Polylog space compression is incomparable with
Lempel-Ziv and pushdown compression

Elvira Mayordomo'* and Philippe Moser?*

! Departamento de Informética e Ingenierfa de Sistemas, Marfa de Luna 1,
Universidad de Zaragoza, 50018 Zaragoza, SPAIN. elvira(at)unizar.es
2 Department of Computer Science, National University of Ireland Maynooth,
Maynooth, Co. Kildare, Ireland. pmoser(at)cs.nuim.ie

Abstract. This paper considers online compression algorithms that use
at most polylogarithmic space (plogon). These algorithms correspond
to compressors in the data stream model. We study the performance
attained by these algorithms and show they are incomparable with both
pushdown compressors and the Lempel-Ziv compression algorithm.

Keywords: compression algorithms, plogon, computational complexity, data
stream algorithms, Lempel-Ziv algorithm, pushdown compression.

1 Introduction

The compression algorithms that are required for today massive data applica-
tions necessarily fall under very limited resource restrictions. In the case of the
data stream setting, the algorithm sees a stream of elements one-by-one and
does not have enough memory to store the whole stream, in fact the amount of
available memory is far below linear [3,12]. In the context of XML data bases
the main limiting factor being document size renders the use of syntax directed
compression particularly appropriate, i.e. compression centered on the grammar-
based generation of XML-texts and performed with stack memory [9, 15].

In this paper we introduce the concept of polylogarithmic space online com-
pressors (plogon), i.e., compression algorithms that use at most polylogarithmic
memory while accessing the input only once. This type of algorithms models the
compression that can actually be performed in the setting of data streams.

‘We compare the performance of plogon compressors with two important cases
of lossless restricted memory compression algorithms, namely Lempel-Ziv and
pushdown (stack memory) compressors.

The widely-used Lempel-Ziv algorithm LZ78 [16] was introduced as a general
purpose compression algorithm that compresses any sequence at least as well as
any finite-state compressors (in terms of asymptotic compression ratio). This
means that for infinite sequences, the algorithm attains the (a posteriori) finite

* Research supported in part by Spanish Government MEC and the European Re-
gional Development Fund (ERDF) under Project TIN 2005-08832-C03-02.

state or block entropy. If we consider an ergodic source, the Lempel-Ziv compres-
sion coincides exactly with the entropy of the source with high probability on
finite inputs. This second result is useful when the data source is known, but it
is not informative for arbitrary inputs, i.e. when the data source is unknown (no-
tice that an infinite sequence is Lempel-Ziv incompressible with probability one).
Therefore for the comparison of compression algorithms on general sequences,
either an experimental or a formal approach is needed, such as that used in [14].
In this paper we follow [14] using a worst case approach, that is, we consider
asymptotic performance on every infinite sequence.

We shall use our formalization of pushdown compression (stack memory)
from [2] and [1], together with a more feasible model where the pushdown com-
pressor is required to be invertible by a pushdown transducer (see Section 3.2). As
mentioned before, stack compression is especially adequate for XML-texts and
has been extensively used [9,15]. In fact XML compression can be performed
with an even more restrictive computation model, known as visibly pushdown
automata [4, 13], in which the input symbols are distinguished in three categories,
namely call symbols, return symbols, and internal symbols, that determine the
type of stack movement, that is, push, pop, or null.

In this paper we study the performance of plogon compressors compared to
Lempel-Ziv’s algorithm and pushdown compressors. This comparison is made in
terms of asymptotic compression ratio for infinite sequences, and without any a
priori assumption on the data’s source.

We prove that the performance of plogon compressors and Lempel-Ziv’s
compression scheme is incomparable in the most general sense. We construct
a sequence that Lempel-Ziv compresses optimally but that any plogon trans-
ducer fails to compress at all, and vice-versa. In both cases the separation is the
strongest possible, i.e. optimal compressibility is achieved in the worst case (i.e.
almost all prefixes of the sequence are optimally compressible), whereas incom-
pressibility is present even in the best case (i.e. only finitely many prefixes of the
sequence are compressible).

For the comparison of plogon and pushdown transducers, we use the more
general pushdown model (where the pushdown compressor need not be invertible
by a pushdown transducer) for incompressibility and the more restrictive (where
the pushdown compressor is required to be invertible by a pushdown transducer)
for compressibility, thus obtaining the most general results. We show that the
more restrictive invertible pushdown compressors or the visibly pushdown ones
achieve a worst case compression that no plogon compressor can attain, even in
the best case. On the other hand plogon compressors obtain optimal compression
on a sequence where pushdown compression is useless even with the help of
endmarkers.

In [2] we studied the relation between pushdown and Lempel-Ziv compress-
ibility, and showed their incomparability. This together with the results in this
paper, shows the incomparability of the three restricted memory compression
schemes that are Lempel-Ziv, pushdown compressors, and plogon compressors.

The paper is organized as follows. Section 2 contains some preliminaries. In
section 3, we present our model of plogon compressor along with some basic
properties and notations, as well as a review of both pushdown compressors and
the Lempel-Ziv (LZ78) algorithm. In section 4 we show that plogon compression
is incomparable with both Lempel-Ziv and pushdown compression. We end with
a brief conclusion on connections and consequences of these results for effective
dimension and prediction algorithms.

Due to lack of space, full proofs will appear in the journal version of this

paper.

2 Preliminaries

Let us fix some notation for strings and languages. Let X' be finite alphabet.
A string is an element of X" for some integer n and a sequence is an element
of X*°. For a string z, its length is denoted by |z|. If ,y are strings, we write
x < y (called lexicographic order) if |z| < |y| or || = |y| and x precedes y in
alphabetical order. The empty string is denoted by A. For § € X and i,j €
N, we write S[i..j] for the string consisting of the i*" through ;' bits of .S, with
the convention that S[i..j] = A if ¢ > j, and S[0] is the leftmost bit of S. We say
string y is a prefix of string (sequence) x, denoted y C x, if there exists a string
(sequence) a such that 2 = ya. For a string z, x~1 denotes = written in reverse
order, and Z is the string obtained by flipping every bit of = (in the case z is a
binary string). For a function f : A — B, f(z) =L means f is not defined on
input x.

Given a sequence S and an (injective) function 7' : X* — X* the upper and
lower compression ratios are given by

pr(S) = hmme7 and
n— oo n

Rr(S) = limsup M
n—o0 n

Given a sequence S and a class of functions 7', the upper and lower compression
ratios are given by

pT(S) = Tlnipr(S), and

pr(S) corresponds to the best-case performance of 7-compressors on S and
R7(S) corresponds to the worst-case performance of 7-compressors on S.
Notation. We use K (w) to denote the standard (plain) Kolmogorov complexity,
that is, fix a universal Turing Machine U. Then for each string w,

K (w) = min{|p| | U(p) = w}

i.e., K(w) is the size of the shortest program that makes U output w. Although
some authors use C(w) to denote (plain) Kolmogorov complexity, we reserve
this notation to denote a particular compression algorithm C' on input w.

3 Compressors with low resource-bounds

In this section we review several families of lossless compression methods that use
very low computing resources, in particular that of poly-logarithmic space com-
putable compressors, stack-computable compressors, and the celebrated Lempel-
Ziv algorithm.

3.1 plogon compressors

Let us define the family of compressors that can be computed online with at most
poly-logarithmic space. Notice that these resource bounds match exactly those
of the data stream model [3,12], where the input size is massive in comparison
with the available memory, and the input can only be read once.

Definition 3.1. (Hartmanis, Immerman, Mahaney [10]) A Turing machine M
s a plogon transducer if it has the following properties, for each input string w

the computation of M (w) reads its input from left to right (no turning back),
— M(w) is given |w| written in binary (on a special tape),

M (w) writes the output from left to right on a write-only output tape,

— M(w) uses memory bounded by log(|w|)¢, for a constant c.

We denote with plogon the class of plogon transducers.

Note that contrary to Finite State transducers, a plogon transducer is not
necessarily a mere extender, i.e., there is a plogon transducer M and strings w, x
such that M (wx) 4 M(w).

Definition 3.2. A plogon transducer C' : {0,1}* — {0,1}* is an information
lossless compressor (ILpC) if it is 1-1.

Notation. The best-case plogon compression ratio of a sequence S € X°° is
Pplogon (S) = inf{pc(S) | C is an ILpC}.

The worst-case plogon compression ratio of a sequence S € X is Rpjogon(S) =
inf{Rc(S) | C is an ILpC}.

3.2 Pushdown compressors

We next introduce the definition of pushdown computable compressors from
[1]. Tt corresponds to the natural concept of pushdown computation of a single
function that can be an information-lossless compressor.

The use of pushdown or stack compression has recently received new atten-
tion in the design of new compression schemes for XML where the use of syntax
directed compression is particularly adequate [9,15]. In the context of XML, a
restriction of pushdown automata is used, known as visibly pushdown automata
[4,13], which are a restriction of the concept below. Therefore the compression
ratio attained by visibly pushdown automata is an upper bound on the com-
pression ratio attained through the pushdown compressors defined next.

Definition 3.3. A bounded pushdown compressor (BPDC) is an 8-tuple
C= (Q7E,F,(5,V,Q(),ZQ,C)
where

— @ is a finite set of states

X is the finite input alphabet

I' is the finite stack alphabet

§:Q x (ZU{A}) x I' = Q x I'* is the transition function

v:Q x X xI'— X* is the output function

— qo € Q is the initial state

— zo € I' is the start stack symbol

— ¢ € N is an upper bound on the number of A-rules per input symbol

We use dg and Jr- for the projections of function . Note that the transition
function 0 accepts A as an input character in addition to elements of X, which
means that C' has the option of not reading an input character while altering
the stack, such a movement is called a A-rule. In this case §(q, \,a) = (¢, \),
that is, we pop the top symbol of the stack. To enforce determinism, we require
that at least one of the following hold for all ¢ € Q and a € I":

— 6(g, A\ a) =1,
— 6(g,b,a) =1L forall b e X.

We restrict § so that zg cannot be removed from the stack bottom, that is, for
every ¢ € Q, b € XU {A}, either §(q,b,20) =L, or §(q,b,20) = (¢',v20), where
¢ € Qandv e I

There are several natural variants for the model of pushdown transducer
[5], both allowing different degrees of nondeterminism and computing partial
(multi)functions by requiring final state or empty stack termination conditions.
Our purpose is to compute a total and well-defined (single valued) function in
order to consider general-purpose, information-lossless compressors.

Notice that so far we have not required that the computation should be in-
vertible by another pushdown transducer, which is a natural requirement for
practical compression schemes. We shall also consider an invertible notion of
pushdown compressors, where we explicitly require the computation to be in-
vertible by another pushdown transducer; more details to follow at the end of
the present section.

We first consider the transition function ¢ as having inputs in @ x (X U{A}) x
I', meaning that only the top symbol of the stack is relevant. Then we use the
extended transition function §* : Q x X* x I't — Q x I'*, defined recursively as
follows. Forg € Q,v e I't,w € ¥* and b€ ¥

(5*((],)\7 ’U) :{ 5*(6Q(q7 >\a ’U), >\a 5F* (Qa Aa ’U)), if 6((17 >\a ’U) #J_’

(g,v), otherwise.

5*(5Q (56 (Q7 w, U)a b7 57"* (Q7 w, U))a Aa 6F* (66 (qa w, U): b7 67"* (Q7 w, U)))7
6*(q, wb,v) = if 0* (¢, w,v) #L and §(65,(q, w,v), b, 67 (¢, w,v)) #L;
1L

, otherwise.

That is, A-rules are implicit in the definition of §*. We abbreviate §* to 9,
and 6(qo, w, 29) to §(w). We define the output from state ¢ on input w € X* with
z € I'* on the top of the stack by the recursion v(g, A, z) = A,

V(Q7wb7 Z) = V(Qasz) V(éQ(q,’LU,Z),b, 6F* (Q7wvz))

The output of the compressor C on input w € X* is the string C'(w) = v(qo, w, 2¢).
The input of an information-lossless compressor can be reconstructed from
the output and the final state reached on that input.

Definition 3.4. A BPDC C = (Q,X,I,0,v,qo, 20,¢) is information-lossless
(IL) if the function

X=X xQ
w = (C(w), o (w))

is one-to-one. An information-lossless pushdown compressor (ILPDC) is a BPDC
that is IL.

Intuitively, a BPDC compresses a string w if |C'(w)| is significantly less than
|w]. Of course, if C' is IL, then not all strings can be compressed. Our interest
here is in the degree (if any) to which the prefixes of a given sequence S € X
can be compressed by an ILPDC.

Notation. The best-case pushdown compression ratio of a sequence S € X°°
is ppp(S) = inf{pc(S) | C is an ILPDC}.

The worst-case pushdown compression ratio of a sequence S € ¥ is Rpp(S) =
inf{Rc(S) | C is an ILPDC}.

As mentioned earlier, the standard PD compression model does not guarantee
the decompression to be feasible and it is currently not known whether the
exponential time brute force inversion can even be improved to polynomial time.
To guarantee both decompression and compression to be feasible, we require the
existence of a PD machine that given the compressed string (and the final state),
outputs the decompressed one. This yields two PD compression schemes, the
standard one (PD) and invertible PD. Contrary to Finite State computation,
it is not known whether both are equivalent. This is by no means a limitation,
since all results in this paper are always stated in the strongest form, i.e. we
obtain results of the form “X beats PD” and “invertible PD beats X”.

Here is the definition of invertible PD compressors.

Definition 3.5. (C, D) is an invertible PD compressor (denoted invPD) if C
is an ILPDC and D is a PD transducer s.t. D(C(w),dg(w)) = w, i.e. D, given
both C(w) and the final state, outputs w.

In section 4.4 in order to make our result stronger we will also consider PDC
that have endmarkers, a characteristic that can achieve a better compression

rate. In this case the information lossless (IL) condition is relaxed to the function
X=X xQ
w = (C(w$),dq(w))

being one-one, for § a fixed symbol out of X.

3.3 Lempel Ziv compression scheme

Let us give a brief description of the classical LZ78 algorithm [16]. Given an
input x € X*, LZ parses z in different phrases z;, i.e., t = z125 ...z, (x; € X*)
such that every prefix y C x;, appears before x; in the parsing (i.e. there exists
J <ist. x; =y). Therefore for every i, x; = x;(;)b; for (i) < i and b; € X. We
sometimes denote the number of phrases in the parsing of « as P(z). After step
1 of the algorithm, the ¢ first phrases x1, ..., x; have been parsed and stored in
the so-called dictionary. Thus, each step adds one word to the dictionary.

LZ encodes z; by a prefix free encoding of x;(;) and the symbol b;, that is, if
T = x1x2...T, as before, the output of LZ on input x is

LZ(:L‘) = Cl(l)blcl(g)bg N Cl(n)bn

where ¢; is a prefix-free coding of ¢ (and zg = \).
LZ is usually restricted to the binary alphabet, but the description above is
valid for any alphabet X.

4 The performances of the LZ78 algorithm, plogon
compressors and pushdown compressors are
incomparable

In this section we prove that the new family of compressors we have intro-
duced, plogon, is incomparable with two previously studied restricted memory
compression algorithms, that are pushdown compressors and Lempel Ziv com-
pression scheme. That is, on different individual sequences plogon can beat LZ78
and pushdown whereas on others it can be outperformed by those two methods.
In all cases we get low worst-case rate (p) for one method versus high best-case
rate (R) for the other, i.e. the widest possible separation between them. Also
regarding the two PD compression schemes (standard PD and invertible PD) we
always prove the strongest result possible, i.e. we show results of the form “X
beats PD” and “invertible PD beats X”.
The comparison of pushdown and Lempel Ziv has been presented in [2].

4.1 plogon beats Lempel Ziv

Our first result uses a Copeland-Erdos sequence [6, 7] on which Lempel-Ziv has
maximal compression ratio, whereas with logspace each prefix of the sequence
can be completely reconstructed from its length.

Theorem 4.1. There exists a sequence S such that
Rplogon(S) =0 and pLz(S) =1.

Proof. Let S = E({0,1}*) = 0100011011000. .. be the enumeration of binary
strings in the standard order. LZ does not compress S at all, for this algorithm
it is the worst possible case, i.e.

prz(S) = 1.

For any input w, with |w| = n, let m € N, € {0,1}* be such that w =
S[1...m]z,and S[1...m+1] Z w. Then we define compressor C' as C(w, |w|) =
dbin(m)01z, where dbin(m) is m written in binary with every bit doubled (such
that the separator 01 can be recognized). C is clearly 1-1. C' is plogon, because
on input (w,n), C reads the input online to check that w is a prefix of S (i.e.
the standard enumeration of binary strings); the biggest string to check has size
logn, therefore the check can be done in plogon. As soon as the check fails, C
outputs the length (in binary, with every bit doubled) of the prefix of the input
that satisfied the check (at most 2logn bits) followed by 01 and the rest of the
input.

The worst case compression ratio for sequence S is given by

Rpiogon (S) = lim sup M = lim sup

n—oo n n— oo

21
o8N _

4.2 Lempel Ziv beats plogon

Our second comparison detects sequences on which Lempel-Ziv achieves optimal
compression whereas a plogon compressor has the worst possible performance.
The construction is based on repetition of Kolmogorov random strings.

Theorem 4.2. There exists a sequence S such that
RLz(S) =0 and pplogon(S) =1.

Proof. Let A,c € N with ¢ > 7. For each i € N, let R; be a Kolmogorov random
string (i.e. K(R;) > i — A for A the constant just fixed) with |R;| = i. Let

S, =R R¥R ...R"

n

(R™ means n¢ copies of R,,) and let S be the infinite sequence having all S,, as
prefixes.

Lemma 4.3.

for n large enough.

Lemma 4.4. Let S, ; = Ri1R3 RS ... R R 41 where 1 <t < (n+1)°. Then

n

1LZ(Snt)| _ n(etn)/2
|Spel T metd

for n large enough.

Lemma 4.5. For almost every k, W < k167072 G e for any ¢ > T
Rz (S)=0.

Let us show that the sequence S is not compressible by ILpCs. For this we
show that each large substring x of the input that is a Kolmogorov random
word cannot be compressed by a pushdown transducer, independently of the
computation performed before processing x.

Let C be an ILpC. For strings z, «, 8, with z = az(and |z| = m, denote
by C(s,z,m) the output of C' starting in configuration s and reading z out of
an input of length m. A valid configuration, is a configuration s such that there
exists a string ¢ such that C(sg,c,m) ends in configuration s, where sg is the
start configuration of C. For example if s is the configuration of C' after reading
a, then C(s, x,m) is the output of C while reading part z of input z = axb. Note
that |s| < log(m)®M).

Lemma 4.6. Let C be an ILpC, running in space log®m, and let 0 < T <
1. Then for every d € N and almost every r € N, for every random string
x € {0,1}" (with K(x) > T|z| — A for some fixed constant A), for every t
(x| <t <|z|?) and for every valid configuration s (|s| < log"t)

|C(s,z,t)| > T|x| — log?® |].

Proof. Suppose by contradiction that C(s,z,t) = p, with |p| < Tr — log®*r;
denote by s* the configuration of C' after having read x. Then p’ = (s%,s,t,r,p)
(p" is encoded by doubling all bits in s%,s,t,r, separated by the delimiter 01
followed by p) yields a program for x:

“Find y with |y| = r such that C(s,y,t) = p, and C ends in configuration s*
after reading y.”

y is unique because otherwise suppose there are two strings v,y (|y| = |v/|)
such that C(s,y,t) = C(s,y',t), and C ends in the same configuration on y and
y'. Let b be a string that brings C' into configuration s. Then for z = 1*~1®¥l we
have C(byz,t) = C(by'z,t) which contradicts C being 1-1. Therefore y is unique,
i.e. y = x. Thus for r sufficiently large

[p'| < 2(|s"|+|s]+|t|+|r]) +|p| < 2(log” rd4log” rd+logrd+logr)+Tr—log2“r

log®® r

<Tr-—
which contradicts the randomness of x.

Lemma 4.7. Let C be an ILpC, running in space log® m. Then for every e > 0

and for almost every m, w >1—¢€i.e., Pplogon(S) = 1.

Proof. Let € > 0 and let € = ;55 Let n,t,1 (0 <1 <n, 0 <t <n be such

that S[1...m] = S,_1RLR,[1...1].

The idea is to apply Lemma 4.6 to RS,™ ... RV Rt R, [1...1]. Let d be
such that (e'n)? > n°*? (for all n > 2), i.e. (¢n)? > m. By Lemma 4.6, C on
input S[1...m], will output at least j — log®® j bits on each R; (¢n < j < n).
Therefore

n—1
IC(S[L...m])| > > (j —log* j)j
j=¢€'n
whence
CSm])| | Eioin i —log™) 0,6~ ad)
m D L (S V) TS e+ (t+)

n—1 -
-y, e
— n—1 .

(I+a) o gt

where «, @’ > 0 can be chosen arbitrarily small (for n large enough). Let o, o’ > 0
be such that 1=% > 1 — ¢/2. Thus

1+a’
...m —« -« e‘znl_ljcﬂ j—Y e'net?
C(S[1 21 1 >
m T 14+ 14 Z?;lljwrl “ 14+« n/3(n/3)ct!
1 —
=1 a/ — €32 > 1 —¢/2 —¢/4
-«
>1—¢€.

Since € is arbitrary, pplogon(S) = 1.

This finishes the proof of Theorem 4.2.

4.3 invPD beats plogon

The following result shows that both invertible pushdown automata and visibly
pushdown automata outperform plogon compressors on certain sequences.

Theorem 4.8. For each € > 0 there exists a sequence S such that
RianD(S) S 1/2 cmd pplogon(s) Z 1—ce

Visibly pushdown automata are defined in [4,13] and are extensively used
in the compression of XML. For these automata the input alphabet has three
types of symbols, call symbols, return symbols, and internal symbols. The main
restriction is that while reading a call, the automaton must push one symbol,
while reading a return symbol, it must pop one symbol (if the stack is non-
empty), and while reading an internal symbol, it can only update its control
state.

Theorem 4.9. For each € > 0 there exists a sequence S such that

RVisiblyPD(S) S 1/2 and pplogon(s) Z 1—e

4.4 plogon beats PD

The next result shows that plogon compressors outperform pushdown compres-
sors on certain sequences.

Theorem 4.10. There exists a sequence S such that
Rplogon(s) =0 and pPD(S) = 1.

This last theorem also holds even when considering that the pushdown com-
pressors input has an endmarker, a characteristic that can achieve a better com-
pression rate.

Theorem 4.11. There exists a sequence S such that

Rplogon(s) =0 and PPD with endmarker(s) =1

5 Conclusion

The equivalence of compression ratio, effective dimension, and log-loss unpre-
dictability has been explored in different settings [8, 11, 18]. It is known that for
the cases of finite-state, polynomial-space, recursive, and constructive resource-
bounds, natural definitions of compression and dimension coincide, both in the
case of infinitely often compression, related to effective versions of Hausdorff
dimension, and that of almost everywhere compression, matched with packing
dimension. The general matter of transformation of compressors in predictors
and vice versa is widely studied [19].

In this paper we have done a complete comparison of plogon compression
with both pushdown and LZ-compression. It is straightforward to construct a
prediction algorithm based on Lempel-Ziv compressor that uses similar comput-
ing resources, and it has been proved in [1] that bounded-pushdown compression
and dimension coincide. This leaves us with the natural open question of whether
each plogon compressor can be transformed into a plogon prediction algorithm,
for which the log-loss unpredictability coincides with the compression ratio of
the initial compressor, that is, whether the natural concept of plogon dimension
coincides with plogon compressibility. A positive answer would get plogon com-
putation closer to pushdown devices, and a negative one would make it closer to
polynomial-time algorithms, for which the answer is likely to be negative [17].

References

1. P. Albert, E. Mayordomo, and P. Moser. Bounded pushdown dimension vs lempel
ziv information density. Technical Report TR07-051, ECCC: Electronic Coloquium
on Computational Complexity, 2007.

2. P. Albert, E. Mayordomo, P. Moser, and S. Perifel. Pushdown compression. In
Proceedings of the 25th Symposium on Theoretical Aspects of Computer Science
(STACS 2008), pages 39-48, 2008.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58:137-147, 1999.
R. Alur and P. Madhusudan. Adding nesting structure to words. In Proceedings of
the Tenth International Conference on Developments in Language Theory, volume
4036 of Lecture Notes in Computer Science. Springer, 2006.

J. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown au-
tomata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages,
volume 1, Word, Language, Grammar, pages 111-174. Springer-Verlag, 1997.

D. G. Champernowne. Construction of decimals normal in the scale of ten. J.
London Math. Soc., 2(8):254-260, 1933.

A. Copeland and P. Erdés. Note on normal numbers. Bulletin of the American
Mathematical Society, 52:857-860, 1946.

J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension.
Theoretical Computer Science, 310:1-33, 2004.

S. Hariharan and P. Shankar. Evaluating the role of context in syntax directed
compression of xml documents. In Proceedings of the 2006 IEEE Data Compression
Conference (DCC 2006), page 453, 2006.

J. Hartmanis, N. Immerman, and S. Mahaney. One-way log-tape reductions. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science
(FOCS’18), pages 65-72. IEEE Computer Society, 1978.

J. M. Hitchcock. Effective Fractal Dimension: Foundations and Applications. PhD
thesis, Iowa State University, 2003.

P. Indyk and D. Woodruff. Optimal approximations of the frequency moments of
data streams. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing (STOC 2005), pages 202-208. ACM, 2005.

V. Kuma, P. Madhusudan, and M. Viswanathan. Visibly pushdown automata for
streaming xml. In International World Wide Web Conference WWW 2007, pages
1053-1062, 2007.

J. I. Lathrop and M. J. Strauss. A universal upper bound on the performance of the
Lempel-Ziv algorithm on maliciously-constructed data. In B. Carpentieri, editor,
Compression and Complezity of Sequences ’97, pages 123-135. IEEE Computer
Society Press, 1998.

C. League and K. Eng. Type-based compression of xml data. In Proceedings of
the 2007 IEEE Data Compression Conference (DCC 2007), pages 272-282, 2007.
A. Lempel and J. Ziv. Compression of individual sequences via variable rate coding.
IEEE Transaction on Information Theory, 24:530-536, 1978.

M. Lépez-Valdés and E. Mayordomo. Dimension is compression. In Proceedings of
the 30th International Symposium on Mathematical Foundations of Computer Sci-
ence, volume 3618 of Lecture Notes in Computer Science, pages 676—685. Springer-
Verlag, 2005.

E. Mayordomo. Effective fractal dimension in algorithmic information theory. In
New Computational Paradigms: Changing Conceptions of What is Computable,
pages 259-285. Springer-Verlag, 2008.

D. Sculley and C. E. Brodley. Compression and machine learning: A new perspec-
tive on feature space vectors. In Proceedings of the Data Compression Conference
(DCC-2006), pages 332-341, 2006.

