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I. INTRODUCTION

The quantum Hall effect continuous to intrigue both ex-
perimentalists and theorists not only because of the beauti-
fully rich patterns visible in the data but also because of the
fascinating physics involved in the collective phenomena of
strongly interacting systems. The first suggestion of a con-
nection between the quantum Hall effect and the modular
group appeared in Ref. 1, although these authors focused on
a subgroup of the full modular group that did not turn out to
have any direct relevance to the current experimental data.
Subsequent papers on symmetries of the phase diagram of
the quantum Hall effect2,3 appeared almost simultaneously
from two very different directions and laid the foundations
for the application of modular symmetry to the quantum Hall
effect. Although Ref. 2 did not use the mathematical lan-
guage of modular symmetry the “Law of Corresponding
States” put forward in that reference is in fact equivalent to
the assumption of modular symmetry.4

Modular symmetry gives predictions5 for the manner in
which the conductivity of a two-dimensional quantum Hall
sample flows, as the temperature is varied keeping the mag-
netic field fixed—predictions which have already received
strong experimental support.6–10

While the flow diagram presented in Ref. 5 was for spin-
split samples the experimental data presented in Ref. 6 is for
spin-degenerate samples. Zeeman splitting in the context of
modular symmetry was analyzed in Ref. 11 and a flow dia-
gram, deformed by interactions between adjacent Landau
levels, was given but the fully spin-degenerate case has not
yet been treated using modular symmetry

In this paper restrictions on the temperature flow due to
modular symmetry are combined with a Zeeman splitting
analysis to determine the way in which temperature flow
changes as the Zeeman splitting is smoothly varied between
the two extremes of samples with well-split spins and fully
spin-degenerate samples. The analysis is restricted to situa-
tions with particle-hole symmetry, as modular symmetry is
particularly powerful in this case but does not give strong
predictions otherwise. A central prediction of the analysis is
that pairs of critical points of the quantum Hall phase tran-
sitions between adjacent plateaux in spin-split samples must
merge as the Zeeman splitting is reduced, as shown in Figs.
12 and 13.

II. MODULAR GROUP

The law of corresponding states,2,12 for isotropic quantum
Hall samples with spins well split, can be written in terms of
the complex conductivity

� = �xy + i�xx

�for isotropic samples �xx=�yy�. A general map between two
quantum Hall states can be constructed by iterating two gen-
erating maps:3,4,13 the Landau level addition transformation,
L,

� → � + 1

and the flux attachment transformation, F2,

� →
�

2� + 1
,

which attaches two units of statistical gauge field flux to each
electron �we use units with e2

h =1�.
In samples which enjoy particle-hole symmetry there is a

third map, the particle-hole transformation, P1,

� → 1 − �̄ .

These maps generalize Jain’s transformations on ground-
state wave functions14 to include nonzero Ohmic conductiv-
ity. Repeated iteration of F2 and L generate an infinite dis-
crete group which we shall denote �0�2�.

The infinite discrete group generated by repeated applica-
tions of L and F is called the modular group and is usually
denoted by ��1� in the mathematical literature.15 A general
element ����1� sends

� → ���� ª
a� + b

c� + d
, �1�

where a, b, c, and d are any four integers satisfying
ad−bc=1. Group multiplication can be realized in terms of
the 2�2 matrix

� = �a b

c d
� �2�

and demanding that det �=1. It is easy to check from the
definition �Eq. �1�� that, for any three such matrices satisfy-
ing �1�2=�3, we have �1��2����=�3���. Thus the group
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multiplication law is given by matrix multiplication.
The full modular group ��1� is not a symmetry of quan-

tum Hall effect, for example, the element � 0 1
−1 0 � sends

�→−1 /� which has a fixed point for �= i, i.e., �xx=1 and
�xy =0. There is no indication in the experimental data on the
quantum Hall effect that this point has any special signifi-
cance �though it is important in the insulator—
superconductor phase transition16,17�.

The group �0�2� is a subgroup of the modular group, it is
represented by matrices of the form �Eq. �2�� with the extra
condition that c be even. In matrix notation Landau level
addition and flux attachment are represented by L= � 1 1

0 1 � and
F2= � 1 0

2 1 �.
If the electron spins are not split then the story is differ-

ent. For simplicity first consider the situation if Zeeman
splitting is completely absent and states corresponding to
two different electron spins are completely degenerate. Then
Landau level addition sends

� → � + 2

or �
2 → �

2 +1, which is L2= � 1 2
0 1 �. Attaching two units of flux

to each electron sends

�

2
→

��

2
�

2��

2
� + 1

⇒ � →
�

� + 1
,

which is F= � 1 0
1 1 � acting on �. Thus spin generate Landau

levels give rise to an infinite discrete group generated by L2

and F. A general element of this group is of the form
�= � a b

c d � with a, b, c, and d integers satisfying ad−bc=1 but
with b restricted to be even. We denote this group by �0�2�.
In fact that �0�2� acting on � is the same as �0�2� acting on
�
2 . Particle-hole symmetry for degenerate spins is also modi-
fied to P2=�→2− �̄, so P2=P1+1.

For spins that have a slight splitting so that the Landau
levels corresponding to opposite spins are not completely
degenerate but are still close enough for there to be some
mixing between Landau level wave functions, one expects
L2 to be a symmetry rather than L. At the same time adding
two units of statistical flux to each electron in the individual
levels is described by F2. For this intermediate case therefore
the group is generated by L2 and F2 and a general element is
represented by �= � a b

c d � with ad−bc=1 and both b and c
even integers. This group is denoted by ��2�. Clearly
��2���0�2� and ��2���0�2�. We are led to suggest the
following sequence of symmetries as the Zeeman splitting
relative to the cyclotron energy is varied from large to small:

�0�2� → ��2� → �0�2� ,

thus the symmetry first decreases and then increases again as
the Zeeman splitting is varied.

Since the modular group has an infinite number of ele-
ments the law of corresponding states maps between an in-
finite number of quantum Hall phases, which is clearly a
mathematical idealization which is never realized in any
physical system. Obviously the symmetry breaks down in

various limits, such as weak magnetic field, when the Landau
level splitting becomes comparable with thermal energies, or
very strong magnetic fields, when a Wigner crystal is ex-
pected to form. The range of validity is discussed in Ref. 18.

It was pointed out in Ref. 19 that the law of corresponding
states applies to the ac conductivity in the limit of infinite
frequency rather than the dc conductivity. This is because the
conductivity is a function of frequency over temperature,
�xx�

�
T �, and the derivation of the law of corresponding states

in Ref. 2 takes the limit T→0 before �→0 and this does not
in general commute with the limit required to extract the dc
conductivity, namely, �→0 before T→0. The precise rela-
tionship between these two limits can only be explored in the
context of a specific microscopic theory for the conductivity
and is not accessible solely through infrared effective action
techniques such as the law of corresponding states. Never-
theless the law of corresponding states has been applied to dc
conductivities, for example, with regard to temperature
flows, and the experimental data are in remarkable agree-
ment with the predictions.6–10,18 While some microscopic
models may display a symmetry which makes the order in
which the limits are taken irrelevant19 this is not generic but
since we do not commit ourselves to a specific model here
we cannot address this question directly. Rather our philoso-
phy will be to develop the predictions of the law of corre-
sponding states, see where they lead, and future experiments
will test their validity.

III. TEMPERATURE FLOW

Scaling arguments20 suggest that, at low temperatures, the
dc conductivity should be a function of a single variable,
�� �B

T� �, rather than of the temperature T and magnetic field
B separately. Here �B=B−Bc is the deviation of the mag-
netic field from the critical value Bc separating two quantum
Hall phases and � is a scaling exponent, experimentally
��0.42	0.01.21 The conductivity depends on the electron
scattering length l and we define the scaling function


l��,�̄� = − l
d�

dl
.

Assuming l is a strictly monotonic function of temperature,
increasing as T decreases, the temperature flow described by
the scaling function


T��,�̄� = T
d�

dT

will have the same topology as the flow described by

l—they will have the same fixed points, 
T=0 if and only if

l=0. We do not need to determine either 
l or 
T exactly,
in fact if s�T� is any monotonic function of T, decreasing as
T decreases, then the flow described by


s��,�̄� = s
d�

ds

will have the same topology as both that of 
T and of 
l.
If the law of corresponding states correctly describes the

low-temperature physics then the scaling flow commutes
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with the law of corresponding states map. From this it can be
concluded that any value of the complex conductivity �� that
is a fixed point of the modular group �in the sense that there
exists an element � of the modular group such that
�����=��� must also be a fixed point of the scaling flow.4,13

This implies that


s���,�̄�� = 0.

This follows because the assumption �����=�� requires


s���,�̄�� = 
s������,���̄��� = s�d����
ds

�
��

=
1

�c�� + d�2
s���,�̄�� , �3�

which is only possible if �c��+d�2=1 or if 
s��� , �̄��=0 or
�. If �c��+d�2=1 then a��+b= 	�� and, excluding the
trivial case a= 	1, b=0, this is not possible if the Ohmic
conductivity ����xx�0 at the fixed point. Assuming

s��� , �̄�� is not infinite we conclude that 
s��� , �̄��=0 and
�� is a fixed point of the flow. The fixed points with
Im�����0 are isolated and easy to enumerate since

����� = �� ⇒ �� =
a − d 	 	�a + d�2 − 4

2c
.

Now ad−bc=1, with bc even for all three groups �0�2�,
�0�2�, and ��2�, hence ad must be odd so both a and d
must be odd. Demanding Im�����0 then requires that
−2
a+d
2. Hence a+d=0, 	1 but a and d are both odd
so 	1 is ruled out and we can conclude that d=−a. Hence

�� =
a + i

c
�4�

as the Ohmic conductivity, Im����, cannot be negative. A
matrix � that leaves �� fixed must now be of the form

� = �a b

c − a
�

with bc=−�1+a2� with a odd. Let a=2p+1 for some integer
p, then bc=−4p�p+1�−2 and bc=2 mod 4. In particular, b
and c cannot both be even so ��2� has no fixed points with
Im����0.

To summarize: �0�2� has fixed points above the real axis
of the form �Eq. �4�� with a odd and c even; �0�2� has fixed
points above the real axis of the form �Eq. �4�� with a and c
both odd; ��2� has no fixed points above the real axis.

Although any fixed point of the modular group with
Im�����0 must be a fixed point of the flow the converse
does not necessarily hold, there could be fixed points of the
flow that are not fixed points of the modular group. Any such
point would have an infinite number of images under the
group action. However there is no sign any such extra fixed
points in the experimental data for spin-split samples so we
shall assume that there are no fixed points for �0�2�, other
than those required by the symmetry. For brevity in the fol-
lowing this will be referred as the minimalist assumption. If
we assume that the topology of the flow varies smoothly as

the Zeeman energy is varied then the �0�2� fixed points can-
not suddenly disappear when �0�2� is broken to the smaller
group ��2�, they must move down toward the real axis. We
shall likewise assume that the only fixed points of the flow
for degenerate spins are those of �0�2� and these move
smoothly down toward the real axis as the degeneracy is
lifted.

The topology of the flow is determined by the fixed points
and some other rather mild assumptions,5 such as decreasing
Ohmic conductivity when �xx��xy as the temperature is re-
duced, as in a semiconductor, and attractive fixed points at
integer quantum Hall plateaux. We can plot the flow by
changing variables from � to ���� where � is invariant under
��2�, i.e., �������=����, with ����2�.11,22 Since 
s�� , �̄�
represents a vector flow in a two-dimensional space this is
just a change in coordinates in that space. In the new param-
etrization the flow is given by


���,�̄� = s
d�

ds
= 
s��,�̄��� ⇒ 
s��,�̄� =


�

��
,

where ��= d�
d� .

The invariant function � that has the smallest number of
poles and zeros in the complex plane is unique, up to a
constant rescaling and addition of a constant.23 It is most
easily expressed in terms of Jacobi � functions,

� =
�2

4

�3
4 ,

where

�3��� = 

n=−�

�

ei�n2� and �2 = 2

n=0

�

ei��n + 1/2�2�. �5�

It is also useful to define

�4
4��� = 


n=−�

�

�− 1�nei�n2� = �3
4��� − �2

4��� . �6�

Then these functions have the following transformation
properties under L and F2:

�2�� + 1� = ei�/4�2���, �2� �

2� + 1
� = 	2� + 1�2��� ,

�3�� + 1� = �4���, �3� �

2� + 1
� = 	2� + 1�3��� ,

�4�� + 1� = �3���, �4� �

2� + 1
� = 	2� + 1e−i�/2�4��� ,

�we use the notation of Ref. 23�.
Furthermore under P2, �i→ �̄i for i=2,3 ,4. Hence

particle-hole interchange swaps �↔ �̄ and assuming particle-
hole symmetry has the important consequence for the scaling
function that
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���,�̄� = 
���,�̄� = 
���̄,�� . �7�

This then implies that an expansion of 
 in powers of � and

�̄ has only real coefficients and we draw the important con-
clusion that, starting from any point for which � is real, the
flow can never generate an imaginary part for �. In other
words any curve on which � is real is in integral curve of the
flow:22 this is a key observation in creating the flow diagrams
below. In particular, � is real on vertical lines above the
integer points on the real line and one the semicircles of
radius 1/2 joining the integers �see Fig. 1�. While � is not
invariant under the larger groups �0�2� and �0�2� the follow-

ing functions of � are �1� �= �−1
�2 =−

�3
4�4

4

�2
8 is invariant under

�0�2� and �2� �= �

�1−��2 =
�2

4�3
4

�4
8 is invariant under �0�2�.

The functions � and � can be used to determine the to-
pology of the flow for �0�2� and �0�2�, respectively. Fixed
points of �0�2�, respectively, �0�2�, must be fixed points of
the flow, and these are enumerated in Eq. �4�. Next, as above,
we argue that demanding particle-hole symmetry implies that
curves on which �, respectively, �, is real will be integral
curves of the flow. The flow can then be modeled qualita-
tively by taking 
s to be a meromorphic function of �,

s���. Although there is no physical argument for meromor-
phicity by plotting the flow in this case we can get a picture
of what it looks like, the inclusion of �̄ dependence can only
result in a smooth deformation of the meromorphic flow
which leaves the fixed points invariant. Meromorphic func-
tions satisfying Eq. �3� are called modular forms in the math-
ematical literature15 and their properties are well known. For
�0�2� it was shown in5 that the minimalist assumption leads
to


s��� = −
�

��
=

��1 − ��
���2 − ��

=
1

i��2�3
4 − �2

4�
, �8�

where ��= d�
d� �the second and third forms of this equation

rely on Eq. �6� and the fact that

��1 − ��
��

=
1

i��3
4 , �9�

a result that can be derived using the techniques in Refs. 5
and 11�. The integral curves of the flow �Eq. �8�� are plotted
in Fig. 3.

It should be borne in mind that Eq. �8� does not give a
quantitative description of the temperature flow because the
function s�T� is undetermined. By changing s�T�, 
s can be
multiplied by a function of T but as long as s�T� is strictly
monotonic and real this will not change the fixed points nor
will it change the fact that curves on which � is real are
integral curves of the flow—it will merely change the rate at
which the flow lines in Fig. 3 are traversed as the tempera-
ture is changed, and this rate is not evident in the figure. Also
physical quantum Hall samples cannot be expected to give
meromorphic flow, in a real sample 
�� , �̄� will depend on �̄
and � independently, but similar arguments apply: �̄ depen-
dence can only distort the flow smoothly from the meromor-
phic flow shown leaving the fixed points invariant and, again
assuming particle-hole symmetry, the vertical lines above the

integers and the semicircles, together with their images under
�0�2�, will not be affected �Eq. �7� does not require mero-
morphicity�. Figure 3 should be compared to the experimen-
tal data in Refs. 7–9 for spin-split samples.

For �0�2� similar arguments applied to � lead to


s��� =
�

��
=

��1 − ��
���1 + ��

=
1

i���3
4 + �2

4�
�10�

and this flow is plotted in Fig. 11. This should be compared
to the experimental flow for the spin-degenerate sample in
Ref. 6—the agreement is remarkable.

For samples intermediate between degenerate and well-
split spins ��2� symmetry is not as powerful as there are no
fixed points with �xx�0. Nevertheless we would expect
there to be fixed points of the flow, the fixed points of �0�2�
for spin-split samples and of �0�2� for spin-degenerate
samples can hardly just disappear when the Zeeman splitting
is smoothly varied. The minimalist assumption cannot be
used for ��2�. We can however assume that the fixed points
of �0�2� and �0�2� persist when the Zeeman splitting is var-
ied but their position is no longer dictated by modular sym-
metry. We seek a smooth deformation from Figs. 3–11, Eqs.
�8�–�10�, as the Zeeman splitting is increased, a deformation
which is compatible with particle-hole symmetry,


����=
���̄�. In order to avoid creating new spurious fixed
points we keep the order of the polynomials in � fixed in the
numerators and denominators of Eqs. �8� and �10�, and this
dictates that the interpolating flow must be of the form


s��� =
��A + B��

���C + D��
, �11�

where A, B, C, and D are constants. Particle-hole symmetry
requires 
s���=
s��̄�, which dictates that A, B, C, and D be
real. Equation �9� shows that a factor �A+B��

�3
4�1−�� will appear in


s���, unless A=−B, and this would introduce a new zero
when �=− A

B that is not there in either Eq. �8� or Eq. �10�. To
avoid this we set A=−B and the only possible deformation
that is compatible with our assumptions is, up to an overall
constant factor,

2

σ

0 1

FIG. 1. �Color online� Lines on which the invariant function of
��2�, ���� in the text, is real.
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s��� = z
��1 − ��
���� + z�

=
1

i�

z

��2
4 + z�3

4�
�12�

with z independent of � and real. The free parameter z varies
from z=−2 for �0�2� to z=1 for �0�2� �an overall factor of 2
multiplying Eq. �8� does not change Fig. 3, indeed Eq. �8� is
only derived in Ref. 5 up to an overall positive constant�.

Figure 2 shows how the fixed point ��= 1+i
2 of �0�2�

moves as z is varied: particle-hole symmetry constrains it to
keep to the real curve of � shown in Fig. 1. The point asso-
ciated with z=1 can be gained from z=−2 either by going
anticlockwise or clockwise. Suppose first that z increases
monotonically between −2 and 1 as the Zeeman splitting is
varied smoothly from well-split spins, �0�2�, to degenerate
spins, �0�2�. Figure 2 shows that, as z is increased from −2
to −1, the fixed point at ��= 1+i

2 of the �0�2� flow �Fig. 3�
follows the semicircular arc of radius 1

2 , moving down to the
left until it hits the origin in the � plane,
��=0 when z=−1. It then continues up the imaginary axis,

through ��= i for z=− 1
2 to ��= i� for z=0 �near z=0, Eq.

�12� can be replaced with


s��� =
1

i�

z̃

�z̃�2
4 + �3

4�
, �13�

where z̃=1 /z, multiplying 
s by a constant does not change
the topology of the flow�. The fixed point subsequently
moves down from ��=1+ i� to ��=1+ i �a �0�2� fixed point,
Fig. 11� as z increases from 0 to 1. While experimental data
to date do show a fixed point on the semicircle spanning 1 to
0 that is to the left of 1+i

2 ,9,10,24 it does not seem likely that
this sequence of flows can be the correct one. A fixed point at
��= i when z=− 1

2 has never been seen in any Hall sample.
Indeed such fixed points were identified in Ref. 17 as being
associated with bosonic pseudoparticles excitations �as in the
superconductor-insulator transition of Ref. 16, for example�,
rather the fermionic pseudoparticle excitations of the quan-
tum Hall effect. Since no quantum Hall sample to date has

� �

σ

1

z=−1/2 z=1

z=−2

z=−1 |z|=

z=0

0

FIG. 2. �Color online� The movement of the �0�2� fixed
��= 1+i

2 as the parameter z is varied away from −2. The arrows show
the direction of increasing z.

FIG. 3. �Color online� Spins well split, �0�2� symmetry.

FIG. 4. �Color online� z=−10.

FIG. 5. �Color online� z=−100.
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ever exhibited a critical point at �= i we exclude this possi-
bility.

An alternative possibility is that the flow morphs from
Figs. 3–11 by decreasing z from −2 going through −� to +�
to continue down to +1. The nine plots in Figs. 3–11 show
the series of flows for

z = − 2, − 10, − 100, 	 �, 100, 20, 10, 2, and 1.

The fixed point at 3+i
2 for samples with well-split spins moves

left and down as the Zeeman splitting is decreased, along the
semicircle of radius 1

2 centered �= 3
2 , until it hits the real axis

at �=1 �for �z�=��, where it merges with the incoming fixed
point coming from 1+i

2 on the left. It then moves vertically
upwards to the point 1+ i when z=1, which is the fixed point
for degenerate samples with symmetry �0�2�. Every flow in
the sequence has ��2� symmetry, which is enhanced to �0�2�
or �0�2� at the extreme values z=−2 and z=1, respectively.

In real samples particle-hole symmetry is hardly likely to
be an exact symmetry of the system, there will be deviations
from this picture. But any deviations will be small if particle-
hole interchange is a reasonably good symmetry: for ex-
ample, if

mp−mh

mp+mh
is small, where mp is the particle mass and mh

the hole mass. In particular, the collision of the critical points
at �=1 ��z�=�� seems likely to be an artifact of the math-
ematical idealization of exact particle-hole symmetry, as
there is no obvious physical mechanism governing the merg-
ing of two critical points as the Zeeman energy is reduced.
The most plausible scenario here is that the merge is
postponed in a real sample until the Zeeman splitting is re-
duced to very small values and the proposed trajectory of a
real sample, in which particle-hole interchange is a good but
not exact symmetry, is shown in Fig. 12. This is a small
perturbation of the mathematically idealized flows shown in
Figs. 3–11 which is still compatible with the proposed sym-
metries.

FIG. 6. �Color online� �z�=�.

FIG. 7. �Color online� z=100.

FIG. 8. �Color online� z=20.

FIG. 9. �Color online� z=10.
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IV. CONCLUSIONS

The topology of the temperature flow of conductivities in
quantum Hall samples is tightly constrained by the law of
corresponding states, expressed in terms of modular transfor-
mations on the complex conductivity �Eq. �2��. For the ex-
treme cases of well-split spins and degenerate spins the criti-
cal points in the complex plane are determined by the
symmetry. For intermediate values of the Zeeman splitting
modular symmetry does not determine the position of the
critical points but one can assume that they move around the
complex plane in a continuous manner as the Zeeman split-
ting is varied.

In the case of samples exhibiting particle-hole symmetry,
modular symmetry is particularly powerful, leading to the
statement that the curves in Fig. 1, and their images under
��2� modular transformations will be trajectories of the con-
ductivity flow as the temperature is varied keeping the mag-
netic field fixed. This statement should be true for any
Zeeman splitting. Zeeman energies which are large

enough to give well-split spins result in critical points
at �xy + i�xx=n+ 1+i

2 between integer Hall plateaux
�xy =n and n+1 �Fig. 3�. Zeeman energies which are so
small that the spins are degenerate give critical points at
�xy + i�xx=2n+1+ i between integer Hall plateaux �xy =2n
and 2n+2 �Fig. 11�.

The form of the flow as the Zeeman splitting is varied
from the spin split to the spin-degenerate case is shown in
Figs. 3–11. Figure 12 shows proposed trajectories of two
critical points as the Zeeman energy is reduced in a real
sample exhibiting symmetry under particle interchange
which is good but not exact.

The analysis here has assumed that the parameter z varies
monotonically as the Zeeman energy is varied, implying that
the critical point at �= 1+i

2 in the transition between �=1 and
�=0 in spin-split samples moves to the right, down toward
to �=1, as the Zeeman splitting is reduced. There is as yet
no experimental evidence for such behavior: indeed in Refs.
9, 10, and 24 a critical point is found on the semicircle span-
ning 0 to 1 in the complex conductivity plane which is to the
left of �= 1+i

2 . This could be a consequence of a constant
rescaling of �xx,

11 or, perhaps more likely, it may indicate

FIG. 10. �Color online� z=2.

FIG. 11. �Color online� Spins degenerate, �0�2� symmetry.

1 2

σ

FIG. 12. �Color online� Proposed movement of the fixed point
�= �1+i�

2 for nondegenerate spins, �0�2�, to �=1+ i for spin-
degenerate samples, �0�2�, as the Zeeman energy is reduced.

1 2

σ

FIG. 13. �Color online� Possible movement of the fixed points if
the mathematical parameter z does not vary monotonically with the
Zeeman splitting.
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that z is not monotonic. It could be that the critical point at
�= 1+i

2 �z=−2 in Eq. �12�� in spin-split samples first starts to
move down and to the left �z�−2� and then reverses to
retrace its steps back to z=−2 before starting to travel down
to the right toward �=1 as z decreases below −2. A possible
trajectory is shown in Fig. 13. While this would be compat-
ible with the experimental data to date any physical explana-
tion of such a trajectory, which is certainly allowed by the
law of corresponding states combined with particle-hole
symmetry, would go beyond the general predictions follow-
ing from these assumptions and would probably require a

more specific microscopic model. More experimental data
would be welcome in order to determine the true behavior of
the critical points.
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