
A high-throughput bioinformatics distributed computing platform

Thomas M. Keane1, Andrew J. Page2, James O. McInerney1, and Thomas J.
Naughton2

1Bioinformatics and Pharmacogenomics Laboratory, National University of Ireland,
Maynooth, Co. Kildare, Ireland

2Department of Computer Science, National University of Ireland, Maynooth, Co.
Kildare, Ireland

Homepage: http://www.cs.nuim.ie/distributed

Abstract
In the past number of years the demand for high performance computing has greatly

increased in the area of bioinformatics. The huge increase in size of many genomic
databases has meant that many common tasks in bioinformatics are not possible to complete
in a reasonable amount of time on a single processor. Recently distributed computing has
emerged as an inexpensive alternative to dedicated parallel computing. We have developed a
general-purpose distributed computing platform that is capable of using semi-idle computing
resources to simulate a dedicated computing cluster. We have identified the suitability of a
number of bioinformatics tasks to distributed computing. We briefly outline and evaluate two
distributed bioinformatics programs, DSEARCH and DPRml, which have been developed for
our system.

1. Introduction
In the past number of years, the demand for high performance computing has increased

dramatically in the area of bioinformatics. This is mainly due to the rapid increase in the size
of genomic databases [1]. Many of the common tasks in bioinformatics are very
computationally intensive and can take days, months or even years to complete on a single
processor. For instance the two most rigorous database search algorithms are the
Needleman-Wunsch [2] and Smith-Waterman [3] algorithms. However for large databases it
is not feasible to perform full searches using these algorithms in a reasonable amount of
time. Therefore a number of authors have developed heuristic search algorithms in an effort
to reduce the search time. However these algorithms reduce the sensitivity of a search and
can fail to detect certain matches. When given the choice, most biologists would prefer to
use the more rigorous algorithms for their searches. In evolutionary biology, the decision
problem associated with searching for the best phylogenetic tree is NP-complete [4].
Therefore it is not feasible to perform an exhaustive search of the tree space for any more
than a few taxa. Several authors have attempted to address this problem by proposing
heuristic algorithms to reduce the search space (see [5] for a review). These programs have
made the process of producing large phylogenetic trees possible using only a single
processor. However these programs are often based on greedy heuristic algorithms that often
take the best immediate, or local, solution often resulting in a tree that is far from optimal.

In an effort to meet this overwhelming demand for computing power, several
vendors have offered specialised and expensive parallel hardware for performing
common tasks such as performing complete alignments of genomes [6]. One idea that
has become popular in recent years is the concept of taking a number of processors and
connecting them together using a high speed network to form a dedicated processing
cluster (e.g. [7,8]). These systems have been extremely effective in bringing

supercomputing capabilities to ordinary bioinformatics researchers. However these
systems still require a dedicated pool of processors that are physically close together.
Furthermore, these systems often require a full-time system administrator to maintain,
upgrade, and update the system in the long term. To tackle this apparent failure, the
area of distributed computing emerged as a viable alternative to dedicated parallel
computing. By harnessing the spare clock cycles of idle machines, it is possible to
emulate the computing power offered by a specialised parallel machine at a fraction of
the cost. Several successful systems have been developed on this basis, e.g.
Seti@Home [9], Folding@Home [10], Genome@Home [10]. However many of these
systems are only designed with one application in mind. That is, there are few
distributed systems out there that can be programmed by a user to perform arbitrary
distributed computations.

We present a general-purpose programmable distributed computing platform suitable for
deployment in a typical university environment where many semi-idle desktop PC’s are
connected via a network. The system is fully cross-platform compatible as it is written
entirely in Java. We also describe two distributed bioinformatics applications that have been
recently developed to run on our distributed computing system. DSEARCH [11] is a
distributed and fully cross-platform database search program that allows the user to
utilise the idle clock cycles of machines to perform large searches using the most
sensitive algorithms. DPRml [12] is a distributed and fully cross-platform phylogenetic
tree building program.

2. Java Distributed Computing Platform
The overall design of the system is based on the client-server model [13]. This

model describes a system consisting of a single server computer and a number of client
computers. The server controls a resource (such as a database, algorithm, or computer
hardware) and the clients initiate requests to the server for access to the resource. Our
system, based on the client-server model, is divided into three separate pieces of
software: server, client, and remote interface. An overview of the system is illustrated
in Fig. 1. The server software stores the problem (for example, genomic data and an
algorithm to process it) and breaks the problem down into smaller problems, called
work units. The client software is installed on each donor machine and it connects to
the server over the Internet. The client requests a data unit, performs the processing,
returns the result to the server, and requests another data unit. Multiple clients can
make such requests to the server. The server collates the results of the smaller
problems from the clients and constructs the result to the larger, original, problem. The
remote interface is used to access all functionality on the server and can also be used to
remotely update the client software.

2.1. Installation and Deployment

The entire system consists of three executable Java JAR files corresponding to the server,
client, and remote interface. The user is only required to enter the server machine’s IP
address into a parameter file before running the server with the standard ‘java’ command.
The client application can be run directly from the command line with all necessary start-up
parameters passed in as arguments. The remote interface is a stand-alone GUI application
that is started without any command line parameters; the user connects to the server using a
simple ‘point-and-click’ interface. There is a full instructions document outlining how to
setup and run the software available from the system web page.

To maximise the usage of the semi-idle desktop PC’s in the deployment at NUI
Maynooth, we chose to run the client as a low priority background service. This means that
even if there is nobody logged on at a donor machine, the client software can run in the
background 24 hours a day using only the spare clock cycles. We have our client software
installed across a number of academic departments running on approximately 250 desktop
PC’s (various hardware specifications from Pentium II’s up to Pentium IV’s) running
multiple operating systems (Windows 98/NT/2000/XP, Sun Solaris, Mac OSX, and Linux).
To illustrate the portability of our system, we have also installed our client on every node of
an IBM Linux cluster (32 Dual Pentium IV 1 GHz nodes with between 256 and 768 MB of
memory per node) with the desktops and cluster nodes connecting to a single server.

2.2. Suitability of Bioinformatics to Distributed Computing

It has been widely acknowledged that there are a number of clearly identifiable
characteristics that a problem should exhibit in order to be suitable for a distributed
computing implementation. With the advent of many large scale Internet based
supercomputing projects (e.g. [9,10]), a class of algorithmic parallelism referred to as
‘coarse-grained parallelism’ has emerged as a means of describing the suitability of
problems to large scale distributed computing. Coarse grained parallelism refers to the way
in which a single large problem can be easily split up into discrete independent sub-blocks
that can be processed individually. The second criterion for evaluating the suitability of
bioinformatics applications to distributed computing was that the problem must display a
high “compute-to-data” ratio to make it worthwhile sending the data over a network rather
than computing locally. We have identified these characteristics in several bioinformatics
applications and outline two distributed bioinformatics applications that have been developed
to run on our system in the following sections.

Figure 1: Diagram of the complete system.

Although all communication is bi-directional,

the arrows indicate the direction of initiation of

communication.

Server

Data

Internet/Intranet

Computationn 5
Computation 4

Computation 3
Computation 2

Computation 1

Client

Remote
Interface

Client

Client

Client Client

3. DPRml
One of the great challenges of molecular biology is the completion of the tree of life [14].

The massive accumulation of genomic data has led to increased interest in the production of
large and accurate phylogenetic trees. However the decision problem associated with
searching for the best tree from a set of taxa is NP-hard [4]. Therefore it is not feasible to
perform an exhaustive search of the tree space for trees of a non-trivial size. Maximum
likelihood (ML) evaluation has been widely acknowledged as one of the most accurate
techniques for reconstructing phylogenies.

In an effort to construct large and accurate phylogenetic trees while still keeping overall
processing times reasonable, a number of researchers have developed parallel ML programs
that utilise the stepwise insertion approach [15,16]. These programs have been successful in
speeding up phylogenetic computations but the overriding problem with these programs is
that specialised parallel hardware and software is often required. For most researchers, this
can make these programs either prohibitively expensive or simply too complicated to set up.
Furthermore these programs are often implemented in a platform specific language which
imposes a restrictive limit on the numbers and types of machines that can be used in a
parallel computation. It should also be noted that some of these earlier parallel programs
only allowed the user to choose from a very limited number of DNA substitution models,
which often leads to a poor model fit resulting in sub optimal trees.

We have identified the suitability of phylogenetic analysis to heterogeneous distributed
computing and have developed a fully cross-platform distributed application, DPRml [12],
which we believe to be one of the most general and powerful likelihood-based phylogenetic
tree building programs currently available. DPRml is, to our knowledge, the first distributed
phylogenetic tree building program to satisfy each of the three requirements outlined above.
The user has a very straightforward configuration file with which to tailor the computation
and can choose from one of the most extensive ranges of DNA substitution models currently
available. DPRml implements an already proven tree building algorithm and uses the popular
Phylogenetic Analysis Library (PAL) v1.4 [17] for all its likelihood calculations.

Multiple DPRml computations can be submitted to the server, which allows users to
always make optimal use of the available donor machines. To investigate the effect on
speedup of running multiple DPRml computations in the distributed system, we
completed a speedup graph using a university computing laboratory consisting of 40
desktop PC’s (see Fig. 2) based on the running time of six simultaneous DPRml
computations. For this test, we used one of the datasets that was used to test parallel
fastDNAml (Stewart et al., 2001), consisting of 50 taxa (1858 nucleotides per taxa),
and ran six simultaneous computations with varying numbers of clients. Figure 2
demonstrates that DPRml achieves near linear speedup when speedup is measured with
multiple DPRml computations running simultaneously. The above results fit well with
the expected usage of the program. Typically a researcher would repeat the entire tree
building process with several different randomisations of the taxon addition order and
then compare the best of the resulting trees to determine a consensus tree.

3. DSEARCH
Database searching for similar sequences is one of the fundamental tasks in

bioinformatics. One way to significantly reduce the runtime of sensitive database
searches is to parallelise the search process across multiple processors. Many
approaches to parallelising database searching have been investigated because database
searching is both computationally intensive and easily parallelised. However the

5. Conclusion
The explosion in the size of genomic databases in recent years has led to major

computational challenges for bioinformatics researchers. Despite the development of faster
and more efficient algorithms, it is not feasible to perform many common bioinformatics
tasks on a single processor. Several vendors have offered specialized dedicated processor
clusters in order to meet these computational challenges. However the cost of this hardware
is often quite prohibitive for an ordinary researcher operating on a limited budget. To tackle
this apparent failure, the area of distributed computing emerged as a viable alternative to
dedicated parallel computing. By harnessing the spare clock cycles of idle machines, it is
possible to emulate the computing power offered by a specialised parallel machine at a
fraction of the cost.

We have presented a general-purpose distributed computing platform that is suitable for
deployment in a typical university environment where semi-idle PC’s are connected via a
network. Our system is fully cross-platform compatible and has already been deployed
across a number of academic departments at NUI Maynooth. We have identified a number of
bioinformatics applications as being suitable for a distributed computing implementation. To
date we have developed two distributed applications, DSEARCH and DPRml, which enable
researchers to use the idle clock cycles of many machines simultaneously to perform

computationally intensive bioinformatics tasks. Our main goal for the future is to improve
and expand the range of bioinformatics applications for the system.

6. Acknowledgements
This research has been funded by the Embark Initiative from the Irish Research

Council for Science, Engineering and Technology: funded by the National
Development Plan.

7. References
[1] Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A. and Wheeler, D. L., “GenBank”,
Nucleic Acids Research, 2000, 28, 15-18
[2] Needleman, S.B and Wunsch, C.D., “A general method applicable to the search for similarities in the amino
acid sequences of two proteins”, Journal of Molecular Biology, 1970, 48, 443-453
[3] Smith, T.F. and Waterman, M.S., “Identification of common molecular subsequences”, Journal of Molecular
Biology, 1981, 147, 195-197
[4] Bodlaender, H., Fellows, M., and Warnow, T., “Two strikes against perfect phylogeny”, Proceedings of the
19th International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science,
1992, 623, 273-283, Springer-Verlag, NY
[5] Felsenstein, J., “Inferring Phylogenies”, Sinauer Associates Incorporated, Sunderland, MA, 2004, USA,
ISBN- 0878-9317-75
[6] Hughey, R., “Parallel hardware for sequence comparison and alignment”, Computer Applications in the
Biosciences, 1996, 12, 473-479
[7] OpenMosix: A Linux kernel extension for single-system image clustering which turns a network of ordinary
computers into a supercomputer, http://openmosix.sourceforge.net
[8] Haumacher, B., Moschny, T., Reuter, J., and Tichy, W.F., “Transparent Distributed Threads for Java”,
Proceedings of the 5th International Workshop on Java for Parallel and Distributed Computing in conjunction
with the International Parallel and Distributed Processing Symposium, 2003, 136, Nice, France, IEEE Computer
Society, ISBN-0769-5192-61
[9] Korpela, E., Werthimer, D., Anderson, D., Cobb, J., and Lebofsky, M., “SETI@home-Massively Distributed
Computing for SETI”, IEEE: Computer Science and Engineering, 2001, 3(1), 77-83
[10] Larson, S.M., Snow, C.D., Shirts, M.R., and Pande. V.S., “Folding@Home and Genome@Home: Using
distributed computing to tackle previously intractable problems in computational biology”, to appear in
Computational Genomics, Richard Grant editor, Horizon Press
[11] Keane, T.M. and Naughton T.J., “DSEARCH: sensitive database searching using distributed computing”,
Bioinformatics, 2005, in press, doi:10.1093/bioinformatics/bti163
[12] Keane, T.M., Naughton, T.J., Travers, S.A.A, McInernery, J.O., McCormack, G.P., “DPRml: Distributed
Phylogeny Reconstruction by maximum likelihood”, Bioinformatics, 2005, 21(7):969-974
[13] Keane, T.M., “A General-Purpose Heterogeneous Distributed Computing System”, M.Sc. Thesis,
Department of Computer Science, National University of Ireland, Maynooth, 2004
[14] Crandall, K.A. and Buhay, J.E., “Genomic databases and the tree of life”, Science, 2004, 306(5699), 1144-
1145
[15] Stewart, C.A., Hart, D., Berry, D.K., Olsen, G.J., Wernert, E.A., and Fischer, W., “Parallel implementation
and performance of fastDNAml – a program for maximum likelihood phylogenetic inference”, Proceedings of
SC2001, 2001, Denver, CO, USA
[16] Stamatakis, A.P., and Ludwig, T., “Phylogenetic Tree Inference on PC Architectures with AxML/PAxML”,
Proceedings of IPDPS2003 (High Performance Computational Biology workshop), 2003, 157, Nice, France
[17] Drummond, A. and Strimmer, K., “PAL: An object-oriented programming library for molecular evolution
and phylogenetics”, Bioinformatics, 2001, 17, 662-663
[18] Crochemore, M., Landau, G., and Ziv-Ukelson, M., “A Subquadratic Sequence Alignment Algorithm for
Unrestricted Scoring Matrices”, SIAM Journal of Computing, 2003, 32 (6), 1654-1673

