

plot(v)

hold

grid on;

plot(real(output_v))

plot(real(output_v) — v(1:length(output_v)), K )

figure

plot(v)
grid on;

hold

plot(diffphasereconstruct)

plot(diffphasereconstruct — v(1:length(output_v)), 'K )
grid on;
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Objective Measure MATLAB Script:

I T §n i
Function Name: Objective measure function

Description: compute evaluation criteria given a de composition of an
estimated source into target/interference/noise/art ifacts of the form

se = s_target + e_interf (+ e_noise) + e_artif

Developers: - Cedric Fevotte (cf269@cam.ac.uk) — E mmanuel Vincent
( incent@ircam.fr) — Remi Gribonval ( remi.gribonval@irisa.fr )
W i n§T i

% Usage:

%
% 1) Global mode
%

% [SDR,SIR,(SNR,)SAR]=bss_crit(s_target,e_interf[,e _hoise],e_artif)

%

% Input:

% -s_target: row vector of length T containing t he target source(s)
% contribution,

% - e_interf: row vector of length T containing t he interferences

% contribution,

% - e_noise: row vector of length T containing th e noise contribution
% (if any),

% - e_artif: row vector of length T containing th e artifacts

% contribution.

%

% Output:

% - SDR: Source to Distortion Ratio,

% - SIR: Source to Interferences Ratio,

% - SNR: Signal to Noise Ratio (if e_noise is pro vided),
% - SAR: Source to Artifacts Ratio.

%

% 2) Local mode

%

%

[SDR,SIR,(SNR,)SAR]=bss_crit(s_target,e_interf[,e_n oise],e_artif, WINDO
W,NOVERLAP)

%

% Additional input:

% - WINDOW: 1 x W window

% - NOVERLAP: number of samples of overlap betwee n consecutive windows
%

% Output:

% -SDR:n_framesx1vectorcontaininglocalSou rcetoDistortionRatio,
% - SIR: n_frames x 1 vector containing local Sou rce to Interferences
Ratio,

% - SNR: n_frames x 1 vector containing local Sig nal to Noise Ratio,
% -SAR:n_framesx1vectorcontaininglocal Sou rcetoArtifacts Ratio.

%

% Developers: - Cedric Fevotte (cf269@cam.ac.uk) — Emmanuel Vincent
% ( incent@ircam.fr) — Remi Gribonval ( remi.gribonval @irisa.fr )
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function  varargout=bss_crit(varargin)
s_target=varargin{1}; e_interf=varargin{2};

switch nargin

case 3

e_noise=[]; e_artif=varargin{3};

mode= ‘global’ ;

case 4

e_noise=varargin{3}; e_artif=varargin{4};
mode= ‘global’

case 5

e_noise=[]; e_artif=varargin{3};
WINDOW=varargin{4}; NOVERLAP=varargin{5};
mode= 'local’ ;
case 6
e_noise=varargin{3}; e_artif=varargin{4};
WINDOW=varargin{5}; NOVERLAP=varargin{6};
mode= 'local’ ;

end

T=length(s_target);

switch mode

case ‘global
switch isempty(e_noise)
case 1
% Computation of the energy ratios
[SDR,SIR,SAR]=bss_energy_ratios(s_target,e_interf,e _artif);
varargout{1}=10*log10(SDR); varargo ut{2}=10*log10(SIR);
varargout{3}=10*log10(SAR);
case 0
% Computation of the energy ratios
[SDR,SIR,SNR,SAR]=bss_energy_ratios(s_target,e_inte rf,e_noise,e_artif)
varargout{1}=10*log10(SDR); varargo ut{2}=10*log10(SIR);
varargout{3}=10*log10(SNR); varargout{4}=10*log10(S AR);
end
case ‘local
W=length(WINDOW); % Length of window
n_frames = fix((T-NOVERLAP)/(W-NOVERLAP)); % Number of frames

switch isempty(e_noise)

case 1
F_s_target=bss _make_ frames(s_target ,WINDOW,NOVERLAP);
F_e_interf=bss_make_frames(e_interf ,WINDOW,NOVERLAP);
F_e artif=bss_make_frames(e_artif, W INDOW,NOVERLAP);
[SDR,SIR,SAR]=bss_energy_ratios(F_s_target,F_e_inte rf,F_e_artif);
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varargout{1}=10*log10(SDR); varargo ut{2}=10*log10(SIR);

varargout{3}=10*log10(SAR);
case O

F_s_target=bss_make_ frames(s_target ,WINDOW,NOVERLAP);

F_e_interf=bss_make_frames(e_interf ,WINDOW,NOVERLAP);

F_e noise=bss_make_frames(e_noise,W INDOW,NOVERLAP);

F_e artif=bss_make_frames(e_artif, W INDOW,NOVERLAP);
[SDR,SIR,SNR,SAR]=bss_energy_ratios(F_s_target,F e interf,F_e_noise,F_
e_artif);

varargout{1}=10*log10(SDR); varargo ut{2}=10*log10(SIR);

varargout{3}=10*log10(SNR); varargo ut{4}=10*log10(SAR);

end

end %mode
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Resynthesis MATLAB Script:

T T i

Function name: Resynthesis function

Description: To rebuild the audible output speech f rom the matched data
T T i
%%%%%%%%%%%%%%%% STFT resynthesis %% % %% % % %Y oa8 %598/ %0 % %% % % %% % % %

function  reconstruct = resynthesis(spec,win_length,stepsize )
dim = size(spec);

num_frames = dim(1,1);

N = dim(1,2);

num_samples = num_frames*stepsize;

reconstruct = zeros(1,num_samples);

ham_win = hanning(win_length);

start = 1,

stop = win_length;

for 1=1:1:num_frames

reconstruct(start:stop) = real(ifft(spec(l,)))) +
reconstruct(start:stop);

start = start + stepsize;

stop = stop + stepsize;

if stop >num_samples

break

end

end
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Appendix B:

Tl C6713 DSK Main C Program Implementation

echo.c echo with fixed delay and feedback

#include “DSK6713_AIC23.h” /I codsapport
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; Il satgpling rate
#define DSK6713_AIC23 INPUT_MIC 0x0015

#define DSK6713_AIC23_INPUT_LINE 0x0011

Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // selenput

#define GAIN 0.6 /I fraction (0 —df)output fed back
#define BUF_SIZE 2000 /I this sets lengjtdelay
short buffer[BUF_SIZE]; /I storage for prews samples
short input,output,delayed;
int ; // index into buffe
interrupt void c_int11() /Il interrupt serviaautine
{
input = input_left_sample(); // read new inpaitrgple from ADC
delayed = bufferfi]; /l read delayeduafrom buffer
output = input + delayed; // output sum gfuband delayed values

output_left_sample(output);
buffer[i] = input + delayed*GAIN; // store newpnt and a fraction
/I of the delayealue in buffer

if(++1 >= BUF_SIZE) i=0; /I test for end blffer
return; Il return from ISR
}
void main()
{
comm_intr(); Il init DSK, codddcBSP
for(i=0 ; i<BUF_SIZE ; i++) /I clear buffer
buffer[i] = 0;
while(1); /linfinite loop
}
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echo_control.c echo with variable delay and feedback

#include “DSK6713_AIC23.h” /I codsapport
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; /I satgpling rate
#define DSK6713_AIC23 INPUT_MIC 0x0015

#define DSK6713_AIC23_INPUT_LINE 0x0011

Uint16 inputsource=DSK6713_AIC23_INPUT_MIC,; // sdlenput

#define MAX_BUF_SIZE 8000 /I this sets maximiength of delay
float gain = 0.5;
short buflength = 1000;
short bufferfMAX_BUF_SIZE]; /] storage for prieus samples
short input,output,delayed;
int1=0; // index into buffe
interrupt void c_int11() /Il interrupt serviaautine
{
input = input_left_sample(); // read new inpatple from ADC
delayed = bufferfi]; /l read delayeduafrom buffer
output = input + delayed; // output sum gfuband delayed values

output_left_sample(output);
buffer[i] = input + delayed*gain; // store newpurt and a fraction
/I of the delayealue in buffer

if(++1 >= MAX_BUF_SIZE) /[ test for end dduffer
| = MAX_BUF_SIZE — buflength:;
return; /I return from ISR
}
void main()
{
for(i=0 ; i<KMAX_BUF_SIZE ; i++) /I clear buffer
buffer[i] = 0;
comm_intr(); /I init DSK, codddcBSP
while(1); /linfinite loop
}

105



Optimal Algorithms for Blind Source Separation
-Application to Acoustic Echo Cancellation

Bibliography

[Allen 01] Allen G. and Robert M. G.;'Vector Quantization and signal
Compression; pp309-317, Kluwer Academic Publishers, 2001

[Amy 06] Amy N. Carl D. Russell A.fInitializations for the Nonnegative
Matrix Factorization”, Department of Mathematics College of
Charleston, 2006.

[Aziz 96] Aziz P.M., Sorensen H.V., and Van Der SpiegetAn overview of
sigma delta converterslEEE Signal Processing, Jan, 1996.

[Barry 04a] Barry D., Lawlor B., Coyle E.Sound Source Separation: Azimuth
Discrimination and ResynthesisProc of the ¥ International
Conference on Digital Audio Effect (DAFX-04) Naples#aly,
October 5-8, 2004.

[Barry 04b] Barry D. (2004) Sound Source Separatiomransfer Report 2004,
pp36.

[Barry 04c] Barry D. (2004)‘'Sound Source SeparationTransfer Report 2004,
pp41-42.

[Baeza 92] Baeza-Yates R.A!Introduction to data structures and algorithms
related to information retrieval”.In information Retrieval: Data
Structures and Algorithms, pages 13-27. Prentick-He., Upper
Saddle River, NJ, USA, 1992.

[Bell 05] Bell AJ. and T.J. Sejnowski, Ah information maximization
approach to blind separation and blind deconvolntjoNeural
Computationy/: 1 129-1 159, 1995

[Bertsekas 99] Bertsekas D., “Nonlinear programming’; Athena Scientific,
Belmont, MA, 1999

[Beth 99] Beth L., “Mel Frequency Cepstral Coefficients for Music
Modelling”, Cambridge Research Laboratory Compaq Computer
Corporation, 1999.

[Bofill 03] Bofill P.. Underdetermined blind source separation of delss@aehd
sources in the frequency domaMeurocomputing, 55(1):627-641,
2003.

[Broman 99] Broman H., Lindgren U., Sahlin H., and Stoica PSource

separation: A TITO system identification approachSignal

106



Optimal Algorithms for Blind Source Separation

-Application to Acoustic Echo Cancellation

[Bronkhorst 00]

[Cahill 06]

[Cahill 08]

[Candy 92]

[Cardoso 89]

[Cardoso 97]

[Carmona 06]

[Cichocki 02]

[Comon 91]

[Coyle 07]

[Daniel 01]

[Dhillon 01]

Processing73:169-183, 1999

Bronkhorst, Adelbert W. (2000)The Cocktail Party Phenomenon:
Speech Multiple-Tatk
Condition$ . Acta Acustica united with Acustica 86: 117-12800
Cabhill N. “Sound Source Separation and Speech Enhancemegt usin
in Meb
Communicatioty pp18, M.Eng. Sc. Thesis, NUI Maynooth, Oct.
2006

Niall Cahill and Robert Lawlor‘A novel Approach to Acoustic Echo

A Review on Intelligibility  in

a Modified ADRess Algorithm with application

Cancellation’; 16th European Signal Processing Conference, 2008
Candy J.C. and Temes G.C., Ed®yersampling Delta-Sigma Data
Converters: Theory,

Piscataway, NJ, 1992.

Design and SimulationlEEE Press,

Cardoso J.-F.Source separation using higher-order momerts
Proc. IEEE Int. Conf. Acoustics, Speech, SignabcBssing
(ICASSP), volume 4, pages 2109-2112, lasgow, SudbtldMay
1989.

Cardoso J.FBlind signal separation: Statistical principles
Proceedings of IEEE, Special Issue on Blind,1997.
Carmona-Saez P., Pascual-Marqui R.D., Tirado FaZéal.M., and
Pascual-Montano A.,'Biclustering o0 gene expression data by
non-smooth matrix  factorization”, BMC
Bioinformatics,7(78), 2006.

Cichocki A., Amari S., “Adaptive Blind Signal and Image
Processing”,pp6-9, John Wiley & Sons, LTD 2002.

Comon P., C. Jutten, and J. HerauBliid separation of sources,

non-negative

part II: Problems statement'Signal Processing, 24:11-20, 1991.
Coyle E., ‘Interdisciplinary research in music technoldgylhe
DITME project, Leve3, June 2007- Issue 5.

Daniel D. Lee, and Seung H., SAlgorithm for non-negative matrix
factorization”, Advances in Neural Information Processing] 13,
MIT Press, 2001.

Dhillon 1.S. and Modha D.M.*Concept decomposition for large

107



Optimal Algorithms for Blind Source Separation
-Application to Acoustic Echo Cancellation

sparse text data using clusteringMachine Learning Journal,
42:143-175, 2001

[Dinov 04] Dinov |., “Statistical Methods in Biomedical Imaging — PCA
University of California, LA, spring 2004

[Dustin 02] Dustin A., “How to write an RTDX host application using
MATLAB?”, Texas Instrucments Application Report, Spra38622

[Dustin 03] Dustin A. and Jason SHbw to optimize your target application for
RTDX throughput”,Software Developemnt System/ RTDX Team,
Texas Instruments, Application Report Spra872a3200

[Ella 00] Ella B., Aapo H., A fast fixed-point algorithm for independent
component analysis of complex valued signalséural Networks
Research Centre, Helsinki University of Technold2§0o0.

[Ferrara 80] Ferrara E.R!Fast implementation of LMS adaptive filtersSTEEE
Trans. Acoust.,, Speech, Signal Processing, Vol. A38 pp.
474-475, 1980.

[Fu 02] Fu X., “Real-time Digital video transfer via high-speed BX",
Texas Instruments, Application Report Spra398, 2002

[George 97] George H., Bohdan S. M.Iriteger Matrix Diagonalizatiof
Department of Computer Science, The University oie€nhsland,
Queensland 4072, Australia, J. Symbolic Computati®97.

[Gregory 83] Gregory D., Pullman N.,“Semiring rank: Boolean rank and

nonegative rank factorization’J. Combin. Inf System Sci. 3 (1983)

pp223-233.

[Haykin 00] Haykin S., Ed.,unsupervised Adaptive Filtering (Volume I. Blind
Source Separationjyohn Wiley & Sons, 2000.

[Haykin 02] Haykin S.,“Adaptive Filter Theory, # ed.” , Upper Saddle River,
NJ: Prentice-Hall, 2002.

[Horst 05] Horst R.,“RTDX Tutorial”, 2005

[Hyvarinen 99a] Hyvarinen A.,'Survey on Independent Component Andlypis7-13
Helsinki university of Technology Laboratory of Cpuoter and
Information Science, 1999.

[Hyvarinen 99Db] Hyvarinen A.;Survey on Independent Component Analysis”,
ppl51-152 Helsinki university of Technology Laborgt of

108



Optimal Algorithms for Blind Source Separation
-Application to Acoustic Echo Cancellation

Computer and Information Science.

[Hyvarinen 99c] Hyvarinen A., “Survey on Independent Component Analysis”,
pp28-29,ppl66-167, pp221-222 Helsinki university Taichnology
Laboratory of Computer and Information Science,1999

[Hyvarinen 99d] Hyvarinen A.Survey on Independent Component Analysis”,
pp208-211 Helsinki university of Technology Laborgt of
Computer and Information Science,1999.

[Hyvérinen 01] Hyvarinen A., Karhunen J., and E. Ojmdependent Component
Analysis”. John Wiley & Sons, 2001

[Hyvérinen 04] Hyvéarinen A., ‘Principle of ICA estimation”www.cis.hut.fi, 2004

[Jourjing 00] Jourjing A., Rickard S., Yilmaz O.,Blind separation of disjoint
orthogonal signal: demixing N sources from two onigt, pp2985 —
2988 , IEEE 2000.

[Jutten 91] Jutten C. and J. Herault. Blind separation of sesirpart I: “An
adaptive algorithm based on neuromimetic architegtu Signal
Processing, 24:1-10, 1991.

[Krim 96] Krim H. and Viberg M., Two decades of array signal processing
research, the parametric approd¢chlEEE Signal Processing
Magazine, pages 67-94, July 1996.

[Kwong 92] Kwong, R.H. and E.W.JohnstorfA Variable Step Size LMS
Algorithm”, IEEE Trans. On Signal Processiagl ASSP-40, pp.
1633-1642, July 1992.

[Lee 98] Lee T.W., Independent Component Analysis — Theory and
Applications Kluwer Academic Publish, 1998.

[Lee 99] Lee D.D. and Seung H.8.earning the Parts of Objects by Nonnegative
Matrix Factorization”, in Nature 1999 (401):788.

[Lingustic 10] Lingustic Data Consortium, language-related edooatiesearch and

technology development, http://www.ldc.upenn.e@04,0.

[Makino 93] Makino, S., Y. Kaneda and N. KoizunmiExponentially Weighted
Stepsize NLMS Adaptive Filter Based on the Stedisbf Room
Impulse ResponselEEE Trans. On Speech and Audio Processing
vol. 1, pp.101-108, Jan, 1993.

[Makino 073a] Makino S., Sawada H., Araki S., Keynotes 8&fihd Audio Source

109



Optimal Algorithms for Blind Source Separation
-Application to Acoustic Echo Cancellation

Separation based on Independent Component AnglyBi$T

Communication Science Laboratories Kyoto, Japary 200

[Makino 07b] Makino S. et al. (Eds.}Blind Speech Separation’pp 217-214, July
2007 Springer

[Makino 07c] Makino S. et al. (Eds.)Blind Speech Separatigrpp 221-228, July
2007 Springer.

[Mathews 93] Mathews, V.J. and Z. Xig'A stochastic Gradient Adaptive Filter

with Gradient Adaptive Step SizelEEE Trans. On Signal
Processingyol. ASSP-41, pp.2075-2087, June 1993.

[Parra 00] Parra L. and Spence GConvolutive blind source separation based
on multiple decorrelatioh IEEE Transactions on Speech and Audio
ProcessingMarch2000.

[Paul 05] Paul D. O’'Grady, Barak A. Pearlmutter, Scott T.Kaid, * Survey of
Sparse and Nomn-Sparse Methods in Sourse Sepdéraifu) April
4, 2005.

[Paul 07] Paul D. O’ Grady,Sparse Separation of Under-Determined Speech
Mixtures”, PhD thesis, NUI Maynooth, EE Department, 2007

[Rayleigh 76] Rayleigh, L. (1875)On our perception on the direction of a source of
sound”, Proceedings of the Musical Association, Royal idals
Association, Oxford: Oxford University Press, pp—84. April 1876

[Rickard 01] Rickard S., Balan R., and Rosca"'Real-time time-frequency based
blind source separatioh, in 3™ International Conference on
Independent Component Analysis and Blind Sourcesai@tion
(ICA 2001), Dec, 2001.

[Roweis 03] Roweis R.., Ghahramani Z:0On the convergence of bound
optimization algorithms, in: Proceedings of the 19th Conference in
Uncertainty in Artificial Intelligence (UAI'03), Moggan Kaufmann,
Los Altos, CA, 2003, pp. 509516

[Sajda 03] Sajda P., Du S., Brown T.Recovery of constituent spectra in 3D
chemical shift imaging using nonnegative matrixtdazation’. In
Proc. Of 4 International Symposium on Independent Component
Analysis and Blind Signal Separatiopages 71-76, Nara, Japan,
April 2003.

110



Optimal Algorithms for Blind Source Separation
-Application to Acoustic Echo Cancellation

[Scott 01] Scott Rickard, The DUET Blind Source Separation Algorithm”
University College Dublin, Ireland, 2001.

[Scott 07] Scott C. Douglas , M. Gupt&onvolutive blind source separation
for audio signals, S.Maino et al., blind speech separation 3-45
2007, Springer.

[Smaragdis 07] Smaragdis P./Convolutive Speech Bases and their Application to
Supervised Speech SeparatiolfBEE Trans. on Audio, Speech and
Language Processing, Vol. 15, Issue 1, pp. 1-Ifjalg, 2007.

[Smith 02] Smith L. I.,“A tutorial on principal components analysisFeb, 2002

[Stefan 04] Stefan W., James C. Anne Dilmproving non-negative matrix
factorization through structed initialization”Pattern Recognition,
the Journal of the Pattern Recognition Society, 26b4.

[TI01] Texas Instruments,“Code Composer Studio, Getting Started

Guilde”, Digital Signal Processing Solutions, 2001.

[Utts 05] Utts, Jessica M. Seeing Through Statistics 3rd i@&@dit Thomson
Brooks/Cole, pp 166-167,2005.
[Vincent 05] Vincent E.; Gribonval R.; Fevotte.CPerformance Measurement in

Blind Audio Source SeparationlEEE trans on Speech and Audio
processing. Volume PP, Issue 99, pp1-8, 2005.

[Virtanen 07] Virtanen T., “Monaural Sound Source Separation by
Nonnegative Matrix Factorization with Temporal Conity and
Sparseness Criteria”,JEEE Transactions on audio, speech and
language processing, VOL. 15, NO. 3, March 2007.

[Weinstein 93] Weinstein E., M. Feder, and A. Oppenheifulti-channel signal
separation by decorrelatiodEEE Trans. Speech Audio Processing,
1(4):405-413, October 1993.

[Widrow 60] Widrow B. and Hoff M.E., Jr.;Adaptive switching circuits,”in
Proc. IRE WESCON Conf. Rec., part 4, 1960, pp. 98-1
[Zass 05] Zass R. and Shashua A, A unifying approach to hard and

probabilistic clustering”, In International Conference on Computer
Vision (ICCV), Beijing, China, October 2005.

[Zhou 09] Zhou X., Liang Y., Cahill N., Lawlor R.,“Using Convolutive
Non-negative Matrix Factorization Algorithm To Ramh Acoustic

Echo CancellationNUIM,China-Ireland Conference on Information

111



Optimal Algorithms for Blind Source Separation
-Application to Acoustic Echo Cancellation

and Communication Technologies, August 2009, Matmoo

[Zibulevsky 01] Zibulevsky M. and B.A. PearimutteBlind source separation by
sparse decomposition in a signal dictionaNeural Computation,
13:863-882, 2001.

112



