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y . 107

dHu Distance Function to calculate Hu Moment distance between two

hand contours. 192

dSF Distance Function to calculate weighted eigenspace size function

distance between two hand contours. 99, 192

ℓϕ Size Function induced by Measuring function ϕ. 85

µhu
y Hu Moment classifier weight. 107, 109

µsf
y Weighted Eigenspace size function classifier weight. 107, 109

SVMhu
y Support Vector Machine which classifies Hu Moments for posture

class y. 105, 107, 218

SVMsf
y Support Vector Machine which classifies Size Functions for pos-

ture class y. 105, 107, 218

ϕ Measuring function. 85

̟θ Weighting factor for each individual eigenvector associated with

the Size Function indexed by θ. 98
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̺θ Weighting factor for each set of eigenvectors associated with the

Size Function indexed by θ. 98

ζθ Weighted Eigenspace size function calculated from size function

ℓϕθ. 98

ζ Set of Weighted Eigenspace size functions calculated from the set

of size functions Γϕ. 105–108, 218, 220

Chapter 4: Spatiotemporal Gesture Recognition Glossary

∆y Set of Isolated samples of a sign class y. 126, 128, 130, 151–153,

156, 157, 159

ΓT Temporal Clustering time scaling factor. 128

G Observation sequences G = {f1, f2, ..., fT}. 117, 119, 126–128,

134–139, 146, 147, 151, 156, 159, 168, 169, 174, 219, 220

M Dimension of observation vector ft. 117–119, 135

Ω Pre-defined threshold value for CRF likelihoods. 146, 153, 168

R State Reach: The number of states that it is possible to transition

to from the current state. 126, 133

Σj Covariance matrix used to calculate probability distribution func-

tion for state sj . 119, 125, 130

S Set of Hidden Markov Model States S = {s1, s2, ...., sN}. 118,

126–128, 130, 133, 143, 150

bj Observation probability distribution in state sj. 118, 119

βy Likelihood of gesture y relative to the movement epenthesis like-

lihood. 138, 139

ft Spatiotemporal observation vector made at time t: ft = {o1, ..., oM}.
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117–119, 128, 138, 153, 157, 160, 168, 219

κe Candidate Gesture End Point. 137, 138, 219

κp Candidate Gesture Likelihood. 139, 140, 168

κs Candidate Gesture Start Point. 137, 138, 219

κ Candidate Gesture. 137, 139, 168, 219, 220

Λ Set of Gesture HMMs and Threshold HMMΛ = {λ1, λ2, ..., λY , λ}.
134

λ Threshold Hidden Markov Model. 123, 133, 134, 136, 212

λ Hidden Markov Model. 118, 119, 127, 130, 133–137, 139, 212

µj Mean vector used to calculate probability distribution function

for state sj . 119, 125, 130

ωLy Variance weight for Left hand HMM. 135, 136, 146

ωRy Variance weight for Right hand HMM. 135, 136, 146

s Individual Hidden Markov Model state. 118, 123, 133

τy Movement Epenthesis likelihood threshold for gesture y. 134, 137,

139

Chapter 5: Weakly Supervised Training Glossary

Bi Bag representing a sequence of features for each frame Bi =

{Bi[0], ..., Bi[NBi]}. 194, 197–199, 201

B+ Set of positive bags B+ = {B0, ..., BNB
}. 194, 198, 199, 223

DG() Similarity function used to calculate similarity between spatiotem-

poral gesture frames. 191, 195, 197

DH() Similarity function used to calculate similarity between hand pos-

ture frames. 192, 197
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Gi Bag representing a sequence of spatiotemporal features for each

frame Gi = {fi[0], ..., fi[NBi]}. 195–197, 199, 202, 205

G+ Set of positive bags for spatiotemporal featuresB+ = {B0, ..., BNB
}.

195

Hi Bag representing a sequence of hand posture features for each

frame Hi = {Ci[0], ..., Ci[NBi]}. 195–197, 205, 213, 215, 219, 220

H+ Set of positive bags for hand posture featuresB+ = {B0, ..., BNB
}.

195, 213

L(ξw) total number of hand postures in ξw. 213, 214, 216, 218

NBi Number of frames in bag Bi. 195, 196, 198, 199

Nw
B Number of bags in the set of bags B+

w where B+
w is the set of bags

for target word w. 215

Ψi Overall density vector calculated from i’th hand posture and spa-

tiotemporal density vectors. 202, 204, 213

Ψ Set of all density vectors Ψ = {Ψ1, ...,ΨNB
}. 204

Ψ(Bi) Function to compute the density vector for the i’th hand posture

or spatiotemporal bag. 201, 213

Sw Measure of dissimilarity for cluster ξw. 214–216

Ξ Set of all key hand posture clusters Ξ = {ξ0, ..., ξW}. 213, 216,

218

Bij Comparision matrix used to compared bags Bi and Bj. 197, 198

Gij Comparision matrix used to compared temporal bags Gi and Gj .

195, 197, 199, 202

Hij Comparision matrix used to compared hand posture bags Hi and
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Hj . 195–197

bij

′

Transposed comparison vector used to compared bags Bi and Bj.

198

bij Comparision vector used to compared bags Bi and Bj . 197, 198

b
′

j NBj-dimensional column vector storing the summation of trans-

posed comparison vectors bkj

′

. 199

bi NBi-dimensional row vector storing the summation of comparison

vectors bij. 199, 201

Φ(Bi, Bj) NBi×NBj Density Matrix which measures the interaction between

the pair of bags Bi and Bj . 201

sw[t] Measure of dissimilarity for t’th hand posture in cluster ξw. 214–

216

tMax
i Frame index of Bi with maximum density. 204

Ĝi Subsequence of spatiotemporal gesture bag Gi which corresponds

to the target word: Ĝi = {Gi[t
s
i ], ...Gi[t

e
i ]} where tsi and tei corre-

spond to the start and end index of the target word. 205, 212,

213

Ĥi Subsequence of hand posture bag Hi which corresponds to the

target word: Ĥi = {Hi[t
s
i ], ...Hi[t

e
i ]} where tsi and t

e
i correspond to

the start and end index of the target word. 205, 212, 213

ξw Cluster of candidate key hand postures for word w. 213–216, 218
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Abstract

This thesis presents a framework for the automatic recognition of Sign Lan-

guage sentences. In previous sign language recognition works, the issues of;

user independent recognition, movement epenthesis modeling and automatic

or weakly supervised training have not been fully addressed in a single recog-

nition framework. This work presents three main contributions in order to

address these issues.

The first contribution is a technique for user independent hand posture

recognition. We present a novel eigenspace Size Function feature which is

implemented to perform user independent recognition of sign language hand

postures.

The second contribution is a framework for the classification and spotting

of spatiotemporal gestures which appear in sign language. We propose a

Gesture Threshold Hidden Markov Model (GT-HMM) to classify gestures

and to identify movement epenthesis without the need for explicit epenthesis

training.

The third contribution is a framework to train the hand posture and spa-

tiotemporal models using only the weak supervision of sign language videos

and their corresponding text translations. This is achieved through our pro-

posed Multiple Instance Learning Density Matrix algorithm which automat-

ically extracts isolated signs from full sentences using the weak and noisy

supervision of text translations. The automatically extracted isolated sam-

ples are then utilised to train our spatiotemporal gesture and hand posture

classifiers.
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The work we present in this thesis is an important and significant con-

tribution to the area of natural sign language recognition as we propose a

robust framework for training a recognition system without the need for

manual labeling.
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Chapter 1

Introduction

Sign languages are used all over the world as a primary means of commu-

nication by deaf people. For example, Irish Sign Language (ISL) is used by

the majority of the hearing impaired community in Ireland. According to

current estimates 1 in every 1000 people are deaf. In the United States alone,

American sign language is used by more than 500,000 people on a regular

basis with a further 1.5 million people using it from time to time. Thus, there

is a great need for systems that can interpret sign language or can serve as

interpreters between sign languages and spoken languages.

There is a limited number of hearing people who are competently able

to communicate in sign language. Sign language interpreters can be used

to aid communication between deaf and hearing people but this is often

difficult due to the limited availability and high cost of interpreters. These

difficulties in communication between hearing and deaf people can lead to

problems in the integration of deaf people into society and conflicts with an
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independent and self-determined lifestyle. Hearing people learn and perceive

written language as a visual representation of spoken language where letters

encode phonemes. For deaf people, this correspondence does not exist thus

letters are just seen as symbols without any meaning [vAZC+08b]. Deaf

people therefore have great difficulties with reading and writing due to the

fact that there is no direct correspondence between their natural language

(sign language) and written language. Research in automated recognition

is therefore needed in order to improve communication between deaf and

hearing people. Current developments in automatic sign language recognition

is roughly 30 years behind speech recognition [vAZC+08b]. Sign language is

conveyed through multiple interacting channels of information, therefore the

analysis of sign language is a more complex problem than that of analysing

the one-dimensional audio channel in speech.

The goals of the work discussed in this thesis is to develop:

1. Recognition models to process and classify the different channels of sign

language communication.

2. Algorithms to train the recognition models with minimal human input.

This thesis describes three fundamental contributions to these goals:

1. The first contribution is the development of a framework for the auto-

matic classification of hand shapes which are used in sign language com-

munication. The framework developed is based on a novel eigenspace

Size Function representation of the hand. The eigenspace Size Function

acts as a user independent measurement of the hand and is implemented
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Introduction

to recognise the hand shapes of users not represented in the training

set.

2. The second contribution is the development of a framework to segment

and recognise motion based gestures from continuous sign language

sentences. This framework is based on a Hidden Markov Model (HMM)

framework where a Threshold HMM is developed to compute a dynamic

threshold likelihood as a measure for inter-gesture transitions. This

framework is implemented to spot and recognise meaningful gesture

segments from within continuous sign language sentences.

3. The overall goal of sign language recognition requires the development

of algorithms which scale to large vocabularies. There has been a sig-

nificant amount of research in sign language recognition in recent years

[OR05]. However, expanding sign vocabularies used in previous re-

search has proven very difficult as previous works have typically re-

quired manual training data to be generated for each sign. The third

contribution, and perhaps the most significant, is an approach towards

automatic training of sign language recognition models. This thesis

proposes a technique for the automatic extraction of sign training data

from sign language videos with corresponding text translations. This

technique is based on a novel Multiple Instance Learning (MIL) den-

sity matrix algorithm which automatically extracts isolated samples of

signs that can then be used to train our hand shape and motion based

gesture models.

35



1.1 Publications Introduction

1.1 Publications

Part of the work in this thesis has been presented in the publications listed

in this section:

International Journal Publications

1. D. Kelly, J. Mc Donald and C. Markham,“A Person Independent

System for Recognition of Hand Postures used in Sign Language”, In

Pattern Recognition Letters, Accepted

2. D. Kelly, J. Mc Donald and C. Markham,“Weakly Supervised Train-

ing of a Sign Language Recognition System using Multiple Instance

Learning Density Matrices”, In IEEE Transactions on Systems, Man

and Cybernetics-Part B, In Submission

Book Chapter

1. D. Kelly, J. Mc Donald and C. Markham,“Recognition of Spatiotem-

poral Gestures in Sign Language using Gesture Threshold HMMs”, In

Machine Learning for Vision Based Motion Analysis, Springer LNCS,

In Submission

International Conference Publications

1. D. Kelly, J. Reilly Delannoy, J. Mc Donald and C. Markham, “A

Framework for Continuous Multimodal Sign Language Recognition”,

In Proceedings Special Interest Group on Computer-Human Interaction
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2009, International Conference on Multimodal Interaction 2009, Boston

MA.

2. D. Kelly, J. Mc Donald and C. Markham, “Evaluation of Thresh-

old Model HMMs and Conditional Random Fields for Recognition of

Spatiotemporal Gestures in Sign Language”, In proceedings IEEE In-

ternational Conference on Computer Vision 2009, Kyoto Japan.

3. D. Kelly, J. Mc Donald and C. Markham, “Continuous Recognition

of Motion Based Gestures in Sign Language”, In proceedings IEEE

International Conference on Computer Vision 2009, Kyoto Japan.

4. D. Kelly, J. Reilly Delannoy, J. Mc Donald and C. Markham, “In-

corporating Facial Features into a Multi-Channel Gesture Recognition

System for the Interpretation of Irish Sign Language Sequences”, In

proceedings IEEE International Conference on Computer Vision 2009,

Kyoto Japan.

5. D. Kelly, J. Reilly Delannoy, J. McDonald, and C. Markham,”Automatic

Recognition of Head Movement Gestures in Sign Language Sentences”,

in CIICT 2009: Proceedings of the China-Ireland International Con-

ference on Information and Communications 2009

6. D. Kelly, J. McDonald, and C. Markham, ” Recognising Spatiotem-

poral Gestures and Movement Epenthesis in Sign Language,” in IMVIP

2009: Proceedings of the Irish Machine Vision and Image Processing

Conference 2009, 2009.
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7. D. Kelly, J. McDonald, T. Lysaght, and C. Markham, ”Analysis of

sign language gestures using Size Functions and principal component

analysis,” in IMVIP 2008: Proceedings of the International Machine

Vision and Image Processing Conference 2008, 2008.

8. D. Kelly, C. Markham, J. McDonald, “Demo Session - A System for

Teaching Sign Language using Live Gesture Feedback”, IEEE Interna-

tional Conference on Automatic Face and Gesture Recognition 2008,

Amsterdam.

9. D. Kelly, J. McDonald, C. Markham, “A Hand Shape Classification

Measurement Using Size Functions and Principal Component Analysis”

Irish Graduate Student Symposium on Vision, Graphics and Visuali-

sation 2008, Trinity College Dublin.

10. D. Kelly, P. Olivo, C. Markham, J Mc Donald, B. Caulfield and D.

Fitzgerald, “Classification of Human Poses using a Vision Based Tech-

nique”, in IMVIP 2007: Proceedings of the International Machine Vi-

sion and Image Processing Conference 2007, 2007.

11. D. Kelly, D. Fitzgerald, J. Foody, D. Kumar, T. Ward, B. Caulfield

and C. Markham, “The E-Motion System: Motion Capture and Movement-

based Biofeedback Game”, in CGAMES 2006: Proceedings of the 9th

International Conference on Computer Games, Dublin.

12. D. Fitzgerald, D. Kelly, T. Ward, C. Markham, B. Caulfield, “Us-

ability Evaluation of E-Motion: A Virtual Rehabilitation System De-

signed to Demonstrate, Instruct, and Monitor a Therapeutic Exercise
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Programme”, in Proceedings Virtual Rehabilitation 2008, Vancouver,

Canada.

13. D. Fitzgerald, J. Foody, D. Kelly, T. Ward, C. Markham, J. Mc-

Donald, B. Caulfield, “Development of a wearable motion capture suit

and virtual reality biofeedback system for the instruction and analysis

of sports rehabilitation exercises”, in proceedings of the 29th Annual

Conference of the IEEE Engineering in Medicine and Biology Society

2007, Lyon, France.

14. D. Fitzgerald, J. Foody, D. Kumar, D. Kelly, T. Ward, C. Markham,

B. Caulfield, “Integration of kinematic Analysis into Computer Games

for Exercise”, in CGAMES 2006: Proceedings of the 9th International

Conference on Computer Games, Dublin.

15. D. Kumar, J. Foody, D. Fitzgerald, D. Kelly, T. Ward, C. Markham,

B. Caulfield, “Sensor Density Requirements for Kinematic Controllers

in a Full Posture Yoga Gaming application”, in CGAMES 2006: Pro-

ceedings of the 9th International Conference on Computer Games,

Dublin.

16. J. Foody, D. Kelly, D. Kumar, D. Fitzgerald, B. Caulfield, T. Ward,

C. Markham. “A real time motion capture system, using USB based

tri-axis magnetic and inertial sensors, for movement based relaxation.”

Proceedings of the IET Irish Signals and Systems Conference, 2006,

Dublin.

17. J. Foody, D. Kelly, D. Kumar, D. Fitzgerald, T. Ward, B. Caulfield,
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C. Markham, “A Prototype sourceless kinematic feedback based video

game for movement based exercise”, in proceedings of the 28th Annual

Conference of the IEEE Engineering in Medicine and Biology Society

2006, New York.

1.2 Outline of the thesis

The structure of the remainder of this thesis is as follows: Chapter 2 provides

an overview of the linguistic properties of sign language, an analysis of the

structure of sign language and a discussion of how particular signs are formed

and distinguished from each other. We then present the major ideas in

the state of the art in sign language recognition as well as a discussion of

previously unsolved problems.

The development of a user independent hand posture recognition model is

detailed in Chapter 3. A thorough evaluation of the discriminatory properties

of our proposed hand posture features is discussed as well as an evaluation

of our proposed hand posture recognition framework.

Chapter 4 details the implementation of our proposed motion based ges-

ture spotter model. We implement a HMM based framework to spot and

recognise meaningful gesture segments from within continuous sign language

sentences. Moreover, an evaluation of our proposed model is carried out and

compared to Conditional Random Field (CRF), Hidden Conditional Random

Field (HCRF) and Latent Dynamic Conditional Random Field (LDCRF)

frameworks.

In Chapter 5 we describe our technique developed for the automatic train-
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ing of the sign language recognition models. Automatic training is performed

using our MIL density matrix algorithm and a detailed explanation of the

implementation of this algorithm is carried out. We discuss experiments con-

ducted to evaluate the automatic training algorithm as well as experiments to

evaluate the combination of our hand shape and motion recognition models

when trained using the automatic training algorithm.

Chapter 6 concludes with a summary of our contributions and details of

possible future directions of this work.
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Chapter 2

Sign Language Recognition

2.1 Sign Language Overview

Gestures are a form of body language or non-verbal communication. Hand

gestures can be classified into several categories such as conversational ges-

tures, controlling gestures, manipulative gestures and communicative ges-

tures [WH99].

Sign language is regarded as the most structured of all the gesture cat-

egories. Like spoken languages, sign languages emerge and evolve naturally

within hearing-impaired communities. Wherever a hearing-impaired commu-

nity exists, sign languages develop. Sign language develops independently

from the spoken language of the region. Each sign language has its own

grammar and rules, with the common property that they are all visually

perceived. Like spoken language, there are many different sign languages of

the world. For example, an Irish Sign Language signer could not understand
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an American Sign Language signer unless they had specifically learned that

language.

Although sign language is primarily communicated using hand gestures

(manual signing), it also incorporates non-manual signals conveyed through

facial expressions, head movements, body postures and torso movements.

Due to the complexity and multimodal nature of sign language, the research

area of Sign language recognition is a multidisciplinary research area involv-

ing pattern recognition, machine learning, computer vision, natural language

processing and linguistics.

Sign language also have their own syntax and grammar. A misconcep-

tion of sign language is that they are patterned after the vocally produced

languages of that country, and that signs are manually manually produced

English words. This is not the case and Sign Language have their own phonol-

ogy, morphology, syntax and grammar that are independent of spoken lan-

guages. The morphological structure of sign language is simultaneous such

that the different morphemes of a word are simultaneously superimposed on

each other rather than being strung together, as those of spoken languages

usually are. This is one of the main difference between signed and spoken

languages. For example, manual signs are conveyed sequentially, where each

sign comes one after the other. However, in addition to being conveyed se-

quentially, each manual sign occurs in parallel to manuals signs performed

by the other hand as well as actions such as facial expressions or head and

body movements. The linguistic characteristics of sign languages therefore

differ greatly from those of spoken languages. Research has shown that this
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morphological structure is not specific to any one sign language and therefore

shows thats different sign languages have strong cross linguistic similarities

in their morphological structures [AMS05].

In psycholinguistic research, there have been many studies on human

gestures and on sign language in particular. One of the most important

psycholinguistic works in sign language is the work Stokoe [Sto05]. In this

work, Stokoe defined three aspects that are combined simultaneously in the

formation of a particular manual sign: what acts, where it acts, and the act.

These aspects translate into building blocks that linguists describe as: the

hand shape, the position, the orientation and the movement. In sign language

recognition these four manual sign components are often considered as two

distinct information channels. The first channel is the hand posture channel,

which refers to the finger configuration and orientation of the hand. The

second channel is the spatiotemporal channel, which refers to the motion

trajectory and location of articulation of the hands in space.

On their own, hand postures can be used for finger-spelling where different

hand postures are used to represent the letters and numbers of writing and

numeral systems. Finger-spelling can be used to convey words from a spoken

language which have no sign equivalent, or for emphasis, clarification, or

when teaching or learning a sign language.

Sign language is a complex language and the majority of signs convey a

significant amount of information in the combination of hand posture and

hand motion. A large number of signs can only be distinguished when all

the information from the manual channels are available. An example is illus-

45



2.1 Sign Language Overview Sign Language Recognition

trated in Figure 2.1, where the signs ‘School’ and ‘Play’ share the same hand

postures but have different motions. Similarly, in Figure 2.2, the signs ‘Big’

and ‘Paper’ share the same motion and can only be distinguished by hand

posture. In Figure 2.3, the signs ‘Eat’, ‘Water’, ‘Warm’ and ‘Sweets’ could

only be distinguished by their hand shape. Therefore, recognising sign lan-

guage communication requires simultaneous analysis of the spatiotemporal

gestures and hand posture channels.

(a) Sign for ‘School’ (b) Sign for ‘Play’

Figure 2.1: Examples of signs with similar hand posture. Signs must be
distinguished using motion.

When spatiotemporal gestures are performed in a continuous sign lan-

guage sentence, the hands need to move from the ending location of one sign

to the starting location of the next. These inter-gesture transition periods are

called movement epenthesis [SR89] and are not part of either of the gestures.

Analysis of the spatiotemporal gesture channel must therefore distinguish

between valid sign segments and movement epenthesis.
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(a) Sign for ‘Big’ (b) Sign for ‘Paper’

Figure 2.2: Examples of signs with similar motion. Signs must be distin-
guished using hand posture.

2.1.1 Applications of Sign Language Recognition

One of the main uses proposed for a sign language recognition system is a

sign to text conversion system. This would require the complete translation

of signed sentences to the text, or speech, of a spoken language. Such a

translation system is not the only use for sign language recognition systems.

There are other envisaged applications for sign language recognition systems

such as a translation system for specific transactional domains such as post

offices, banks etc. Another application is a bandwidth conserving system

allowing communication between signers where recognised signs, which are

the input of the communication system at one end, can be translated to

avatar based animations at the other. An additional proposed application is

an automated sign language teaching system. It could support users suffering

from hearing loss, deaf people with sign language deficiencies and hearing

47



2.1 Sign Language Overview Sign Language Recognition

(a) Sign for ‘Eat’ (b) Sign for ‘Water’

(c) Sign for ‘Warm’ (d) Sign for ‘Sweets’

Figure 2.3: Examples of signs with similar location of articulation. Signs
must be distinguished using hand posture.
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people wishing to learn sign language.

Other envisaged applications include an automated, or semi-automated,

system for the annotation of video databases of native signing. Linguistic re-

search on sign language requires large scale annotated corpora and automated

methods of analysing sign language videos would greatly improve annotation

efficiency. Finally, sign language recognition systems could be incorporated

into applications which enable an input interface for augmented commu-

nication systems. Assistive technology implemented for human to human

communication by people with speech impairments often require keyboard,

mouse and joystick inputs. Systems which could incorporate natural aspects

of sign language would increase the accessibility of these systems.

The techniques proposed in this thesis are not limited to sign language

recognition. Our proposed techniques have potential to be applied to different

problems that focus on human motion modeling and recognition, such as

gesture controlled Human Computer Interface (HCI) systems, human action

analysis and social interaction analysis.

2.2 State of the Art on Sign Language Recog-

nition

In this section we will review the state of the art literature on sign language

and gesture recognition and highlight the issues within the current literature

which we propose solutions to.

In order to build a framework for the automatic learning and recognition
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of sign language, it is important that robust algorithms which model hand

postures and spatiotemporal gestures be developed.

Research in the field of sign language recognition has made significant ad-

vances in recent years. Gesture recognition systems which deal with temporal

gestures and hand postures are reviewed in this section. For a comprehensive

review of automatic sign language recognition, refer to the survey paper by

Ong and Ranganath [OR05].

2.2.1 Gesture Data Acquisition

The focus of the work detailed in this thesis is the development of compu-

tational models for the automatic learning and recognition of sign language

information. In order to capture sign language information, data is mainly

acquired using cameras or direct measure devices.

In this section we discuss some of the data acquisition methods using

direct measure devices and cameras which have been implemented in the

literature.

Wearable Computing Based Acquisition

Wearable computing approaches to sign language data acquisition offer ac-

curate means of extracting information about the signers hand movements

and hand shape.

Kim et al. [KWRA08] proposed a system which combined sensor data

from accelerometers and an Electromyogram (EMG) which was used to mea-

sure the electrical activity produced by the hand muscles. It was shown that
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the information added by the EMG greatly improved the recognition rate of

signs. Figure 2.4 shows a visualisation of the sensor setup for a single hand.

Figure 2.4: Sensor Placement for Bi-Channel recognition system proposed
by Kim et al. [KWRA08]

Vogler et al. [VM04] recorded arm and hand movement data using “As-

cension Technologies” MotionStar 3D tracking system and recorded hand

posture information using a “Virtual Technologies” CybergloveTM . Fang et

al. [FGZ03, GFZC04] developed a large vocabulary sign recognition systems

using two CyberglovesTM and three “Pohelmus” 3SPACE-position trackers.

Two trackers were positioned on the wrist of each hand and another posi-

tioned on the signers back and were used to collect orientation and position

data. The CyberglovesTM collected 18-dimensional hand shape information

for each hand. Similarly, Oz et al. [OL07] utilised a CybergloveTM along

with a “Flock of Birds” 3-D motion tracker to extract hand posture features.

Figure 2.5 shows the CybergloveTM and “Flock of Birds” 3-D motion tracker.

Another data glove based system is proposed by McGuire et al. [MHRS+04]

where a mobile sign language translator is implemented using an Acceleglove

(See Figure 2.6). The Acceleglove consists of five micro two-axis accelerome-

ters mounted on rings read finger flexion. Two more in the back of the palm
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Figure 2.5: Left: Flock of Birds 3D motion tracker, Right: CyberGlove

measure orientation. Not shown in the figure are two potentiometers which

measure bend at the shoulder and elbow and another two-axis accelerometer

which measures the upper arm angles

Figure 2.6: The Acceleglove

An novel approach to sign language data acquisition was taken by Bras-

hear et al. [BSLJ03] where features from both a hat mounted camera and

accelerometer data were used to classifying signs (see Figure 2.7).

Wang et al. [WCZ+07] proposed a viewpoint invariant data acquisition

method. Their method was based on a virtual stereo vision system, using

one camera and gloves with a specially designed colour pattern to indicate
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Figure 2.7: Head mounted camera and accelerometer data collection imple-
mented by Brashear et al [BSLJ03]

the 5 separate fingers, palm and back. Figure 2.8 shows a visualisation of

the design of the gloves.

Figure 2.8: Gloves used by Wang et al. [WCZ+07]

Vision Based Acquisition

While wearable computing approaches to data acquisition can extract ac-

curate features representing the signs being performed, some of these ap-

proaches require that the signer wears cumbersome devices which can hinder

the ease and naturalness of signing. An alternative approach is to acquire

gesture data through a camera based input. In order to capture gesture
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based information from camera based inputs, the hands must be located in

the image sequence and this is often carried out using colour, motion and

edge information [OR05]. A number of works have proposed techniques for

the segmentation of hands from an image sequence and in this section we

will discuss some of these techniques:

Yang et al. [YSL09] implemented a skin colour and motion based seg-

mentation method which included a displacement estimation used when the

hands overlap the face. A template hand, stored on a previous frame, was

used if the detected hand region was much larger than the hand region de-

tected in the previous frame or the hand detector failed to detect the hand

region.

Holden et al. [HLO05b] used a Principal Component Analysis (PCA)

based skin colour model to identify the hands. Their method to segment oc-

cluded objects, using a combination of motion cues and the snakes algorithm,

was used when hands and face overlap (see Figure 2.9).

Figure 2.9: Examples of hand segmentation results from [HLO05b]

Cooper et al. [CB07] implemented a hand segmentation method using a

skin colour model computed from the automatically detected face region. A

model of the background was then created using a normalised histogram and
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a threshold was applied to the likelihood ratio of face to background for each

pixel (see Figure 2.10).

Figure 2.10: Examples of hand segmentation results from [CB07]

Askar et al. [AKE+04] proposed a skin colour segmentation method that

automatically adjusted to the participant and illumination conditions. In

order to account for skin region contact, such as overlapping head and hands,

a set of rules were implemented to track the hand when hand and face contact

occurred (see Figure 2.11).

Figure 2.11: Examples of hand segmentation results from [AKE+04]

Barhate et al. [BPR+04] carried out hand segmentation using skin and

motion cues within an on-line predictive Eigen-Tracking framework which

approximated the hand motion by an affine transformation. Their method

was shown to work well with occlusions and under poor illumination (see

Figure 2.12).
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Figure 2.12: Examples of hand segmentation results from [BPR+04]

Donoser et al. [DB08] proposed a hand segmentation technique which

combined skin colour likelihood maps with a modified version of the Max-

imally Stable Extremal Region (MSER) tracker. The MSER tracker found

bright connected regions in the skin colour maps which had consequently

darker values along their boundaries (see Figure 2.13).

Figure 2.13: Examples of hand segmentation results from [DB08]

Buehler et al. [BZE09] implemented an articulated upper-body model to

track the head, torso, arms and hands of the signer. A graph cut method

was used to segment the hand region predicted by the tracker into hand or

background signer (see Figure 2.14).

Liwicki et al. [LE09] proposed a hand segmentation model where pixels
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(a) Articulated Upper Body Tracking

(b) Graph Cut Segmentation

Figure 2.14: Examples of hand segmentation results from [BZE09]

were classified as hand or non-hand by a combination of three components: a

signer-specific skin colour model, a spatially-varying non-skin colour model,

and a spatial coherence prior (see Figure 2.15).

Figure 2.15: Examples of hand segmentation results from [LE09]

As we have discussed in this section, there are a variety of different tech-

niques which have been proposed for the robust segmentation of hands from

57



2.2 State of the Art on Sign Language Recognition Sign Language Recognition

image sequences. In order to achieve the full potential these segmentation

methods have in the area of sign language recognition, we must develop algo-

rithms which can recognise signs from the hand segmentation data. In this

thesis we discuss our proposed set of techniques for the automatic learning

and recognition of sign language. Our techniques are developed to utilise

computer vision based hand segmentation data. We evaluate all of our pro-

posed models using data extracted from image sequences, but the extraction

techniques used are not the novel part of our work.

2.2.2 Spatiotemporal Gesture Recognition

The research into spatiotemporal gesture and sign recognition has two main

categories: isolated and continuous recognition. Isolated recognition focuses

on the classification of a single hand gesture. In continuous recognition,

the user performs gestures one after the other and the aim is to spot and

classify meaningful gesture segments from within the continuous stream of

sign language.

Isolated Gesture Recognition

Yang et al. [YAT02] extracted motion trajectories from American Sign Lan-

guage (ASL) videos and classified signs using a time delay neural network.

Experiments based on a vocabulary of 40 signs showed the average recogni-

tion rate of unseen test trajectories was 93.4%.

Fang et al. [FGZ03] addressed the problem of large vocabulary sign recog-

nition by proposing a combination of self organising feature maps, HMMs and
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a hierarchical decision tree, with low computational costs, for the recognition

of isolated signs. Experiments were conducted on a data set of 61365 isolated

samples of 5113 different signs. Results showed an average recognition rate

of 91.6%.

Juang et al. [JK05] proposed a recurrent fuzzy network for fuzzy temporal

sequence processing. They applied their method to a gesture recognition task

and experiments showed a recognition rate of 92%.

Agris et al. [vASZK06] proposed an isolated sign recognition system

based on a combination of Maximum Likelihood Linear Regression and Max-

imum A Posteriori estimation. Their method was developed to consider the

specifics of sign languages, such as one-handed signs. They implemented

selected adaptation methods from speech recognition to improve the perfor-

mance of their system when performing user independent recognition. A

recognition rate of 78.6% was reported when recognising 153 isolated signs.

Shanableh et al. [SAAR07] proposed an isolated temporal gesture tech-

nique for the recognition of Arabic sign language. They proposed temporal

features which were extracted through forward, backward, and bi-directional

predictions. These prediction errors were thresholded and accumulated into

one image that represented the motion of the sequence. Experiments, based

on a database of isolated signs, showed that their method achieved a classifi-

cation performance ranging from 97% to 100% when classifying 23 different

sign classes.

Wang et al. [WCZ+07] proposed a view invariant sign recognition system.

In their proposed system, the recognition task was converted to a verification
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task based on the geometric constraint that the fundamental matrix associ-

ated with two views should be unique when the observation and template

signs are obtained synchronously under virtual stereo vision and vise versa.

Experiments conducted on a vocabulary of 100 signs, where 5 isolated sam-

ples of each sign were recorded, showed their method achieved an accuracy

of 92%.

Cooper et al. [CB07] implemented an isolated sign recognition system

using 1st order Markov Chains. In their model, signs were broken down in

visemes (equivalent to phonemes in speech) and a bank of Markov Chains

were used to recognise the visemes as they were produced. Experiments,

based on 5 unseen examples of each of the 164 signs in the vocabulary, showed

a classification accuracy of 72.6%.

Kim et al. [KWRA08] evaluated an accelerometer and EMG based sign

recognition system on 7 word level signs and results showed an average ac-

curacy of 99.8% when tested on a total of 560 isolated samples.

Gunes et al. [GP09] propose an affect recognition system using hand

gestures along with facial cues. Temporal segments of hand gestures and

facial actions were detected using a HMM based system. Experiments showed

that their proposed system achieved an accuracy of 88.5% when tested on

isolated videos.

Ding et al. [DM09] develop a sign language recognition model which

incorporated hand shape, motion and 3D position in a single framework.

Signs were recognised using a tree based classifier where, for example, if two

signs had a similar hand shape then the root of the tree would represent
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the hand shape and the branches would represent different motion based

gestures. A recognition rate of 93.9% was reported for a vocabulary of 38

signs.

While these works propose promising gesture recognition techniques, the

experiments are based on isolated gesture samples. Natural gestures which

occur in sign language are continuous. Therefore sign language recognition

requires spotting of the gesture from continuous videos (i.e. determining the

start and end points of a meaningful gesture pattern).

Continuous Gesture Recognition

Extending isolated recognition to continuous signing is difficult problem. It

requires automatic detection of movement epenthesis segments so that the

recognition algorithm can be applied to segmented signs.

One proposed solution to movement epenthesis detection is an explicit

segmentation model were subsets of features from gesture data are used as

cues for valid gesture start and end point detection. Oz et al. [OL07] pro-

posed a continuous recognition framework which detected “signing” and “not

signing” segments using a velocity network. The velocity network classified

a “signing” segment from when the hand first showed a change in velocity

until the time the velocity showed a series of low velocities. A Neural Net-

work based classifier was trained to recognise 60 different one handed ASL

signs. Experiments conducted on a total of 360 ASL words using histograms

of feature vectors showed a recognition accuracy of 95%. The limitation of

this explicit segmentation model arises from the difficulty in creating general
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rules for sign boundary detection that could be applied to all types of manual

and non-manual gestures [OR05]. For example, fluent signers perform sign

language sentences in a very fluid and natural manner and sign boundaries

often do not occur when there is a sharp change in hand velocity.

An approach to dealing with continuous recognition, without explicit seg-

mentation, is to use HMMs for implicit sentence segmentation. Bauer et al.

[BK02] and Starner et al. [SPW98] modeled each word or subunit with a

HMM and then trained the HMMs with data collected from full sentences.

Starner et al. [SPW98] conducted experiments on a vocabulary of 40 signs

using a set of 478 sentences for training and testing. Results showed a word

detection rate of 96.8%. A disadvantage of these methods is that training on

full sentence data may result in a loss in valid sign recognition accuracy when

tested on sentences not used in training. This is due to the large variations

in the appearance of all the possible movement epenthesis that could occur

between two signs.

Brashear et al. [BSLJ03] extended on the work of Starner et al. by devel-

oping a mobile sign recognition system. Their HMM based sign recognition

system was implemented to recognise continuous sentences using camera and

accelerometer inputs. Experiments, conducted on a vocabulary of 5 signs,

showed a recognition accuracy of 90.5%. It was also shown that combining

accelerometer and vision data improved the performance when compared to

vision only data (52.4%) and accelerometer only data (65.9%).

Other works deal with movement epenthesis by explicitly modeling the

movements between signs. Gao et al. [GFZC04] proposed a Transition Move-
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ment Models (TMM) where transition HMMs were created to model the

transitions between each unique pair of signs. The total number of TMMs

were then reduced by a process of dynamically clustering the transition parts.

An iterative segmentation algorithm was implemented to automatically seg-

ment the continuous sentences. Experiments, conducted on a set containing

3000 sentence samples with a vocabulary of 5113 signs from Chinese Sign

Language (CSL), showed their method achieved an accuracy of 90.8%.

Vogler et al. [VM04] proposed a system to incorporate hand motion and

hand posture data into a single recognition framework. A set of parallel

HMMs were implemented to recognise signs from a vocabulary of 22 signs.

Separate HMMs were implemented to model movement epenthesis between

each unique ending and starting location of signs. Experiments showed their

framework achieved a sign detection rate of 87.88% when tested on 99 sen-

tences containing a total of 312 signs.

While these works, utilising explicit epenthesis models, have had promis-

ing results in gesture recognition and movement epenthesis detection, the

training of such systems involves a large amount of extra data collection,

manual data labeling and model training due to the extra number of HMMs

required to detect movement epenthesis. Few researchers have addressed the

problem of movement epenthesis without explicitly modeling these move-

ments.

An novel approach to gesture/activity spotting was proposed by Junker et

al. [JALT08] where a combination of explicit motion segmentation and HMM

gesture classification was carried out. A pre-selection stage was implemented
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in order to identify relevant motion events. These candidate motion segments

were then classified in isolation using HMMs. Experiments conducted to

evaluate the gesture spotting system showed that the method performed

well when spotting gestures in 2 different activity scenarios. Results showed

a total precision of 0.74 and a total recall of 0.93 for the first scenario and

total precision of 0.73 and a total recall of 0.79 for the second scenario.

Another solution to segmenting signs from continuous streams of data,

without modeling movement epenthesis, is to use grammar based informa-

tion. Yang et al. [YSL07, YSL10] proposed an ASL recognition method based

on an enhanced Level Building algorithm and a Trigram grammar model.

Their method was based on a dynamic programming approach to spot signs

without explicit movement epenthesis models. The recognition rate was 83%

with 39 signs, articulated in 150 different sentences. Their work was based on

a two step approach for the recognition of continuous signs, where the first

step recognised the possible signs in the sentence and the second step applied

a grammar model to the possible signs. They reported only the results ob-

tained after the second step which applied a trigram grammar model to the

signs. The reliance of the system to the grammar model was shown in the

experiments where the recognition rate of the system decreased from 83% to

68% when the trigram model was replaced by a bigram model. Holden et al.

[HLO05a] developed an Australian sign language recognition system where

each sign is modeled using a HMM model. The recognition model employed

grammar rules, based on 21 distinct signs, to recognise continuous sentences.

Experiments showed their system achieved 97% recognition rate on 163 test
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sign phrases, from 14 different sentences. It was noted in the work that the

sign vocabulary used in experiments consisted of signs which where mainly

distinguishable from motion alone.

Yang et al. [YSL09] proposed a very promising technique without the

need for explicit epenthesis training or grammar rules. They develop thresh-

old models in a CRF model which performed an adaptive threshold for distin-

guishing between signs in a vocabulary and non-sign patterns. Experiments

showed their system could spot signs from continuous data with an 87.0%

detection rate from a vocabulary of 48 signs where the system was trained

on 10 isolated samples of each of the 48 signs. The system was then tested

on continuous sentences which contained 480 samples of the signs in the sign

vocabulary.

Non-Manual Signals

Recognising sign language communication requires simultaneous observation

of manual and non-manual signals and their precise synchronisation and sig-

nal integration. Thus understanding sign language involves research in areas

of face and facial expression recognition tracking and human motion analysis

and gesture recognition.

Recently there has been a significant amount of research investigating

the role of non-manual signals in sign language and attempting to quantify

their individual importance. Works such as [Bah96, vdKCE06, BS86] fo-

cused on the role of head pose and body movement in sign language, where

they reported a strong correlation linking head tilts and forwards move-
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ments to questions or affirmations. The analysis of facial expressions for

the interpretation of sign language has also received a significant amount

of interest [GK06, GK07]. Computer-based approaches which model fa-

cial movement using Active Appearance Models (AAM) have been proposed

[vAKK08, vAZC+08a, VG08]. Grossman et al. conducted an interesting

study on ASL, where it was shown that eyebrow movement, and the de-

gree of eye aperture movement, had a direct link to emotions and questions

[GK06]. They showed that anger, wh-questions (who, where, what, when,

why, how) and quizzical questions exhibited lowered brows and squinted eyes,

while surprise and yes/no questions showed raised brows and widened eyes.

The development of a system combining manual and non-manual signals is

a non-trivial task [COR05]. This is demonstrated by the limited amount

of work dealing with the recognition of multimodal communication channels

in sign language. Ma et al. [MGW00] used HMMs to model multimodal

information in sign language but lip motion was the only non-manual signal

used. Their work was based on the assumption that the information por-

trayed by the lip movement directly coincided with that of the manual signs.

While this is a valid assumption for mouthing, it cannot be generalised to

other non-manual signals as they often span multiple manual signs and thus

should be treated independently.

Issues Relevant to Spatiotemporal Gesture Recognition

The difficulty with recognising spatiotemporal gestures is that the hand must

move from the end point of the previous gesture to the start point of the
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next gesture. These inter-gesture transition periods are called movement

epenthesis [SR89] and are not part of either of the signs. Thus, the issue with

developing continuous recognition systems is creating algorithms which are

be able to distinguish between valid sign segments and movement epenthesis.

As we have discussed, most previous work has required the explicit model-

ing of each epenthesis or required specific grammar rules. While these works

have had promising results in gesture recognition and movement epenthesis

detection, the training of explicit epenthesis models involved a large amount

of extra data collection, manual data labeling, model training and recognition

computation due to the extra number of HMMs required to detect movement

epenthesis.

Another approach employed is to utilise grammar rules to reduce the num-

ber of possible sign combinations which appear in signed sentences. Gram-

mar rules will become a more important aspect of sign language recognition

when sign vocabularies grow to represent a large portion of the signs used

in everyday sign language communication. State of the art sign recognition

research is now at the stage where the main focus is on developing algorithms

to model signs. It is difficult to evaluate sign recognition models which em-

ploy grammar rules on small sign vocabularies. For example, in a corpus of

30 signs which contains 8 nouns, if grammar rules are used to predict that

the next sign is likely to be from the noun category, then the number of

possible signs the recognition model must choose from is reduced to 8 signs.

With the overall goal of large corpus sign recognition in mind, experiments

should be conducted in order to evaluate recognition models in their ability
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to distinguish one sign from as many other signs as possible. In the works

discussed in Section 2.2.2, which employ specific grammar rules, it is unclear

how these models would perform if the grammar models were created from

a larger real world corpus.

Other works focus on explicit gesture segmentation to facilitate continu-

ous recognition. Particular gesture cues, such as changes in hand velocity, are

used to determine gesture start and end points. While these explicit segmen-

tation methods have been shown to work well in general activity recognition

tasks, creating explicit segmentation rules for the task of sign language recog-

nition is impractical due to variability in gesture structure and speed which

occurs in natural sign language.

Few researchers have addressed the problem of movement epenthesis with-

out employing grammar or segmentation rules or explicitly modeling the

epenthesis. We propose a solution to this by developing a spatiotemporal ges-

ture model which addresses the problem of movement epenthesis detection.

We develop a HMM based threshold model training and recognition frame-

work to classify spatiotemporal gestures and to identify movement epenthesis

without explicitly training on movement epenthesis examples. Our proposed

models can effectively recognise gestures from within sign sentences indepen-

dent of any grammar rules.

Furthermore, while non-manual signals are an important aspect of sign

language recognition, very few works have accounted for these non-manual

signals when developing sign recognition models. We also show that our spa-

tiotemporal recognition model is scalable to modes of communication other
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than manual signs by developing robust head movement and facial expression

recognition models.

2.2.3 Hand Posture Recognition

In the previous section we reviewed techniques proposed for the recognition

of spatiotemporal gestures. In this section we review literature aimed at

developing techniques for the automatic recognition of hand postures.

To describe the shape of the hand, a number of methods for 2D shape

representation and recognition are used. These include segmented hand im-

ages, binary hand silhouettes or hand blobs, and hand contours. Cui and

Weng [CW00] used normalised segmented hand images as features and re-

ported a 93.2% recognition rate on 28 different signs. Similarly Kadir et

al. [KBOZ04] used normalised segmented hand images and greedy cluster-

ing techniques to recognise hand shapes with 75% accuracy. PCA has been

shown to be successfully applied to gesture data to reduce dimensionality of

the extracted features. Henrik et al. [HMM97] applied a normalising tech-

nique to segment hand images. PCA was then applied to extract features for

recognition. User dependent tests on the system showed a 99% recognition

rate on 25 hand gestures, while user independent tests reported a drop in

recognition accuracy to 70%.

Deng and Tsui [DT02] applied a two-layer PCA / Multiple Discriminant

Analysis scheme. A non user-independent experiment showed a recogni-

tion rate up to 70% on 110 signs. Imagawa et al. [IMT+00] calculated an

eigenspace on segmented hand images and signs were then represented by
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symbols which correspond to clusters. Results showed a recognition rate of

92% when tested on 33 signs. Patwardhan et al. [PR07] implemented a Pre-

dictive Eigen-Tracker to track the changing appearance of a moving hand.

The algorithm obtained the affine transforms of the image frames and pro-

jected the image to the Eigenspace. An accuracy measurement of 100% was

reported from tests using 80 gestures, although 64 of the test gestures were

used in training and gestures used were very simple and distinct. Holden

and Owens [HO03] presented a topological formation shape representation

that measured the fingers only. A recognition rate of 96% was achieved when

classifying 4 distinct hand shapes.

Contour based features have also been shown to perform well in hand

posture recognition. Huang et al. [HH98] used Fourier descriptors of the

hand contour, a Hausdorff distance measure and graph matching algorithms

within a 3D Hopfield neural network to recognise signs with 91% accuracy.

Al-Jarrah et al. [AJH01] extracted features by computing vectors between

the contour’s centre of mass and localised contour sequences. Recognition

of 30 gestures was reported with an accuracy of 92.55%. Handouyahia et

al. [HZW99] presented a sign language alphabet recognition system using

a variation of Size Functions [UV95] called moment based Size Functions,

which recognised 25 different signs with 90% accuracy.

Starner et al. [SPW98] showed that geometric moments perform well in

hand gesture recognition. A head mounted camera tracked the signer’s hands

using skin colour. Hand blobs were extracted from video sequences and a

16 element geometric moment feature vector was used to describe the hand
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shape. A recognition rate of 98% for sign language sentences was reported.

Tanibata et al. [TSS02] used a set of 6 geometric moments to recognise

Japanese sign language, although it was reported that recognition performed

well, no recognition accuracy was specified. Bauer and Heinz [BH00] de-

scribed a German sign language recognition system where hand shape fea-

ture experiments showed that the area of the hands performed well as a hand

shape feature. It was reported that the system achieved an accuracy of 75%

when only taking hand area into account. All training and test data was

recorded from the same subject performing signs and a recognition rate of

94% and 91.7% was reported for systems based on a 52 and 97 sign lexicon re-

spectively. Liwicki et al. [LE09] proposed a system to classify finger spelled

words based on different visual features and a HMM framework. Signer-

dependent experiments showed a recognition rate of 98.9% when tested on a

lexicon of 100 signs.

All the hand posture recognition techniques we have discussed thus far

have evaluated their methods on training and test sets recorded by the same

people. Analogous to speaker independence in speech recognition, an ideal

sign recognition system should give good recognition accuracy for signers

not represented in the training data set. User independent hand posture

recognition is particularly challenging as a user independent system must

cope with geometric distortions due to different hand anatomy or different

performance of gestures by different people.

Farhadi et al. [FFW07] proposed a signer-independent ASL transfer

learning model to build sign models that transfer between signers. Results
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showed their method achieved a classification accuracy of 67% when classi-

fying signs from a 90 word vocabulary, but their method does not explicitly

deal with hand posture recognition. Licsár et al. [LS05] developed a hand

gesture recognition system with interactive training. Their proposed solution

to user independent hand posture recognition is based on the concept of an

on-line training method embedded into the recognition process. The on-line

training is interactively controlled by the user and it adapts to his/her ges-

tures based on user supervised feedback where the user specifies if detected

gesture were incorrectly classified. This method was shown to work very

well in the scenario where the hand posture recognition system is being used

as a HCI interface for a camera-projector system allowing users to directly

manipulate projected objects with the performed hand gestures. While it is

feasible to implement online retraining of gestures based on supervised user

feedback in this HCI scenario, implementing this model in an automatic sign

language recognition system would make the performance of sign language

un-natural and thus is not an appropriate option for this work.

Triesch et al. [TvdM02] proposed a user independent hand posture recog-

nition system using Elastic Graph Matching which reported a recognition

rate of 92.9% when classifying 10 hand postures performed by 24 different

subjects. Just et al. [JRM06] recognised the same set of hand postures used

by Triesh et al. using the Modified Census Transform with a recognition rate

of 89.9%.

Flasinski et al. [FM10] developed a novel technique to generate structured

graph descriptions of the hand. The graph descriptions were then analysed

72



2.2 State of the Art on Sign Language Recognition Sign Language Recognition

using ETPL(k) graph grammar parsing. User independent experiments con-

ducted on a set of 720 images, comprising of 10 different Polish sign language

hand postures, showed an average recognition rate of 94%.

Issues Relevant to Robust Hand Posture Classification

The second problem with developing automated techniques for sign recogni-

tion is that an ideal sign recognition system should give good recognition ac-

curacy for signers not represented in the training data set. User independent

hand posture recognition is particularly challenging as a user independent

system must cope with geometric distortions due to different hand anatomy

or different performance of gestures by different people. Not only do hand

postures express some concepts but they can also act as special transition

states in temporal gestures. Therefore, finding techniques to combine these

hand posture and temporal gesture channels is an important and difficult

challenge in the automatic recognition of sign language.

As we have discussed, the majority of the literature on hand posture

recognition has presented performance measures which where results of signer-

dependent experiments carried out by testing the system on subjects who

were also used to train the system. Of the few user independent hand pos-

ture recognition systems, the elastic graph matching method, proposed by

Triesch et al. [TvdM02], showed very promising results. The disadvantage

of the elastic graph matching algorithm is that it was reported to have a

high computational complexity with the method requiring several seconds to

analyse a single image.
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We propose a solution to these problems by developing a novel hand

posture feature, an eigenspace Size Function. We develop an accurate user

independent hand posture recognition system, utilising the eigenspace Size

Function, which can classify hand postures in real time allowing the classifi-

cation of hand images from continuous video streams.

2.2.4 System Training

Previous research on the recognition of temporal gestures and hand postures,

described in Sections 2.2.2 and 2.2.3 carry out training using manually labeled

training data.

An approach to reduce the number of manually labeled training samples

needed to train these systems is to generate synthetic gesture samples. Jiang

et al. [JGY+09] proposed a synthetic sign generation technique where small

numbers of samples for each sign were collected using standard manually

labeled data. Using a mean shift based outward generation algorithm, new

synthetic sign samples, unspecific to the signer, were generated and used to

train an isolated HMM based sign recognition system. Experiments showed

that the addition of the synthesised data improved recognition accuracy.

Automatically labeling sign data, without the need for initial manually

labeled data, is an extremely challenging task and is demonstrated by the

limited works dealing with this problem.

Farhadi et al. [FF06] proposed a technique to align signs with English

subtitles. A HMM based system was implemented using static and dynamic

features. The HMMs were used to find the start and end of a sign and
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a discriminative word model was built to perform word spotting. In their

experiments, word spotting was carried out over an 80000 frame film.

Buehler et al. [BZE09] developed a weakly supervised technique, using

MIL, to label start and end points of target sign language words from videos

annotated with weakly aligned subtitles. This technique allowed the auto-

matic extraction of isolated signs without manual labeling. Results showed

that their technique was able to find 65% of the words from a vocabulary of

210 words.

Cooper et al. [CB09] also implemented an automated method to label

start and end points of signs from videos using subtitles. A temporally

constrained adaptation of apriori mining was used to extract similar regions

of video, with the aid of a proposed contextual negative selection method.

The system was tested on 23 signs which occurred in a 30 minute video.

Their proposed method was able to correctly isolate, on average, 53.7% of

the signs.

Nayak et al. [NSL09] proposed an unsupervised approach to extract and

learn models for continuous basic units of signs, which are called signemes,

from continuous sentences. They automatically extracted a signeme model,

using Iterative Conditional Models, given a set of sentences with one common

sign. Experiments showed their method was able to correctly extract 10 key

signs from 136 sentences with an accuracy of 87%.
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Issues Relevant to Weakly Supervised Training

The third problem in developing automatic sign language recognition systems

is developing algorithms which scale to large vocabularies. A difficulty with

this is that previous research has typically required manual training data to

be generated for each sign. All works detailed in Sections 2.2.2 and 2.2.3

involved manual labeling and training where a signer, or interpreter, hand

labeled each sign, or sign phoneme, such that a recognition system could be

trained on isolated samples of each sign. This can be a very time consuming

and expensive procedure and makes it difficult to expand sign vocabularies.

Generating synthetic data can reduce the number of isolated samples needed

but these methods still require initial sign samples to be labeled.

A solution to automatically acquiring training samples is to extract signs

from sign language videos by utilising text translations associated with the

sign language video. Automatic labeling of signs is an extremely challenging

task and is demonstrated by the limited works dealing with this problem.

While there exists a small number of works, discussed in this Section, which

automatically label signs using text translations, no work has further de-

veloped these techniques to automatically train a full sign language spotting

system on spatiotemporal and hand posture information. This thesis presents

the first automatic sign labeling framework used to train a full sign recogni-

tion system on spatiotemporal and hand posture data. No other works exist

which investigate the use of automatically labeled data in training natural

sign language recognition systems.

We address the problem of automatic training by proposing a weakly
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supervised system, using our proposed novel MIL density matrix algorithm,

which automatically extracts isolated samples of signs that can then be used

to train our gesture models. We utilise this training model, along with our

proposed hand posture and spatiotemporal gesture models, to automatically

train and classify natural sign language sentences.

2.3 Conclusion

The problem of sign language training and recognition can be defined as

the analysis of all components that form the language and the understand-

ing of individual signs or whole sequences of sign language communication.

The overall aim in sign language recognition is to reach a large-vocabulary

recognition system which would ease the communication of hearing impaired

people with other people or with computers.

Ultimately, an ideal sign language recognition system is one that takes

as input a sign language video and outputs a text interpretation of the sign

language sentences. In order to achieve this goal, there are a number of

issues which have not been fully addressed in the literature discussed in

Section 2.2. In this chapter we have discussed the state of the art in sign

language recognition and identified issues, which if solved, would make an

important contribution to the area of sign language recognition. In this thesis

we propose solutions to the problems of: continuous sign language modeling,

robust hand posture classification and weakly supervised training.

In Chapters 3 and 4 of this thesis we will first present our hand pos-

ture and spatiotemporal recognition models before discussing our proposed
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framework for the automatic training of the models in Chapter 5.

78



Chapter 3

Hand Posture Recognition 1

3.1 Introduction

Hand gestures can be classified as either hand postures (hand shape and

orientation) or temporal gestures (movement and position)[WHM99]. Hand

postures not only express some concepts, but also act as special transition

states in temporal gestures. Therefore, recognising hand postures is an inte-

gral requirement in gesture recognition.

One problem which we have highlighted as an issue relevant to devel-

oping robust sign recognition systems is that an ideal sign recognition sys-

tem should give good recognition accuracy for signers not represented in the

training data set. User independent hand posture recognition is particularly

challenging as a user independent system must cope with geometric distor-

1The completed work discussed in this chapter has been accepted for journal publi-
cation: D. Kelly, J. Mc Donald and C. Markham,“A Person Independent System for
Recognition of Hand Postures used in Sign Language”, In Pattern Recognition Letters,
Accepted
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tions due to different hand anatomy or different performance of gestures by

different people. In Chapter 2 we have discussed that there is a limited num-

ber of works which have developed hand posture recognition techniques that

are capable of performing user independent hand posture recognition. In this

chapter, we propose a solution to this problem by developing a novel hand

posture feature, an eigenspace Size Function, which is robust at classifying

hand postures independent of the person performing them.

3.2 Hand Features

In this chapter we propose a shape representation and pattern recognition

framework to classify segmented hand images. In Section 2.2.1 we discussed

a variety of different hand segmentation techniques which were proposed in

the literature. These techniques can be utilised to extract binary images of

a users hand from a video stream. In order to utilise the hand segmentation

methods to their full potential, we develop a technique which can accurately

classify hand postures from the hand segmentation data. In this chapter, it

will be shown how our proposed hand shape representations are computed

from a segmented hand contour. Our proposed hand shape features are

developed to utilise computer vision based hand segmentation data. We

evaluate our techniques using data extracted from image sequences, but it

is the hand features that are the novel aspect of this chapter and not the

extraction techniques used to evaluate the features.

In this chapter, we show how our proposed hand shape features are com-

puted from a segmented hand contour. A thorough evaluation of the dis-

80



3.3 Shape Representations Hand Posture Recognition

criminatory properties of our proposed features is carried out followed by an

evaluation of our proposed hand posture recognition framework.

3.3 Shape Representations

Appearance based gesture recognition requires an accurate extraction of an

effective feature set that can separate the hand shapes [PSH97]. We present

a method of hand shape representation computed from the raw binary im-

age and external contour extracted from the image. We propose a novel

eigenspace Size Function shape representation which is calculated from the

external contour. A Hu Moment feature set is also generated from the raw

binary image.

Accurate shape representations must be able to identify similar shapes

and distinguish between different shapes, therefore performance tests on dif-

ferent variations of our proposed shape representation will be carried out

with the goal of achieving the optimal hand shape representation.

3.3.1 Review of Shape Representation Techniques

There have been many shape representation and description techniques pro-

posed for many different visual feature recognition applications [ZL04]. Var-

ious shape techniques have been proposed, including shape signature, signa-

ture histogram, shape invariants, moments, curvature, shape context, shape

matrix, spectral features etc. In general, shape representation techniques can

be classified into two class of methods: contour-based and region based meth-
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ods. Under each class, the different methods are further divided into struc-

tural approaches and global approaches. This sub-class is based on whether

the shape is represented as a whole or represented by segments/sections.

Global Contour Descriptors

Some common simple global contour descriptors include: area, circularity,

eccentricity, major axis orientation and bending energy. These simple global

descriptors usually can only discriminate shapes with large differences and

therefore are not suitable as stand-alone shape descriptors.

Another global contour descriptor is a technique known as correspondence-

based shape matching which measures similarity between shapes using point-

to-point matching. Hausdorff distance is type of correspondence-based shape

matching and has been used to locate objects in a image and measure similar-

ity between shapes [HKR93, CK99, Ruc97].Shape matching using Hausdorff

distance is sensitive to noise and slight variations in shape.

Shape signatures represent another class of global contour descriptors.

Shape signatures are calculated from a one dimensional function derived

from the shape boundary points. Many shape signatures exist, they include

centroidal profile, complex coordinates, centroid distance, tangent angle, cu-

mulative angle, curvature, area and chord-length [ZL02]. shape signatures

are sensitive to noise, and slight changes in the boundary can cause large er-

rors in matching. Therefore, it is undesirable to directly describe shape using

a shape signature. Further processing is necessary to increase its robustness

and reduce the matching load.
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Spectral descriptors overcome the problem of noise sensitivity and bound-

ary variations by analyzing shape in spectral domain. Spectral descriptors

include Fourier descriptor (FD) and wavelet descriptor (WD), they are de-

rived from spectral transforms on 1-D shape signatures.

Elastic matching, a more robust global contour descriptor, was proposed

by Bimbo and Pala [DBP97]. In this approach, a deformed template is

generated as the sum of the original template and a warping deformation.

As discussed in Section 2.2.3, Triesch et al. [TvdM02] have shown that this

method works well for the application of hand posture recognition.

Global Region-based Descriptors

In region based techniques, all the pixels within a shape region are taken into

account to obtain the shape representation, rather than only use boundary

information as in contour base methods.

Geometric moments have been widely used for a number of different shape

analysis applications [LP96]. Using nonlinear combinations of lower order

moments, a set of moment invariants which has desirable properties of being

invariant under translation, scaling and rotation, are derived. The main

problem with geometric moments is that the few invariants derived from

lower order moments are not sufficient to accurately describe shape on their

own.

Orthogonal moments, an alternative to geometric moments, was proposed

by Teague [Tea80]. Teague extended the idea of algebraic moments to a more

general form and introduced Legendre moments and Zernike moments. Or-
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thogonal moments allow for accurate reconstruction of the described shape,

and makes optimal utilization of shape information. Although Zernike mo-

ment descriptor has a robust performance, it has several shortcomings. First,

the kernel of Zernike moments is complex to compute, and the shape has to

be normalized into a unit disk before deriving the moment features. Second,

the radial features and circular features captured by Zernike moments are not

consistent, one is in spatial domain and the other is in spectral domain. It

does not allow multi-resolution analysis of a shape in radial direction. Third,

the circular spectral features are not captured evenly at each order, this can

result in loss of signi1cant features which are useful for shape description.

In this work we use a combination of a global contour based descriptors

(size functions) and a global region based descriptors (Hu-moments). In the

remainder of this Section we discuss these techniques and how they applied

to hand posture recognition.

3.3.2 Hu Moments

Hu Moments [Hu62], which are a reformulation of the non-orthogonal cen-

tralised moments, are a set of transition, scale and rotation invariant mo-

ments. The set of Hu Moments, I= {I1, I2, I3, I4, I5, I6, I7}, are calculated

from the hand contour.

3.3.3 Size Functions

Size Functions are a technique used for shape description. They are integer

valued functions which represent both qualitative and quantitative properties
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of a visual shape by counting certain connected components of a topological

space [VUFF93].

For a given contour C, extracted from the binary image of a hand, let G

be a graph whose vertices are the points of the contour. Let ϕ, the measuring

function, be a real-valued function defined on the vertices of G (see Figure

3.1(a)). The Size Function ℓϕ induced by the measuring function ϕ, is an

integer valued function defined on a real pair (x, y) according to the following

algorithm:

1. Find the subgraph Gϕ≤y of G determined by the points p with ϕ(p) ≤ y

(see Figure 3.1(b));

2. Identify the connected components of Gϕ≤y (see Figure 3.1(b));

3. The Size Function ℓϕ at the point (x, y) equals the number of connected

components of Gϕ≤y which contain at least a vertex with Gϕ≤x (see

Figure 3.1(c), 3.1(d) and 3.1(e));

When identifying the number of connected components of the graphs

Gϕ≤y and Gϕ≤x it should be noted that the graphs are circular. Therefore,

in Figure 3.1(d), there exists 3 connected components of Gϕ≤y which contain

at least a vertex with Gϕ≤x, and not 4 which would be the case if the graphs

where not circular. This ensures that the number of connected components

will remain the same independent of the start and end point for which the

measuring function was computed.

The theory of Size Functions does not identify a formal tool to resolve a

suitable measuring function. Therefore, a suitable measuring function must
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be found heuristically. As defined by Stokoe’s model [Sto05], a hand posture

is made up of the shape and orientation of the hand. Thus, for the applica-

tion of classifying hand postures performed in sign language, the measuring

function chosen must be sensitive to orientation changes of the hand. How-

ever a suitable classifier should not be sensitive to minor changes in hand

orientation. With Stokoe’s model in mind, the measuring function model

proposed in this work utilises a family of measuring functions indexed by

the angle θǫ{0, 1 2π
NΘ

, 2 π
2NΘ

, ..., (NΘ − 1) 2π
NΘ

}, where NΘ is the total number

of rotation angles used. Each measuring function ϕθ(p) is a function which

rotates p about the centre of gravity of G and measures the distance be-

tween the horizontal axis and a point p on the rotated graph Gθ. The hor-

izontal axis is a line which passes through the minimum point of Gθ. For

every θ, a Size Function ℓϕθ is generated, resulting in a set of Size Func-

tions Γϕ= {ℓϕ1, ℓϕ2, ..., ℓϕNΘ
}. The sensitivity of the system to orientation

can then be controlled by means of adjusting NΘ. As NΘ increases, the num-

ber of rotations and Size Functions grows and the margin between each θ

decreases. As the margin between each θ decreases, the effect small changes

in orientation have on the final classification increases.

To illustrate the concept of Size Functions and their application in analysing

hand postures utilised in sign language, a specific example will be used. For

this example, let NΘ= 4. The hand contour is rotated to each of the four θ

values (see Figure 3.2), the measuring function is applied to each of the four

rotated contours (see Figure 3.3) and the Size Functions are then generated

from each of the measuring functions (see Figure 3.4).
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(a) (b)

(c) (d)

(e)

Figure 3.1: (a)Graph of some measuring function ϕ (b)Shaded region ≡ ϕ ≤
y. (c)Shaded region ≡ ϕ ≤ x. (d)Graph depicting ϕ ≤ y and ϕ ≤ x.
(e)Graph of Size Function lϕ with current lϕ(x, y) = 3.
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Figure 3.2: θ rotation applied to hand contour

Figure 3.3: Measuring function ϕθ applied to hand contour

Figure 3.4: Size Function ℓϕθ generated
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3.3.4 Eigenspace Size Functions

In order to quantify the shape information held in a Size Function, we propose

a more robust method of shape representation, as compared to the unmodi-

fied normalised Size Function representation used in [VUFF93][HZW99]. We

make an important improvement to the Size Function technique by develop-

ing a Size Function feature which is more robust to noise and small changes

in shape due to interpersonal differences. Our technique is a method of incor-

porating eigenspace information into the hand posture feature using PCA.

PCA computes a linear projection from a high dimension input space to a

low dimensional feature space. It is a statistical technique used for finding

patterns in data of high dimensions. Since we are looking for similarities and

differences between two Size Functions, we can utilise PCA in order to re-

duce the influence of noise, and small variations in shape by different people,

and highlight portions of the Size Function useful for user independent hand

posture recognition.

To calculate the principal components of a Size Function, the Size Func-

tion is described as an N×N matrix Xθ=ℓϕθ. The vector u is the empirical

mean of Xθ (see Equation 3.1), Bθ is the mean subtracted N×N matrix (see

Equation 3.2) and Σθ is the covariance matrix of Bθ (see Equation 3.3).

uθ[m] =
1

N

N∑

n=1

Xθ[m,n] (3.1)

Where m and n refers to the row index and column index of the N×N matrix

respectively and N refers to the width and height of the Size Function.
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Bθ = Xθ − [uθ,uθ, .....,uθ] (3.2)

Σθ =
1

N
Bθ · BT

θ (3.3)

The eigenvectors and eigenvalues of Σθ are calculated according to Equa-

tion 3.4 were v is the eigenvector and w is the eigenvalue associated with the

eigenvector.

Σθv = wv (3.4)

The columns of the eigenvector matrix Mθ= {v1, ..., vN} and the eigen-

value matrix Wθ= {w1, ...,wN} are sorted in order of decreasing eigenvalue.

This records the components in order of significance, the eigenvector with the

highest eigenvalue being the principal component. Therefore the first column

of Mθ, a 1×N vector, corresponds to the principal component vector.

Figure 3.5 shows a Size Function which was reconstructed with varying

numbers of components. It should be noted that the reconstructed Size

Functions are not used as features, we show the reconstructed Size Functions

in order to illustrate the effect PCA dimensionality reduction has on the Size

Function. The eigenvectors used to reconstruct the Size Functions are the

features we use to recognise hand shapes.
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Figure 3.5: Size Functions Reconstructed with varying numbers of Compo-
nents

3.4 Data Sets for Experimentation

In order to robustly evaluate our proposed hand posture classification tech-

niques, we test our techniques using hand shape videos and images from two

separate data sets. In this section we describe the two data sets.

3.4.1 Jochen Triesch Static Hand Posture database

The first data set is a benchmark database called the Jochen Triesch Static

Hand Posture database [TvdM02]. We utilise this data set in order to eval-

uate our hand posture recognition framework and directly compare our sys-

tem to other hand postures recognition research. The database consists of
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10 hand signs (see Figure 3.6) performed by 24 different subjects against

different backgrounds. All images are greyscale images and the backgrounds

are of three types: uniform light, uniform dark and complex. In our system,

posture recognition is carried out independent of hand segmentation. Neither

motion nor colour are available in this data set, but, in general, colour and

motion are two important cues needed to segment the hands from complex

backgrounds and this is acknowledged by Triesch et al. [TvdM02]. Since

there is no motion or colour cues available, we do not consider the hand

images with complex backgrounds. It is still possible to make a like with

like comparison with other research in this area as most results in the liter-

ature report recognition rates achieved on the uniform background images

independent of complex background images. In this data set, we extract con-

tours from each image by segmenting the image using Canny edge detection

[Can86] and extracting the contour from the edge detected image using a

border following algorithm [Sb85] (see Figure 3.7).

Figure 3.6: The ten postures of the Triesch data set, performed by one subject
against uniform light background

3.4.2 ISL data set

The second data set is an in house ISL data set which we recorded in order

to further evaluate our hand posture classification features. The data set
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Figure 3.7: Example of Contour Extraction from ’Y’ and ’C’ hand postures
from Triesch data set

consists of 23 hand signs (see Figure 3.8), from the ISL alphabet, performed

by 16 different subjects wearing coloured gloves. We collected a total of

11040 images. Each subject performed the 23 letters an average of 3 times.

During the performance of each letter, a video sequence of approximately 10

image frames was recorded and labeled in order to test the performance of

our system when classifying hand images from continuous video shots. When

performing a particular sign, subjects followed visual instructions from official

Irish Deaf Society materials with the aim of ensuring natural performance

of postures. A random selection of the images were validated by a certified

Irish sign language teacher to ensure subjects had performed signs correctly.

Figure 3.8: 23 Static Letters of the ISL Alphabet (The signs for “j”, “x” and
“z” cannot be performed statically and were not further considered)

All hand posture images were recorded with subjects asked to perform
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the postures naturally. Due to the natural performance of the hand postures,

there was a large variance in the type of hand postures performed for each

sign. Variations in performance were only limited by that of sign language

limitations (i.e. a large variation in orientation may give a posture a different

meaning and thus was not allowed, as instructed by a certified Irish sign lan-

guage translator). Figure 3.9 shows a visual example of a number of different

ways the ’D’ sign was performed by different subjects. It can be seen that

the even though all hand postures in Figure 3.9 have the same sign classi-

fication, there is a clear difference in sign performance due to interpersonal

differences. This illustrates the difficultly in the problem of user independent

hand posture recognition.

Figure 3.9: Example of variation in performance of the ’D’ sign

In this data set, tracking of the hands is performed by tracking coloured

gloves (see Figure 3.10(a)) using the Mean Shift algorithm [CRM00]. The

key feature used for the analysis of the hand shape is the external contour

made by the hand (see Figure 3.10(c)). To extract the external contour

of the hand we segment the glove region in the image (see Figure 3.10(c)).

This segmentation is carried out using a back projection image computed

during the Mean Shift algorithm. Each pixel in the back projection image
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represents the color similarity between the pixel and the predefined glove

color (see Figure 3.10(b)). After segmenting the hand region, the external

contour of the hand blob is extracted using a border following algorithm

[Sb85].

Figure 3.10: Feature Extraction from Image (a)Original Image (b)Back Pro-
jection Image (c)Extracted Contour

The back projection image, which is used to find the hand contour in

an image, can typically contain varying levels of noise. The noise in a back

projection image refers to segmentation noise where white pixels are not part

of the hand region, or where black pixels are part of the hand region. Noise

in a back projection image can produce hand contours which hold noise.

Figure 3.11 shows an example of some noisy back-projection images, and the

corresponding contours extracted from the images, which were used during

experiments discussed in later Sections.

In our experiments, the system’s ability to deal with noise is tested due

to the presence of typical segmentation noise in the back projection images.
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Figure 3.11: Example of Noisy Back Projection Images and Corresponding
Noisy Contours

3.5 Evaluation of Discriminatory Properties

In this section we discuss experiments conducted on different variations of

Size Functions in order to find the features which best discriminate between

hand postures. We also perform experiments to evaluate the discriminatory

properties of combining Hu Moments with our Size Function features and ex-

amine whether or not these features offer complementary information about

hand posture patterns.

3.5.1 Size Functions and PCA performance

To examine how the eigenspace representation of a Size Function performs

at discriminating between correct and incorrect signs performed by different

people, an experiment is carried out to compare the eigenspace Size Function

and the unmodified Size Function representations.

We evaluate our proposed features on the Jochen Triesch Static Hand

Posture data set and on the ISL data set. For each hand sign in the data

set we store a single hand image as a control image. The remaining set of

hand images are stored as test images. We evaluate our proposed features by

computing the distance between each control Size Function representation
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and all test contour Size Function representations.

We generate Receiver Operating Characteristics (ROC) graphs for each

of the Size Function representations by calculating a confusion matrix from

the control contour and test shape distance comparisons. See Appendix B.1

for a detailed description of ROC analysis and Area Under the Curve (AUC)

performance measures.

We define the function D(Ck,C l) as the distance measure computed be-

tween the control contour Ck and the test contour C l. This procedure is car-

ried out for both the eigenspace Size Function and the unmodified Size Func-

tion representations. To generate multiple points on the ROC graph, a con-

fusion matrix is calculated from different threshold values T (0 ≤ T < +∞).

Firstly, we compute a ROC graph for the unmodified Size Function repre-

sentation. For each contour C, we compute the set of Size Functions Γϕ(C).

The distance between two unmodified Size Functions is then calculated by a

Euclidean distance measure according to Equation 3.5. Results of this test

show an AUC measurement of 0.735 and 0.756 for the ISL data set and the

Triesch data set respectively.

D
′

(Ck, Cl) =

√√√√
2π∑

θ=0

N∑

i=0

N∑

j=0

(Γθ(Ck)[i, j]− Γθ(Cl)[i, j])2 (3.5)

A ROC graph is then computed for the eigenspace Size Function repre-

sentation. For each contour C, we compute the set of Size Functions Γϕ(C)

and then calculate the eigenvectors and eigenvalues for that set of Size Func-

tions. For each θ, we choose only the first P eigenvectors, resulting in a

set of eigenvectors Mθ(C), with dimensions N×P , and a set of eigenvalues

97



3.5 Evaluation of Discriminatory Properties Hand Posture Recognition

Wθ(C) of dimension P . The eigenspace Size Function distance between two

contours is then calculated by a Euclidean distance measure according to

Equation 3.6. Results of this test produced an AUC measurement of 0.789

and 0.801 for the ISL data set and the Triesch data set respectively.

D¬(Ck, Cl) =

√√√√
2π∑

θ=0

P∑

p=0

N∑

i=0

(Mθ(Ck)[p, i]−Mθ(Cl)[p, i])2 (3.6)

A further modification to the eigenspace Size Function representation is

proposed. We propose a scaling of the eigenvectors of each eigenspace Size

Function based on a variance measure of their associated eigenvalues.

We define our weighted eigenspace Size Function ζθ(C) in Equation 3.7.

ζθ(C)[p, i] =Mθ(C)[p, i]×̟θ(C, p)× ̺θ(C) (3.7)

Where ̟θ(C, x) is a weighting factor for each eigenvector x associated

with the Size Function indexed by θ according to Equation 3.8.

̟θ(C, x) =
Wθ(C)[x]∑K

k=0Wθ(C)[k]
(3.8)

The second weighting factor, ̺θ(C), is calculated for each set of eigen-

vectors associated with the Size Function indexed by θ, such that the Size

Function with the greatest total variance is assigned a greater weighting ac-

cording to Equation 3.9.

̺θ(C) =

∑P

p=0Wθ(C)[p]∑NΘ

θ=0

∑P

p=0Wθ(C)[p]
(3.9)
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The distance, dSF (Ck,C l), between the hand contours Ck and C l is then

defined as the Euclidian distance between the weighted eigenspace Size Func-

tions:

dSF (Ck, Cl) =

√√√√
2π∑

θ=0

P∑

p=0

N∑

i=0

(ζθ(Ck)[p, i]− ζθ(Cl)[p, i])2 (3.10)

A ROC analysis of the proposed weighted eigenspace Size Function shows

an AUC measurement of 0.809 and 0.823 for the ISL data set and the Triesch

data set respectively. The results of the experiment on the ISL data set show

the weighted eigenspace Size Function has a total improvement of 7.4% when

compared to the unmodified Size Function while results of the experiment on

the Triesch data set show a total improvement of 6.7%. Figure 3.12 shows

the ROC graphs associated with the AUC measurements reported above.

Figure 3.12: ROC graphs of weighted eigenspace Size Function, eigenspace
Size Function and unmodified Size Function representations for (a) ISL data
set and (b) Triesch data set
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3.5.2 Hu Moments Performance

Along with the eigenspace Size Function representation of a hand, Hu mo-

ments of a segmented binary hand image are used as a feature to describe

the posture of a hand. To test the suitability of Hu moments as a hand

posture feature, a similar experiment to the one described in Section 3.5.1

is conducted. Hu moments are extracted from the control and test images,

described in Section 3.5.1. The distance between each of the control Hu Mo-

ments and test Hu Moments is calculated from the total absolute difference

between each augmented moment described in Equation 3.11. Where the

augmented moment is a metric implemented in the OpenCV library [IC00]

and is described in Equation 3.12.

dHu(Ck, Cl) =
7∑

i=1

|Λ
(
I (Ck) [i]

)
− Λ

(
I (Cl) [i]

)
| (3.11)

Λ(hu) =
1

sign(hu)× log(hu)
(3.12)

A ROC graph is then generated for the Hu moments using a method sim-

ilar to the method described in Section 3.5.1. The AUC for the ROC graph

is 0.796 and 0.852 for the ISL data set and the Triesch data set respectively.

3.5.3 Combining Size Function and Hu Moments

The ultimate goal the work discussed in this chapter is to find the best possi-

ble classification scheme for recognising hand postures. We have shown that

both the eigenspace Size Functions and Hu moments features can sufficiently
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discriminate between positive and negative examples with an AUC of 0.809

and 0.796 respectively for the ISL data set and an AUC of 0.823 and 0.852

respectively for the Triesch data set.

It is suggested that the combination of different classifier designs can

potentially offer complementary information about the patterns to be clas-

sified. This complimentary information could then be harnessed to improve

the performance of the selected classifier [KHDM98]. The classification sys-

tem designed in this work uses a combination of different features, therefore a

measure of the performance of the combination of eigenspace Size Functions

and Hu moments is carried out.

The boolean expression defined in Equation 3.13 is used to determine the

combined classifier’s output. A true result corresponds to the classifier pre-

dicting that hand contours Ck and C l are of the same hand posture category.

ψ(Ck, Cl) = dHu(Ck, Cl) ≤ Thu ∩ dSF (Ck, Cl) ≤ Tsf (3.13)

To examine the combined performance of the two measurements, an ex-

haustive grid search on the threshold values Thu and Tsf , the threshold for

the Hu moments measurement and the threshold for the Size Function mea-

surements respectively, is carried out. For each {Thu,Tsf} a confusion matrix

was computed on the output of Equation 3.13 when applied to the set of

hand images used in Sections 3.5.1 and 3.5.2. We then choose the confu-

sion matrix with the best True:False ratio (TFRatio) described in Equations

3.14-3.16.
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TPRate =
TP

TotalPositives
(3.14)

FPRate =
FP

TotalNegatives
(3.15)

TFRatio =
TPRate + (1− FPRate)

2
(3.16)

For both data sets, results of the grid search show that the best True:False

ratio computed was better than that of any points on the ROC graphs com-

puted from the individual Size Function features and Hu moment features

respectively. Figure 3.13 shows the ROC graphs from the experiment and

Table 3.1 details the best True:False ratios for the different features. It can

be concluded from the results of this experiment that, based on the data

from both data sets, the combination of the eigenspace Size Function and

Hu moment representations provide complementary information about the

shape of a hand.

Table 3.1: Best True:False Ratios
ISL Data Set Triesch Data Set

Best Combined TFRatio 0.797 0.794
Best Size Function TFRatio 0.733 0.75
Best Hu Moment TFRatio 0.764 0.77
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Figure 3.13: ROC graph of combined features for (a) ISL data set and (b)
Triesch data set

3.5.4 Size Function Parameters

A ROC analysis is performed to select the optimal combination of parameters

(N,NΘ,P ), the size of the Size Function, the number of graph rotations and

the number of principal components respectively.

The same process described in Section 3.5.1 is carried out to evaluate the

performance of the Size Function using different values of (N,NΘ,P ) where

(2 ≤N≤ 32), (2 ≤ NΘ ≤ 16) and (1 ≤P≤ N).

It should be noted that asN increases, the margin between Gϕ≤y andGϕ≤x,

the graphs used to calculate the values of the Size Function, decreases. As

the margin decreases, smaller variations in the measuring function are iden-

tified as separate connected components. Therefore, as N increases, the Size

Function becomes more sensitive to small changes in shape and noise. As N

decreases, the Size Function become less sensitive to large shape variations
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and therefore performs poorly at discriminating between signs.

Since the data collected in this work uses real sign data, typical segmen-

tation noise can be present in the extracted contours. The existence of noise

makes finding an optimal value of N an important goal as we must find an

N which is not sensitive to noise but can discriminate between signs.

During the performance evaluation of the different parameters (N,NΘ,P ),

we also found that adjusting P varied the system’s sensitivity to noise. The

more principal components used, the more sensitive the system becomes

to noise. We conclude from this that the principal component holds the

main information about the hand posture, while the lower components hold

information about small variations in the contour shape.

Table 3.2: Parameter Combination AUC
(N,NΘ, P ) ISL Triesch (N,NΘ, P ) ISL Triesch

Data AUC Data AUC Data AUC Data AUC
(16,6,1) 0.809 0.823 (16,6,2) 0.794 0.811
(16,4,1) 0.791 0.822 (16,4,2) 0.783 0.804
(16,8,1) 0.799 0.814 (16,8,2) 0.786 0.792
(8,6,1) 0.782 0.801 (8,6,2) 0.779 0.787
(8,4,1) 0.780 0.796 (8,4,2) 0.769 0.783
(8,8,1) 0.791 0.807 (8,8,2) 0.773 0.792

Table 3.2 details different ROC AUCs for different parameter combina-

tions computed from the ISL data set and the Triesch data set. Although ex-

periments are carried out exhaustively on different parameter combinations,

we present only the 12 best parameter combinations. Parameters within the

bounds; (2 ≤N≤ 32), (2 ≤NΘ ≤ 16) and (1 ≤P≤N), do not have a signifi-

cant effect on the AUC with the lowest AUCs being 0.681 and 0.693 for our
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ISL data set and the Triesch data set respectively. The parameter combina-

tion which produced the best AUC was N= 16, NΘ= 6 and P= 1. This was

the parameter combination used in all tests described in Sections 3.5.1 and

3.5.3 above, and will be used for the posture recognition techniques which

we will discuss in Section 3.6.

3.6 Recognition Framework

In Section 3.5 we have shown that our eigenspace Size Functions and Hu

moments possess strong hand shape discriminatory properties. We now de-

scribe our user independent framework for recognising hand postures using

these shape representations.

A set of SVMs [CL01] are trained on data, using the discussed shape

representations, extracted from labeled images.

Given an unknown hand image, the relevant features are extracted and

the SVMs use the data to estimate the most probable hand posture classifi-

cation.

To classify an unknown hand posture C, it must be assigned to one of the

Y possible posture classes (α1, α2, ..., αY ). The proposed recognition frame-

work uses two distinct measurement vectors to represent a hand posture. For

each posture class, αy, a set of two SVMs, {SVMsf
y ,SVMhu

y }, are used to

calculate P (αy|I(C),ζ(C)), the probability that posture C belongs to class

αy given measurement vectors I(C) and ζ(C). Where I(C) is the set of Hu

Moments and ζ(C) is the weighted eigenspace Size Function calculated from

hand contour C.
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3.6.1 Support Vector Machines

Support Vector Machines are a set of supervised learning methods used in

classification and regression. A one against all Support Vector Machine

(SVM) model is used in this work, and training of the SVM consists of

providing the SVM with data for two classes (see Appendix A.2 for detailed

discussion on implementation of SVM training and classification). Data for

each class consists of a set of n dimensional vectors. An Radial Basis Func-

tion (RBF) kernel is applied to the data and the SVM then attempts to

construct a hyper plane in the n-dimensional space, attempting to maximise

the margin between the two input classes.

The SVM type used in this work is C-SVM using a non linear classifier

by means of the kernel trick as proposed by Aizerman et al. [ABR64]. The

kernel used is a RBF kernel as defined by K(x, x′) = exp(−γ‖x− x′‖2) (see
Appendix A.2.1).

We utilise an extension to SVMs in order to obtain probability estimates

for each class. This is carried out by using a technique proposed by Platt

[PP99] (see Appendix A.2.2).

3.6.2 Training

Given a training set of hand images consisting of multiple labeled images of

each hand posture class we train a set of SVM classifiers as follows:

Weighted eigenspace Size Function data and Hu moment data are ex-

tracted from the training set images to create the matricesHy = (Iy1,Iy2, ...,IyL)

and Ψy = (ζy1,ζy2, ...,ζyL) where L is the total number of training images
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recorded for each posture class αy.

To train each SVMsf
y , the matrix Ψy is used as the positive labeled train-

ing data and Ψy := (Ψj)j 6=y∩jǫ{1..Y } is used as the negative labeled training

data. Similarly, each SVMhu
y is trained using Hy as the positive labeled data

and Hy := (Hj)j 6=y∩jǫ{1..Y } as the negative labeled data. The support vector

machines SVMsf
y and SVMhu

y are then trained to maximise the hyperplane

margin between their respective classes (Ψy,Ψy) and (Hy, Hy).

There are two parameters while using RBF kernels: C and γ. V-fold

cross validation was carried out to compute optimal values for C and γ.

3.6.3 Posture Classification

To classify an unknown posture C, each SVMsf
y and SVMhu

y will calculate

P (αy|ζ(C)) and P (αy|I(C)), the probability ζ(C) and I(C) belong to class

αy respectively. Classifier weights, µsf
y and µhu

y , used to determine the over-

all probability, are calculated by Equations 3.17 and 3.18, where cvsfy and

cvhuy are the cross validation accuracies achieved during the training of each

SVMsf
y and SVMhu

y respectively.

µsf
y =

cvsfy

cv
sf
y + cvhuy

(3.17)

µhu
y =

cvhuy

cv
sf
y + cvhuy

(3.18)

A weighted combination of the probabilities is then calculated to generate

the overall probability P (αy|I(C),ζ(C)) according to Equation 3.19.
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P (αy|I(C), ζ(C)) = (P (αy|ζ(C))× µsf
y ) + (P (αy|I(C))× µhu

y ) (3.19)

3.6.4 Experiments

We evaluate our recognition system using both data sets discussed in Section

3.4.

For the ISL data set, we train the SVMs on 5520 hand posture images.

The 5520 training images were comprised of data from 8 of the 16 subjects

used. We then test our recognition framework on the remaining 5520 images.

For the Triesch data set we carry out two evaluation protocols (P1 and

P2). We first perform an evaluation based on the same protocol as Triesh

et al. [TvdM02]. We train the SVMs on each of the 10 hand signs using

data extracted from 3 of the 24 signers. The system is then tested on all

hand signs from the remaining 21 subjects. The second evaluation protocol

we perform is based on the work of Just et al. [JRM06], where 8 signers are

used for training a validation and the remaining 16 are used for testing.

We carry out the following tests for the ISL data set and both of the

Triesch evaluation protocols: For each posture C iǫ{1...L}, where L is the

total number of images in the test set, the classification probabilities ∆i :=

[P (α1|I(C i),ζ(Ci)), ..., P (αY |I(C i),ζ(C i))] is calculated. To test the perfor-

mance of the system a ROC analysis is carried out on the classification of

the test images. For each posture class yǫ{1...Y } a confusion matrix is cal-

culated. To generate multiple points on the ROC graph, a confusion matrix
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is calculated from different threshold values T (0 ≤ T < 1). Table 3.3 details

the AUC of the ROC graph generated from the classification of both the

training data and the test data of the ISL data set. It can be seen from the

AUC measures, generated from both the training data and test data, that

each classifier performs robustly at classifying each hand shape.

The results also show that the overall recognition rate of the test set is

within 1.6% of the overall classification of the training set. Since the subjects

used to record the test data were different to the subjects used to record the

training data, it can be concluded from these results that the proposed hand

posture recognition framework performs well at recognising hand postures

independent of the subjects performing the postures. Table 3.3 also shows

the classifier weights, µsf
y and µhu

y , calculated during the cross validation

stage of the training and used in the recognition experiments. These weights

give an indication of which classifier performs best at classifying the different

hand shapes. As can be seen from Figure 3.8, the hand shape for “A” and

“E” are quite similar, as are the hand shapes for “F” and “G”. From the

classifier weights, we see that the Hu moments have a greater discrimination

when classifying shapes with little contour variation, such as the signs for “A”

and “E”, whereas the eigenspace Size Function has a greater discrimination

when classifying signs with a larger variation in the contour shape, such as

the signs for “F” and “G”.
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Table 3.3: Classification AUC Performance
Letter Training Set Test Set Hu Moment Size Function

Recognition Recognition Weighting µhu
c Weighting µsf

c

A 0.996 0.995 0.57 0.43
B 0.997 0.989 0.58 0.42
C 0.930 0.907 0.49 0.51
D 0.993 0.971 0.54 0.46
E 0.991 0.996 0.57 0.43
F 0.976 0.991 0.46 0.54
G 0.993 0.974 0.48 0.52
H 0.995 0.967 0.48 0.52
I 0.980 0.971 0.50 0.50
K 0.991 0.934 0.47 0.53
L 0.984 0.932 0.48 0.52
M 0.985 0.935 0.55 0.45
N 0.999 0.954 0.52 0.48
O 0.999 0.930 0.54 0.46
P 0.999 1.000 0.58 0.42
Q 0.962 0.989 0.45 0.55
R 0.992 0.960 0.51 0.49
S 1.000 1.000 0.56 0.44
T 1.000 1.000 0.56 0.44
U 0.976 0.993 0.52 0.48
V 1.000 1.000 0.49 0.51
W 1.000 1.000 0.45 0.55
Y 1.000 1.000 0.50 0.50

Mean 0.989 0.973 0.52 0.48

Results of the evaluation on the Triesch data set, detailed in Table 3.4,

show that the Elastic Graph matching algorithm of Triesch et al. [TvdM02]

achieves a higher recognition rate than our method. The small amount of

training data would seem to contribute to the lower recognition rate of our

method. Results show that as the training set grows, from 3 subjects to 8

subjects, the recognition rate increases by 6.4%. Our method also shows a
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better recognition rate than the work of Just et al. [JRM06], when trained

on data from 8 subjects. Flasinski et al. [FM10] conduct experiments on a

subset of the Triesch Data set and report a recognition rate of 85.4% when

recognising 144 hand postures images. Flasinski et al. also reported that the

average computation time for classifying a single image was 0.13 seconds on

a computer with a 1.83Ghz Intel Core 2 CPU.

Table 3.4: Recognition Performance
#Training #Test Number Correct Percentage AUC

Our Method P1 3 21 418 356 85.1 0.827
Triesch et al. 3 21 418 392 95.2 -

Our Method P2 8 16 320 294 91.8 0.935
Just et al. 8 16 - - 89.9 -

Flasinski et al. - - 144 123 85.4 -

3.6.5 Continuous Recognition

To show an example of the functionalality of our system when classifying

signs from a video stream, we show results of a video based recognition

experiment. It should be noted that the purpose of the experiment discussed

in this Section is to show a qualitative example of posture classification and

does not serve as a full system evaluation. We utilise a live gesture feedback

application, which we will discuss in Chapter 5, along with the SVMs, trained

on the Triesch data set using protocol 2, to classify signs from a continuous

video sequence. In the video sequence, an unseen user performs each of the 10

signs one after the other. In the first frame of the video, the hand position

is manually selected and a skin colour histogram of the hand is recorded.

For each successive frame, the mean shift algorithm is used to locate the
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hand region [CRM00]. We then perform Canny edge detection on the hand

region, followed by a dilation operation, and the contour is then extracted

from the edge detected image using a border following algorithm [Sb85](see

Figure 3.14). Figure 3.15 illustrates the results of the video based posture

classification, where the graph depicts the probability for each hand posture

class for each image frame. It can be seen from the ground truth labels on

the graph that our system performs well at classifying postures in each image

frame.

Figure 3.14: Feature Extraction for Continuous Recognition Experiment (a)
Original Image (b) Skin Colour Segmentation using Mean Shift Algorithm
(c) Edge Detected Hand Region (d) Extracted Contour

3.7 Conclusion

This main contribution of the work detailed in this chapter is a user inde-

pendent hand shape feature, a weighted eigenspace Size Function, which is a

strong improvement over the original Size Function feature. We implement

a user independent hand posture recognition framework using our weighted

eigenspace Size Function and a set of Hu moments, which we show to com-

plement our proposed feature.
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Figure 3.15: Recognition probabilities for Continuous Video Stream. For
each frame, the classifier which outputs the maximum likelihood is denoted
as the grey area. For each classifier output we denote the blue plot as the
likelihood output of that classifier, while the red plot denotes the difference
between the classifier output and the likelihood of the classifier with the
second highest likelihood (Thus, for the red plot, values above 0 denotes the
maximum likelihood, values equal to 0 denotes the second highest likelihood
and values below 0 denotes all other likelihoods).
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Our eigenspace Size Function performs significantly better at discriminat-

ing between different hand postures than the unmodified Size Function when

tested on two different user independent hand posture data sets. An increase

in performance of 7.4% and 6.7% is shown for our weighted eigenspace Size

Function when compared to the unmodified Size Function using a simple

Euclidian distance classifier. We propose a user independent, SVM based,

recognition framework using a combination of our weighted eigenspace Size

Function and Hu Moments. Results of a user independent evaluation of the

recognition framework show our framework has a ROC AUC of 0.973 and

0.935 when tested on the ISL data set and the Treisch data set respectively.

These improvement suggests that the principal component of the Size Func-

tion holds the main information about the hand posture, while the lower

components hold information about small variations in the contour shape

that are specific to a particular person.

The advantages of our system, in contrast to other hand posture recogni-

tion systems described in Section 2.2.3, is that our system accurately recog-

nises hand postures independent of the person performing them and indepen-

dent of the style of the posture being performed. Our system also performs

this person independent recognition in real time from low resolution images

of the hand taken from images where the FOV includes the full upper body.

These are a significant set of advantages as the combination of these advan-

tages makes our hand posture framework an ideal system to be used in full

sign language sentence level recognition systems.
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Chapter 4

Spatiotemporal

Gesture Recognition 1

4.1 Introduction

Recognising gestures which appear in sign language is a challenging prob-

lem. An accurate recognition system must be able to distinguish between

meaningful sign segments and inter sign transitions. Each meaningful sign

lacks a clear categorical structure and signs which have the same meaning

can occur at different timescales. Inter-gesture transitions also occur between

these meaningful signs where, for example, when performing hand gestures

the hands must move from the end point of the previous gesture to the start

1Various aspects of the work described in this chapter have been published in a number
of conference proceedings. The completed work has been accepted for a book chapter
publication: D. Kelly, J. Mc Donald and C. Markham,“Recognition of Spatiotemporal
Gestures in Sign Language using Gesture Threshold HMMs”, In Machine Learning for
Vision Based Motion Analysis, Springer LNCS, In Submission
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point of the next gesture. These inter-gesture transition periods are called

movement epenthesis [SR89] and are not part of either of the signs. The

difficulty in developing gesture recognition techniques is that the recogni-

tion framework must be able to classify meaningful signs segments while also

identifying movement epenthesis.

As discussed in Section 2.2.2, the limitation of current methods of con-

tinuous gesture recognition is that explicit training of movement epenthesis

models are required, explicit rules for gesture segmentation must be speci-

fied or unnatural constraints are put on the signer, such as unnatural pauses

between words. The main contribution of the work detailed in this chapter

is that we propose a Gesture Threshold Hidden Markov Model (GT-HMM),

which is a spatiotemporal gesture recognition framework which does not re-

quire explicit epenthesis training or specific rules to determine gesture bound-

aries.

4.1.1 Chapter Outline

Before discussing our GT-HMM framework, we give an overview of HMMs

and Threshold HMMs in Sections 4.2 and 4.3 respectively. In Section 4.4, we

then detail the implementation of our proposed GT-HMM framework which

is specifically designed to classify manual and non-manual signals and to

identify movement epenthesis. In Section 4.5, we carry out a comprehensive

evaluation of the GT-HMM framework and compare with current state of the

art temporal event modeling frameworks such as CRFs, HCRFs, LDCRFs

and standard HMM systems. Since sign language involves not only hand
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gestures but also non-manual signals, gesture recognition evaluations will be

carried out on hand gestures and non-manual signals conveyed through head

and eye brow movements.

4.2 Hidden Markov Models

HMMs are a type of statistical model that can model spatiotemporal infor-

mation in a natural way. HMMs have efficient algorithms for learning and

recognition, such as the Baum-Welch algorithm and Viterbi search algorithm

[Rab89]. They have been utilised for the task of gesture recognition in a large

number of works in the literature. HMMs where first used for the task of ges-

ture recognition by Yamato et al. [YOI92] and for the task of sign language

recognition by Starner et al. [SPW98]. In these seminal works, the authors

state that the key characteristics of HMMs, which make them suitable for

gesture recognition, is their learning ability and time-scale invariability.

A HMM is a collection of states connected by transitions. Each transition

(or time step) has a pair of probabilities: a transition probability (the prob-

ability of taking a particular transition to a particular state) and an output

probability (the probability of emitting a particular output symbol from a

given state).

A gesture sequence is represented as a set of observations. An obser-

vation ft, is defined as an observation vector made at time t, where ft=

{o1, o2, ..., oM} and M is the dimension of the observation vector. A particu-

lar gesture sequence is then defined as G= {f1,f2, ...,fT}. We will discuss the

features used to represent different gesture types in Section 4.5.

117



4.2 Hidden Markov Models
Spatiotemporal

Gesture Recognition

A HMM is characterised by the following:

1. N, the number of states in the model. We denote the individual states

as S= {s1,s2, ....,sN}, and the state at time t as qt.

2. M , the dimension of the observation vector.

3. A = {aij}, the state transition probability distribution. Where A is an

N × N matrix and aij is the probability of making a transition from

state si to sj .

4. B = {bj(f)}, the observation symbol probability distribution. Where

bj is the probability distribution in state j and 1 ≤ j ≤ N .

5. π = {πi}, the initial state distribution.

The compact notation λ= {A,B, π} is used to indicate the complete pa-

rameter set of the model where A is a matrix storing transition probabilities

aij between states si and sj, B is a matrix storing output probabilities for

each state and π is a vector storing initial state probabilities.

HMMs can use either a set of discrete observation symbols or they can be

extended for continuous observations signals. In this work we use continu-

ous multidimensional observation probabilities calculated from a multivariate

probability density function.

The observation probability is expressed in the form shown in Equations

4.1 and 4.2:
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bj(f) = ℵ(f;µj,Σj) (4.1)

= (2π)−
N
2 |Σ|− 1

2 exp

(
−1

2
(f− µj)

T Σ−1
j (f− µj)

)
(4.2)

Where f is the M dimensional vector being modeled, bj is the vector

probability in state j and ℵ is a Probability Density Function (PDF) of an

M-dimensional multivariate gaussian distribution, with mean vector µj and

covariance Σj .

4.2.1 HMM Algorithms

Given the form of a HMM, there are three algorithms that can be performed

on the HMM that make HMMs useful in real-world applications:� The forward backward algorithm [Rab89] is used to calculate P (G|λ),
the probability of the observation sequence G= {f1,f2, ...,fT} given the

model λ= {A,B, π}.� The Viterbi Algorithm [Rab89] is used to find the single best state

sequence Q = {q1, q2, ..., qT}, for the given observation sequence G=

{f1,f2, ...,fT}.� The Baum-Welch algorithm [Rab89] is used to determine the model

parameters (A,B, π) to maximise the probability of the observation

sequence given the model.

Appendix A.1 gives a detailed account of each of these algorithms.
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4.2.2 Types of HMMs

There are two main types of HMMs:

1. Ergodic Model: A HMM in which every state of the model could be

reached from every other state of the model (See Figure 4.1(a)).

2. Left-Right Model (Bakis Model): A HMM in which the state sequence

associated with the model has the property that as time increases the

states index increases or stays the same (i.e. the states progress from

left to right), (See Figure 4.1(b)).

(a) Ergodic (b) Left-Right

Figure 4.1: HMM Model Types

The left-right model has the desirable property that it can readily model

signals whose properties change over time. As a result, left-right models

have been successfully applied to speech recognition tasks [Rab89] and more

recently, to gesture recognition and sign recognition tasks [OR05].
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4.3 Threshold HMM Model

For correct gesture spotting, the likelihood of a gesture model for a given pat-

tern should be distinct enough. Unfortunately, although the HMM chooses a

model with the best likelihood, we cannot guarantee that the pattern is really

similar to the reference gesture unless the likelihood value is high enough.

A simple thresholding for the likelihood often does not work. Therefore,

Lee and Kim [LK99] proposed a Threshold HMM that yields the likelihood

value to be used as a threshold. The threshold model was implemented to

calculate the likelihood threshold of an input pattern and to provide a con-

firmation mechanism for provisionally matched gesture patterns. We build

on the work carried out by Lee and Kim to create a framework for calculat-

ing a probability distribution of a two-handed input sign using continuous

multidimensional observations. The computed probability distribution will

include probability estimates for each pre-trained sign as well as a probability

estimate that the input sign is a movement epenthesis.

If a set of left-right HMMs can be trained such that each state represents

a particular gesture segment, then a self transition of a state represents a

particular segment of a target gesture and the outgoing state transition rep-

resents a sequential progression of the segments within a gesture sequence.

With this in mind, an ergodic model, with the states copied from all gesture

models in the system, can be constructed as shown in Figures 4.2(a) and

4.2(b). Figure 4.2(b) shows the threshold model as a simplified version of

the ergodic model where dotted lines denote null transitions. We illustrate

the threshold model in a simplified manor where the null transitions repre-
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sent transitions where no actual observations occur. This means that, for

example, a transition can occur between state A1 and Z2 in a single obser-

vation by making a transition from A1 to E, E to S and then S to Z2. In

reality this transition would occur in a single step (i.e. A1 to Z2), but for

illustration purposes we use the null transitions so as to not over complicate

the diagram with a large number of transition labels.

The threshold model states are created by copying all states from the left-

right HMMs such that output observation probabilities and self transition

probabilities are kept the same, but all outgoing transition probabilities are

equally assigned as:

aij =
1− aii

N − 1
∀j, i 6= j (4.3)

Where aij is the transition probability from state si to sj and N is the

number of states excluding the start and end states (The start and end states

produce no observations). If each left-right HMM can be trained such that

each state represents a gesture sub-pattern, then, by maintaining the self

transition and output probabilities in the threshold states, a threshold model

represents the set of all gesture sub-patterns. Constructing the threshold

model as an ergodic structure thus makes it match well with all patterns

generated by combining any of the gesture sub-patterns in any order. The

likelihood of the threshold model, given a valid gesture pattern, would be

smaller than that of the dedicated gesture model because of the reduced

outgoing transition probabilities. However, the likelihood of the threshold

model, given an arbitrary combination of gesture sub-patterns, would be
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(a)

(b)

Figure 4.2: (a) Dedicated Gesture Models (b) Threshold Model (S- Start
State, E- End State)
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higher than that of any of the gesture models. Thus the threshold model,

denoted as λ, can be used as a movement epenthesis likelihood measure.

4.4 GT-HMM Framework

In this work, we propose a Gesture Threshold Hidden Markov Model (GT-HMM)

as an improvement to the standard HMM and Threshold HMM, to auto-

matically train and model natural gestures and movement epenthesis. The

GT-HMM comprises of two main improvements to the standard HMM frame-

work. Firstly, we develop a gesture subunit initialisation technique to create

HMM states which model particular gesture sub-patterns. Secondly, we im-

plement a threshold HMM, which utilises states which were initialised using

the gesture subunits, to compute a dynamic epenthesis likelihood of input

gestures. In this section we will detail the implementation of the GT-HMM.

4.4.1 GT-HMM Training

In order to create a robust threshold HMM which models movement epenthe-

sis, dedicated HMM models must be trained such that each state represents a

particular gesture segment. We develop a technique to do this by expanding

on the Threshold HMM framework to develop a GT-HMM framework which

utilises our proposed gesture subunit initialisation and training techniques.

Our GT-HMM framework models continuous multidimensional gesture ob-

servations within a HMM network to recognise motion based gestures and

identify movement epenthesis.
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Each dedicated gesture model is trained on isolated gestures performed

by a fluent signer. Before training a HMM using the Baum-Welch algorithm,

the model must first be initialised. Initialisation includes the computation

of an initial state transition matrix and calculation of each state’s emission

variables µj and Σj . In order to initialise these components of the HMM,

an understanding of the gesture segmentation, or state transitions, must

be developed. One approach to achieving this would be to explicitly hand

label different subunits or gesture phonemes (signemes) [WSG02]. One of

the overall goals of the work detailed in this thesis is to create a weakly

supervised training and recognition system. Manual or automatic labeling is

an integral step in creating valid sign data. Thus we envisage that all data

will be labeled, or weakly supervised, by fluent signers. Since movement and

position of the hands are two of the four building blocks of sign language

which Stokoe [Sto05] identified, manually breaking these building blocks into

smaller subunits would be an un-intuitive and time consuming step for fluent

signers to label in a consistent manner. With this in mind, a training system

was developed to initialise and train data with minimum human intervention

where signs are labeled at a sign level and not at a signeme level.

Kim et al. [KC02] implemented an iterative HMM training procedure

in order to estimate more accurate initial HMM parameters for automatic

speech segmentation. In their method, hand labeled phoneme labels were

used to initialise the HMMs. Following this, the Baum-Welch algorithm was

run on the HMMs to tune the HMM parameters. The Viterbi algorithm was

then run and the initialisation data and phoneme labels were realigned to
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correspond with the Viterbi best paths. The HMM was then re-initialised

using the realigned phoneme labels and this iterative procedure was repeated

until no improvement was observed.

We extend this iterative HMM training model proposed by Kim et al.

[KC02] to develop an iterative gesture subunit initialisation and training

model. Our training model also includes an extra parameter selection layer

which finds the best combination of (S,R), where S is the total number of

states in the HMM and R is the reach of a state. In a left-right model,

the reach is the number of states that it is possible to transition to from

the current state. For a target sign, we extract data from a number of

manually labeled isolated video sequences of a fluent signer performing that

sign. Figure 4.3 shows a visualisation of isolated examples of the “Alot” sign

extracted from video sequences.2

Figure 4.3: Visualisation of Isolated Examples of “Alot” sign Extracted from
Video Sequences

The problem of automatically extracting isolated examples of a target

sign using weakly supervised data will be discussed in Chapter 5.

2“Alot” is the Sign Language Gloss for the English language term “A large number of”
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Gesture Subunit Initialisation

Extracting isolated examples of a sign produces a set of observation sequences

∆y= {G1
y,G

2
y, ...,G

K
y } where K is the total number of isolated examples. In

HMM training, more accurate initial estimates of the HMM parameters pro-

duce more accurate classification results, as shown for example in [KC02].

The goal of our proposed initialisation technique is to automatically find

gesture subunits and the most accurate initial emission variables which de-

scribe the gesture subunits. Our technique determines a labeling of the state

that each observation vector most probably matches. These state labels are

then used to determine the subset of observation vectors which are associated

with a specific HMM state. The observation vectors within the subset can

then be used to improve the estimate of the mean and covariance parameters

associated with a state.

To initialise λy, the HMM which will model the sign indexed by y, we first

calculate S−1 indices of each Gi
y which best segment the gesture into S sub-

gestures. We propose an iterative temporal clustering algorithm to calculate

the S sub-gestures. Figure 4.4 shows a visualisation of isolated examples of

the “Alot” sign being segmented into S= 3 sub-gestures.

The key motivation for the development of our gesture subunit initial-

ization technique was to find a way to best describe a gesture class in S

segments, where each segment will be used to initialize each state in the

HMM.

Time series segmentation aims to organize time series data into few in-

tervals having uniform characteristics. Several high level representations of
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Figure 4.4: Initial Segmentation: Visualisation of Isolated Examples of
“Alot” being Segmented into S = 3 sub-gestures

time series have been proposed, including Fourier Transforms [KCPM00],

Wavelets [84799], Symbolic Mappings [84700] and Piecewise Linear Repre-

sentation (PLR) [GS01]. In general, given a single time series T, these time

series algorithms aim to produce the best representation of T using only K

segments. In order to carry out time series segmentation for the purpose

of HMM initialization, we must develop an algorithm which, given a set of

time series T = {T1, ..., TK} with different lengths, can produce a single

representation of the complete set of time series using K segments.

The objective of our temporal clustering algorithm is to cluster observa-

tions in a temporal structure such that each set of cluster indices, associated

with each observation sequence, has a left to right clustering. As time in-

creases, each cluster index should increase or stay the same. As an example,

for S= 3, a cluster index sequence of ‘00110122’ is considered an invalid

temporal clustering. This index sequence is not a valid temporal clustering

because the 5th element in the sequence is less than the 4th element and
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thus does not have a left to right clustering. A cluster index sequence of

‘00011122’ is considered a valid temporal clustering as each index is either

greater than or equal to the index which occurred previously. Our iterative

clustering algorithm attempts to cluster all observations, in the set of ob-

servation sequences ∆y, such that all cluster index sequences have a valid

temporal clustering.

Our temporal clustering algorithm is based on an iterative time scal-

ing procedure which incorporates a time variable into the observation vec-

tors in order to temporally segment each observation sequence. We define

a time augmented observation vector ft(η) = {o1, o2, ..., oM , η} and a time

augmented observation sequence G¬ = {f1( 1
T
ΓT ), f2(

2
T
ΓT ), ..., fT (Γ

T )}, where
ΓT is a time scaling factor. Each iteration of the algorithm increases the time

scaling factor and calculates cluster indices for each observation vector, using

k-means clustering, until all time augmented observation sequences have a

corresponding valid temporal clustering.

We use a sample set of nine sequences of the “Alot” sign in order to illus-

trate how our temporal clustering algorithm is used to initialise the HMMs.

As will be discussed in Section 4.5.3, the observation vectors used to

describe a sign in this work are 5-dimensional vectors. In order to illustrate

the temporal clustering of these observation vectors, we perform PCA on the

data in order to reduce the dimensionality of the data to 1-dimension (see

Figure 4.5). Although we illustrate the clustering results using the principal

component, it is important to note that all clustering, including the results

shown in this section, were calculated using the 5 dimensional observation
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vector.

Figure 4.5: Visualisation of Principal Components of Sign Data for Left Hand
(Left) 2 Dimensions, of the 5 dimensional feature vector, representing the x
and y trajectories of the hand (Right) Principal component computed from
the 5 dimensional feature vectors

We now illustrate an example of our temporal clustering algorithm applied

to the left hand observation sequences for the sign “Alot” when clustering

the signs into S= 3 sub-gestures. For each iteration of the algorithm, all

time augmented observation vectors are clustered and then each cluster index

sequence is analysed in order to determine if all clusters have a valid temporal

clustering. The time scaling factor is increased and this process is repeated

until all observation sequences have a valid temporal clustering. Figure 4.6

shows each step of the clustering algorithm when applied to the nine samples

of the left hand data for the sign “Alot”, while Figure 4.7 shows the results

of the clustering for both the left and right hands.

The final temporal clusters are then used to divide the observation se-

quences into the S sub-gestures and the mean vector µj and the covariance
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Figure 4.6: Iterative clustering steps. Each plot represents a clustering step
with a different time scaling factor ΓT . (pc1 - Principal Component)
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Figure 4.7: Temporal clustering results after final iteration

matrix Σj is calculated for each state (see Figure 4.8).

The Baum-Welch algorithm [Rab89] is then applied to λy using all train-

ing data ∆y. After training, the Viterbi algorithm[Rab89] is run on each of

the training sequences in ∆y to produce the most probable state sequences.

The initial S sub-gestures are then realigned to match the Viterbi paths.

This re-estimation and realignment process is continued until the likelihood,

produced by the Baum-Welch algorithm, converges. The overall process is

repeated for different combinations of (S,R) to find the combination which

produces the highest likelihood from the Baum-Welch re-estimation. Fig-

ure 4.9 gives an overview of the iterative training and parameter selection
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Figure 4.8: Initialisation: Mean vector µ and the covariance matrix Σ calcu-
lated for each HMM state

procedure.

After training, and finding the optimal parameters for each HMM λy,

a threshold model λ is created using the method discussed in Section 4.3.

Using each λy, and its corresponding set of states Sy = {sy1, ...,syNy}, the
threshold model states S are initialised by copying all the HMM states such

that S = {s11, ...,s1N1 , ...,sy1, ...,syNy , ...,sY 1, ...,sY NY }, where Ny defines the

number of states in λy. The set of HMMs, to recognise the Y pre-trained

gestures, is then denoted as Λ= {λ1,λ2, ...,λY ,λ}.

4.4.2 GT-HMM for Gesture Recognition

Gesture Classification

Given a sequence of gesture observations G, representing an unknown ges-

ture, the goal is to accurately classify the gesture as an epenthesis or as one
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Figure 4.9: HMM Initialisation and Training Procedure

of the Y trained gestures. To classify the observations, the Viterbi algorithm

is run on each model given the unknown observation sequences G, calculating

the most likely state paths through each model y. The likelihoods of each

state path, which we denote as P (G|λy), are also calculated. The sequence

of observations can then be classified as y if PML(G|λy) ≥τy, where the max-

imum likelihood, PML(G|λy), is defined in Equation 4.4 and the movement

epenthesis likelihood, τy, is defined in Equation 4.5.

PML(G|λy) = max
y
P (G|λy) (4.4)
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τy = P (G|λ)Γy (4.5)

Where Γy is a constant scalar value used to tune the sensitivity of the

system to movement epenthesis gestures.

Parallel Training

Vogler et al. [VM99, VA01] show that parallel HMMs can improve recognition

rates of two-handed gestures when compared to standard HMMs. In order

to recognise two-handed gestures in sign language, we implement a parallel

GT-HMM system. The parallel GT-HMM initialises and trains a dedicated

parallel HMM denoted as λ
′

y = {λLy,λRy} where λLy and λRy are HMMs

which model the left and right hand gestures respectively. Each parallel

GT-HMM is trained using the same gesture subunit initialisation and training

technique discussed in Section 4.4.1.

To account for variations in information held in each of the hands for a

particular sign, a weighting of ωLy and ωRy is applied to the left hand HMM

and right hand HMM respectively. The weights are implemented to give

more emphasis to the hand which conveys most information. For example if

a signer’s dominant hand performs a waving gesture while the non-dominant

hand does not move, then more emphasis should be put on the dominant

hand during the classification process. The weighting applied in our system

is based on a hand variation ratio which calculates the relative variance

between the left and right hand observation sequences. The weights are

automatically calculated using training data from all observation sequences
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Gk
Ly and Gk

Ry, where 1 ≤ k ≤ K, K is the total number of training examples

and GLy and GRy are the left and right hand observations respectively. The

variance of the left and right hand observations are computed by calculating

the variance of each observation dimension σ2
Ly[i] and σ

2
Ry [i], where 0 ≤ i ≤M

and M is the dimension of the observation vectors. The left HMM weight,

ωLy, and right HMM weight, ωRy, are then calculated using Equations 4.6

and 4.7, where ωRy+ωLy= 1.

ωLy =
M∑

i=0

σ2
Ly[i]

(σ2
Ly[i] + σ2

Ry[i])×M
(4.6)

ωRy =

M∑

i=0

σ2
Ry [i]

(σ2
Ly[i] + σ2

Ry [i])×M
(4.7)

A parallel GT-HMM framework, λ
′

= {λL,λR} is then created using the

network of trained parallel HMMs λy (y ∈ Y ).

Parallel Gesture Classification

To classify the parallel observations G
′

= {GL,GR}, the Viterbi algorithm

is run on each model given the unknown observation sequences GL and GR,

calculating the most likely state paths through each model y. The likelihoods

of each state path, which we denote as P (GL|λLy) and P (GR|λRy), are also

calculated. We calculate the overall likelihoods of a two-handed gesture by

computing the weighted sum of the left and right HMM likelihoods as defined

in Equation 4.8.
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P (G
′|λ′

y) = P (GL|λLy)ωLy + P (GR|λRy)ωRy (4.8)

The movement epenthesis likelihood is similarly calculated from a weighted

sum of left and right threshold model likelihoods as defined in Equation 4.9.

τ
′

y =
P (GL|λL)ΓLy + P (GR|λR)ΓRy

2
(4.9)

Where ΓLy and ΓRy are constant scalar values used to tune the sensitivity

of the system to movement epenthesis. In experiments discussed in Section

4.5, different scalar values are evaluated and results show that scaler values

between 1.05 and 1.1 perform best when identifying epenthesis.

The observation sequence can then be classified as y if PML(G
′|λ′

y) ≥τy
′

,

where PML(G
′|λ′

y) is the maximum likelihood defined as max
y
P (G

′|λ′

y).

Continuous Recognition

Thus far we have described methods for classifying an isolated observation se-

quence as one of a number of pre-trained gestures or as a movement epenthe-

sis. In this section we describe our system for spotting and classifying spa-

tiotemporal gestures within continuous sequences of natural sign language.

The first step in our GT-HMM gesture spotting algorithm is gesture end

point detection. To detect a gesture end point in a continuous stream of

gesture observations G= {f1, f2, ..., fT}, we calculate the model likelihoods of

observation sequence G∗ = {fT−L, fT−L−1, ..., fT} where G∗ is a subset of G

and L defines the length of the observation subset used. We set L to the
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average length of the observation sequences used to train the system.

A candidate gesture, κ, with end point, κe= T , is flagged when ∃y :

P (G∗|λy) ≥τy. Figure 4.10 illustrates the likelihood time evolution of the

hand gesture model “Lost” when given an observation sequence where the

signer performs the “Lost” sign. It can be seen from Figure 4.10 that a

number of candidate end points occur between T = 16 and T = 21.

Figure 4.10: Likelihood evolution of “Lost” gesture model and associated
threshold model

For each candidate end point, we calculate a corresponding start point κs.

Different candidate start points are evaluated using the measurement shown

in Equation 4.10 where βy(G) is a normalised metric (0 ≤βy(G) ≤ 1) which

measures the likelihood of gesture y relative to the epenthesis likelihood given

observations G.

βy(G) =
P (G|λy)

P (G|λy) + τy
(4.10)
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To find a candidate start point, the metric βy(Gsκe
) is calculated over

different values of s, where Gsκe
= {fs,fs+1, ...,fκe

} and (κe−(L×2)) ≤ s <κe.

The candidate gesture start point κs, is then found using Equation 4.11.

κs = argmax
s

βy(Gsκe
) (4.11)

Candidate Selection

The start and end point detection algorithm may flag candidate gestures

which overlap and for this reason we expand on the continuous sign recog-

nition algorithm with a candidate selection algorithm. The purpose of the

candidate selection algorithm is to remove overlapping candidate gestures

such that the single most likely gesture is the only remaining gesture for a

particular time frame.

We use a sample sign language sentence “I Lost Alot of Books” to il-

lustrate our candidate selection algorithm in the context of our gesture and

threshold likelihood evaluation, where the system was trained on the fol-

lowing 8 signs: “Paper”, “Alot”, “Bike”, “Clean”, “Paint”, “Plate”, “Lost”

and “Gone”. Figure 4.11 illustrates the difference between the HMM gesture

model likelihood P (G|λy) and its corresponding threshold τy, where positive

values indicate P (G|λy) ≥τy. In Figure 4.11, four gesture model likelihoods

are shown as all other gesture model likelihoods never exceed their corre-

sponding threshold.

The first step in the candidate selection algorithm is to cluster overlap-

ping gestures with the same gesture classification together. Each of these
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Figure 4.11: HMM Gesture Models And Corresponding HMM Threshold
Model Likelihood Difference

candidate gestures within the cluster have an associated metric which we

denote as κp=βy(Gκsκe
). We remove all but one candidate gesture from this

cluster leaving only the candidate gesture, κB, with the highest κp value.

We repeat this step for each cluster to produce a set of candidate gestures

Υ = {κB1,κB2, ...,κBK}, where K is the total number of clusters created from

grouping overlapping gestures, with the same gesture classification, together.

Figure 4.12 shows the time segments and κp metrics of each candidate gesture

after the first candidate selection step.

Figure 4.12: Candidate Gestures, Υ, after first candidate selection step
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The second candidate selection step finds sets of overlapping candidates

and removes the least probable candidates such that a maximum of only one

candidate is detected for any given time frame. Figure 4.13 shows the time

segments and gesture probabilities of the recognised gestures after the first

and second candidate selection step where the signs “Lost” and “Alot” are

correctly recognised from a sample sign language sentence “I Lost Alot of

Books”.

Figure 4.13: Candidate Gestures, Υ. Candidates marked in Red (Dashed)
denote gestures which are removed by the second candidate selection step.
Candidates in Green (Solid) denote the final recognised gestures

4.5 Experiments

In this section we evaluate our GT-HMM framework on a number of differ-

ent gesture data sets and compare with different temporal event modeling

frameworks including CRFs. Prior to discussing the experiments, we give

a brief overview of CRFs, and extensions to CRFs, which we compare our

GT-HMM framework to.
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4.5.1 Conditional Random Fields

HMMs are generative models, assigning a joint probability to pairs of ob-

servations and labels. HMM parameters are typically trained to maximise

the joint likelihood of training examples. To define a joint probability over

observation and label sequences, a generative model needs to enumerate all

possible observation sequences. HMMs typically require features appropriate

for the particular recognition task and it is not practical to use feature vec-

tors which are comprised of multiple interacting features. The main weakness

of HMMs is the assumption of independence: the assumption that current

observations are statistically independent of the previous observations. This

is one of the main motivations for the use of CRFs. CRFs use an exponen-

tial distribution to model the entire sequence given the observation sequence.

This avoids the assumption of independence between observations, and allows

non-local dependencies between states and observations.

CRFs are a framework based on conditional probability approaches for

segmenting and labeling sequential data. A CRF is an undirected graphical

model in which each vertex represents a random variable whose distribution

is to be inferred and each edge represents a dependency between two random

variables. The task is to learn a mapping of observations x ∈ X to class

labels y ∈ Y , where x is a m dimensional vector of local observations, x =

{x1, x2, ..., xm}, and each local observation xj is represented by a feature

vector φ(xj) ∈ ℜd. A conditional model p(y|x) is constructed from the paired

observation and label sequences.

A graph O = (V,E) is defined such that Y = (Yv)v∈V , where V is the
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set of vertices and E is the set of edges in the graph O. Then (X, Y ) is a

conditional random field, when conditioned on X , the random variables Yv

obey the Markov property with respect to the graph: p(Yv|X, Yw, w ∼ v)

where w ∼ v implies that w and v are neighbours.

If O = (V,E) of Y is a tree (a chain being the simplest form of a tree

where O = (V = {1, 2, ...m}, E = {(i, i + 1)}) ), then the joint distribution

over label sequence Y given X is denoted in Equation 4.12.

p(y|x, θ′) ∝ exp

(∑

e∈E,k

λkfk(e, y|e, x) +
∑

v∈V,k

µkgk(v, y|v, x)
)

(4.12)

Where y|s is the set of components of y associated with the vertices of

subgraph S, and feature functions fk and gk are assumed to be given and

fixed. The parameter estimation problem is to determine the parameters θ′ =

(λ1, λ2, ...;µ1, µ2, ...) from training data D = {(x(i), y(i))}Ni with empirical

distribution p∼(x, y).

Hidden Conditional Random Fields

Wang et al. [WQM+06] proposed a discriminative hidden-state approach

for the recognition of human gestures. For any set of observations x they

implement a set of hidden variables s = {s1, s2, ..., sm} which are not observed

on training examples. Each sj is a member of S where S is a finite set of

possible parts in the model. Each sj corresponds to a labeling of xj with

some member of S. A HCRF models the conditional probability of a class

label given a set of observations by:
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P (y|x, θ′) =
∑

s

P (y, s|x, θ′) =
∑

s e
Ψ(y,s,x;θ′)

∑
y′∈Y,s∈Sm eΨ(y′,s,x;θ′)

(4.13)

The potential function Ψ(y, s, x; θ′) ∈ ℜ, parameterised by θ′, measures

the compatibility between a label, a set of observations and a configuration

of the hidden states.

Latent-Dynamic Conditional Random Fields

The CRF approach models the transitions between gestures, thus capturing

extrinsic dynamics, but lacks the ability to represent internal sub-structure.

Each Hidden-state Conditional Random Field models a single gesture la-

bel but cannot learn the dynamics between gesture labels. Morency et al.

[MQD07] propose a LDCRF to combine the strengths of CRFs and HCRFs

by capturing both extrinsic dynamics and intrinsic sub-structure. They de-

fine the latent conditional model as shown in Equations 4.14 - 4.17.

P (y|x, θ′) =
∑

s

P (y|s, x, θ′)P (s|x, θ′) (4.14)

P (s|x, θ′) = 1

Z(x, θ′)
exp(

∑

k

θ′k · Fk(s, x)) (4.15)

Z(x, θ′) =
∑

s

exp(
∑

k

θ′k · Fk(s, x)) (4.16)

Where Fk is defined as
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Fk(s, x) =

m∑

j=1

fk(sj−1, sj, x, j) (4.17)

Each feature function fk is either a state function sk(sj , x, j) or a transi-

tion function tk(sj−1, sj, x, j).

Figure 4.14 illustrates the graphical models of HMM, CRF, HCRF and

LDCRF.

(a) HMM (b) CRF

(c) HCRF (d) LDCRF

Figure 4.14: Comparison of HMM and different CRF models where grey
circles denoted observed symbols.

CRFs For Gesture Recognition

Wang et al. [WQM+06] and Morency et al. [MQD07] propose a gesture

recognition framework using HCRFs and LDCRFs respectively. We evaluate
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this same framework for the recognition of motion based gestures in sign

language.

CRF Training Similar to the works of Wang et al. and Morency et al.,

we implement an objective function, shown in Equation 4.18, to train the

parameters of each of the CRF models.

L(θ′) =
n∑

i=1

logP (yi|xi, θ′)−
1

2σ2
‖θ′‖2 (4.18)

Where n is the total number of training sequences. We implement a gra-

dient ascent search to find the optimal parameter values, θ∗ = argmax
θ′

L(θ′)

using a Quasi-Newton optimisation technique.

CRF Gesture Classification Given an unknown sequence of gesture ob-

servations G, we calculate the conditional probability P (y|G, θ′) of each of

the CRF, HCRF and LDCRF models for gesture labels y ∈ Y .

We classify a given observation sequence G as gesture class y if PML(y|G, θ′) >
Ω, where Ω is a pre-defined threshold value and PML(y|G, θ′) is the maximum

likelihood defined as max
y
P (y|G, θ′).

CRF Parallel Training Similar to the parallel GT-HMM system, we im-

plement a parallel CRF model in order to recognise two-handed spatiotem-

poral gestures. We apply the same weighting technique, discussed in Section

4.4.2, to the parallel CRF models by calculating left hand CRF weights, ωLy

and right hand CRF weights ωRy.
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Figure 4.15: Extracted Features from Image

CRF Parallel Classification Given a parallel observation sequence G
′

=

{GL,GR}, we calculate the conditional probability P (y|GL, θ) and P (y|GR, θ)

for each parallel CRF model. The parallel conditional probability is then

defined in Equation 4.19.

P (y|G′

, θ′) = P (y|GL, θ
′)ωLy + P (y|GR, θ

′)ωRy (4.19)

We classify a given observation sequence G
′

as gesture class y if PML(y|G
′

, θ′) >Ω
′

,

where Ω
′

is a pre-defined threshold value and PML(y|G′

, θ′) is the maximum

likelihood defined as max
y
P (y|G′

, θ′).

4.5.2 Feature Extraction

In this section we conduct evaluations on different gesture recognition sys-

tems using data extracted from video sequences of sign language sentences

being performed by a fluent ISL signer.

For completeness, prior to discussing the experiments, we briefly describe

the feature extraction techniques implemented.
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Tracking of the hands is performed by tracking coloured gloves using the

Mean Shift algorithm [CRM00]. Face and eye positions are used as features

for head movement recognition and also used as hand gesture cues. Face and

eye detection is carried out using a cascade of boosted classifiers working

with haar-like features proposed by Viola and Jones [VJ01]. A set of public

domain classifiers [MCSLN08], for the face, left eye and right eye, are used

in conjunction with the OpenCV implementation of the haar cascade object

detection algorithm. Figure 4.15 shows a visual example of the features of

an ISL signer being tracked.

We define the raw features extracted from each image as follows; right

hand position (RHx, RHy), left hand position (LHx, LHy), face position

(FCx, FCy), face width (FW ) (face region is square),left eye position (LEx, LEy)

and right eye position (REx, REy).

In order to recognise non-manual signals conveyed through facial expres-

sions, we locate the facial features of interest using Cootes’ implementation

of Active Shape Models (ASM) [CT01]. ASMs are statistical models which

can be used to carry out facial feature localisation. The ASM is trained to

deform iteratively to fit new facial images. For the experiments conducted

as part of this work, our training set consisted of 3500 images in total. From

which 300 key frames representing the variance in the data set were manually

labeled with 46 points. Figure 4.16(a) shows the ASM which was trained on

these image-points pairs.

During sign language communication, the face is frequently occluded by

the hands. To overcome this, we fit the ASM to the parts of the face that are
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(a) (b) (c)

Figure 4.16: (a) sample ASM which was fitted to each image (b) sample of
an un-occluded image (c) example of an occluded image

visible and use previous points for occluded parts of the face. This can be

seen in Figure 4.16 where the position of the mouth from Figure 4.16(b) is

used in Figure 4.16(c) when the mouth is occluded. This is a valid approach

as the hands move rapidly and rarely cover the same portion of the face for

multiple frames.

4.5.3 Evaluation of Techniques on Isolated Gestures

Wang et al. [WQM+06] performed experiments to show that the HCRF

model performed better at classifying head and arm gestures than CRFs and

HMMs. In their experiments, the models were evaluated on their ability to

classify a given segmented gesture sequence as one of a number of pre-trained

gestures but the models were not tested on non-gesture sequences. In order to

evaluate and assess the ability of a HCRF model to recognise gestures in sign

language, the performance of the model must be evaluated when identifying

non-gestures and epenthesis as well as being evaluated on the performance

149



4.5 Experiments
Spatiotemporal

Gesture Recognition

of classifying gestures.

Morency et al. [MQD07] performed experiments to evaluate the perfor-

mance of the LDCRF model on three different data sets. The first data set

was a head nod data set where the system was trained and tested on frames

labeled as a head nod or labeled as not a head nod. The second data set,

similar to the first data set, was trained and tested on positive and negative

examples of heads nods. The final data set was an eye gaze data set, and

the system was trained and tested on frames labeled as either an eye gaze-

aversion gesture or a non gaze-aversion gesture. The LDCRF model was

shown to out-perform CRF, HCRF and HMM based classifiers (as well as a

support vector machine based classifier). From these experiments it is diffi-

cult to access whether the LDCRF model could be implemented to recognise

a larger vocabulary of gestures or whether the LDCRF model could be used

in a sign language based system. In the experiment Morency et al. carry out,

each of the gesture data set experiments were trained to recognise a single

gesture with positive and negative examples of the gesture. In order to eval-

uate the LDCRF model for a sign language recognition system, the model

should be tested on a larger vocabulary of gestures. In their experiments

the gesture model was trained on positive and negative examples of the ges-

ture. Training a model to recognise movement epenthesis in sign language

is unfeasible due to the large number of possible epenthesis that can occur

between signs.

The goal of the experiments conducted in this section is to evaluate

the performance of the HMM, Threshold Hidden Markov Model (T-HMM),
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GT-HMM and the different CRF models when recognising motion based ges-

tures and identifying epenthesis which occur in sign language. The T-HMM

model we evaluate in this work is a parallel threshold HMM framework

where training and classification are carried out in the same manner as

the GT-HMM model. The key difference between the GT-HMM and the

T-HMM is that the T-HMM is not trained using the gesture subunit initial-

isation technique described in Section 4.4.1. Instead, the T-HMM model is

initialised using a standard segmentation method, utilised by Holden et al.

[HR01], where the observation sequences are linearly segmented into S equal

sub-sequences.

Since sign language communication is multimodal it involves not only

hand gestures (i.e. manual signing) but also non-manual signals conveyed

through facial expressions, head movements, body postures and torso move-

ments [COR05]. In order to evaluate the use of HMMs and CRFs in recognis-

ing motion based gestures in sign language, we evaluate the models on three

data sets; a manual signing data set (i.e. two-handed motion based gestures)

and two non-manual signal data sets based on head motion gestures and eye

brow gestures.

Manual Sign Experiments

The first data set we use to evaluate the models is a set of two-handed spa-

tiotemporal hand gestures used in sign language. This data set consists of

eight different manual signs extracted from videos of a fluent signer perform-

ing natural sign language sentences. Figure 4.17 illustrates an example of a
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signer performing each of the eight manual signs.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.17: Example of the eight different signs the system was tested on
(performed by Signer 1): (a) Newspaper, (b) A lot, (c) Bike, (d) Clean, (e)
Paint, (f) Plate, (g) Lost, (h) Gone

In order to recognise manual signs, we must extract two observation chan-

nels from the video streams. These observation channels correspond to the

left hand observations GL and the right hand observations GR. The obser-

vations GL and GR are combined into a parallel observation sequence G
′

which is processed by the parallel models. We extract a set of observation

sequences ∆y
′

from the video sequences, where y ∈ Y , Y is the set of sign

labels, ∆y
′

= {G′

1y, ...G
′

Ty} and T is the number of sample observation se-
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quences recorded for each gesture label y.

This set is then divided into a training set, ∆y
′t, and a test set, ∆y

′ζ .

A set of 10 training signs and a set of 10 test signs were recorded for each

sign (A total of 160 gesture samples). The HMM, T-HMM, GT-HMM, CRF,

HCRF and LDCRF models were then trained on ∆y
′t.

An additional set of observations ∆
′

E , which represents a collection of

movement epenthesis, were also extracted from the video sequences to test

the performance of the threshold model. For each sign, 10 movement epenthe-

sis that occurred before and after the sign in different sign language sentences

were recorded. An additional set of 20 random movement epenthesis were

also recorded, resulting in a test set of 100 samples to evaluate the models

on.

To evaluate the performance of the models, we perform a ROC analysis on

the different models and calculate the AUC for each model. The classification

of a gesture is based on a comparison of a model probability and a threshold

value. In our ROC analysis of each model, we vary the threshold and create

a confusion matrix for each of the thresholds. In the case of the T-HMM and

GT-HMM models, we vary the weighting of the threshold and in the case of

the CRF models we vary the static threshold value Ω.

When evaluating the HCRF and LDCRF models, we test the models on

different numbers of hidden states and different window parameters ω. The

window parameter defines the amount of past and future history to be used

when predicting the state at time t such that long range dependencies can be

incorporated. In our experiments we test each model on two different groups
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of data. The first data group, which we denote as data set 1, is a set which

includes all test sequences ∆y
′ζ and epenthesis sequences ∆

′

E . The second

data group, which we denote as data set 2, is a set which includes just the

test sequences ∆y
′ζ .

While an extensive evaluation of the models using different feature vectors

was conducted, we report the results of models using the best performing

feature vectors. The best performing feature vector for the HMM models

was the feature, f= {RPx, RPy, Vx, Vy, DH}, which describes the position of

the hands relative to the eyes, the direction of the movement of the hand

and the distance between the two hands. The best performing feature vector

for the three different CRF models was the feature vector f= {Vx, Vy}, which
describes the direction of the movement of the hand.

Table 4.1 shows the AUC measurements of the HMM, T-HMM, GT-HMM

and different variations of the CRF models when classifying gestures using

their corresponding best performing feature vector.
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Table 4.1: Manual Signs: AUC Measurements for Different Models
Model Data Set Data Set

1† 2‡

HMM 0.902 0.943
GT-HMM 0.976 0.977
T-HMM 0.941 0.944
CRF ω = 0 0.833 0.876
CRF ω = 1 0.794 0.828
HCRF ω = 0, S = 6 0.909 0.944
HCRF ω = 1, S = 6 0.957 0.983
HCRF ω = 2, S = 6 0.944 0.971
HCRF ω = 0, S = 8 0.947 0.965
HCRF ω = 1, S = 8 0.934 0.968
LDCRF ω = 0, S∗ = 1 0.847 0.881
LDCRF ω = 0, S∗ = 2 0.806 0.842
LDCRF ω = 0, S∗ = 3 0.808 0.836
LDCRF ω = 0, S∗ = 4 0.863 0.901
LDCRF ω = 0, S∗ = 8 0.942 0.985
LDCRF ω = 1, S∗ = 8 0.899 0.928
† - Data Set which includes 100 epenthesis samples
‡ - Data Set which does not include epenthesis samples
∗ - S∗ refers to number of hidden states per label for LDCRF

These results show that the overall best performing model, with an AUC

of 0.985, was the LDCRF model with 8 hidden states per label when tested

on data set 2. However, a sign language recognition system must be able

to identify movement epenthesis as well as classify gestures. The results

of the tests performed on data set 1 are more representative of how the

models would perform in real world sign language recognition scenarios. The

model which scores best when classifying data set 1 is the GT-HMM which

has an AUC of 0.976. Although the HCRF and LDCRF perform better

than the GT-HMM when classifying gestures, the performance of both drop
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significantly when the epenthesis data is introduced. The performance of

the GT-HMM drops by 0.1% compared to the relatively large drop of 4.3%

by the LDCRF model. The significance of this result is that it shows that

our GT-HMM model can robustly identify movement epenthesis and classify

gestures. While the CRF models perform well at classifying gestures, they

perform poorly at identifying movement epenthesis.

The results of the experiments also reveal the influence that our gesture

subunit initialisation has on the recognition performance. The GT-HMM

framework initialises the HMM using our initialisation method described in

Section 4.4.1, while the T-HMM utilises a linear segmentation method. The

experiments show that the GT-HMM results in an improvement of 3.5%

when compared to the T-HMM model.

Head Gesture Experiments

The second data set we use to evaluate the HMM and CRF models is a set

of head movement gestures. The head movement gestures are used to convey

non-manual information in sign language sentences. The head gesture set

consists of three different head movement gestures extracted from videos of

a fluent signer performing natural sign language sentences.

A visual example of a signer performing each of the three different head

movement gesture is shown in Figure 4.18.

Similar to the manual sign experiments described in Section 4.5.3, ob-

servation sequences ∆y= {G1y, ...GTy} were extracted from the videos and

divided into a training set, ∆y
t, and a test set, ∆y

ζ . For the head movement
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(a)

(b)

(c)

Figure 4.18: Example of the three different head movement gestures the sys-
tem was tested on (a) Right Movement (b) Left Movement (c) Left Forward
Movement
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experiments, a set of 6 training signs and a set of 6 test signs were recorded

for each sign (A total of 36 gesture samples). The HMM models and all CRF

models were then trained on ∆y
t.

A set of 25 additional head gesture sequences ∆E , outside of the training

set, were also extracted from the video sequences to test the performance

of the system when identifying movement epenthesis. Similar to the hand

gesture experiments, we test the head gesture models on two data groups;

data set 1 includes the gesture test sequences and the epenthesis sequences,

while data set 2 includes only the gesture test sequences.

While a ROC analysis of the non-manual models is conducted using the

same procedure described in Section 4.5.3, we report the results of models

using the best performing feature vectors. The best performing feature vector

for the HMM models, when classifying head gestures, is a 2 dimensional

vector f= {Vx, Vy} describing the velocity of the head movement in the x

and y directions. To calculate the velocity vector of the head we use the

mid point between the eyes and calculate the movement of the midpoint

from frame to frame. As with the HMM models, the best performing feature

vector for the CRF models is the 2 dimensional velocity vector f= {Vx, Vy}.
Table 4.2 shows the AUC measurements of the HMM, T-HMM, GT-HMM

and different variations of the CRF models when classifying head movements

using their corresponding best performing feature vector.
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Table 4.2: Non-Manual Signals: AUC Measurements for Different Models
Model Data Set Data Set

1† 2‡

HMM 0.848 0.891
GT-HMM 0.936 0.947
T-HMM 0.873 0.882
CRF ω = 0 0.736 0.768
CRF ω = 1 0.527 0.545
HCRF ω = 0, S = 2 0.698 0.801
HCRF ω = 1, S = 2 0.786 0.911
HCRF ω = 2, S = 2 0.702 0.816
HCRF ω = 0, S = 4 0.784 0.927
HCRF ω = 1, S = 4 0.719 0.811
HCRF ω = 0, S = 6 0.743 0.850
HCRF ω = 1, S = 6 0.736 0.893
HCRF ω = 0, S = 8 0.715 0.838
HCRF ω = 1, S = 8 0.708 0.788
LDCRF ω = 0, S∗ = 3 0.794 0.899
LDCRF ω = 1, S∗ = 3 0.763 0.880
LDCRF ω = 0, S∗ = 6 0.760 0.827
LDCRF ω = 1, S∗ = 6 0.717 0.791
LDCRF ω = 0, S∗ = 9 0.868 0.922
LDCRF ω = 1, S∗ = 9 0.837 0.901
LDCRF ω = 2, S∗ = 9 0.894 0.952
LDCRF ω = 3, S∗ = 9 0.795 0.861
† - Data Set which includes 25 non-gesture samples
‡ - Data Set which does not include non-gesture samples
∗ - S∗ refers to number of hidden states per label for LDCRF

The results of this experiment repeat the same trend found in the results

of the manual sign recognition experiment. The LDCRF model performs

best when classifying gestures in data set 2. The recognition rate of the CRF

models then decrease significantly when epenthesis are introduced. The best

performing model for data set 1 is again the GT-HMM model with an AUC
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of 0.936. The GT-HMM achieved a 4.2% higher AUC than the LDCRF when

tested on data set 1. This result further suggests that the GT-HMM model

is a more robust model for recognising gestures when epenthesis gestures are

taken in to account.

Similar to the results achieved on the manual gestures in Section 4.5.3,

these results indicate that the gesture subunit initialisation of the GT-HMM

improved classification performance. Experiments show that the GT-HMM

results in an improvement of 6.3% when compared to the T-HMM which is

initialised using a standard HMM segmentation method.

Eye Brow Gesture Experiments

The third data set we use to evaluate the HMM and CRF models is a set

of eye brow movement gestures used to convey non-manual information in

sign language. Research on ASL conducted by Grossman et al. [GK06] has

linked eyebrow gestures to certain affective states and questions. Anger,

wh-questions (who, where, what, when, why, how) and quizzical questions

exhibited lowered brows and squinted eyes, while surprise and yes/no ques-

tions showed raised brows and widened eyes. In experiments conducted in

this section, we focus on identifying these lowered brow gestures and raised

brow gestures.

Eyebrow observation sequences ∆y= {G1y, ...GTy} are extracted from the

videos and divided into a training set, ∆y
t, and a test set, ∆y

ζ . For the eye

brow experiments, a set of 5 training signs and a set of 5 test signs were

recorded for each sign (A total of 20 gesture samples). The HMM models
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Figure 4.19: Example of subject performing a raised brow gestures (left)
and a lowered brow gesture (right). a and b represent the angles φL and φR

respectively

and all CRF models are then trained on ∆y
t.

An additional set of 20 other eye brow gesture sequences ∆E , outside

of the training set, are also extracted from the video sequences to test the

performance of the system when identifying movement epenthesis.

The best performing feature vector for the HMM models and CRF mod-

els, when classifying eye brow movements, is a 2 dimensional vector f=

{φLR, D
∆}. The value φLR is the average angle between φL and φR shown in

Figure 4.19, and D∆ is the change in distance between the two eyes.

We carry out a ROC analysis of the non-manual models using the same

procedure as used in the hand gesture and head movement experiments.

Table 4.3 shows the AUC measurements of the models.
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Table 4.3: Non-Manual Eye Brow Signals: AUC Measurements for Different
Models
Model Data Set Data Set

1† 2‡

HMM 0.882 0.911
GT-HMM 0.948 0.951
T-HMM 0.905 0.912
CRF ω = 0 0.859 0.899
CRF ω = 1 0.878 0.921
CRF ω = 3 0.889 0.933
CRF ω = 6 0.866 0.901
HCRF ω = 0, S = 1 0.525 0.533
HCRF ω = 0, S = 3 0.858 0.922
HCRF ω = 2, S = 3 0.809 0.899
HCRF ω = 5, S = 3 0.781 0.912
HCRF ω = 0, S = 6 0.825 0.922
HCRF ω = 2, S = 6 0.802 0.922
LDCRF ω = 0, S∗ = 1 0.788 0.891
LDCRF ω = 1, S∗ = 1 0.892 0.911
LDCRF ω = 5, S∗ = 1 0.913 0.944
LDCRF ω = 10, S∗ = 1 0.893 0.922
LDCRF ω = 0, S∗ = 3 0.888 0.932
LDCRF ω = 3, S∗ = 3 0.912 0.931
LDCRF ω = 5, S∗ = 3 0.918 0.955
LDCRF ω = 10, S∗ = 3 0.905 0.933
LDCRF ω = 0, S∗ = 6 0.864 0.896
LDCRF ω = 5, S∗ = 6 0.912 0.944
LDCRF ω = 10, S∗ = 6 0.890 0.912
† - Data Set which includes 20 non-gesture samples
‡ - Data Set which does not include non-gesture samples
∗ - S∗ refers to number of hidden states per label for LDCRF

The results of the eyebrow experiment repeat the same trend found in

previous results of the hand gestures and head gestures. The LDCRF model

performs best when classifying gestures in data set 2. The recognition rate of
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the CRF models then decrease significantly when epenthesis are introduced.

The best performing model for data set 1 is again the GT-HMM with an AUC

of 0.948. The GT-HMM results in a 3% higher AUC than the LDCRF when

tested on data set 1. This result further suggests that the GT-HMM model

is a more robust model for recognising gestures when epenthesis gestures are

taken in to account.

There was a 3.7% decrease in performance between the LDCRF from data

set 2 to data set 1, while there was only a 0.3% decrease in performance of

the HMM threshold model. This result suggests that the performance of the

LDCRF would decrease more than that of the GT-HMM model when the

number of epenthesis gestures introduced into the system increased.

Experiments also show that the GT-HMM model, initialised using our

automated initialisation technique, had a 4.3% better AUC measurement

than the T-HMM initialised using the standard HMM segmentation method.

Benchmark Data-set: Marcel InteractPlay Database

In this section we discuss a user independent experiment which was con-

ducted to evaluate the performance of the models when recognising gestures

performed by signers not represented in the training set. The user indepen-

dent data set we utilise is a benchmark spatiotemporal hand gesture data-

set. While this data-set does not include sign language gestures or movement

epenthesis data, we utilise this data set in order to evaluate the performance

of the GT-HMM framework when performing user independent gesture recog-

nition and compare with additional gesture recognition techniques.
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The database contains 3D hand trajectories of isolated hand gestures, in

addition to 3D coordinates of the head and the torso. The database consists

of 16 gestures carried out by 20 different people. For each person, there exists

50 samples of each gesture resulting in a total of 1000 gesture samples for each

of the 16 gesture classes. 3D trajectories of the hands were obtained using

a stereo vision system which tracks coloured gloves, a coloured t-shirt and

the face in real-time using the EM algorithm (see Figure 4.20). A detailed

description of the 3D blob tracking can be found in [BC01].

Just et al. [JM09] conduct a comparative study, using the InteractPlay

data-set, to compare two state-of-the-art techniques for temporal event mod-

eling. In their work, HMMs and IOHMMs (an extension to HMMs first

proposed by Bengio and Frasconi [BF95]) are evaluated on the InteractPlay

data-set. A 12 dimensional feature vector, comprising left and right hand

positions and velocities, is used to describe gesture sequences. In order to

improve user-independent recognition, each user performs a calibration pose

and all other feature vectors are then normalised using the calibration pose.

Training was carried out using all 8000 gesture sequences from 10 of the 20

people in the data-set. Testing was then carried out on 8000 gesture se-

quences from the remaining 10 people not used in training. Results of their

experiments show that the HMM and Input/Output Hidden Markov Model

(IOHMM) achieved an average recognition rate of 75% and 63% respectively.

We carry out a number of evaluation protocols when testing the GT-HMM

framework on the Interactplay data-set:� P1 - To investigate the influence the number of training subjects used
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Figure 4.20: Top: example of images from a gesture sequence from the point
of view of the left camera (on the left) and from the point of view of the
right camera (on the right). Bottom: 3D coordinates of the centre of each
blob (head, torso, left hand and right hand) for a fly gesture. The z-axis is
the vertical axis of the person.
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has on the overall recognition performance, we first train the gesture

modeling frameworks using data from only 1 subject. This training set

consisted of 50 samples of each gesture class. We then test the models

on gesture sequences obtained from 10 subjects. Feature vectors are

comprised of 3D hand positions and velocities.� P2 - In order to evaluate the different gesture modeling frameworks,

and directly compare results with the work of Just et al., we use the

same training and testing protocol as described in their work. This

consists of training the framework using data from 10 subjects and

testing the framework on the remaining 10 subjects.

One of the overall goals of this work is to create a gesture recognition

framework with minimal supervision during training. Just et al. utilise

calibration poses to normalise different user inputs and improve recognition

of user independent gestures. The process of creating a set of calibration

poses for each new user requires further supervision and thus all evaluations

of our GT-HMM framework are carried out without using any calibration

data.

Table 4.4 details the results achieved by the models implemented by Just

et al. and the results achieved by the LDCRF, T-HMM and GT-HMM

frameworks when tested on the different evaluation protocols. Isolated ges-

ture recognition results reported in this Chapter thus far have been presented

using the ROC AUC measurement. While we present both ROC AUC and

accuracy measurements in Table 4.4, in this Section we discuss accuracy mea-

surement results in order to directly compare performance with the results
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reported by Just et al.

Table 4.4: InteractPlay Database Performance Results
Protocol #Training Subject #Test Subject Accuracy ROC AUC

Just et al. IOHMM P2 10 10 63% -
Just et al. HMM P2 10 10 75% -

GT-HMM P1 1 10 69.5% 0.745
T-HMM P1 1 10 69.1% 0.721
LDCRF P1 1 10 72.2% 0.785
HCRF P1 1 10 71.8% 0.772
CRF P1 1 10 68.9% 0.711

GT-HMM P2 10 10 79.1% 0.831
T-HMM P2 10 10 74.3% 0.772
LDCRF P2 10 10 80.8% 0.857
HCRF P2 10 10 80.1% 0.849
CRF P2 10 10 75.3% 0.781

Results of evaluation protocol P1 report classification accuracies of 69.5%,

69.1% and 72.2% for the GT-HMM, T-HMM and LDCRF models respec-

tively. While the performance of the models are lower than the performances

reported by Just et al. the training set was comprised of gesture samples

from only one signer.

Results of the evaluation protocol P2, which uses a training set of 10 sub-

jects, show that our GT-HMM framework achieves a classification accuracy of

79.1%, a respective increase of 4.1% and 16.1% when compared to the HMMs

and IOHMMs implemented by Just et al. The LDCRF and HCRF performed

with classification accuracies of 80.7% and 80.1%, an improvement of 1.6%

and 1% respectively when compared to the GT-HMM model. In the isolated

gesture recognition experiments discussed in the previous Sections 4.5.3 -

4.5.3, the GT-HMM performs better than the LDCRF and HCRF when

classifying gesture data-sets which included movement epenthesis. However,
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the LDCRF and HCRF models performed better than the GT-HMM when

classifying gestures from data sets which did not include movement epenthe-

sis. Since the InteractPlay data-set does not contain movement epenthesis

data, the LDCRF and HCRF results reported on the InteractPlay data-set

are consistent with those in the previous sections. Thus, if the InteractPlay

data-set included movement epenthesis data, we would expect the GT-HMM

to robustly identify the epenthesis and therefore perform with an overall

better accuracy than the LDCRF model.

Results of evaluations on the T-HMM framework, which does not use our

gesture subunit initialisation, show a decrease in classification accuracy of

4.8% when compared to the GT-HMM which does use our gesture subunit

initialisation. This result is a further indication of the importance of the

gesture subunit initialisation technique in creating a robust HMM threshold

framework which models natural human gestures.

A comparison of the results achieved on protocols P1 and P2 show that

all models, including our GT-HMM model, perform with a better accuracy in

user independent gesture recognition when trained on gesture samples from

a larger set of subjects.

4.5.4 Continuous Gesture Recognition Experiments

Thus far we have discussed experiments conducted on isolated gestures. We

now discuss experiments conducted on our GT-HMM framework and the best

performing CRF model, the LDCRF model, to evaluate the performance of

the respective models when spotting and classifying gestures within contin-
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uous sequences of natural gestures.

In order to find candidate start and end points using the LDCRF model,

we flag segments of the observations sequences which have a corresponding

probability greater than a predefined threshold Ωy. The predefined thresholds

used are the best performing thresholds calculated from the ROC analysis

performed on the isolated gestures discussed in Section 4.5.3. Given a contin-

uous sequence of observations, G= {f1, f2, ..., fT}, the conditional probability
P (y|ft, θ) for all observations ft, where 0 < t < T , is calculated for each ges-

ture class y. A candidate gesture, κ, is flagged for each contiguous sequence

where P (y|ft, θ) >Ωy (0 ≤ t < T ). In order to remove overlapping candidate

gestures flagged by the LDCRF model, we use the candidate selection algo-

rithm, described in Section 4.4.2, which utilises a gesture likelihood metric

to select the final set of recognised gesture. The candidate selection metric

used for the LDCRF system is defined as κp=
1

κe−κs

∑κe

i=κs
P (y|fi, θ).

To evaluate the performance of the recognition models we test the con-

tinuous recognition models on the set of eight hand gestures, three head

movements and two eyebrow gestures used in the isolated experiments in

Section 4.5.3. We use the best performing models trained during the isolated

recognition experiments to evaluate the continuous recognition performance

of the GT-HMM framework and LDCRF model. Thus, we use an LDCRF

model with 8 hidden states per label for hand gesture recognition. We use

an LDCRF model with 9 hidden states per label for head gesture recognition

and an LDCRF with 3 hidden states per label for eye brow gestures.

A total of 160 additional video clips of unsegmented sign language sen-
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tences being performed by a fluent signer were recorded to test the perfor-

mance of the continuous recognition systems. Each video clip contained at

least one of the eight chosen manual signs. The three head movement gestures

occurred a total of 30 times within the 160 videos while the two eye brow

gestures occurred a total of 35 times. Videos were recorded at 25 frames per

second with an average length of 5 seconds. In order to robustly evaluate the

performance of our system, each of the 160 different sign language sentences

used to test the system were performed in a mixture of different styles. The

variations in the style of signs performed are similar to the variations that

can occur in realistic sign language and thus testing the systems on these

signs gives a good indication of how the systems will perform in real world

scenarios.

Observation sequences GL, GR, G
H and GE, for the left hand, right hand,

head and eye brow respectively, were extracted from each video clip. Both

the continuous LDCRF and GT-HMM recognition frameworks were used

to process the observation sequences to spot and classify manual signs and

head movement gestures. The candidate selection algorithm described in

Section 4.4.2 was used to process candidate gestures for both the GT-HMM

framework and LDCRF model.

In the gesture spotting and classification task, there are three types of

errors: an insertion error occurs when the spotter reports a nonexistent

gesture, a deletion error occurs when the spotter fails to detect a gesture, and

a substitution error occurs when the spotter falsely classifies a gesture. From

these error measures we define two performance metrics shown in Equations
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4.20 and 4.21.

DetectionRatio =
#CorrectlyRecognizedGestures

#InputGestures
(4.20)

Reliability =
#CorrectlyRecognizedGestures

#InputGestures+#InsertionErrors
(4.21)

Continuous Experiment Results

Tables 4.5 and 4.6 show the performance of our GT-HMM framework and

the LDCRF model respectively, when spotting and classifying gestures within

continuous sequences of video. The experiment shows an overall detection

rate of 95.1% and an overall reliability of 87% for our GT-HMM framework

and an overall detection rate of 82.7% and an overall reliability of 74.2% for

the LDCRF model when spotting and classifying gestures in continuous sign

language sentences.
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Table 4.5: Continuous GT-HMM Performance Results
Gesture #Correct #Ins‡ #Del† #Sub†† Detection Reliability Start Error End Error
Gone 20 2 0 0 1.0 0.9 ±2.5 ±8.4
Alot 20 1 0 0 1.0 0.95 ±1.5 ±1.6
Lost 20 2 0 0 1.0 0.9 ±1.5 ±3.5
Plate 19 3 1 0 0.95 0.83 ±8.1 ±12.2
Bike 20 1 0 0 1.0 0.95 ±12.1 ±12.0
Paint 20 0 0 0 1.0 1.0 ±26.1 ±20.7
Paper 16 1 1 3 0.8 0.76 ±5.9 ±1.6
Clean 18 1 1 1 0.9 0.85 ±4.8 ±5.2

Head Left 11 1 1 0 0.91 0.84 ±10.1 ±7.7
Head Right 10 2 0 0 1.0 0.83 ±4.0 ±4.3

Head Left Forward 8 2 0 1 0.88 0.72 ±12.9 ±6.5
EyeBrowDown 18 3 0 2 0.9 0.78 ±19.2 ±15.3
EyeBrowUp 15 2 0 0 1.0 0.88 ±17.1 ±24.9

Total 215 21 4 7 0.951 0.87 ±11.6 ±9.5
† Number of Deletion Errors
‡Number of Insertion Errors
††Number of Substitution Errors
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Table 4.6: Continuous LDCRF Performance Results
Gesture #Correct #Ins‡ #Del† #Sub†† Detection Reliability Start Error End Error
Gone 16 2 0 4 0.8 0.72 ±8.0 ±6.1
Alot 20 2 0 0 1.0 0.9 ±3.0 ±1.7
Lost 9 1 2 9 0.45 0.42 ±3.8 ±1.5
Plate 20 1 0 0 1.0 0.95 ±15.7 ±8.4
Bike 16 2 3 1 0.8 0.72 ±12.2 ±9.8
Paint 17 3 1 2 0.85 0.74 ±3.0 ±6.7
Paper 18 2 1 1 0.9 0.81 ±0.6 ±1.6
Clean 17 2 1 2 0.85 0.77 ±7.1 ±5.4

Head Left 11 3 0 1 0.91 0.73 ±9.4 ±9.2
Head Right 8 1 0 2 0.8 0.72 ±18.2 ±10.2

Head Left Forward 9 1 0 0 1.0 0.9 ±24.3 ±5.1
EyeBrowDown 14 4 0 6 0.7 0.58 ±13.3 ±10.2
EyeBrowUp 12 2 0 3 0.8 0.70 ±14.2 ±28.2

Total 187 26 8 31 0.827 0.742 ±10.1 ±8.0
† Number of Deletion Errors
‡Number of Insertion Errors
††Number of Substitution Errors
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We also evaluate the performance of the start and end point detection

relative to ground truth data labeled by a human sign language translator.

Tables 4.5 and 4.6 show the start and end point performance results for

our GT-HMM framework and the LDCRF model respectively. Each table

details the average absolute difference between the spotters start and end

points and the human interpreters start and end points for signs that were

correctly spotted and classified. The average start and end point error for

the GT-HMM framework was 11.6 frames and 9.5 frames respectively while

the average start and end point error for the LDCRF model was 10.1 frames

and 8.0 frames respectively.

The results of the continuous experiments show that the GT-HMM thresh-

old model performs better than the LDCRF model. The experiments showed

that our GT-HMM framework achieved an 12.4% higher detection ratio and

a 12.8% higher reliability measure than the LDCRF model.

The start and end point performance experiments reveal that both the

GT-HMM framework and the LDCRF model perform with similar accuracy.

Since these accuracies are calculated from correctly classified gestures, the

results conform with the results on the classification of isolated gestures dis-

cussed in Section 4.5.3 where the LDCRF model was shown to perform well

when positively classifying gestures in the absence of epenthesis.

Continuous User Independent Experiment Results

In this section we conduct a second continuous sign language recognition

experiment. We evaluate the same set of continuous recognition models,
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used in the user dependent experiments, on a set of sign language sentences

performed by a second signer not used in the training set. Figure 4.21 shows

an example of the eight signs being performed by the second signer.

A total of 160 additional video clips of unsegmented sign language sen-

tences being performed by the second signer were recorded. Each video clip

contained at least one of the eight chosen manual signs.

Observation sequences, GL and GR, for the left hand and right hand re-

spectively, are extracted from each video clip. Both the continuous GT-HMM

and LDCRF recognition frameworks are then used to process the observation

sequences to spot and classify signs from the videos of the second signer.

Tables 4.7 and 4.8 show the performance of our GT-HMM framework

and the LDCRF model respectively when recognising signs performed by the

second signer. The experiment shows an overall detection rate of 80.4% and

an overall reliability of 70.2% for our GT-HMM framework and an overall

detection rate of 67.6% and an overall reliability of 57.8% for the LDCRF

model.

When compared to the detection rates achieved in the user dependent

experiments, the overall detection rate of the GT-HMM framework drops by

15.2% and, similarly, the overall detection rate of the LDCRF drops by 15.5%.

These results show that our GT-HMM framework consistently performs with

a higher gesture detection rate than that of the LDCRF when recognising

signer-independent signs.

In previous works which have used a small number of signers in the train-

ing set, results of user independent recognition evaluations have seen large
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(a) (b) (c)

(d) (e) (f) (g)

(h)

Figure 4.21: Example of the eight different performed by Signer 2 (a) News-
paper, (b) A lot, (c) Bike, (d) Clean, (e) Paint, (f) Plate, (g) Lost, (h) Gone
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decreases when compared to user dependent recognition results [OR05]. For

example, in Assan et al. [AG98], accuracy for training on one signer and test-

ing on another was 51.9% compared to 92% when the same signer supplied

both training and test data. As shown in the experiments on the Interact-

Play data-set, user independent recognition performance using our GT-HMM

threshold framework can be improved by utilising a larger number of sub-

jects. While the experiments discussed in this section show a decrease in

the signer-independent detection rate, the fact that only one signer was rep-

resented in the training set suggests that a decrease of only 15.2% can be

interpreted as a promising result.
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Table 4.7: User Independent Continuous GT-HMM Performance Results
Gesture #Correct #Ins‡ #Del† #Sub†† Detection Reliability Start Error End Error
Gone 10 3 0 7 0.58 0.5 6.3 2.8
Alot 18 4 0 8 0.69 0.6 2.2 1.2
Lost 16 3 0 2 0.88 0.61 1.5 3.5
Plate 12 4 2 2 0.75 0.6 9.6 13.1
Bike 28 2 1 2 0.90 0.84 3.0 8.3
Paint 20 2 0 0 1.0 0.9 6.1 4.0
Paper 15 3 1 5 0.71 0.62 5.1 3.6
Clean 13 3 0 2 0.86 0.72 7.9 8.3

User Independent Total 132 24 4 28 0.804 0.702 5.2 5.6

User Dependent Total 153 11 3 4 0.956 0.894 6.6 8.1
† Number of Deletion Errors
‡Number of Insertion Errors
††Number of Substitution Errors

178



4
.5

E
x
p
erim

en
ts

S
p
a
tio

tem
p
o
ra
l

G
estu

re
R
eco

g
n
itio

n

Table 4.8: User Independent Continuous LDCRF Performance Results
Gesture #Correct #Ins‡ #Del† #Sub†† Detection Reliability Start Error End Error
Gone 9 4 0 8 0.52 0.36 4.2 2.5
Alot 22 2 0 4 0.84 0.78 5.0 2.3
Lost 9 2 0 9 0.5 0.45 3.4 5.5
Plate 11 5 1 4 0.68 0.52 8.9 14.1
Bike 27 5 0 4 0.87 0.75 10.8 2.6
Paint 13 3 0 7 0.65 0.56 6.6 4.5
Paper 8 3 2 11 0.38 0.33 5.9 1.6
Clean 12 4 1 2 0.8 0.63 4.8 5.2

User Independent Total 111 28 4 49 0.676 0.578 6.2 10.9

User Dependent Total 133 15 8 19 0.831 0.76 6.6 8.1
† Number of Deletion Errors
‡Number of Insertion Errors
††Number of Substitution Errors
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4.5.5 Multimodal Recognition Examples

Thus far we have discussed how our techniques can be used to spot differ-

ent modalities of sign language communication. Incorporating non-manual

signals such as eyebrow gestures and head movement gestures into a sign

language recognition framework provides the necessary foundations for dif-

ferentiating between different types of questions, and also recognising the

start of sign language sentences. In this section we show gesture spotting re-

sults from a number of manual and non-manual signals and discuss how the

combination of these signals can be utilised to create a more comprehensive

understanding of sign language sentences.

Figure 4.22 shows the gestures spotted by our system in three different

sentences. Figure 4.22(a) and Figure 4.22(b) show gestures spotted from two

sentences where the signer performs the signs “CAR PETROL ALL GONE”

in both sentences.

In the first sentence the signer is asking a question “CAR PETROL ALL

GONE HOW?”, but in the second sentence the signer is asking a yes/no

question “CAR PETROL ALL GONE?”. The manual signs for both these

sentences are the same but the difference can only be recognised from the

head movement and eyebrow gestures. It can be seen in the first sentence

that our system spots an eyebrow down gesture coinciding with a left head

movement followed by right head movement. This suggests that the signer is

asking a “wh” question. In the second sentence our system spots an eyebrow

down gesture at the beginning of the sentence followed by a head forward

movement, indicating the signer is asking a yes/no question. Figure 4.22(c)

180



4.5 Experiments
Spatiotemporal

Gesture Recognition

Figure 4.22: Multimodal gesture labeling comparison of a human interpreter
vs. our recognition system (Dotted Arrows Represent Hand Labeled Gestures
while solid arrows represent labels generated by our system)
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shows gestures from a sentence “WHO BIKE BROKE?”, where our system

spots an eyebrow down gesture coinciding with a left head movement. Similar

to the gestures in Figure 4.22(a), the eyebrow down gesture coinciding with

a head movement gesture indicates a “wh” question. Also from Figure 4.22

(a), it was observed that an eyebrow up gesture occurred at the start of the

sequence. This is an interesting observation as the eyebrow up gesture is

linked to the start of a new sentence or sequence.

4.6 Conclusion

In Section 2.2.2, we discuss current methods of continuous gesture recog-

nition. The disadvantage of the majority of these methods is that explicit

training of movement epenthesis models are required or unnatural constraints

are put on the signer, such as unnatural pauses between words. The main

contribution of the work proposed in this Chapter is that we develop a ro-

bust framework for the recognition of spatiotemporal based gestures which

does not require explicit epenthesis training or specific rules to determine

sign boundaries. Our framework requires only that the dedicated gesture

models be trained and as a result of this training a single epenthesis model

can be implemented. We expand on the work of Lee and Kim [LK99] to

develop a GT-HMM framework, utilising our novel gesture subunit initiali-

sation technique, which models continuous multidimensional gesture obser-

vations within a parallel HMM network.

We evaluate our GT-HMM framework and compare it to current models

for recognising human motion. HMMs, CRFs, HCRFs and LDCRFs have
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recently been implemented in systems for automatically recognising different

human actions. We evaluate these techniques in the domain of sign language

gesture recognition. In order to evaluate the performance of the models when

recognising sign language gestures, it is important to evaluate each model

when identifying movement epenthesis as well as evaluating the performance

of the models when classifying gestures. The first set of experiments were

conducted on an isolated data set of motion based manual signs and on an

isolated data set of non-manual head motion and eye brow motion gestures.

In experiments carried out on all three gesture types, the best performing

model was the LDCRF when tested on a data set which did not include move-

ment epenthesis. The results of this experiment are consistent with previous

experiments on HCRFs and LDCRFs in which Wang et al. [WQM+06] and

Morency et al. [MQD07] showed that HCRFs and LDCRF performed better

than the standard HMM model when classifying gestures. When a data set

which included movement epenthesis was introduced to the experiments the

performance of the standard HMM model, and all CRF models, dropped sig-

nificantly in relation to the performance of GT-HMM model. The GT-HMM

model performed best in all three experiments with movement epenthesis

data. The GT-HMM achieves an AUC of 0.976, 0.936 and 0.948 for the

hand gesture, head gesture and eye brow gesture evaluations respectively.

In comparison, the LDCRF model achieves an AUC of 0.942, 0.894 and

0.918 for the hand gesture, head gesture and eye brow gesture evaluations

respectively. These results suggest that there is an inherent weakness in the

LDCRF model when identifying movement epenthesis. As the number and
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variability in style of epenthesis increases, we would expect the performance

of the LDCRF model to further decrease. To test this we further evaluate the

GT-HMM and LDCRF models when spotting and classifying gestures from

continuous sign language sentences. Results of the continuous experiments

show that our GT-HMM framework achieves a 12.4% higher detection ratio

and a 12.8% higher reliability measure than the LDCRF model when tested

on 220 different hand, head and eye brow gestures.

Additionally, a set of signer-independent experiments are conducted to

evaluate the performance of the models when recognising signs performed by

a signer not represented in the training set. Signer-independent evaluations

conducted on the InteractPlay data-set, which contains no epenthesis data,

show that the GT-HMM and LDCRF models performs best when compared

to HMMs and IOHMMs implemented by Just et al. [JM09]. Furthermore,

signer-independent evaluations on continuous sign language sentences show

that our GT-HMM framework consistently performs with a higher gesture

detection rate than that of the LDCRF. The overall detection rate of the

GT-HMM and LDCRF models decrease by only 15.2% and 15.5% respec-

tively, when compared to signer-dependent results.

An important aspect of our GT-HMM framework is the gesture subunit

initialisation technique which is used to automatically initialise the param-

eters of the GT-HMM framework. We conduct experiments on manual and

non-manual data sets and show that initialising the HMMs using our tech-

nique consistently improves hand gesture, head gesture and eye brow gesture

classification performance by 3.5%, 6.3% and 4.3% respectively when com-
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pared to a standard initialisation technique. Furthermore, experiments on

the Interactplay data-set also indicate that our gesture subunit initialisation

improves classification performance, showing a 4% increase in performance.

We also discuss the importance of non-manual signals in sign language.

In Section 2.2.2, we highlight that there are a limited number of works which

incorporate both manual and non-manual signals into a single framework for

continuous automatic sign language recognition. Another contribution of this

work is that we have presented an approach towards multimodal interpre-

tation of ISL sentences. Unlike previous gesture spotting techniques which

utilise explicit segmentation models, the spatiotemporal gesture recognition

framework we propose is not specific to any particular type of gesture and

we demonstrate this by showing that manual and non-manual signals can be

robustly spotted and classified from within continuous sign sequences. By

incorporating non-manual signals such as eyebrow gestures and head move-

ment gestures into our framework, we show that our technique provides the

necessary foundations for differentiating between different types of questions

and also recognising the start of sign language sentences. Also unlike current

works, each manual and non-manual signal is processed independently within

our multimodal framework.

One limitation of the continuous recognition techniques we propose in

the chapter is the scalability of the method to handle very large vocabulary

sets. In the experiments we carry out in this chapter, we evaluate the system

on, at most, eight gesture classes. As the number of gesture classes grows

significantly, the speed at which continuous gesture spotting can be carried
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out will slow down significantly. A solution to this may be to reconsider the

sliding window approach to the continuous gesture spotting in an attempt

to reduce the number of times the Viterbi algorithm is run per frame.

The techniques we present in this Chapter have a significant impact on

the overall goal of full sign recognition. Our techniques enable the robust

learning of signs and movement epenthesis with minimal sign labeling. The

learned models are then capable of accurately spotting signs and classifying

movement epenthesis from within continuous sign language video streams.

An advantage of being able to robustly learn models for signs and movement

epenthesis with minimal hand labeling is that the models can be implemented

in a weakly supervised learning framework in order to learn signs automati-

cally. The ability of our GT-HMM framework to be implemented in a weakly

supervised sign language learning system will be discussed in Chapter 5.
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Chapter 5

Weakly Supervised Training 1

5.1 Introduction

Sign language recognition is the task of detecting and classifying signs in a

signed sentence, in a set vocabulary. The overall goal of the work detailed

in this thesis is to develop a fully automated framework for the training and

recognition of sign language. The main contribution of the work detailed

in this chapter is that we propose a weakly supervised system, using our

novel Multiple Instance Learning (MIL) density matrix algorithm, which

automatically extracts isolated samples of signs which can then be used to

automatically train our hand gesture models. We propose techniques to

incorporate our hand posture recognition system, proposed in Chapter 3,

and our spatiotemporal recognition framework, proposed in Chapter 4, into

1The completed work discussed in this chapter has been published in the following
journal: D. Kelly, J. Mc Donald and C. Markham,“Weakly Supervised Training of a
Sign Language Recognition System using Multiple Instance Learning Density Matrices”,
In IEEE Transactions on Systems, Man and Cybernetics-Part B
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a single recognition framework which automatically learns and recognises

signs. Currently there exists no work which deals with all of these problems

in a sign language recognition system.

5.1.1 System Overview

It is the goal of this research to develop a weakly supervised system which

automatically extracts isolated samples of signs which can then be used to

train our temporal gesture and hand posture recognition frameworks. Sec-

tion 5.4 presents our automatic sign extraction system which utilises the text

translations of the videos to automatically extract isolated samples of target

words. Section 5.3 presents the distance functions we developed as part of

our automatic sign extraction. Section 5.5 presents our framework for train-

ing classifiers which model the automatically extracted signs. Section 5.6

presents an extended version of our continuous sign recognition system, de-

tailed in Section 4.5.4, which utilises the automatically trained temporal and

hand posture classifiers. Section 5.7 presents experimental results. Figure

5.1 shows a visualisation of the flow of our proposed automatic training and

sign recognition systems.

5.2 Feature Extraction

In this chapter we will evaluate our MIL density matrix algorithm and full

sign recognition system using an extended version of the ISL data set used in

Chapter 4. As discussed in the ISL experiments section of Chapter 4, tracking
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Figure 5.1: Flowchart of our proposed automatic sign training and recogni-
tion framework (A) System Training, (B) Sign Classifiers, (C) Sign Recogni-
tion

of the hands was performed by tracking coloured gloves using the Mean Shift

algorithm [CRM00] (see Figure 5.2). As discussed in Chapter 3, the key

feature used for the analysis of the hand shape is the external contour, C,

made by the hand (see Figure 5.2(b)). The dominant hand is used to convey

most hand shape information and thus we consider only the shape of the

dominant hand when analysing hand shape. When the dominant and the

non-dominant hands overlap, we extract a single contour made around the

dominant and non-dominant hand as illustrated in Figures 5.2(a) and 5.2(b).

5.3 Gesture Similarity Functions

Before describing our MIL density matrix algorithm which we utilise to au-

tomatically extract isolated samples of sign language target words, we first
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Figure 5.2: Extracted Features from Image (a) Feature Positions (b) Hand
Contour

describe the gesture similarity functions used as part of the MIL algorithm.

In order to compare temporal gestures and hand postures we require a

measure of similarity between gesture frames. We implement two similar-

ity functions, one for temporal gesture distances and one for hand posture

distances.

5.3.1 Temporal Gesture similarity Function

As discussed in Chapter 4, the best performing feature vector for classifying

hand gestures was the feature vector f̂ = {RPx, RPy, Vx, Vy, DH}, where RPx

and RPy describes the position of the hands relative to the eyes, Vx and Vy

describes the direction of the movement of the hand and DH describes the

distance between the two hands. This is calculated for both right and left

hands, which we denote as f̂R and f̂L respectively.

Given two feature vectors F̂ and F̂
′

, where F̂ = {̂fR, f̂L}, we require a

measure of similarity between the two features. In order to calculate this
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similarity, we define the similarity function DG() as the weighted sum of the

distance for the right and the left hand where ωR and ωL define the right and

left weights respectively:

DG(F̂ , F̂ ′) = ωR

(
1− dG(f̂R, f̂

′
R)
)
+ ωL

(
1− dG(f̂L, f̂

′
L)
)

(5.1)

The distance between individual hands dG() is then calculated by first cal-

culating three individual distances between each of the three spatiotemporal

gesture features (movement, position, hand distance) as follows:

dGpos(f̂ , f̂
′) =

√
(RPx − RP ′

x)
2 + (RPy −RP ′

y)
2 (5.2)

dGmov(f̂ , f̂
′) =

√
(Vx − V ′

x)
2 + (Vy − V ′

y)
2 (5.3)

dGdis(f̂ , f̂
′) =

√
(Dh −D′

h)
2 (5.4)

Using each of the three distances, the overall distance can then be calcu-

lated using a normalized sum of the three distances:

dG(f̂ , f̂ ′) = ωposd
G
pos(f̂ , f̂

′) +

ωmovd
G
mov(f̂ , f̂

′) + ωdisd
G
dis(f̂ , f̂

′) (5.5)

Where ωx = 1
MaxG

x ∗2
(x ∈ {pos,mov, dis}) and MaxGx is the max distance

dx() calculated between all pairs of hand postures in the data set. The scale

factors ωx normalise each distance measure such that 0 ≤ dG(f̂ , f̂ ′) ≤ 1 for
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all pairs of features f̂ and f̂ ′.

5.3.2 Hand Posture Similarity Function

The overall similarity between two hand contours, C and C ′, is calculated as

defined in Equation 5.6.

DH(C,C ′) = 1−
(
ωSfd

SF (C,C ′) + ωHud
hu (C,C ′)

)
(5.6)

Where dSF (C,C ′) and dHu(C,C ′) are the eigenspace Size Function dis-

tance and the Hu Moment distance functions, defined in Chapter 3, respec-

tively. We define ωx = 1
MaxH

x ∗3
(x ∈ {Sf,Hu}) andMaxHx as the max distance

dHx () calculated between all pairs of frames in the data set. The scale factors

ωx normalise each distance measure such that 0 ≤DH(C,C ′) ≤ 1 for all pairs

of hand contours C and C ′.

5.4 Automatic Sign Extraction

In order to train the hand posture and spatiotemporal recognition models

proposed in Chapters 3 and 4, multiple training samples of target concepts

must be labeled and extracted from unconstrained sign language sentences.

The labeling of sign data is an integral step in modeling each sign concept,

thus, in order to create valid training samples, the sign data must be labeled

consistently by a fluent signer. The labeling of spatiotemporal segments of

signs consists of marking the start and end point of target signs within a con-

tinuous sentence. Following this, hand posture labeling must be carried out
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by marking key hand postures within the spatiotemporal segments. Manu-

ally performing this labeling process is an un-intuitive and time consuming

process for fluent signers to label in a consistent manner. The most con-

sistent, and freely available, type of sign language labeling is sentence text

translations where each sign language sentence is translated to written En-

glish. The problem with text translations labels is that the labels are at

a sentence level and not at the required frame level. The aim of the work

discussed in this chapter is to develop techniques to automatically extract

frame level labels using sign language text translations.

Given a target word, a set of video sequences and corresponding weakly

aligned text translations, the goal is to automatically identify which frames,

if any, contain the target word. Furthermore, we must also identify which

frames contain key hand postures related to the target word. The diffi-

culty in this problem is that no one-to-one mapping exists between English

translations and the signs since the ordering of sign language is different to

English translations. Another difficulty with the learning task is that there

exists ambiguities in the translation task where the same sign may have dif-

ferent translations or a word may appear in the text translation but the

corresponding sign may not occur in the video. This introduces a signifi-

cant correspondence problem between the translation and overlapping video

sequence which means that the supervision is weak.

In order to find frame level labels we can formulate the task as a MIL

problem. MIL is a weakly supervised variation on supervised learning for

problems with incomplete knowledge about labels of training examples. In-
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stead of receiving a set of instances which are labeled positive or negative,

the learner receives a set of bags that are labeled positive or negative. Each

bag contains many instances. A bag is labeled negative if all the instances in

it are negative. On the other hand, a bag is labeled positive if there is at least

one instance in it which is positive. From a collection of labeled bags, the

learner tries to induce a concept that will label individual instances correctly.

Using MIL notation, we define a video sequence as a bag, where the set

of positive bags, B+= {B0, ...,BNB
}, is the set videos which the target word

occurs and NB is the number of bags in the set of bags B+. The videos

contained within the set of bags should be chosen such that the target word

appears with most frequency compared to other words in the text transla-

tions. This can be done automatically by a process of word counting.

Each bagBi represents a sequence of features for each frameBi= {Bi[0], ...,Bi[NBi]}.
To reduce the impact of translation ambiguities we develop a Multiple In-

stance Learning solution that requires only positive bags. In a traditional

MIL framework, a learner uses both positive and negative bags to learn the

intended concept, where a negative bag represents a sequence of features

which do not lie within the concept. In the case of sign language videos, a

negative bag would represent a set of videos which did not contain the text

translation for a target word. Since there are ambiguities in the translations,

there is no guarantee that the corresponding sign occurs in the videos. The

work of Buehler et al. [BZE09] acknowledges the difficulty in estimating er-

rors in negative bags without manual labeling and their work uses a heuristic

to determine errors in the negative bags. We address the problem of errors in
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negative bags by developing a MIL framework which requires positive bags

only. This eliminates the need to automatically identify errors in negative

bags and thus limits the type of translation ambiguities, which our system

must deal with, to errors in positive bags. Translation ambiguities which

our system must identify is thus limited to situations were the text transla-

tion contains a target word but the corresponding sign does not occur in the

video.

5.4.1 MIL Density Matrix

We develop a novel MIL density matrix algorithm, inspired by diverse density

MIL [MLPpE98], to label videos at frame level. Since hand postures and

temporal gestures are independent channels, we propose a multi-channel MIL

density matrix algorithm. We define sperate bags for each channel and denote

the set of temporal gesture bags as G+ and denote the set of hand shape bags

as H+.

The first step in our MIL Density Matrix algorithm is to compute com-

parison matrices Gij and Hij in order to compare each pair of bags (Gi,Gj)

and (H i,Hj) respectively. Each comparison matrix Gij and Hij corresponds

to a NBj×NBi matrix.

For each column t (0 ≤ t <NBi) in the temporal gesture comparison

matrix Gij, we store only the most similar comparison between Gi[t] and all

features in Gj . All other entries in that column are set to zero. Each element

of the comparison matrix, Gij[t, ι
t], is calculated as defined in Equations 5.7

and 5.8, where ιt is the frame index of Gj which is most similar to Gi[t].

195



5.4 Automatic Sign Extraction Weakly Supervised Training

Figure 5.3 shows a visual example of the calculation of the spatiotemporal

comparison matrix where we show the calculation of the similarity measures

for column 0 by calculating all similarities
[
DG(Gi[0],Gj[0]), ...,D

G(Gi[0],Gj [8])
]T

.

In column 0, it can be seen that the index, ι0, representing the most similar

gesture frame is the 4th frame of Gj . The 4th element of the first column in

the comparison matrix Gij then stores the similarity measure between Gi[0]

and Gj [4] while all other entries in that column are set to zero.

Figure 5.3: Visual representation of the calculation of the spatiotemporal
gesture comparison matrix Gij

The hand posture comparison matrix, Hij , is calculated in a similar fash-

ion. For each column t (0 ≤ t <NBi) in the hand posture comparison matrix,

Hij, we store the similarity between H i[t] and Hj[ι
t], where ιt is the frame

index of Gj which is most similar to Gi[t] (as defined in Equation 5.9). For

example, in Figure 5.3, it was identified that the most similar gesture frame

for column 0 was the 4th frame of Gj . This means that in the corresponding
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hand posture comparison matrix, Hij, the 4th element of the first column

stores the similarity measure between H i[0] and Hj[4] while all other entries

in that column are set to zero. Using the most similar spatiotemporal com-

parison index allows us to prioritise spatiotemporal gestures. This allows us

to match hand poses which help us to discriminate between spatiotemporal

gestures that have similar spatiotemporal patterns but differ only in hand

pose.

Each element of the comparison matrix is calculated using the similarity

functions DG() and DH() which we define in Section 5.3. It should be noted

that the similarity functions DG() and DH() are implemented such that sim-

ilar frames return values close to 1 while frames which are not similar return

values close to 0. The threshold values τG and τH are implemented such that

the similarity comparisons Gij [t, ι
t] and Hij[t, ι

t] only include video frames

which are within a set similarity. This reduces the effect non similar frames

have on the overall detection of target words and, through experiments, we

have found that a threshold value of 0.75, for both τG and τH , has performed

well.

ιt = argmax
0≤ι̃<NBj

DG(Gi[t], Gj [ι̃]) (5.7)

Gij [t, ι
t] =





DG(Gi[t], Gj [ι
t]) if DG(Gi[t], Gj [ι

t]) > τG;

0 else.
(5.8)

Hij [t, ι
t] =





DH(Hi[t], Hj[ι
t]) if DH(Hi[t], Hj[ι

t]) > τH ;

0 else.
(5.9)
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For convenience we denote a bag as B below, but the following compu-

tations are calculated for both temporal gesture bags G and hand pose bags

H by replacing notation B and b with H and h or G and g accordingly.

After computing the comparison matrix Bij , we convert it to a comparison

vector bij as shown in Equation 5.10. Where each vector bij corresponds to

a NBi-dimensional row vector. Each comparison vector is used as a measure

of how closely matched each frame, in bag Bi, is to the most similar frame

in bag Bj.

bij[t] =

NBj∑

n=0

Bij[t, n] (5.10)

Each element bij[t] represents the sum of the similarity metrics in the tth

column of the comparison matrix Bij. Since the t’th column in Bij contains,

at most, one similarity metric, then the element of comparison vector bij[t]

corresponds to the same similarity metric.

We also define a transposed comparison vector, as shown in Equation 5.11,

where each element, bij

′

[t], of the NBj-dimensional column vector represents

the sum of the similarity metrics in the tth row of the comparison matrix.

Each transposed comparison vector is used as a measure of which frames, in

Bj, has the most in common with the bag Bi.

bij

′

[t] =

NBi∑

n=0

Bij [n, t] (5.11)

Each comparison vector bij represents a comparison between the ith and

jth bags. The comparison vector does not have any representation of how
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the ith and jth bags interact with all other bags in the set of bags. In order

to build a full comparison model between each pair of bags (Bi,Bj), we must

not only understand how Bi and Bj interact with each other, but also how

the pair of bags (Bi,Bj) interact with all other bags in the set of bags B+.

In order to do this, we first build a model of Bi compared to all other bags

followed by a model of Bj compared to all other bags. We then use both

these models to build a model of how Bi and Bj interact. We compare Bi to

all other bags by summing all comparison vectors bik, ∀k ∈B+ (see Equation

5.12). We then compare Bj to all other models by summing all transposed

comparison vectors bkj

′

, ∀k ∈B+ (see Equation 5.13).

bi =

NB∑

k=0

bik (5.12)

b
′

j =

NB∑

k=0

bkj

′

(5.13)

Where bi corresponds to a NBi-dimensional row vector and b
′

j corre-

sponds to a NBj-dimensional column vector. Figure 5.4 shows the temporal

gesture comparison matrices, Gij , for a sample set of 5 positive bags for the

target sign “Alot”. Each matrix, at co-ordinates (Gi,Gj), corresponds to a

visual representation of comparison matrices Gij, where dark pixels represent

a high similarity between gesture frames. The hand labeled time segments

in each bag represent frames of each video which were hand labeled as being

a target sign. Figure 5.4 also shows a visualisation of summed comparison

vectors, g1 and g
′

5, being computed from the corresponding set of comparison

199



5.4 Automatic Sign Extraction Weakly Supervised Training

matrices.

It can be seen from the density matrices that there exists a high density of

similar frames where the hand labeled sections occur, illustrating the power

of our technique for measuring areas of similarity.

Figure 5.4: Visualisation of comparison matrices Gij and calculation of
summed comparison vectors g1 and g

′

5

Following the calculation of the summed comparison vectors, we then
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compute the density matrix Φ(Bi, Bj), which measures the interaction be-

tween the pair of bags Bi and Bj, by multiplying the summed comparison

vectors to calculate a NBj ×NBi matrix:

Φ(Bi, Bj) = bib
′

j (5.14)

Where bi corresponds to a NBi row vector and bi corresponds to a NBj

column vector. Figure 5.5 shows a visualisation of the computation of the

density matrix Φ(G1, G5) computed from the summed comparison vectors

shown in Figure 5.4.

Figure 5.5: Visualisation of density matrix Φ(G1, G5)

We then compute a density vector Ψ(Bi) for bag Bi using the set of

density matrices {Φ(Bi, B1), ...,Φ(Bi, BNB
)}. Each element, Ψ(Bi)[t], of the

density vector is calculated by averaging the tth column of each of the density

matrices Φ(Bi, Bj):
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Ψ(Bi)[t] =
1

NB

NB∑

j=0

NBj∑

k=0

Φ(Bi, Bj)[t, k]

NBj

(5.15)

An overall density vector, Ψi, is then calculated from the inner product

of the hand posture and temporal gesture density vectors:

Ψi = Ψ(Hi) ·Ψ(Gi) (5.16)

Where Ψ(Hi) and Ψ(Gi) denotes the density vector, of the i’th bag, for

hand posture and temporal gestures respectively.

Figure 5.6 shows a further example of the temporal gesture comparison

matrices, Gij , computed from 12 positive bags of the target sign “Play”

(2 of which contain translation ambiguities). Each matrix, at co-ordinates

(Gi,Gj), corresponds to a visual representation of comparison matrices Gij,

where dark pixels represent a high similarity between gesture frames.

5.4.2 Automatic Sign Labeling

Given the density vector Ψi we now label frames in the corresponding video.

In order to account for translation ambiguities we must detect whether

or not the target sign was actually performed in the video even though the

translation information specifies that it does occur. In order to do this,

we flag video sequences which have no frames with high similarity when

compared to other video sequences in the same positive bag. We first apply
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Figure 5.6: Visual representation of comparison matrices Gij (Gesture Se-
quences G1 and G2 where not labeled to contain the target word as they
where deemed to have translation ambiguities where the text translation
contained the target word “Play” but the corresponding sign did not occur
in the video)
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a 1-Dimensional Gaussian filter, g̃(x)(σ = 1.5), to the density vector Ψi to

create a blurred density vector Ψ̃i =Ψi∗g̃. A video sequence is classified as

a non-eligible sentence if the maximum density probability, P (Ψ̃i[t
Max
i ]|Ψ),

falls below a set threshold. Where Ψ= {Ψ1, ...,ΨNB
} and tMax

i is defined as

the frame with the maximum density:

tMax
i = argmax

t̂

Ψ̃i[t̂] (5.17)

The density probability, P (Ψ̃i[t
Max
i ]|Ψ), is calculated using the cumulative

distribution function in Equation 5.18, where the density mean and standard

deviation, µ(Ψ) and σ(Ψ), are computed over all density sequences using

Equations 5.19 - 5.21.

P (x|Ψ) =
1

2

[
1 + erf

(
x− µ(Ψ)

σ(Ψ)
√
2

)]
(5.18)

µ(Ψ) =
1

ℓ(Ψ)

NB∑

i=0

NBi∑

j=0

Ψi[j] (5.19)

σ(Ψ) =

√√√√ 1

ℓ(Ψ)

NB∑

i=0

NBi∑

j=0

(Ψi[j]− µ(Ψ))2 (5.20)

ℓ(Ψ) =

NB∑

i=0

NBi (5.21)

From our experiments, we observed that a threshold of value of 0.55

performed best when tresholding the maximum frame density. Any sequence
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which is classified as a non-eligible sentence of the target sign is not considered

for the remaining automatic training steps for the current target word.

Positive sequences are sequences which have a corresponding maximum

density probability which exceeds the threshold. We process all positive se-

quences using our density labeling algorithm which we now describe. We

define the function LMin(X, t) to be the index of the local minima of distri-

bution X at position t. We then find the local density minima as defined in

Equations 5.22 and 5.23.

tMinS = LMin(Ψ̃i, t
Max
i − 1) (5.22)

tMinE = LMin(Ψ̃i, t
Max
i + 1) (5.23)

The indices of the local minima are then used to calculate a modified

density vector as follows:

Ψ̃i

∗
= Ψi −

(
Ψ̃i[t

MinS] + Ψ̃i[t
MinE]

2

)
(5.24)

In order to identify the subsequence of the density vector Ψ̃i

∗
, which

corresponds to the sequence of the video which the target sign is performed,

we find the Maximum Sum Contiguous Subsequence (MSCS) of Ψ̃i

∗
. The

MSCS of Ψ̃i

∗
corresponds to the subsequence with the maximum value of

∑T

t Ψ̃i

∗
[t]. The start and end frames, tsi and tei , of the target word within

bag i are then defined as the indices which the MSCS begins and ends. The

temporal gesture and hand posture sequences which correspond to the target

word are then defined as Ĝi= {Gi[t
s
i ], ...Gi[t

e
i ]} and Ĥi= {Hi[t

s
i ], ...Hi[t

e
i ]}
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respectively.

Figure 5.7 illustrates the density, and blurred density, of the target sign

“Play” in 12 different sequences as well as showing the frames which were

hand labeled as containing the target sign and the frames which our au-

tomatic sign labeling technique labeled. The densities of the 12 sequences

shown in Figure 5.7 were calculated using the same temporal gesture density

matrices shown in Figure 5.6 along with the hand shape density matrices.

Figures 5.7(a) and 5.7(b) show density vectors computed from non-eligible

sentences which contained translation ambiguities. It can be seen that the

density of both these vectors have much smaller peaks than that of the den-

sity vectors for the remaining sentences in Figures 5.7(c) - 5.7(l) and thus

where correctly labeled as non-eligible by our system.

5.5 Training And Classification

For a given sign we recognise both temporal gestures and hand postures in-

dependently and then combine the recognition results to make an overall

sign classification. Our temporal gesture recognition system is based on the

GT-HMM framework proposed in Chapter 4, which models the spatiotempo-

ral pattern of the hand movements over time. The hand posture recognition

framework is based on the SVM framework proposed in Chapter 3, which is

automatically trained to classify key hand postures within signs.
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(a) Ψ1, Correctly Labeled as Non-
Eligible Sentence

(b) Ψ2, Correctly Labeled as Non-Eligible Sentence

Figure 5.7: Vector Ψ̃i and Automatically Labeled target signs “Play”
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(c) Ψ3

(d) Ψ4

Figure 5.7: (cont.) Vector Ψ̃i and Automatically Labeled target signs “Play”
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(e) Ψ5

(f) Ψ6

Figure 5.7: (cont.) Vector Ψ̃i and Automatically Labeled target signs “Play”
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(g) Ψ7 (h) Ψ8

(i) Ψ9 (j) Ψ10

Figure 5.7: (cont.) Vector Ψ̃i and Automatically Labeled target signs “Play”
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(k) Ψ11

(l) Ψ12

Figure 5.7: (cont.) Vector Ψ̃i and Automatically Labeled target signs “Play”
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5.5.1 Temporal Gesture Training

Each parallel GT-HMM is trained on data from all temporal gesture subse-

quences Ĝk
Lw and Ĝk

Rw (1 ≤ k ≤ K) extracted using our automatic sign

labeling technique. Where k is the index of the kth training example for

target word w, K is the total number of training examples for target word

w and Ĝk
Lw and Ĝk

Rw are the left and right hand observations sequences

respectively. The parallel GT-HMM framework is then trained using the

automated gesture subunit initialisation and training technique discussed in

Chapter 4.

A parallel HMM threshold model, λ
′

= {λL,λR} is then created using the

network of trained parallel HMMs λw (w ∈ W ).

5.5.2 Hand Posture Training

While the temporal gesture recognition framework can be directly trained

on data extracted from our automatic sign extraction framework described

in Sections 5.4 and 5.4.2, the hand posture recognition system must apply

further processing to the extracted hand posture subsequences Ĥi. This

additional extraction process is required due to the variation in possible hand

postures which can occur within a particular sign sequence. For a particular

sign, there are usually only a small number of frames in which key hand

postures are performed. The remaining hand postures performed in a sign

are transitional postures which do not contribute to identifying the meaning

of the sign.
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Hand Posture Clustering

The goal of our hand posture clustering process is, given a set of hand pos-

ture subsequences Ĥ = {Ĥ1, ...,ĤNB
}, to automatically extract clusters that

contain the hand postures which best represent the key postures of that sign.

We now describe the key posture clustering algorithm.

We define the hand posture density subsequence as Ψ(Ĥi) = {Ψ(Hi)[t
s
i ], ...Ψ(Hi)[t

e
i ]}.

The probability, P
(
Ψ(Ĥi)[t]|Ψ(H+)

)
, of frame t of the ith bag being a key

hand posture is then calculated using the cumulative distribution function

defined in Equation 5.18, where Ψ(H+) = {Ψ(H1), ...,Ψ(HNB
)}.

When training an automatic sign recognition framework, the system will

be trained on a set of target words w (1 ≤ w ≤ W ). For a target word

w, we calculate the set of gesture subsequences, Ĝw = {Ĝw
1 , ...,Ĝ

w
Nw

B
} and

Ĥw = {Ĥw
1 , ...,Ĥ

w
Nw

B
}, which contain the target word w.

For each word w, we then extract hand postures Hw
i [t] which have a

corresponding probability P
(
Ψ(Ĥw

i )[t]|Ψ(H+
w )
)
> 0.5 and construct an initial

hand posture cluster ξw= {Hw
i [1], ...,H

w
i [L(ξw)]} where L(ξw) total number of

hand postures in ξw. For the initial hand posture cluster, L(ξw) corresponds

to the total number of hand postures Hw
i [t] with a corresponding probability

P
(
Ψ(Ĥw

i )[t]|Ψ(H+
w )
)
> 0.5. Initial clusters are constructed for all words

w ∈ W resulting in an initial set of hand posture clusters Ξ= {ξ1, ...,ξW}.

Using this set of initial clusters, the aim is to extract subsets of each

cluster which contain the hand postures that represent key hand postures

useful for discriminating between signs.

We develop an iterative validation and cluster trimming algorithm to

213



5.5 Training And Classification Weakly Supervised Training

remove non key hand postures from each cluster. We automatically interpret

the set of clusters by analysing the dissimilarity between each cluster pair

using a cluster Silhouette [Rou87] representation. We define Sw, in Equations

5.25 - 5.29, as the measure of dissimilarity for the cluster ξw, where w is the

index of the word and L(ξw) defines the number of hand postures in the

posture cluster for word w.

Sw =
1

L(ξw)

L(ξw)∑

t

sw[t] (5.25)

sw[t] =
bw[t]− aw[t]

max{bw[t], aw[t]}
(5.26)

bw[t] = χw

l̂
[t] (5.27)

l̂ = argmin
l:(l 6=w)

χw
l [t] (5.28)

aw[t] = χw
w[t] (5.29)

Where sw[t] defines the dissimilarity for the t’th hand posture in cluster

ξw. χ
w
l [t] defines the average distance between the t’th hand posture, in the

posture cluster of word w, and all hand postures in the posture cluster of

word l:

χw
l [t] =

1

L(ξl)

L(ξl)∑

j=0

DH(ξw[t], ξl[j]) (5.30)

A value of Sw close to 1 means the hand postures are appropriately clus-

tered. If Sw is close to -1, then the hand postures are clustered poorly. Poorly

clustered hand postures refer to hand postures which occur in other clusters
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and thus are not useful for discriminating between signs. At each iteration of

our validation and cluster trimming algorithm we calculate all dissimilarity

measures Sw and sw for each word w. We then remove poorly clustered hand

postures based on the dissimilarity measures. If Sw< 0 then we perform a

cluster trimming procedure were we remove hand postures H [t], which have

the lowest dissimilarity sw[t], from cluster ξw. Removing elements from clus-

ter ξw in the current iteration will effect the dissimilarity values for all clusters

in the next iteration, therefore to avoid over-fitting we limit the number of

hand postures which can be removed, for each iteration, to a fraction of the

total number of hand postures in the cluster. For the experiments we con-

duct we remove at most 10% of the hand postures at each iteration. This

algorithm will repeat until one of two stopping criteria occurs for all hand

posture clusters. The first stopping criteria for our algorithm specifies that

no further postures be removed from the cluster if the dissimilarity measure

Sw> 0. The second stopping criteria specifies that the number of postures in

a cluster must not go below a predefined threshold. We set this predefined

threshold to be a proportion of the total number of positive bags Nw
B for

each word w. We use the heuristic that a key hand posture occurs for at

least 250 milliseconds in each video, thus each key posture will appear in

at least 6 frames per video. We then set the minimum number of postures,

Tmin, per cluster to be Tmin =Nw
B×6. Algorithm 5.1 details our iterative

validation and trimming procedure and Figure 5.8 shows a visualisation of
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the algorithm being applied to a set of three initial hand clusters.

Input: Set of Initial Posture Clusters Ξ

Output: Set of Key Posture Clusters Ξ′

Converged = False1

while !Converged do2

Converged = True3

foreach w ∈ W do4

Calculate Dissimilarity Sw and sw[t] for all t’s5

if Sw< 0 and L(ξw)> Tmin then6

MaxRemove = L(ξw)×0.17

Sort(sw,ξw) in Increasing Order of sw8

for j < MaxRemove do9

if sw[j] < 0 then10

Remove ξw[j] from ξw11

Converged = False12

end13

end14

end15

end16

end17

Algorithm 5.1: Cluster Validation and Trimming Algorithm
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(a) Initial Clusters (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

(g) Final Step

Figure 5.8: Visualisation of Cluster Validation and Trimming Algorithm.
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Hand Posture SVM Training

In Chapter 3 we propose a SVM based hand posture recognition framework.

We train the hand posture SVMs on data extracted from the automatically

created hand posture cluster set Ξ′.

Weighted eigenspace Size Function data and Hu moment data are then ex-

tracted from the training clusters to create the matricesHuw = {Iw[1],Iw[2], ...,Iw[L(ξw)]}
and ζw = {ζw[1],ζw[2], ...,ζw[L(ξw)]} where Huw is the set of Hu moments

and ζw is the set of weighted eigenspace Size Function (defined in Equation

3.7) for hand postures cluster ξw.

To train each Size Function SVM, SVMsf
w , the matrix ζw is used as the

positive labeled training data and ζw := {ζk}∀k 6=w is used as the negative

labeled training data. Similarly, each Hu Moment SVM, SVMhu
w , is trained

using Huw as the positive labeled data andHw := {Huk}∀k 6=w as the negative

labeled data. The support vector machines SVMsf
w and SVMhu

w are then

trained to maximise the hyperplane margin between their respective classes

(ζw, ζw) and (Huw, Huw).

5.6 Extended Continuous Recognition

In Chapter 4 we propose a continuous spatiotemporal sign language recogni-

tion technique. We now propose an extension to the continuous spatiotem-

poral recognition technique which includes hand posture information.

To perform the continuous recognition, we utilise the automatically trained

temporal gesture HMM framework, discussed in Section 5.5.1, and the auto-
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matically trained hand posture SVM system, discussed in Section 5.5.2.

In the continuous spatiotemporal recognition algorithm, discussed in Sec-

tion 4.4.2, we detect candidate end points, κe, and corresponding candidate

start points, κs, from continuous streams of temporal gesture observations

G= {f1,f2, ...,fT} using the automatically trained temporal gesture HMM

framework. In our extended algorithm, we calculate these start and end

points using the same technique as used in the spatiotemporal start and

end point detection technique where start and end points are detected using

spatiotemporal features only.

The start and end point detection algorithm may flag candidate gestures

which overlap. Each set of overlapping candidates represent a set of gestures

with similar spatiotemporal properties. In order to discriminate between ges-

tures with similar spatiotemporal properties we incorporate the hand pos-

ture observations H= {C1,C2, ...,CT}. For each candidate gesture flagged,

we calculate the overall probability of a particular candidate, P (κ|G,H),

by combining spatiotemporal and hand posture probabilities as described in

Equations 5.31 and 5.32.

P (κ|Ĝ, Ĥ) = βw(Ĝκsκe
)× P (αw|κ, Ĥ) (5.31)

P (αw|κ, Ĥ) = max
κs<i<κe

P (αw|I(Ĥ[i]), ζ(Ĥ[i])) (5.32)

Where αw is the hand posture SVM model for word w. The hand posture

probability of the candidate P (αw|κ,H) is defined as the probability of the

hand shape which best fits the gesture w. I(H [i]) is the set of Hu Moments
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and ζ(H [i]) is the weighted eigenspace Size Function computed from the

hand contour H [i] in frame i. Figure 5.9 shows an example of how the

overall probability of a particular candidate, P (κ|G,H), is calculated.

Figure 5.9: Example of computing overall sign probability by combining
spatiotemporal segment probability and the best fit hand posture probability

The first step in the candidate selection algorithm is to cluster overlap-

ping gestures with the same gesture classification. We remove all but one

candidate gesture from this cluster leaving only the candidate gesture, κB,

with the highest probability P (κ|G,H). We repeat this step for each cluster

to produce a set of candidate gestures Υ = {κB1, κB2, ..., κBK}, where K is

the total number of clusters created from grouping overlapping gestures with
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the same gesture classification.

The second candidate selection step finds sets of overlapping candidates

and removes the least probable candidates such that a maximum of only

one candidate is detected for any given time frame. Figure 5.10 shows the

time segments and gesture probabilities of the recognised gestures after the

first and second candidate selection step where the signs “Lost” and “Alot”

are correctly recognised from a sample sign language sentence “I Lost Alot

of Books”. It should be noted that the candidate gestures shown in Figure

5.10 correspond to the same set of candidates computed from combining the

spatiotemporal and hand posture probabilities shown in Figure 5.9.

Figure 5.10: Candidate Gestures, Υ. Candidates marked in Red (Dashed)
denote gestures which are removed by the second candidate selection step.
Candidates in Green (Solid) denote the final recognised gestures

5.7 Experiments

5.7.1 Sign Recognition Experiments

A description of the experiments conducted to evaluate the overall perfor-

mance of our automatic training and recognition system is presented in this

section. We describe the data set used to evaluate our system and discuss ex-
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periments carried on our automatic sign labeling technique. We then discuss

the experiment carried out to evaluate the performance of our overall recog-

nition system which combines the automatic training, hand posture classifier

and temporal gesture classifier.

Data Collection

Two fluent ISL signers were recorded while they performed a total of 844

natural sign language sentences. The signers were given no instruction other

than to sign to the camera and to sign sentences while trying to incorporate

certain key words into the sentences. While recording the sentences a certified

ISL interpreter translated each sentence through a microphone connected to

the video camera. Videos were captured at 25fps with a frame size of 640 ×
480.

From the set of 844 sentences, a lexicon of 30 signs was decided on based

on signs which occurred frequently within the 844 sentences. The 30 key signs

were then labeled within the 844 sentences. Each of the 30 signs occurred,

on average, 44 times within the 844 sentences with a total of 1344 key signs

occurring in the data set. The labeling process involved marking the start

point and end point of each sign within each video. It is important to note

that this labeling process is carried out for ground truth data only and none

of these labels are used in training of the system.
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Sign Labeling

The goal of the automatic sign extraction framework is to accurately detect

target signs within unsegmented sentences and label them at a frame level.

Due to ambiguities in the sign translation, the system must also be able to

detect whether or not a target sign was actually performed in a given video

even though the translation information specifies that it does occur.

When performing automatic sign extraction, we construct a set of bags

B+ which contains video sequences where the target sign is said to occur

based on translation data. Using our MIL density matrix algorithm, the set

of bags is then used to find similarities in the video sequences in order to

label the target sign. The automatic sign labeling algorithm is then used

to classify positive sentences (sentences which the target word occurs) and

non-eligible sentences (sentences which the target word does not occur in the

video but does occur in the text translation). For positive signs the labeling

algorithm then detects start and end points of the target sign.

Since automatic sign labeling is based on a comparison of other sentences

in the bag, the number of sentences and the number of possible non-eligible

sentences can affect the labeling of all sentences in a bag. We first investigate

the effect non-eligible sentences have on sign labeling by varying the number

of videos in a bag and also varying the percentage of the bag which is made

up of non-eligible sentences. We vary the number of elements in a positive

bag from 5− 20 videos and vary the percentage of non-eligible sentences for

the current target word from 0% − 50%. To evaluate our automatic sign

labeling system, we compare the results of the automatic labeling to that of
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the ground truth data. In the automatic labeling experiments we use true

positives, false negatives, true negatives and false positives to quantify the

performance of the system. A true positive (TP) refers to when the classifier

correctly classifies a positive sign as one that occurred in the sentence and

also correctly labeled the start and end points such that the classified sign

overlaps with the ground truth sign by at least 50%. A false positive (FP)

refers to a sentence which is incorrectly classified as a positive sentence or a

sign which the start and end points are flagged such that it does not overlap

with the ground truth sign. A true negative (TN) refers to when a sentence

is correctly labeled as a non-eligible sentence and a false negative (FN) refers

to a sentence which is incorrectly labeled as a non-eligible sentence. For

different percentages of non-eligible sentences (0%− 50%), we calculate the

total precision, recall and f-measure for all 30 signs when labeled from bags

which contained 5, 10, 15 and 20 sentences. Precision, recall and F-measure

is defined in Equations 5.33 - 5.35.

Precision =
#TP

#TP +#FP
(5.33)

Recall =
#TP

#TP +#FN
(5.34)

Fmeasure =
2× Precision× Recal

Precision+Recall
(5.35)

Figure 5.11 shows the precision, recall and f-measure for different percent-

ages of non-eligible sentences present in the set of bags B+. Results show a
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f-measure of 0.92 when there exists no non-eligible sentences, and a f-measure

of 0.67 when 50% of the bag is made up of non-eligible sentences. In our data

set of 844 sentences, 12.2% of the sentences contained non-eligible sentences.

Thus, a good indication of how our sign labeling system would perform in

reality is to evaluate the system on bags which approximately contain 12.2%

non-eligible sentences. In our experiment, results show an f-measure of 0.874

when labeling signs in a bag made up of 15% non-eligible sentences. This can

be interpreted as a promising result. By looking at the corresponding preci-

sion and recall values for the bag made up of 15% non-eligible sentences, we

can see that our technique achieves a precision of 0.942. This means 94.2%

of the data that will be used to train the spatiotemporal gesture and hand

posture models is correct. The recall rate achieved was 0.833 meaning that

only 16.7% of valid training data was incorrectly discarded.

An important observation to make from the results of this experiment is

that, as the percentage of non-eligible sentences increases, the precision rate

does not drop. A vital part of the classification of the sentences is to reduce

the number of false positives since any false positives will then be used in the

training of the spatiotemporal and hand posture classifiers. The consistent

precision rate achieved during this experiment demonstrates that our system

performs well at reducing the number of false positives.

Start and End Point Detection

The second experiment we conduct on our automatic sign extraction frame-

work is an evaluation of the performance of the system when detecting start
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Figure 5.11: Performance of Automatic Sign Labeling and Effect of Transla-
tion Ambiguities

points and end points of positively labeled sequences. In all experiments

from now on, we use a set of bags which contains 15 videos sequences of

which an average of 12.2% are non-eligible sentences which contain transla-

tion ambiguities of the target word. It is important to note that although

we manually control the number of non-eligible sentences in a bag during

the previous experiment, in this experiment and all experiments which fol-

low, the percentage of non-eligible sentences is controlled only by the content

of our data-set and not by supervised labeling of positive and non-eligible

sentences.

The sign labeling algorithm computes the density vectors for each video

and automatically identifies and discards any non-eligible sentences in the

set of bags. An overall f-measure of 0.88 was achieved from the automatic

classification of positive and non-eligible sentences in each of the 30 bags for
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each sign. For positive videos, start and end points are then detected. To

evaluate the performance of the start and end point detection, we compare

the automatically detected start and end points with the ground truth start

and end points and compute the mean error for each sign.

Table 5.1: Start and End Frame Error
Sign Start Error End Error Sign Start Error End Error

Airport ±13.1 ±12.9 Language ±9.2 ±4.1
Allgone ±16.8 ±9.3 Like ±7.3 ±8.0
Alot ±10.0 ±6.8 Newspaper ±6.4 ±7.9

Backpack ±8.6 ±6.2 Pay ±9.2 ±8.3
Ball ±12.7 ±14.3 Play ±3.6 ±7.4
Bike ±8.8 ±5.7 Rain ±3.3 ±10.0
Book ±10.2 ±7.4 Read ±10.7 ±7.8

Brother ±8.1 ±12.5 School ±10.1 ±7.6
Bus ±17.5 ±12.9 Shop ±12.2 ±10.4
Car ±8.5 ±6.6 Sister ±5.4 ±6.4

Country ±11.1 ±8.2 Sun ±4.7 ±8.4
Cruise ±12.8 ±13.1 Teacher ±8.8 ±8.7
Eat ±9.0 ±6.8 Understand ±8.6 ±6.8

Friend ±9.25 ±6.5 Warm ±5.9 ±10.7
Hotel ±10.5 ±9.3 Cold ±9.1 ±5.3

Mean ±9.4 ±8.6

Results of the start and end point detection experiment show that our

system detects the occurrence of a target word within an average of 9.4 and

8.6 frames of the ground truth data. This can be interpreted as a promising

result as this result means that our technique is able to detect target sign

start and end points within 0.376 and 0.344 milliseconds when compared to

a human interpreter.

Following the automatic detection of start and end points of target words,

our hand posture clustering algorithm is applied to the target word subse-

quences. Figures 5.12 - 5.14 show examples of key hand postures which were

automatically extracted from these sign language subsequences.
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(a) Airport (b) AllGone (c) Alot

(d) Backpack (e) Ball (f) Bike

(g) Book (h) Brother (i) Bus

(j) Car (k) Country (l) Cruise

Figure 5.12: Example of automatically extracted key hand postures “Air-
port” - “Cruise” (4 samples hand postures shows for each sign)
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(a) Eat (b) Friend (c) Hotel

(d) Language (e) Like (f) Pay

(g) Play (h) Rain (i) Read

Figure 5.13: Example of automatically extracted key hand postures “Eat” -
“Rain” (4 samples hand postures shows for each sign)
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(a) School (b) Shop (c) Sister (d) Sun

(e) Teacher (f) Under-
stand

(g) Warm (h) Cold

Figure 5.14: Example of automatically extracted key hand postures “School”
- “Cold” (4 samples hand postures shows for each sign)

Continuous Recognition

The overall goal of this work is to automatically train models to recognise

natural sign language from unconstrained sign language sentences. We now

describe experiments which were carried out to evaluate the performance of

the overall sign language spotting system.

For each of the 30 target words, a set of target word subsequences were

automatically extracted using the techniques we describe in Section 5.4.2. For

the experiments we describe, subsequences were calculated from the same set

of bags used to evaluate the start and end point labeling in Section 5.7.1.

Each bag contained 15 videos sequences of which an average of 12.2% are
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non-eligible sentences which contained translation ambiguities of the target

word. Non-eligible sentences were automatically detected and discarded by

our system with a precision of 0.931 and a recall rate of 0.856. All bags

contained video sequences from only one of the two signers.

A set of parallel GT-HMMs were then automatically trained on the subse-

quences using the techniques we discuss in Section 4.4.2. Key hand postures

for each target word were automatically extracted and a set of SVMs were

then trained to recognise the key hand postures using the hand posture frame-

work we describe in Section 5.5.2. Samples of the automatically extracted

temporal subsequences and key hand postures, used in the actual training,

are made available on a video as supplement to this thesis.

Given an unknown sign language sentence, we apply our recognition

framework described in Section 5.6 to spot and classify signs in each sen-

tence. To evaluate performance of our recognition framework, we test the

system on the remaining set of sentences, as performed by both signers, which

were not used in the training process.

In the gesture spotting and classification task, there are three types of

errors: The insertion error occurs when the spotter reports a nonexistent

gesture, the deletion error occurs when the spotter fails to detect a gesture,

and the substitution error occurs when the spotter falsely classifies a gesture.

From these error measures we define two performance metrics in Equation

5.36, where CS is the number of correctly spotted gestures, IG is the number

of input gestures and IE is the number of insertion errors.
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DetectionRatio =
CS

IG
Reliability =

CS

IG+ IE
(5.36)

Table 5.2 details the performance of the recognition system when tested

on the remaining sentences. Results show that the system performs well with

a detection ratio of 0.832 and a reliability of 0.771. User dependent results, on

Signer 1, show that the system performs with a detection ratio of 0.86 while

user independent results, on Signer 2, show that the system performs well

with a detection ratio of 0.764. In previous works which have used a small

number of signers in the training set, results of user independent recogni-

tion evaluations have seen large decreases when compared to user dependent

recognition results [OR05]. For example, in Assan et al. [AG98], accuracy

for training on one signer and testing on another was 51.9% compared to

92% when the same signer supplied both training and test data. As shown

in the experiments on the InteractPlay data-set in Chapter 4, user indepen-

dent recognition performance using our GT-HMM threshold framework can

be improved by utilising a larger number of subjects. Therefore, while the

results achieved in this experiment show a decrease in the signer-independent

detection rate, the fact that only one signer was represented in the training

set means that a decrease of only 9.6% can be interpreted as a promising

result.

We conduct a second experiment in which we evaluate the impact of the

hand posture recognition component in the overall recognition of the signs.

We carry out the same sign recognition experiment as before, but this time

automatic key hand posture extraction was not carried out and hand shape

232



5.7 Experiments Weakly Supervised Training

probability was not included in the sign recognition framework. In the ab-

sence of our hand shape techniques, results show that the overall detection

rate drops by 10.8%. This shows that our automatic hand posture cluster-

ing method is an important step in developing a full weakly supervised sign

training framework. It also demonstrates the importance of our hand shape

classification for verification of detected spatiotemporal signs. A video show-

ing the software implementation of our system performing sign recognition

on a number of sample sentences is made available as supplement to this

thesis.

The main disadvantage of our proposed framework is the computational

complexity of the continuous recognition framework. During continuous ex-

periments on the vocabulary of 30 signs, the continuous recognition system

took, on average, two times the length of the video to carry out the gesture

spotting algorithm. Performing the Viterbi algorithm on the HMM thresh-

old models is the main cause of the high computation time. Reducing the

number of states in the threshold model would decrease the overall compu-

tational complexity and Lee and Kim [LK99] have proposed methods to half

the number of threshold model states using relative entropy.
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Table 5.2: Continuous Spotter and Classifier Performance
Sign #Correct #D† #S‡ #I†† Det∗ Rel′ End Error Start Error
rain 16 0 0 2 1 0.88 3.8 10.6
book 32 0 11 4 0.744 0.68 7.4 5.1
teacher 28 0 5 3 0.848 0.77 6 2.21
ball 22 0 5 2 0.814 0.75 3.95 2.9
shop 27 0 13 4 0.675 0.613 4.6 3.1
sun 28 0 1 3 0.965 0.875 5.3 2.71
eat 24 0 6 2 0.8 0.75 2.4 6.6

backpack 20 0 3 2 0.869 0.8 3.65 6.8
school 38 0 13 2 0.745 0.716 4.9 3.3
pay 21 0 1 3 0.954 0.84 6 2.8
read 38 0 0 4 1 0.904 3.6 17

newspaper 19 0 2 1 0.9 0.863 4 5.3
hotel 22 0 1 1 0.956 0.916 3.7 4.6
cruise 16 0 4 1 0.8 0.761 3.8 7.4
airport 26 0 2 2 0.928 0.866 2.3 8.3
car 25 0 1 2 0.96 0.892 4.8 7.9
bus 15 0 6 3 0.71 0.625 3 3.3

country 17 0 5 2 0.77 0.708 7.17 2.17
language 15 0 4 1 0.78 0.75 2.7 4.2

like 81 0 31 8 0.723 0.675 4.8 3.5
play 30 0 7 3 0.81 0.75 4.5 5
friend 35 0 10 3 0.77 0.729 2.6 4.5
brother 30 0 1 2 0.96 0.909 4.7 3.1
sister 21 0 11 2 0.65 0.617 2.9 4.9
bike 31 0 0 4 1 0.885 3 7.7
alot 23 0 3 2 0.88 0.821 2.7 1.9

allgone 16 0 3 3 0.842 0.727 2.68 3.75
understand 38 0 2 3 0.95 0.883 3.89 3.67

cold 21 0 0 1 1 0.954 4.7 4.8
warm 17 0 8 1 0.68 0.653 1.23 9.4
Total 792 0 159 76 0.832 0.771 4.17 5.07

Total Signer 1 581 0 94 53 0.86 0.798 4.05 4.98
Total Signer 2 211 0 65 23 0.764 0.705 4.31 5.45

Total No
HandShape 689 0 262 77 0.724 0.67 4.02 5.28
† Number of Deletion Errors, ‡Number of Insertion Errors
††Number of Substitution Errors, ∗Detection Ratio, ′Reliability
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5.8 Sample Application: Sign Language Teach-

ing Environment

In this section we describe a software system developed to demonstrate a

possible application of the sign language recognition technology presented in

this chapter. The software is a computer vision based virtual sign language

learning environment which gives real time feedback to the user on their

performance of a particular sign. Signs are demonstrated by a 3D virtual

teacher (see Figure 5.15) and the student is then asked to perform the same

sign being performed by the teacher.

Figure 5.15: Virtual Sign Language Teacher.

The purpose of this learning environment is to provide the general com-

munity with a virtual environment for learning sign language. The virtual

teaching environment provides an immersive learning experience while re-

taining the flexibility of learning at the users convenience on a standard PC.

The system was developed with consultation and help from the Irish Deaf

Society.
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5.8.1 System Overview

Signs are demonstrated to the user by a 3D avatar, allowing users to view

signs from any angle. Timely and appropriate feedback is a key element of

our sign language teaching system and this is achieved by creating a feedback

loop between the user and the software. The feedback loop is an iterative

process of monitoring the users sign performance, analysing the sign and

giving appropriate visual feedback to the user. The system gives feedback

on the users performance of a sign by tracking hand movements and shapes

through a web-cam video stream. Computer vision techniques are used to

track coloured gloves which the user wears. Hand shape contours and hand

movement trajectories are then extracted from the video stream and the hand

posture and spatiotemporal classification models, described in Chapters 3

and 4, process the data in order to provide feedback about the performance

of the sign. Figure 5.16 shows a visualisation of the architecture of the sign

teaching environment and Figure 5.17 shows a screen shot of the software

user interface.

5.8.2 Performance

The software described here is a system that runs in real time (approx. 16fps)

on a standard laptop or PC using a standard web-cam.

In Chapters 3 and 4 we conduct a thorough evaluation of the different

sign classifiers. The goal in developing this system was to investigate the

feasibility of sign language recognition technology being used in real world

settings by the deaf community. Therefore, in order to evaluate the feasibility
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Figure 5.16: Architecture of the Sign Teaching Environment

Figure 5.17: User Interface of Sign Language Teaching Application
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of this system as a sign language teaching system, we monitored five different

users interacting with the software. While the five different users exhibited

different levels of sign language competency, all users were able to successfully

progress through an ISL alphabet lesson.

From these evaluations we conclude that our system does have the poten-

tial to be implemented as a real world sign teaching environment. Feedback,

through formal and informal discussions and demonstrations of this applica-

tion to the Irish Deaf Society, deaf interpreters and deaf students, indicate

that technology like this could be used to greatly improve the integration of

deaf people into society.

5.9 Conclusion

Previous research in sign language recognition has typically required manual

labeling of sign language videos in order to extract isolated examples of par-

ticular signs to train recognition systems. In order to advance the research of

sign language to the same level a speech recognition, sign vocabularies must

be expanded to the same size as speech recognition vocabularies. Expanding

these manually generated sign vocabularies is a very difficult, time consum-

ing and expensive procedure [BZE09]. Therefore advancing sign language

recognition research requires robust automatic training algorithms. In this

Chapter we present a novel system of automatically training models for the

recognition of natural sign language.

Our proposed system is capable of learning sign language from unseg-

mented sign language videos using the weak and noisy supervision of text
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translations. Full sign language sentences are automatically segmented and

isolated samples of target words are extracted from the videos. Our GT-HMM

spatiotemporal gesture recognition framework is trained to recognise signs in

the vocabulary and to detect movement epenthesis. Moreover, our SVM

based hand posture recognition system is trained on automatically detected

key hand postures using our novel eigenspace Size Function along with HU

moments. The spatiotemporal and hand posture recognition systems are

then combined in a continuous recognition framework to detect signs from

continuous sentences.

Experiments demonstrate that our automatic sign labeling algorithm per-

formed well when classifying positive signs and non-eligible sentences with an

f-measure of 0.874 when labeling signs in a bag made up of 15% non-eligible

sentences. Results also showed the sign labeling algorithm detected start and

end points of target words within an average 9.4 and 8.6 frames respectively.

An evaluation of the performance of our the sign spotting system, which

was automatically trained on a vocabulary of 30 signs, was carried out. The

system was tested on 962 signs which occurred within continuous sentences.

Results indicate that our system can detect signs from continuous sentences

with a detection rate of 82.3%. The results of the experiments are very

promising. These results also indicate how sensitive our recognition system

is to imperfect labeling. The sign labeling experiments showed that start

and end points were labeled with an average error of 9.4 and 8.6 frames

respectively. With these errors present in the training set, the reconition

system is still able to carry out sign recognition with a detection rate of
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82.3%. These detection rates, achieved by our system, are comparable with

results achieved from state of the art recognition systems trained on manual

data such as the work of Yang et al [YSL09]. By way of comparison, their

system was manually trained on a vocabulary of 48 signs and could detect

signs with an 87% detection rate when tested on 480 signs.

The contribution of the work detailed in this chapter is that we have de-

veloped a system which can automatically learn natural signs from the weak

and noisy supervision of text translations using our MIL density matrix al-

gorithm. Another important aspect of the work detailed in this chapter is

that we further demonstrate the robustness our proposed hand posture and

spatiotemporal gesture models. These are important contributions to the

area of natural sign language recognition as they introduce a robust frame-

work for training a recognition system without the need for manual labeling.

Freely available sign language videos, and corresponding translations, from

television broadcasts can be utilised as an expansive training set which our

system could be trained on. Future work will involve expanding the sign

recognition vocabulary by training our system on these sign language videos

available from television news broadcasts.
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Chapter 6

Conclusions and Future

Directions

In this thesis we detailed the development of several techniques for model-

ing, training and recognising natural sign language sentences. This conclud-

ing Chapter summarises our work, highlighting the contributions made, and

suggests possible future directions for this work.

6.1 Contributions

As discussed in Chapter 1, there are three fundamental contributions detailed

in this thesis:� User Independent Hand Posture Measurement using the Eigenspace

Size Function� Spatiotemporal Gesture Recognition with Movement Epenthesis De-
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tection� Weakly Supervised Training using Multiple Instance Learning Density

Matrices

This section summarises and comments on each of these contributions.

6.1.1 User Independent Hand Posture Measurement

using the Eigenspace Size Function

An integral part of recognising hand gestures in sign language is the ability

to distinguish between different hand configurations. An ideal sign recogni-

tion system should give good recognition accuracy independent of the signer

performing them. A difficulty with designing user independent sign recogni-

tion systems is recognising user independent hand postures. This is due to

that fact that a user independent system must cope with geometric distor-

tions due to different hand anatomy and different performance of gestures by

different people.

The first contribution discussed in this thesis is a user independent hand

shape feature, a weighted eigenspace Size Function. Through experiments,

based on two user independent hand posture data sets, we showed that

this feature is a strong improvement on the original Size Function feature.

An increase in performance of 7.4% and 6.7% was shown for our weighted

eigenspace Size Function when compared to the unmodified Size Function

using a simple Euclidian distance classifier.

We implemented a user independent hand posture recognition frame-
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work using our weighted eigenspace Size Function and a set of Hu moments,

which we showed to complement our proposed feature. A recognition frame-

work was developed using a RBF SVM and a combination of our weighted

eigenspace Size Function and Hu Moments. Results of a user independent

evaluation of the recognition framework showed it achieved a ROC AUC of

0.973 and 0.935 when tested on the ISL data set and the Treisch data set

respectively. We also showed that our proposed technique performs com-

parably with a state of the art user independent hand posture recognition

method, the elastic graph matching algorithm.

The advantages of our system, in contrast to other hand posture recogni-

tion systems described in Section 2.2.3, is that our system accurately recog-

nises hand postures independent of the person performing them and indepen-

dent of the style of the posture being performed. Our system also performs

this person independent recognition in real time from low resolution images

of the hand taken from images where the FOV includes the full upper body.

These are a significant set of advantages as the combination of these advan-

tages makes our hand posture framework an ideal system to be used in full

sign language sentence level recognition systems.

Table 6.1 gives an overview of some of the results achieved on different

experiments carried out on the hand posture recognition techniques.
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Table 6.1: Hand Posture Classification Results Overview
Feature Classifier Data Set ID Classes Train Test Performance
Size L2 Distance ISL 23 1 480 0.735 (AUC)

Function L2 Distance Triesch 20 1 48 0.756 (AUC)
Eigenspace L2 Distance ISL 23 1 480 0.789 (AUC)

Size Function L2 Distance Triesch 20 1 48 0.801 (AUC)
Weighted Eigenspace L2 Distance ISL 23 1 480 0.809 (AUC)

Size Function L2 Distance Triesch 20 1 48 0.823 (AUC)

Weighted Eigenspace SVM ISL 23 240 240 0.973 (AUC)
Size Function SVM Triesch 10 16 32 0.935 (AUC)
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6.1.2 Spatiotemporal Gesture Recognition with Move-

ment Epenthesis Detection

Recognising spatiotemporal gestures is difficult due to the inter-gesture tran-

sitions which occur between valid gestures. These inter-gesture transition

periods are called movement epenthesis and are not part of either of the

gestures. As such, an accurate recognition system must be able to spot

meaningful gesture segments from continuous sign language sequences and

identify and discard movement epenthesis.

In Section 2.3 we highlighted that there are very few works which deal

with continuous sign recognition without the explicit modeling of each possi-

ble epenthesis or the use of grammar rules. The second contribution discussed

in this thesis is a robust pattern recognition framework for the recognition

of motion based gestures and identification of movement epenthesis without

using grammar rules or explicitly modeling movement epenthesis. We imple-

ment a GT-HMM system which utilises our novel gesture subunit initialisa-

tion technique along with a HMM threshold model. Our GT-HMM models

continuous multidimensional gesture observations within a parallel HMM

network to recognise two-handed gestures and identify movement epenthesis

from continuous sign language sentences. Moreover, we also implement a

GT-HMM to recognise head and eyebrow movements used to convey non-

manual signals. There are a limited number of works which deal with the

combination of manual signs and non-manual signals. Another contribution

of our proposed gesture recognition framework is that our model is not spe-

cific to any particular type of gesture and we demonstrated this by showing
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that manual and non-manual signals can be robustly spotted and classified

from within continuous sign sequences.

Experiments were conducted on isolated manual and non-manual signals

in order to evaluate the performance of the HMM threshold model classi-

fying gestures and identifying movement epenthesis. In order to compare

our method to other proposed spatiotemporal gestures recognition models,

evaluations where carried out on the GT-HMM, T-HMM, CRF, HCRF and

LDCRF models. The LDCRF model performed best when tested on data

which did not include movement epenthesis data. However, when movement

epenthesis gestures where introduced to the experiment, the HMM threshold

model performed best when compared to all other CRF models.

Results from continuous experiments showed that our GT-HMM frame-

work achieved a 12.4% higher detection ratio and a 12.8% higher reliability

measure than the LDCRF model when tested on 220 different hand, head and

eye brow gestures. Furthermore, user independent continuous experiments

showed promising results with our GT-HMM achieving a detection ratio of

0.804 when trained on sign language samples from only one signer.

Tables 6.2 and 6.3 give an overview of some of the results achieved on

different experiments carried out on the spatiotemporal gesture recognition

techniques.
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Table 6.2: Isolated Temporal Classification Results Overview
Classifier Data Set ID Classes Train Test Test Epenthesis Performance
GTHMM Hand Signs 8 10 10 0 0.977

Hand Signs 8 10 10 100 0.976
LDCRF Hand Signs 8 10 10 0 0.985

Hand Signs 8 10 10 100 0.942

GTHMM Head Movements 3 6 6 0 0.947
Head Movements 3 6 6 25 0.936

LDCRF Head Movements 3 6 6 0 0.952
Head Movements 3 6 6 25 0.894

GTHMM Eyebrow 2 5 5 0 0.951
Eyebrow 2 5 5 20 0.948

LDCRF Eyebrow 2 5 5 0 0.955
Eyebrow 2 5 5 20 0.918
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Table 6.3: Continuous Temporal Classification Results Overview
Classifier Data Set User Independent Classes Train Test Instances Performance
GTHMM Hand Signs No 8 10 160 0.956
GTHMM Head Movements No 3 6 31 0.935
GTHMM Eyebrow Gestures No 2 5 33 0.942
LDCRF Hand Signs No 8 10 160 0.831
LDCRF Head Movements No 3 6 31 0.903
LDCRF Eyebrow Gestures No 2 5 33 0.787
GTHMM Hand Signs Yes 8 10 160 0.804
LDCRF Hand Signs Yes 8 10 160 0.676
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6.1.3 Weakly Supervised Training using Multiple In-

stance Learning Density Matrices

As discussed in Section 2.3, research on sign language recognition to date has

typically required manual labeling of sign language videos in order to extract

isolated examples of particular signs to train recognition systems. In order to

advance the research of sign language to the same level as speech recognition,

sign vocabularies must be expanded to the same size as speech recognition

vocabularies. Expanding these manually generated sign vocabularies is a very

difficult, time consuming and expensive procedure. Therefore, advancing sign

language recognition research requires robust automatic training algorithms.

The final, and perhaps the most significant, contribution discussed in

this thesis is a technique for the automatic segmentation of sign language

video using the weak and noisy supervision of text translations. Moreover,

the automatic training technique we propose can be utilised by our hand

posture and spatiotemporal recognition models in order to learn target signs.

The significance of this is that it is possible, using our proposed models, to

train a full sign language recognition system with minimal human input thus

allowing for the development of large vocabulary recognition systems.

Experiments demonstrate that our automatic sign labeling algorithm per-

formed well when classifying positive signs and non-eligible sentences. Exper-

iments also showed the sign labeling algorithm was capable of automatically

detecting start and end points of target words within an average 9.4 and 8.6

frames respectively.

A final experiment was conducted in order to test the combination of all
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the contributions detailed in this thesis. We evaluate our full sign recognition

system which combines hand posture and spatiotemporal gesture models

which were trained using our automatic training technique. The recognition

system was automatically trained on a vocabulary of 30 signs. The system

was then tested on 962 signs which occurred within continuous sentences.

Results indicate that our system could detect signs from continuous sentences

with an 83.2% detection rate.

This is the most significant result which we report in this thesis. The

result achieved in this final experiment demonstrates the robustness of our

hand posture and spatiotemporal gesture models. But more significantly,

these models combined within our automatic training framework in order to

robustly learn sign language using only the weak supervision of text transla-

tions. Using these automatically learned models, our system was then able

to spot the corresponding signs in unseen sign videos.

6.2 Discussion

The combination of the three main contributions of this thesis form the basis

for a potential real world sign language recognition system. While this thesis

has tackled some of the big problems in the area of sign language recognition.

The hand posture recognition system proposed in this thesis can accu-

rately, and in real time, classify hand postures independent of the person

performing them. In the literature, there are very few works which attempt

to build such a hand posture recognition system and the experiments which

we carry out will serve as a strong benchmark for future hand posture recogni-
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tion systems. In the experiments we carry out, hand posture data is extracted

from images using controlled settings where the signer wither is wearing a

colored glove or the background is uniform and the hand region is already

known. An interesting follow on to our experiments would be to conduct

similar experiments using hand posture data extracted from images with less

controlled conditions.

The proposed spatiotemporal recognition framework aims to provide a

framework in which temporal based gestures can be robustly learned and

modeled. As well as being able to model the signs, systems must also be able

to identify movement epenthesis without explicit modeling of the epenthe-

sis themselves. In the literature there are very few works which deal with

epenthesis identification without explicit modeling. We conduct a number

of experiments on different data and classifier combinations in order to find

a classifier which can robustly recognize key signs while also being able to

identify epenthesis. We conclude from the many experiments that out pro-

posed variation of threshold model HMMs can carry out sign classification

and epenthesis identification in a more robust way than any of the other clas-

sification techniques which we experiment on. One drawback of our technique

is that as the vocabulary grows, the computational complexity of continuous

recognition an cause the recognition system to be unusable in a real world

setting. We note that there are ways which the computational complexity

of continuous recognition could be decreased such as reducing the number of

states in the threshold model or building a single model with all sign HMMs

and threshold model. Carry out these changes should increase computation
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speed of the Viterbi algorithm. Another option may be to investigate the

use of parallelizing the implementation on a GPU. Since each sign proba-

bility is calculated independently, a parallel system may provide the best

improvement in computation time.

The weakly supervised training methods we propose provide a framework

in which the hand posture models and spatiotemporal gesture models can be

trained with minimal human input. If sign recognition vocabularies are to

grow to the same size as speech recognition systems, then large corpora of

signs will be needed to populate the sign database. If there are no automatic

means to train these systems on then large amount of human labeling will

be required for every new sign added to the data set. The method we pro-

pose uses the already existing weak labeling of sign translations associated

with sign videos. Our method can pick target words from the translations

and then find key features from all videos which contain that word. These

key features can then be use to train the hand posture and spatiotemporal

recognition models. Separate to sign language, we also envisage that this

automatic training technique could have applications in other areas. It could

be extended to find similarities in other large data sets. In order to con-

duct automatic labeling of other data sets, the only change required to our

technique would be to define a similarity function relevant to the new data

set.

In order to evaluate the overall combination of our three contributions a

final experiment was carried out were the hand posture and spatiotemporal

models were trained automatically. We concluded from this experiment that

252



6.3 Future Work Conclusions and Future Directions

by automatically training the hand posture and spatiotemporal models, we

can still robustly recognize signs in unseen videos. This is a significant result

as there exists no other works which have reported this type of experiment.

Some works have proposed different variations of automatic labeling, but

none of these methods have been evaluated in terms of how well the labeling

performs when training the recognition models.

6.3 Future Work

There are a number of possible future directions for the work we discuss in

this thesis. In this section we discuss some of the possible future directions

and extensions to our work.

6.3.1 Real World Corpus

The next step in creating a real world sign language recognition system is

to train the system on a real world sign language corpus. In this thesis we

presented a framework for the automatic training of sign language classifi-

cation models using the weak supervision of text translations. Thus, the

system can be trained on real world sign language corpora that already exist

by utilising sign language sentences and text translations from news for the

deaf television broadcasts (e.g. RTE News for the Deaf).

This can be achieved by implementing computer vision hand and face

tracking algorithms to extract features from the news videos of the signer.

The extracted features, along with the video subtitles, can then be utilised
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by our automatic sign extraction and training framework to train the sign

classification models.

6.3.2 Natural Gesture Interfaces

Until recently, the mouse, keyboard and other button based inputs (i.e. joy-

sticks) have been the primary input devices for computers. These devices are

excellent for the purposes they were designed for. However, the application

areas of computers are evolving and there is now a need for more natural in-

put mechanisms. For example, gaming applications are evolving due to the

development of new motion based controllers such as Nintendo’s Wii, Sony’s

Playstation Move and Microsoft’s Project Natal. With this in mind, new

application areas outside the domain of gaming could be developed by utilis-

ing more natural input mechanisms such as gestures. This could be achieved

by utilising what we know about sign language, and how the deaf learn sign

language, to develop a set of gestures which could be intuitively learned and

utilised to control novel applications. An example of one such application

could be a ubiquitous system to aid surgeons during surgery by allowing them

to control surgical robots, imaging technology and environment settings by

using natural gestures.

6.3.3 Full Body Motion Analysis

Another interesting future direction for this work is in the extension of our

proposed techniques for the task of general human action recognition. This

could be achieved by acquiring human motion data from cameras and/or
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kinematic sensors such as accelerometers, in order to interpret human poses,

actions and activities.
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Appendix A

Machine Learning Techniques

A.1 Hidden Markov Models

We define the elements of an HMM as follows:� N - Number of states in the model.� S = {S1, S2, ..., SN} - Individual states.� qt - State at time t.� M - Number of distinct observation symbols per state.� A = {aij} - State transition probability distribution where aij = P [qt+1 =

Sj|qt = Si] (the probability of making a transition from state Si to state

Sj).� bj(Ot) - The probability of a continuous observation Ot being observed

in state Sj . The continuous observation probability is modeled on a
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probability density function (pdf) of an M-dimensional multivariate

gaussian. Where µj is the mean vector and Σj is the covariance matrix

for the pdf in state j.

bj(Ot) = ℵ(Ot;µj,Σj) (A.1)

= (2π)−
N
2 |Σ|− 1

2 exp

(
−1

2
(Ot − µj)

T Σ−1
j (Ot − µj)

)
(A.2)� B = [{µ1,Σ1}, {µ2,Σ2}, ..., {µN ,ΣN}] - Set of mean vectors and covari-

ance matrices used to model the observation pdf for each state.� π = {πi} - The initial state distribution where πi = P [q1 = Si].� O = O1O2...OT - Observation sequence where each Ot is a continuous

observation vector and T is the number of observations in the sequence.

A.1.1 Forward Backward Algorithm

The probability of the observation sequence O = O1O2...OT given the model

λ (i.e. P (O|λ)) is calculated as follows:

We define the probability of the partial observation sequence O1...Ot and

state St given the model λ as follows:

αt(i) = P (O1O2...Ot, qt = Si|λ) (A.3)

The partial probability, or forward variable, αt(i) can then be solved

inductively as follows:
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1. Initialisation:

α1(i) = πibi(O1), 1 ≤ i ≤ N (A.4)

2. Induction

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T−1, 1 ≤ j ≤ N (A.5)

3. Termination

P (O|λ) =
N∑

i=1

αT (i) (A.6)

The three steps combine to form the forward section of the forward back-

ward algorithm where the purpose of the forward procedure is to compute

the probability of an observation sequence given the model.

The backward part of the algorithm will be used later to optimise the

parameters of the HMM in order to best model a given concept.

We define the backward variable βt(i) as the probability of the partial

observation sequence from t+ 1 to the end:

βt(i) = P (Ot+1Ot+2...OT |qt = Si, λ) (A.7)

Again, βt(i) can be solved inductively:

1. Initialisation:

βT (i) = 1, 1 ≤ i ≤ N (A.8)
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2. Induction

βt(i) =

N∑

j=1

aijbj(Ot+1)βt+1(j), t = T − 1, T − 2, ..., 1, 1 ≤ i ≤ N.

(A.9)

A.1.2 Viterbi Algorithm

The goal of the Viterbi algorithm is, given the observation sequence O =

O1O2...OT and the model λ, compute the single best state sequence Q =

q1q2...qT which best explains the observations.

We define the highest probability along a single path, up to time t, as:

δt(i) = max
q1,q2,...,qt−1

P [q1q2...qt = i, O1O2...Ot|λ] (A.10)

We can then define δt+1(i) as:

δt+1(j) = [max
i
δt(i)aij ]bj(Ot+1) (A.11)

To find the complete state sequence, we keep track of the argument which

maximised Equation A.11 for each t and j via the array ψt(j). The algorithm

for finding the best state sequence is as follows:

1. Initialisation:

δ1(i) = πibi(O1), 1 ≤ i ≤ N (A.12)

ψ1(i) = 0 (A.13)
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2. Recursion:

δt(j) = max
1≤i≤N

[δt−1(i)aij ]bj(Ot), 2 ≤ t ≤ T (A.14)

ψt(j) = argmax
1≤i≤N

[δt−1(i)aij ], 2 ≤ t ≤ T (A.15)

3. Termination:

P ∗ = max
1≤i≤N

[δT (i)] (A.16)

q∗T = argmax
1≤i≤N

[δT (i)] (A.17)

4. Path backtracking:

q∗t = ψt+1(q
∗
t+1), t = T − 1, T − 2, ..., 1. (A.18)

A.1.3 Baum-Welch Algorithm

The Baum-Welch algorithm is a re-estimation technique used to adjust the

HMM parameters (A,B, π) to maximise the probability of the observation

sequence given the model.

In order to describe the iterative update and improvement methods within

the Baum-Welch algorithm we define the probability of being in state Si at

time t and state Sj at time t+ 1:
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ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ) (A.19)

=
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N

j=1 αt(i)aijbj(Ot+1)
(A.20)

Since γt(i) defines the probability of being in state Si at time t, γt(i) and

ξt(i, j) can be related by summing over j:

γt(i) =

N∑

j=1

ξt(i, j) (A.21)

Summing γt(i) over the time index t computes a quantity which can be

interpreted as the expected number of times that state Si is visited. Simi-

larly, summing ξt(i, j) over t can be interpreted as the expected number of

transitions from state Si to state Sj .

Based on the this concept of counting event occurrences, a set of re-

estimation formulas for π, A and B are as follows:

πi = Number of times in state Si at time (t = 1) (A.22)

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(A.23)

µj =

∑T

t=1 γt(j) · Ot∑T

t=1 γt(j)
(A.24)
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Σj =

∑T

t=1 γt(j) · (Ot − µj)(Ot − µj)
T

∑T

t=1 γt(j)
(A.25)

We define the current model λ = (π,A,B) used to compute λ = (π,A,B)

as defined in Equations A.22 - A.25.

Based on the above procedure, λ is iteratively used in place of λ in order to

improve the probability of O being observed from the model until a limiting

point is reached.

The re-estimation formulas can be derived directly by maximising Baum’s

auxiliary function over λ:

Q(λ, λ) =
∑

Q

P (Q|O, λ)log[P (O,Q|λ)] (A.26)

Baum et al. have proven that maximisation of Q(λ, λ) leads to increased

likelihood, i.e.:

max
λ

[Q(λ, λ)] ⇒ P (O|λ) ≥ P (O|λ) (A.27)

A.2 Support Vector Machines

SVMs are a set of supervised learning methods used in machine learning for

the task of data classification.

A SVM constructs a hyperplane, between labeled data points, in order

to classify data points not in the training set. Given a data set of n points

X = {x1, ...,xn}, xi ∈ R
p and associated labels Y = {y1, ..., yn}, yi ∈ {1,−1},
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we want to find the maximum-margin hyperplane which separates the points

with yi = 1 from points with yi = −1.

Let the hyperplane be of the form:

w · xi + b = 0 (A.28)

Where w is the normal vector and the parameter b
‖w‖

determines the

offset of the hyperplane from the origin along w. We want to find w and b

to maximise the margin between parallel hyperplanes that are as far apart

as possible while still separating the data.

These hyperplanes are defined as follows:

w · xi + b ≥ 1 ∀{i : yi = 1} (A.29)

And

w · xi + b ≤ −1 ∀{i : yi = −1} (A.30)
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Figure A.1: Example of SVM showing maximum margin hyperplane and
margins

We wish to find the two hyperplanes in a way that there are no points

between them (see Figure A.1), thus we define the constraint:

yi(w · xi + b) ≥ 1 ∀i (A.31)

We also wish to try to maximise the distance between the two hyper-

planes. The distance between the two hyperplane is 2
‖w‖

, thus we want to
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minimise ‖w‖. Minimizing this is difficult to solve as ‖w‖ involves a square

root. It is possible to alter the equation by substituting ‖w‖ with 1
2
‖w‖2

without changing the solution.

Therefore the optimisation problem can be defined as the minimisation

of 1
2
‖w‖2 subject to yi(w · xi + b) ≥ 1(∀i).

This optimisation problem can be written in terms of a Lagrangian that

can be minimised with respect to w and b and maximised with respect to

the Lagrangian multiplier αi:

L(w, b, α) =
1

2
‖w‖2 −

m∑

i=1

αi (yi (w · xi + b)− 1) (A.32)

The derivatives of the Lagrangian disappear with respect to w and b

where:

∂L(w, b, α)

∂w
= 0 = w−

m∑

i=1

αiyixi (A.33)

∂L(w, b, α)

∂b
= 0 =

m∑

i=1

αiyi (A.34)

We can substitute these into A.32 to give the Wolfe Dual formulation:

L̃(w) =

m∑

i=1

αi −
1

2

m∑

j=1

αiαjyiyj(xi · xj) (A.35)

Support vector training therefore amounts to maximising L̃(w) with re-
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spect to αi subject to the constraints:

w =

m∑

i=1

αiyixi (A.36)

0 =
m∑

i=1

αiyi (A.37)

There exists a Lagrange multiplier αi for each training point and those

points which have αi > 0 are called support vectors and lie on one of the

hyperplanes.

The decision function for an SVM is then defined as:

f(z) = sign

(
m∑

i=1

yiαi(xi · z) + b

)
(A.38)

Where z is an input and b is the bias found from:

b =
1

2

[
max

{i|yi=−1}

(
m∑

j=1

yjαj(xi · xj)

)
+ min

{i|yi=+1}

(
m∑

j=1

yjαj(xi · xj)

)]
(A.39)

A.2.1 SVM Kernals

Kernals functions are used to overcome the problem of non-linearly separable

data. The kernal function is used to map the data into a high dimensional

feature space by providing a means of computing an inner product between

two input patterns. The kernal trick allows use to compute this inner product

without performing the mapping to the high dimensional space resulting in

a computationally cheaper calculation compared to explicit computation of
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the coordinates.

Mapping from one space to another involves a mapping from xi → φ(xi).

This involves a mapping of the inner products xi · xj → φ(xi) · φ(xj) as the

feature space must be a inner product space (also known as a pre-Hilbert

space).

A vector space is called a real inner product space if for vectors u, v and

w the following axioms hold true:� Symmetry (u · v) = (v · u)� Additivity ((u+ v) ·w) = (u ·w) + (v · v)� Homogeneity (κu · v) = κ(u · v)� Positivity (v · v) ≥ 0

An example is an inner product such as (u · v)2 which can be expanded

to:

(u1v1)
2 + (u2v2)

2 + 2u1v1u2v2 (A.40)

This equation can be interpreted as an inner product between two vec-

tors in a 3-dimensional space where the feature space is related to the 2-

dimensional input, x, through the mapping:

φ(x) = (z1, z2, z3) = (x21, x
2
2,
√
2x1x2) (A.41)

There are several options available for kernals. The kernel used in this

work is a RBF as defined by:
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K(xi, xj) = exp(−γ‖xi − xj‖2) (A.42)

Combining the kernal with the objective function in Equation A.35 leads to:

L̃(w) =

m∑

i=1

αi −
1

2

m∑

j=1

αiαjyiyjK(xi,xj) (A.43)

Once an optimal training solution is found through optimising the dual

Wolfe Lagrangian in Equation A.43, the decision function for a new point z

is given by:

f(z) = sign

(
m∑

i=1

yiαiK(xi, z) + b

)
(A.44)

A.2.2 Probability Computation

An SVM confidence measure can be calculated for further post processing.

The further a test point is from the separating hyperplane, the greater the

degree of confidence should be in the classification of that point. This dis-

tance can be mapped to a probability using a method proposed by Platt

[PP99]. Before the SVM decision is computed, the output is:

f(z) =
∑

i

yiαiK(xi, z) (A.45)

The posterior probability P (y = 1|f) can be computed using the para-

metric function:
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P (y = 1|f) = 1

1 + exp(Af +B)
(A.46)

The target classes are modified such that the classes ti are either 0 or 1:

ti =
yi + 1

2
(A.47)

The values for A and B can then be computed by minimizing the negative

log likelihood function:

min

[
−
∑

i

tilog(pi) + (1− ti)log(1− pi)

]
(A.48)

Where pi is calculated by:

pi =
1

1 + exp(Afi +B)
(A.49)
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Appendix B

Performance Measures

B.1 ROC Analysis

A ROC graph is a technique for organising classifiers and visualising their

performance [Faw06]. ROC analysis is becoming increasingly important in

the area of cost sensitive classification, classification in the presence of un-

balanced classes, robust comparison of classifier performance under imprecise

class distribution and misclassification costs.

Given a classifier and an instance, there are four possible outcomes:� True Positive - when the classifier correctly returns a positive result� True Negative - when the classifier correctly returns a negative result� False Positive - when the classifier incorrectly returns a positive result� False Negative - when the classifier incorrectly returns a negative result
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Table B.1: Confusion Matrix
Classifier Output

Class Label p n
p True Positives True Negatives
n False Positives True Negatives

These results can be combined to create a confusion matrix, as shown in

Table B.1.

The values in the confusion matrix are used to compile various ratios

such as the True Positive Rate in Equation B.1 and the False Positive Rate

in Equation B.2.

TruePositiveRate =
TP

TotalPositives
(B.1)

TruePositiveRate =
FP

TotalNegatives
(B.2)

For classifiers which produce probability values, representing the degree to

which class the instance belongs to, setting a threshold value will determine

a point in the ROC space. For instance, if probability values below or equal

to a set threshold value of 0.8 are sent to the positive class, and other values

are assigned to the negative class, then a confusion matrix can be calculated.

Plotting the ROC point for each possible threshold value results in a curve.

For example, if a probability values below or equal to a threshold value of 0.8

are sent to the positive class, and other values are assigned to the negative

class, then a confusion matrix can be calculated. Plotting the ROC point for

each possible threshold value results in a curve.
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ROC curves are two dimensional graphs with the true positive rate plot-

ted on the y-axis, and the false positive rate plotted on the x-axis. A ROC

graph depicts the relative tradeoffs between the benefits and costs of a par-

ticular classifier. The most frequently used performance measure in ROC

analysis is the AUC. The AUC of a classifier is equivalent to probability

that the classifier will rank a randomly chosen positive instance higher than

a randomly chosen negative instance.
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