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Abstract

Functional testing of radio frequency integrated
circuits is a challenging task and one that is becoming
an increasingly expensive aspect of circuit
manufacture. Due to the difficulties with bringing high
frequency signals off-chip, current automated test
equipment (ATE) technologies are approaching the
limits of their operating capabilities as circuits are

pushed to operate at higher and higher frequencies.
This paper explores the possibility of extending the
operating range of existing ATEs by using machine
learning techniques to infer high frequency circuit
performance from more accessible lower frequency
and DC measurements. Results from a simulation
study conducted on a low noise amplifier (LNA) circuit
operating at 2.4 GHz demonstrate that the proposed
approach has the potential to substantially increase
the operating bandwidth ofATE.

1. Introduction

Reliable high frequency testing of radio frequency
integrated circuits (RFIC) has become a significant
factor in the cost and time-to-market of novel wireless
products [1]. Testing of RFICs is generally performed
using dedicated automatic test equipment (ATE) that
record a set of measurements with the circuits
operating in their functional mode so that performance
can be compared against design specifications. This
traditional testing solution is becoming prohibitively
expensive as RFIC designs push into multi-gigahertz
operating frequencies due to the increased cost ofATE
at these frequencies and the difficulty with bringing
multi-gigahertz RF measurements off-chip in a factory
environment. Indeed, it is predicted that this later
constraint may become a limiting factor in extending
wireless technologies to even higher frequencies.

Manufacturers are therefore increasingly looking at
alternative approaches to functional testing which
avoid taking measurements at very high frequencies.
Significant advances have been made in a variety of
application domains in recent years through the
development of Design for Testability (DfT) and Built-
In-Test (BIT) methodologies [2-5]. In BIT, for
example, on-chip testing circuitry allows evaluation of
ICs using lower frequency or DC external testers.
However, these methodologies come with significant
overheads in terms of area and power consumption and
are not readily applicable to RF mixed signal circuits.

In [6] the authors propose a different strategy. It is
hypothesised that for many RFICs knowledge of
responses at DC and lower frequencies may provide
sufficient information to allow inference of
performance at higher frequencies. Training of such
inferential performance estimators can be achieved
using data generated from detailed circuit simulations
covering the space of process-dependent parameter
variations [6]. When successful, this approach
effectively extends the operating range of existing
ATEs, allowing them to be employed to test next
generation devices.

In this paper a case study is presented on the
application of the proposed test methodology to
classification of the gain performance of a low noise
amplifier (LNA), a key component in modem
telecommunication systems. Inferential classification
of the amplifier gain at its operating frequency is
performed using feature vectors consisting of DC
measurements (quiescent currents and voltages) and
gain measurements at other more accessible (lower)
frequencies.

Since RF circuit interactions are inherently
nonlinear and complex, it is anticipated that machine
learning modelling and classification will generally be
required to adequately capture the relationships
between variables. This is demonstrated in the case
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study through comparative results for linear and
nonlinear classifiers. In each case, both direct and
indirect classifier paradigms are considered. In the
latter, linear and neural network models are trained to
predict the value of the amplifier gain and a threshold
rule applied to the resulting prediction to perform the
circuit classification, while in the former, linear
discriminant analysis, support vector machine and k-
nearest neighbour classifiers are trained to directly
classify the circuit performance on the basis of the
feature vector provided.

The remainder of the paper is structured as follows.
The case study and test methodology are described in
Section 2 while the classical and machine learning
inferential classifiers considered are briefly presented
in Section 3. The results of a comprehensive Monte
Carlo simulation study are presented in Section 4
together with a discussion of the implications for the
proposed test methodology. Finally, the conclusions
are given in Section 5.

The following notation is used to distinguish
between the different feature vectors considered in the
study.

Xf = vector of the amplifier gains at all
sampling frequencies from 0.1 tofGHz

XDC = vector of the amplifier DC bias voltage
and current measurements

Xf+DC = [Xf, XDC], a concatenation of Xf and XDC

The goal of testing is to classify amplifiers as being
within specification ('good') or not within
specification ('bad'). In the proposed test methodology
this is achieved without direct measurement of g2.4 by
inferring the classification from other circuit
measurements, specifically XDC and/or Xf, withfideally
much less than 2.4 GHz. This is achieved by building a
classifier, h, to map from a circuit feature vector, x, to
the appropriate classification

h(x) - Z2.4 (g2.4 ) = {+1} - (1)

2. Case Study and Test Methodology

In this study, the low noise amplifier (LNA) used
was a standard low-voltage 2.4 GHz MOSFET design,
simulated in ADS® using UMC's 0.18 ptm silicon
process technology [7]. The LNA circuit consisted of 2
bias transistors, 4 RF transistors (0.18 pim channel
length and 0.5 pim channel width), 4 resistors, 3
capacitors and 4 inductors. The gain of the LNA at its
operating frequency (2.4 GHz), g2.4, was considered to
be the critical performance parameter and was deemed
to be within specification if 14.7 dB< 9g24 < 17.2 dB.

To simulate LNA manufacturing process variations
zero mean uniform random variations were introduced
into the 38 most significant model parameters, as
determined by a sensitivity analysis [6]. While in
practice circuit parameters might be expected to vary
normally around their nominal values, uniform
distributions were chosen to give an even coverage of
the LNA parameter space. Catastrophic failures such
as short-circuits were excluded as these faults can be
detected relatively easily using existing IC testing
techniques.

Using this approach, 10,000 circuit simulations
were performed. For each circuit the amplifier gain, gf
was recorded at sampling frequencies, f, of 0.1, 0.3,
0.6, 1.2, 1.4, 1.7 and 2.0 GHz and also at the operating
frequency (2.4 GHz). In addition, 8 key DC bias
voltages and currents were recorded. This data was
then normalised to have zero mean and unit variance
and divided into training and test data sets, each
containing 5,000 samples.

Here, Z2.4 is a threshold function defined as

{+1 if 14.7<x<17.2
Z2.4 (X) = l otherwise (2)

The mapping h(x) is determined through training on
simulated data generated using circuit simulation
software such as ADS®, where g2.4 measurements and
target circuit classifications can easily be generated.
Once trained, the classifier can then be used to test
production circuits, with only the measurements
needed to generate the feature vector, x, required for
testing. In the case study the 5,000 sample test data set
is used to represent production circuits.

3. LNA Inferential Classifiers

The inferential LNA classifier can be implemented
directly as in (1) using either linear classifiers such as
linear discriminant analysis (LDA) or machine
learning classifiers such as support vector machines
(SVM) and k-nearest neighbour (kNN) classifiers.
Alternatively it can be estimated indirectly by first
learning a model that predicts the value of 2.4 from the
feature vector,

g(x) - 2.4 (3)

and then using a threshold function to perform the
classification, that is

h(x)- Z2.4 (g(X)) - (4)
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A simple linear model or an artificial neural network
such as a Multilayer Perceptron can be used to learn
the mapping defined by (3). A brief overview of each
of these models and classifiers will now be given.

3.1. Linear Model (LM)

A linear model (LM) for predicting g24 can be
constructed as

g2.4 = LM (X) = W'X, (5)
where w, the model parameters, are estimated from
training data using least squares optimisation. Defining
the matrix of training feature vectors as

X = [x1 x2 ...x], (6)

where n is the number of training samples, and the
corresponding vector of targets as

Y = [g2.4(l) 92.4(2) ... 92.4(n)]T , (7)

the least squares solution is given by

w =[XTX] 1IXTy = XtY,

the optimum weights can be determined using gradient
based optimisation techniques. Here, training was
performed using the hybrid BFGS training algorithm
with stopped minimisation used to prevent over-fitting
[9]. The optimum number of neurons (M) was
determined for each model by cross-validation on the
test data set.

3.3. Linear Discriminant Analysis (LDA)

In linear discriminant analysis (LDA) the feature
vectors are projected onto directions that have
maximum discriminatory power, P, as measured by the
ratio of between and within class variances. Here, the
classical two-class Fisher's LDA [10] is used, in which
the feature data is projected onto a single
discriminatory direction

d = W'X

and w is chosen to maximise

W'SBWP(w) =

wTSWW

(12)

(13)
(8)

where Xt is the Moore-Penrose pseudo-inverse of X.

3.2. Multilayer Perceptron (MLP)

The between-class and within-class scatter matrices
(SB and Sw), defined as

SB = (XG -XB)(XG XB) (14)

The multilayer perceptron (MLP) is one of the best
known and most widely used neural network
architectures because of its universal function
approximation capabilities, good generalisation
properties and the availability of robust efficient
training algorithms [8]. In this application a single
hidden layer MLP is used to capture a nonlinear model
between the LNA feature vector, x, and gain, g24:

g2.4 gMLP(x) (9)

where

M h

gmLp(x) = bh + W11w x 0)
+ep(w' .x+b')

Parameters wh w b ,(i 2,-,M) and bh are
weights and biases which collectively form the
network weights vector, w, and M is the number of
hidden layer neurons. Defining a Mean Squared Error
(MSE) cost function over the training data,

and

SW E ~(Xi -xj)(Xi _Xj)T
jeG,B ieC.j

(15)

are computed over the training data. In (14) and (15)
vector Xi is the mean of the feature vectors in the jh

class, Cj. P(w), which is in the form of a generalized
Rayleigh quotient, is maximised when w is chosen as
the eigenvector corresponding to the largest eigenvalue
of the generalised eigenvector problem

SBW = /SWW . (16)

Having determined d, the optimum projection of the
feature vector, circuit classification is performed by
applying a threshold function to d, that is:

hLDA (X) = z (d) = z, (w'x) , (17)

where

z +1 if x2 a
Zzx (x) =dl-I ifx<a

(18)

The value of the threshold, a, is chosen to minimise
the misclassification rate (MCR) over the training data.
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Linear discriminant analysis assumes classes are
approximately normally distributed. However, the
performance specification for the amplifier gain in the
case study is such that the class of out-of-spec ('bad')
circuits is bi-modal. To take this into account, circuit
classification is implemented as a three-class problem
with classes defined as bad-lower (BL), good (G) and
bad-upper (BU). Classification is then performed in
two-stages. Firstly, two one-versus-all classifiers are
trained, one to classify LNAs as either 'BL' or 'not-
BL', and the other to classify them as either 'BU' or
'not-BU'. The overall classification is then obtained by
taking a logical AND of the output of these classifiers,
where 'not-BL' and 'not-BU' are considered to be
'good' and all other combinations 'bad'.

3.4. Support Vector Machines (SVM)

Support Vector machines (SVM), proposed by
Vladimir Vapnik in 1963, classify data sets by
determining the margin which achieves the maximum
separation between classes [11]. Consider a separating
hyperplane, with orientation vector w and location
parameter b, that divides two classes of data:

and v, are the corresponding weighting factors. The
linear SVM (LSVM) decision function is then given by

hLsvM(x) = Za(wX -b) (23)

where a = 0.
Substituting (22) into (23) allows the SVM

classifier to be expressed as a linear combination of
support vector dot products, that is,

hLsvM(x) zo K V,(x.xs) b . (24)

This important property allows SVMs to be extended
to nonlinear classification problems using the kernel
trick. This involves replacing the dot products by a
kernel function which meets Mercer's condition [12]:

(25)

so that the data is mapped into a higher dimension
feature space, x -* D(x), where classification can be
performed using a linear SVM. Here the Gaussian
radial basis function (RBF) kernel,

k(xi, x .) = exp! - xij

and two additional hyperplanes that are parallel to the
separating hyperplane:

WTX - b = 1
(20)

W'X -b = 1

is used. The parameter, o-, controls the kernel width
and is determined as part of the classifier training
process. Note, in the original data space, the resulting
decision function will be nonlinear and takes the form

The perpendicular distance between the parallel
hyperplanes, 2/llwll, is referred to as the classifier
margin and the optimal hyperplane is the one which
results in the maximum margin. The problem of
determining the maximum margin can be expressed
mathematically as

2
maxw llwll min(wTw),

w

subject to / 1)

Z2.4 (g24(i) )(WTXi -b) >1, i =1,2, ... ., n.

This is a constrained quadratic optimisation problem
whose solution w has an expansion

W ,vS , (22)

s

where xs are the subset of the training data, referred to
as support vectors, located on the parallel hyperplanes,

hsVM(x) = zo VS k(x,xs) - bJ. (27)

In non-separable problems where different classes
of data overlap, slack variables are introduced so that a

certain amount of misclassification of data is allowed.
A smoothing parameter C controls the amount of
misclassification permitted with large values resulting
in a larger penalty on errors. This 'soft margin'
classifier is the most general form of SVM [12].
SVM training is generally formulated as a quadratic

programming problem and, as such, is computationally
complex for large training sets. Consequently much
research effort has gone into developing efficient
training algorithms for SVMs [13]. Here, training was

performed using the Matlabg package simpleSVM
[14], a fast SVM solver based on active constraint sets.
The kernel width parameter, o, and smoothing
parameter C were optimised on the basis of
classification performance on the test data set. The a
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priori knowledge of the bi-modal distribution of 'bad'
circuits was taken into account by implementing
classification as a three-class problem using the one-
versus-all approach, as outlined in Section 3.3.

3.5. k-Nearest Neighbours (kNN)

The third classifier considered in the case study is
the k-nearest neighbour (kNN) classifier [10], a
nonparametric method in which a test feature vector, x,
is assigned the most frequently occurring class among
the k most similar feature vectors in the training set.
Mathematically, the kNN classifier can be expressed as

classifiers (with optimised k values) perform very
poorly for this problem, but this is to be expected
given the high level of overlap between classes in the
feature space, particularly when the DC and lowest
frequency measurements are included. More
surprisingly, the SVM classifiers do not yield good
results. This may be a consequence of the nature of the
problem and the fact that the indirect classification
approach is more suited to the form of the data. It is
also suspected that the simpleSVM algorithm used to
train the SVM may have deficiencies for this type of
problem. This is currently under investigation.

Table 1. MCRs for various LNA classifier paradigm-feature
vector combinations

(28)

where K(x) is the index set of the k nearest training set
feature vectors. The similarity measure used was the
Euclidian distance between vectors,

di(x) = llx-xi 1- (29)

and the optimum value of k for each classifier was
determined by cross-validation on the test data set.

4. Simulation Study

To evaluate the performance of the various
inferential performance classifiers under consideration
and assess the value of different choices of feature
vector, a Monte Carlo simulation was performed, as
described in Section 2. The first 5,000 LNAs were
used to train the various classifiers, while the second
5,000 formed the test set. Performance was measured
in terms of the misclassification rate (MCR), the
'good' circuit pass rate (GPR) and the 'bad' circuit fail
rate (BFR) estimated over the test LNAs. To provide
robust estimates, these metrics were computed by
averaging over 100 batches of 500 'good' and 500
'bad' LNAs selected from the test data set using
sampling with replacement.

Table 1 shows the mean MCR obtained with each
of the classifiers for five specific feature vector
combinations, namely XDC, x14, X1.4+DC, x2.0 and X2.0+DC
The standard deviation of the MCR estimates is given
in parenthesises. For comparison purposes the MCRs
obtained for single frequency measurements at 1.4
(g1.4) and 2.0 GHz (g2.o) are also included.

The results clearly show that the indirect classifiers
outperform the direct classifiers with the MLP
consistently giving the lowest MCR. The kNN

MCR mean (standard deviation)
Input Indirect Direct

Linear NN LDA SVM kNN
36.92 35.96 36.95 37.04 39.01

XDC (1.57) (1.49) (1.44) (1.47) (1.60)
35.96

91.4 (1.36)
22.16 20.84 22.78 23.28 33.84

X1.4 (1.33) (1.31) (1.22) (1.46) (1.44)
20.06

g2.0 (1.20)
20.58 18.53 22.50 23.26 34.10

XI.4 DC (1.21) (1.25) (1.19) (1.29) (1.62)
7.12 3.69 8.75 7.55 21.71

X20 (0.74) (0.55) (0.94) (0.88) (1.35)
6.88 2.46 12.31 7.55 26.18

X2.0+DC (0.77) (0.83) (1.08) (0.84) (1.44)

The feature vectors in Table 1 are in the order of
reducing MCR. It is clear that the DC measurements
have only very limited value for classification, while
gain measurements at high sample frequencies have
the most value. The best results are obtained when the
gain measurements from several sample frequencies
are combined. For example, x14 has similar
discriminatory power to g2.0 and x1.4+DC is marginally
superior to g2.0. This is further highlighted in Figure 1,
which shows a plot of the mean MCR as a function of
sample frequency, f, for MLP classifiers with feature
vectors Xf, xf+DC, gf and g+DC. Note that the DC
measurements contribute significantly to classifier
performance at lower frequencies (f<1.2 GHz) but their
value decreases rapidly thereafter.

Since the good pass rate (GPR) and bad fail rate
(BFR) of a classifier vary as a function the
classification threshold, with one increasing as the

280

hkNN (x) = zo Y, Z2.4 (92.4(i))
\,iEK(x) I/



other decreases, the threshold can be adjusted to
control one or other of these metrics. The relationship
between GPR and BFR for the MLP LNA classifier is
captured in the operating curves plotted in Figure 2 for
various choices of feature vector. Again this shows the
relative merits of the different feature vectors, but
more importantly, from a manufacturing perspective it
shows the trade-off that can be obtained with each
classifier. For example, for a target BFR of 90°0 a
GPR of 55% is obtained with x1.4, and 65% with
xI.4+DC. This increases to over 99%0 with x2.0+DC.
Alternatively, a 100% BFR can be obtained when
using X2 +DC if the GPR is dropped to 80%. The level
of wastage at x1.4 may well be acceptable in a
manufacturing context where the cost of delivering
faulty product to consumers may be substantial.

5. Conclusions

In this paper machine learning based inferential
classifiers are used to predict the high-frequency gain
perfornance of a 2.4 GHz LNA. Of the various
classifiers investigated, the indirect MLP classifier
gives the best overall results, effectively extending the
operating frequency range of ATE for LNA gain
classification by 20% at 2 GHz and 42% at 1.4 GHz.
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