
A Definition of the Chidamber and Kemerer
Metrics suite for UML ?

Jacqueline A. McQuillan ?? and James F. Power

Department of Computer Science, National University of Ireland, Maynooth,
Co. Kildare, Ireland

{jmcq, jpower}@cs.nuim.ie

Abstract. Since there is no standard formalism for defining software
metrics, many of the measures that exist have some ambiguity in their
definitions which hinders their comparison and implementation. We ad-
dress this problem by presenting an approach for defining software met-
rics. This approach is based on expressing the measures as Object Con-
straint Language queries over a language metamodel. To illustrate the
approach, we specify how the Chidamber and Kemerer metrics suite can
be measured from Unified Modelling Language class diagrams by pre-
senting formal definitions for these metrics using the Unified Modelling
Language 2.0 metamodel.

Keywords: OO metrics, class diagram metrics, metamodels, UML, OCL.

1 Introduction

Software plays a pivotal role in many important aspects of modern daily life.
In many cases, if software fails it can have catastrophic consequences such as
economic damage or loss of human life. Therefore, it is important to be able to
assess the quality of software. Software metrics have been proposed as a means
of determining software quality. For example, studies have demonstrated a cor-
relation between software metrics and quality attributes such as fault-proneness
[1] and maintenance effort [2].

Many software metrics have been proposed in the literature [3–5]. In order
for these metrics to be widely accepted, empirical studies of the use of these
metrics as quality indicators are required. However, there is no standard ter-
minology or formalism for defining software metrics and consequently many of
the metrics proposed are incomplete, ambiguous and open to a variety of differ-
ent interpretations [6]. For example, Churcher and Shepperd [7] have identified
ambiguities in the suite of metrics proposed by Chidamber and Kemerer (CK)
[3]. This makes it difficult for researchers to replicate experiments and compare
? This report is intended to serve as a supplement to the paper ‘Towards re-usable

metric definitions at the meta-level’ that appeared in the Postgraduate Workshop of
the European Conference on Object-Oriented Programming, Nantes, France, 2006

?? To whom correspondence should be addressed



existing experimental results and it hampers the empirical validation of these
metrics.

Several authors have attempted to address the problem of imprecise metric
definitions. Briand et al. propose two extensive frameworks for software mea-
surement, one for measuring coupling and the other for measuring cohesion in
object-oriented systems [6, 8]. Other approaches include the proposal of formal
models on which to base metric definitions [9] and the proposal of existing lan-
guages such as XQuery and SQL as metric definition languages [10, 11]. Baroni
et al. propose the use of the Object Constraint Language (OCL) and the Unified
Modelling Language (UML) metamodel as a mechanism for defining UML-based
metrics [12, 13].

In this report, we take the approach of Baroni et al. [13] and extend it to
decouple the metric definitions from the metamodel and thus make the approach
generalisable to any metamodel and any set of metrics. Also, in this report we
are the first authors to provide a metamodel level definition of the CK metric
suite using the OCL and the UML 2.0 metamodel.

The remainder of this report is organised as follows. In section 2, a review of
relevant research is presented. In section 3, we give details of an approach that
allows for the precise definition of software metrics. In section 4, we illustrate
the application of the approach using the CK metrics suite and the UML 2.0
metamodel. Section 5 gives a summary and discussion of future work.

2 Related Work

There are many software metrics tools available, most of them based on either
conventional metrics such as lines of code, volume or cyclomatic complexity [5],
or the Chidamber and Kemerer metrics suite [3]. However, in this section we
limit our discussion to those tools and frameworks that explicitly provide for the
unambiguous definition of software metrics.

Briand et al. propose an integrated measurement framework for the defini-
tion, evaluation and comparison of object-oriented coupling and cohesion metrics
[6, 8]. While this framework allows for the unambiguous definition of coupling
and cohesion metrics, new frameworks must be developed for other types of
metrics.

Harmer and Wilkie have developed an extensible metrics analyser tool for
object-oriented programming languages [11]. The tool is based on a general
object-oriented programming language metamodel in the form of a relational
database schema. Metric definitions are expressed as SQL queries over this
schema. The tool is extensible as it has support for incorporating new metrics
and new object-oriented programming languages. However, defining the metrics
requires the additional effort of the development of C code as well as supplying
the SQL queries. In addition, the tool is tied to the underlying metamodel and
does not allow the interchange of metamodels.

Another approach put forward by Reißing involved the proposal of a for-
mal model on which to base metric definitions [9]. This model is called ODEM

2



(Object-oriented DEsign Model) and consists of an abstraction layer built upon
the UML metamodel. However, this model can only be used for the definition
of design metrics and does not solve the ambiguity problem as the abstraction
layer consists of natural language expressions.

El-Wakil et al. propose the use of XQuery as a metric definition language [10].
They propose extracting metric data from XMI design documents, specifically
UML designs. XQuery is a language that can be used to extract information from
XMI documents. Again this approach has only been used to define metrics at
the design level, specifically for UML designs. There is no information available
on how it extends to other languages.

Baroni et al. propose the use of the OCL and the UML metamodel as a
mechanism for defining UML-based metrics [12]. They have built a library called
FLAME (Formal Library for Aiding Metrics Extraction) [14] which is a library of
metric definitions formulated as OCL expressions over the UML 1.3 metamodel
[15]. Goulão et al [16] have utilised this approach for defining component based
metrics and used the UML 2.0 metamodel [17] as a basis for their definitions. We
believe that this approach provides a useful mechanism for the precise definition
of software metrics and we build upon it in this report.

3 Software Metrics at the Meta Level

As we are examining the use of metamodels and the OCL as a basis for the
definition of software metrics, we will begin by presenting a short explanation of
these concepts.

3.1 Metamodels

As the name suggests, a metamodel is a model that describes other models.
Typically, we think of a model of a software system as being a design model,
such as a UML class or sequence diagrams, or an implementation model, such as
an actual program. A metamodel then would describe the allowable constructs

Description Examples

M3 Meta-metamodel Layer MOF [18] entities, e.g. Class, Property, Opera-
tion

M2 Metamodel Layer Describes the entities in UML models, e.g.
Class, Property, Association

M1 Model Layer A UML model: actual classes with attributes
and associations between these classes.

M0 Data Layer The instances of a UML model, e.g. objects,
method calls.

Table 1. The Four Layer Metamodel Architecture. This table shows the standard four-
layer hierarchy, using UML as an example.

3



in these models, for example, the entities that may be depicted in a UML class
diagram.

The relationship between models and metamodels is generally depicted as a
four-layer hierarchy [19]. The four layers are depicted in Figure 1 in the context
of UML. The most abstract layer, M3, is the layer that describes the formalism
used in modelling languages, the Meta Object Facility (MOF), which is speci-
fied as an OMG standard [18]. Beneath this is the M2 layer which consists of
the metamodel for the language under consideration; common examples include
metamodels for UML or Java. The M1 layer represents models describing soft-
ware systems. In Figure 1 the model at layer M1 is a user model specified in
UML. The M0 layer represents the entities that are run-time instances of model
elements. The metrics defined in this report are defined at the M2 layer, and
then applied automatically to UML models at the M1 layer.

3.2 The Object Constraint Language

The Object Constraint Language (OCL) is a standard language that allows
constraints and queries over object-oriented models to be written in a clear
and unambiguous manner [20]. It offers the ability to navigate over instances
of object-oriented models, allowing for the collection of information about the
navigated model.

3.3 Extensions to the approach of Baroni et al.

Baroni et al. propose expressing design metrics as OCL queries over the UML 1.3
metamodel [15]. This approach involves modifying the metamodel by creating
the metrics as additional operations in the metamodel and expressing them as
OCL conditions [12].

We extend this approach by decoupling the metric definitions from the meta-
model. This is achieved by creating a separate metrics package at the meta level.
Defining a new metrics set is a three step process:

1. A class is created in the metrics package corresponding to the metric set;
any auxiliary operations can be defined in this class.

2. For each metric, an operation in the class is declared, parameterised by the
appropriate elements from the metamodel.

3. The metrics are defined by expressing them as OCL queries using the OCL
body expression.

This approach has allowed us to develop an easily extensible tool called
dMML (Defining Metrics at the Meta Level) that can be used for specifying
software metrics over language metamodels and to automatically generate a
program to calculate these expressed metrics. In theory, dMML can be applied
to any language metamodel.

4



Metrics UML 2.0 metamodel

Metrics

ckmetrcset

WMC(c : Classifier) : Real
NOC(c : Classifier) : Real
DIT() : Real
DIT(c : Classifier) : Real
MinRFC(c : Classifier) : Real
AvgRFC(c : Classifier) : Real
MaxRFC(c : Classifier) : Real
MinCBO(c : Classifier) : Real
AvgCBO(c : Classifier) : Real
MaxCBO(c : Classifier) : Real
MinLCOM(c : Classifier) : Real
MaxLCOM(c : Classifier) : Real

Classifier

0..*

scope

Fig. 1. Extension to the UML 2.0 metamodel. This UML package diagram shows the
definition of the CK metrics as a separate package, with a dependency on classes from
the UML metamodel.

4 The Chidamber and Kemerer Metrics Suite

In this section we use the Chidamber and Kemerer (CK) [3] metrics suite to il-
lustrate the use of the approach outlined in this report (see Figure 1). We express
the CK metrics as OCL queries over the part of the UML 2.0 metamodel [17]
that defines class diagrams. We are the first authors to provide such definitions
using the UML 2.0 metamodel.

The UML 2.0 metamodel is a model that is used to define the UML. It
specifies the constructs that may be used in a UML model and the relationships
between these constructs. For example, the part of the UML metamodel that is
specific to class diagrams defines the concepts of class, attribute, operation and
states that a class includes attributes and operations. The structure of a UML
model always conforms to the UML metamodel.

The metrics suite proposed by Chidamber and Kemerer is one of the most
well known suite of object-oriented metrics. The suite consists of the following
six metrics:

– Weighted methods per class (WMC)
– Depth of inheritance tree (DIT)
– Number of children (NOC)
– Coupling between object classes (CBO)
– Response for a class (RFC)
– Lack of cohesion in methods (LCOM)

5



The CK metrics were proposed to capture different aspects of an object-
oriented design. However, not all of the CK metrics can be precisely measured
from a UML class diagram. Implementation details, such as the code in the
bodies of method definitions, are required to measure the CBO, RFC and LCOM
metrics. However, we were able to provide definitions to estimate the values
for these metrics based on the information in the UML class diagrams. Such
measures are useful as they can provide upper and lower bounds for metrics
calculated at later stages in the design or implementation process.

As an example of the format of the CK metric definitions, Figure 2 illustrates
how the NOC metric can be expressed as an OCL query over the UML 2.0
metamodel. Here, the definition is parameterised by a single Classifier, and the
body of the definition returns the size of the set of all children of this classifier.
The auxiliary operation children traverses the elements and relationships in
the UML metamodel to assemble this set. Full details of this and other metric
definitions can be found in Appendix A at the end of this report.

-- Returns a count of all immediate descendants of the Classifier c

context ckmetricset::NOC(c:UML::Classifier):Real

body: self.children(c)->size()

-- Returns the set of all immediate descendants of the Classifier c

def: children(c:UML::Classifier):Set(UML::Classifier)

= self.scope->excluding(c)

->select(i:UML::Classifier| i.parents()->includes(c))

->asSet()

Fig. 2. NOC Metric Definition. This OCL code defines the NOC metrics from the CK
metrics suite, and is part of a larger definition of the whole CK metric suite which we
have implemented using dMML.

As a proof of concept, our tool dMML has been used to calculate these
metrics for an open source project, Velocity which is part of the Apache Jakarta
project [21]. We chose to use version 1.2 of Velocity as this is the version used in
the study by Briand et al. [22]. We reverse engineered the system using Rational
Rose to obtain a UML class diagram. Using our dMML tool we calculated the
CK metrics suite for the resulting UML class diagram.

5 Summary and Future Work

In this report, we have identified the need for a clear, unambiguous framework for
defining metrics. This framework should provide for the comparison of different
definitions of the same metrics, and for using a metric, or suite of metrics in dif-
ferent environments. To achieve this we exploit OCL as a specification language,

6



and harness the UML metamodel to provide a framework for metric definitions.
We have implemented a tool, dMML, as an initial demonstration of the feasibil-
ity of our approach. A final contribution of this work is that it provides a first
ever definition of the Chidamber and Kemerer metrics suite using the UML 2.0
metamodel as a basis for these definitions.

While our approach to date is similar to other research in this area, particu-
larly that of Baroni et al., it differs in a number of key areas. Our approach de-
couples the metrics from the underlying metamodel. While this does not provide
any immediate benefit for the specification of metrics over UML class diagrams,
it is key to providing a foundation for our future work. First, our approach can
be generalised at the metamodel level, for example, to apply to other UML di-
agrams. Second, the metric definitions and their calculation procedure is highly
extensible, allowing for different versions to be implemented and compared.

We plan to build on this foundation by developing our research in three main
directions:

– We plan to extend metric definitions to other UML diagrams. While this
will allow us to add breadth to our metric set, it will also be important in
ensuring consistency across design documents for a single application, and
in tracking the impact of design decisions from different diagrams on the
application as a whole.

– We will extend the metrics to the implementation level, using programming
language metamodels. This will provide a single, coherent framework within
which the design and implementation process can be measured. This will
provide a clear, quantitative measure of the changes that take place between
design and implementation.

– We will investigate the variances between different definitions of the same
metrics over both design and implementation artifacts.

We have already tested the feasibility of our approach on the Jakarta Velocity
tool. We intend to analyse a suite of open-source software as part of our work,
in order to ensure the robustness and generalisability of our results.

References

1. Basili, V., Briand, L., Melo, W.L.: A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software Engineering 22 (1996) 751–761

2. Li, W., Henry, S.: Object-oriented metrics that predict maintainability. Journal of
Systems and Software 23 (1993) 111–122

3. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20 (1994) 476–493

4. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. Prentice Hall Object-
Oriented Series (1994)

5. Fenton, N., Lawrence Pfleeger, S.: Software Metrics: A Rigorous and Practical
Approach. International Thompson Computer Press (1996)

6. Briand, L.C., Daly, J.W., Wuest, J.K.: A unified framework for coupling measure-
ment in object-oriented systems. IEEE Transactions on Software Engineering 25
(1999) 91–121

7



7. Churcher, N., Shepperd, M.: Comments on ‘A metrics suite for object-oriented
design’. IEEE Transactions on Software Engineering 21 (1995) 263–265

8. Briand, L.C., Daly, J.W., Wuest, J.K.: A unified framework for cohesion measure-
ment in object-oriented systems. Empirical Software Engineering 3 (1998) 65–117

9. Reißing, R.: Towards a model for object-oriented design measurement. In: Proceed-
ings of ECOOP Workshop on Quantative Approaches in Object-Oriented Software
Engineering, Budapest, Hungary (2001)

10. El-Wakil, M., El-Bastawisi, A., Riad, M., Fahmy, A.: A novel approach to formalize
object-oriented design metrics. In: Proceedings of Evaluation and Assessment in
Software Engineering, Keele, UK (2005)

11. Wilkie, F., Harmer, T.: Tool support for measuring complexity in heterogeneous
object-oriented software. In: Proceedings of IEEE International Conference on
Software Maintenance, Montréal, Canada (2002)

12. Baroni, A.: Formal definition of object-oriented design metrics. Master’s thesis,
Vrije Universiteit Brussel - Belgium, in collaboration with Ecole des Mines de
Nantes - France and Universidade Nova de Lisboa - Portugal (2002)

13. Baroni, A., Braz, S., Brito e Abreu, F.: Using OCL to formalize object-oriented
design metrics definitions. In: Proceedings of ECOOP Workshop on Quantative
Approaches in Object-Oriented Software Engineering, Malaga, Spain (2002)

14. Baroni, A., Brito e Abreu, F.: A formal library for aiding metrics extraction.
In: Proceedings of ECOOP Workshop on Object-Oriented Re-Engineering, Darm-
stadt, Germany (2003)

15. The Object Management Group: UML 1.3 specification (1999)
16. Goulão, M., Brito e Abreu, F.: Formalizing metrics for COTS. In: Proceddings of

the ICSE Workshop on Models and Processes for the Evaluation of COTS Com-
ponents, Edinburgh, Scotland (2004)

17. The Object Management Group: UML 2.0 draft superstructure specification (2003)
18. OMG: Meta Object Facility (MOF) Core Specification v2.0. Ref.: formal/06-01-01.

Object Management Group (2006)
19. Warmer, J., Kleppe, A., Bast, W.: MDA Explained: The Model Driven Architec-

turePractice and Promise. Addison-Wesley (2003)
20. Warmer, J., Kleppe, A.: The Object Constraint Language. Addison-Wesley (2003)
21. Jakarta: The Apache Jakarta Project. http://jakarta.apache.org/ (2003)
22. Arisholm, E., Briand, L., Fyen, A.: Dynamic coupling measurement for object-

oriented software. Technical Report 2003-05, Simula Research Laboratory, Norway
(2003)

8



A Definitions of the Chidamber and Kemerer metrics

/*

* The following are OCL expressions

* regarding Metrics::ckmetricset.

*/

package Metrics

-- Definition of additional Operations

context ckmetricset

-- Returns the set of methods implemented in the Classifier c,

excludes all non overriding inherited and abstract methods

def: implementedMethods(c:UML::Classifier):Set(UML::Operation)
= self.methods(c)-self.abstractMethods(c)

-- Returns the set of methods implemented in the Classifier c

def: methods(c:UML::Classifier):Set(UML::Operation)
= c.ownedElement->select(e:UML::Element|self.isKindOfMethod(e))

->collect(i:UML::Element|
i.oclAsType(UML::Operation))

->asSet()

-- Returns the set of abstract methods of the Classifier c

def: abstractMethods(c:UML::Classifier):Set(UML::Operation)
= self.methods(c)->select(m:Kernel::Operation|m.isAbstract())

-- Checks if an Element is a Method/Operation

def: isKindOfMethod(e:UML::Element):Boolean
= e.oclAsType(UML::Operation).oclIsUndefined()

-- Returns the maximum element in a set of integers

def: max(s:Set(Real)):Real
= s->iterate(elem:Integer; result:Integer = -1|result.max(elem))

-- Returns the set of immediate descendents of the Classifier c

def: children(c:UML::Classifier):Set(UML::Classifier)
= self.scope->excluding(c)->select(i:UML::Classifier|

i.parents()->includes(c))
->asSet()

9



-- Returns a set containing the immediate ancestors

-- of the Classifier c

def: parents(c:UML::Classifier):Set(UML::Classifier)
= self.scope->intersection(c.parents())

-- Returns the minimum set of all Classifiers that are

-- potentially coupled to the Classifier c

def: minCouplings(c:UML::Classifier):Set(UML::Classifier)
= self.scope->excluding(c)

->select(elem:UML::Classifier|
self.minCoupledTo(elem,c) or
self.minCoupledTo(c,elem))

-- Returns true if the Classifier x is coupled to Classifier y

def: minCoupledTo(x:UML::Classifier, y:UML::Classifier):Boolean
= self.hasDependency(x, y) or self.hasAttribute(x, y)

-- Returns true if the Classifier x has a dependency with Classifier y

def: hasDependency(x:UML::Classifier, y:UML::Classifier):Boolean
= self.dependencies(x)->includes(y)

-- Returns the set of suppliers of the dependency relationships

-- of the Classifier c

def: dependencies(c:UML::Classifier):Set(UML::NamedElement)
= c.clientDependency.supplier->asSet()

-- Returns true if the classifier x has an

-- accessible (within x) attribute of type y

def: hasAttribute(x:UML::Classifier, y:UML::Classifier):Boolean
= self.typesOfAllAccessibleAttributes(x)->includes(y)

-- Returns the types (Classifiers) of all the attributes of the

Classifier c that is accesible from within c

def: typesOfAllAccessibleAttributes(c:UML::Classifier)
:Set(UML::Classifier)

= self.allAccessibleAttributes(c)->collect(q:UML::Property|q.type)
->collect(r:UML::Type|

r.oclAsType(UML::Classifier))
->asSet()

-- Returns the set of all attributes

-- (including public and protected attributes of all parents)

-- of the Classifier c that are accessible within c

def: allAccessibleAttributes(c:UML::Classifier):Set(UML::Property)
= c.attribute->union(c.allParents()

10



->collect(i:UML::Classifier|i.attribute)->asSet()
->select(p:UML::Property|

p.getVisibility()=UML::VisibilityKind::public
or
p.getVisibility()=UML::VisibilityKind::protected))

->asSet()

-- Returns an estimation of the set of classes that

-- are coupled to the Classifier c

def: avgCouplings(c:UML::Classifier):Set(UML::Classifier)
= self.scope->excluding(c)

->select(elem:UML::Classifier|
self.avgCoupledTo(elem,c)
or
self.avgCoupledTo(c,elem))

-- Returns true if the classifier x is coupled to classifier y

def: avgCoupledTo(x:UML::Classifier, y:UML::Classifier):Boolean
= self.hasDependency(x, y) or self.hasAttribute(x, y) or

self.hasParameter(x, y) or self.hasAssociation(x, y)

-- Returns true if at least one implemented method of

-- classifier x has a parameter of type y

def: hasParameter(x:UML::Classifier, y:UML::Classifier):Boolean
= self.typesOfParameters(x)->includes(y)

-- Returns the types of all the parameters of the

-- implemented methods of the Classifier c

def: typesOfParameters(c:UML::Classifier):Set(UML::Classifier)
= self.parameters(c)->collect(q:UML::Parameter|q.type)

->collect(r:UML::Type|
r.oclAsType(UML::Classifier))

->asSet()

-- Returns all parameters of all the implemented methods

-- of the Classifier c

def: parameters(c:UML::Classifier):Set(UML::Parameter)
= self.implementedMethods(c)->collect(o:UML::Operation|

o.ownedParameter)
->asSet()

-- Returns true if the Classifier x has an association

-- with Classifier y

def: hasAssociation(x:UML::Classifier, y:UML::Classifier):Boolean
= self.typesOfAssociations(x)->includes(y)

11



-- Returns the set of all Classifiers that have an association

-- relationship with the Classifier c

def: typesOfAssociations(c:UML::Classifier):Set(UML::Classifier)
= self.associations(c)->collect(q:UML::Association|q.endType)

->flatten()
->collect(r:UML::Type|

r.oclAsType(UML::Classifier))
->asSet()

-- Returns the set of Associations for the Classifier c

def: associations(c:UML::Classifier):Set(UML::Association)
= c.ownedElement->select(e:UML::Element|isKindOfAssociation(e))

->collect(i:UML::Element|
i.oclAsType(UML::Association))

->asSet()

-- Checks if an Element is an Association

def: isKindOfAssociation(e:UML::Element):Boolean
= e.oclAsType(UML::Association).oclIsUndefined()

-- Returns a set containing all methods of all classes (except c)

-- within the scope that are accessible from all classes

def: maxMethodsCalled(c:UML::Classifier):Set(UML::Operation)
= self.scope->excluding(c)

->collect(i:UML::Classifier|self.publicMethods(i))
->union(self.allAccessibleInheritedMethods(c))
->asSet()

-- Returns a set containing an estimate of the minimum operations

-- called by the Classifier c

def: minMethodsCalled(c:UML::Classifier):Set(UML::Operation)
= self.minCouplings(c)->collect(i:UML::Classifier|

self.publicMethods(i))
->union(self.allAccessibleInheritedMethods(c))
->asSet()

-- Returns a set containing an estimate of the operations

-- called by the Classifier c

def: avgMethodsCalled(c:UML::Classifier):Set(UML::Operation)
= self.avgCouplings(c)->collect(i:UML::Classifier|

self.publicMethods(i))
->union(self.allAccessibleInheritedMethods(c))
->asSet()

12



-- Returns all public implemented methods of the Classifier c

def: publicMethods(c:UML::Classifier):Set(UML::Operation)
= self.implementedMethods(c)

->select(o:UML::Operation|
o.getVisibility()=UML::VisibilityKind::public)

--Returns all inherited methods of the Classifier c that can

-- be called within c, this is the public and protected methods of

-- all parents of c

def: allAccessibleInheritedMethods(c:UML::Classifier)
:Set(UML::Operation)

= c.allParents()->collect(i:UML::Classifier|
self.implementedMethods(i))

->flatten()->asSet()
->select(o:UML::Operation|

o.getVisibility()=UML::VisibilityKind::public
or
o.getVisibility()=UML::VisibilityKind::protected)

--Computes the sum of 1...n, where n is positive

def:sum(n:Integer):Real
= (n*(n+1))/2

--Metric Operations

-- Returns a count of all the operations of the Classifier c,

-- including all inherited operations

context ckmetricset::WMC(c:UML::Classifier):Real
body: self.implementedMethods(c)->size()

-- Returns a count of all immediate descendants

-- of the Classifier c

context ckmetricset::NOC(c:UML::Classifier):Real
body: self.children(c)->size()

-- Computes the DIT for the Classifier c

context ckmetricset::DIT(c:UML::Classifier):Real
body: if self.parents(c)->size() = 0 then -- c is the root

0
else --DIT for c is maximum DIT value of its parents

self.max(self.parents(c)
->collect(i:UML::Classifier|self.DIT(i)+1)
->asSet())

endif

13



-- Computes the DIT for the entire model

context ckmetricset::DIT():Real
body: self.max(self.scope->collect(c:UML::Classifier|self.DIT(c))

->asSet())

-- Returns the maximum CBO of the Classifier c,

which is a count of all the Classifiers within the scope

context ckmetricset::MaxCBO(c:UML::Classifier):Real
body: self.scope->size()-1

-- Returns the minimum CBO of the Classifier c

context ckmetricset::MinCBO(c:UML::Classifier):Real
body: self.minCouplings(c)->size()

-- Returns an estimate of the CBO of the Classifier c

context ckmetricset::AvgCBO(c:UML::Classifier):Real
body: self.avgCouplings(c)->size()

-- Computes the maximum possible RFC value for the Classifier c,

-- which is a count of all accessible operations within the scope

context ckmetricset::MaxRFC(c:UML::Classifier):Real
body:self.implementedMethods(c)

->union(self.maxMethodsCalled(c))->size()

-- Computes the minimum possible RFC value for c

context ckmetricset::MinRFC(c:UML::Classifier):Real
body: self.implementedMethods(c)

->union(self.minMethodsCalled(c))->size()

-- Computes an average value for RFC for c

context ckmetricset::AvgRFC(c:UML::Classifier):Real
body:self.implementedMethods(c)

->union(self.avgMethodsCalled(c))->size()

-- Returns the maximum value for the LCOM of the Classifier c

context ckmetricset::MaxLCOM(c:UML::Classifier):Real
body: sum(self.implementedMethods(c)->size()-1)

-- Returns the minimum value for the LCOM of the Classifier c

context ckmetricset::MinLCOM(c:UML::Classifier):Real
body: 0

endpackage --Metrics

14


