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Abstract

In this thesis we present details of the design, development and

application of a large scale exact diagonalisation code named

DoQO (Diagonalisation of Quantum Observables). Among the

features of this code are its ability to exploit physical symme-

tries and the fact that it has been designed to run in parallel

to take advantage of modern high performance computing re-

sources. The primary motivation for developing this code has

been the investigation of exotic phases in quantum lattice mod-

els, and in particular of topological phases. A significant portion

of the thesis concerns the investigation of supersymmetric lattice

models, which involves significant use of the developed DoQO

code. These are a relatively new (2003) family of models consist-

ing of spinless fermions hopping on a lattice with the interactions

tuned to a point where the spectrum exhibits supersymmetry.

These models are extremely rich in the physics that they exhibit.

Among the phases believed to exist in these models are critical,

super-frustrated and super-topological phases. DoQO was also

employed to investigate finite size effects in the Kitaev honey-

comb lattice model. This is a spin model which exhibits both

abelian and non abelian topological phases.

i



Contents

1 Introduction 1

1.1 Topological phases of matter . . . . . . . . . . . . . . . . . . . 2

1.2 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Numerical tools . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Exact diagonalisation . . . . . . . . . . . . . . . . . . . 4

1.3.2 Quantum Monte Carlo . . . . . . . . . . . . . . . . . . 5

1.3.3 Approximative techniques . . . . . . . . . . . . . . . . 5

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Diagonalisation of Quantum Observables 7

2.1 Quantum observables . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Employing symmetries . . . . . . . . . . . . . . . . . . 9

2.2 Software structure and usage . . . . . . . . . . . . . . . . . . . 12

2.2.1 Compiling DoQO . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Basic usage . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Exploiting symmetries . . . . . . . . . . . . . . . . . . 16

2.2.4 Nearest neighbour exclusion . . . . . . . . . . . . . . . 19

2.2.5 Additional parameters . . . . . . . . . . . . . . . . . . 19

2.3 Individual software components . . . . . . . . . . . . . . . . . 22

2.3.1 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Perfect mapping functions . . . . . . . . . . . . . . . . 24

2.3.3 Distributed basis arrays . . . . . . . . . . . . . . . . . 25

2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Performance conclusions . . . . . . . . . . . . . . . . . 31

ii



2.A Appendix: Matrix memory requirements . . . . . . . . . . . . 32

2.B Appendix: Operator Construction . . . . . . . . . . . . . . . . 33

2.B.1 Spin half systems . . . . . . . . . . . . . . . . . . . . . 34

2.C Appendix: Matrix free methods . . . . . . . . . . . . . . . . . 35

3 Supersymmetric lattice models 40

3.1 Definition and introduction . . . . . . . . . . . . . . . . . . . 41

3.1.1 Commutation relations . . . . . . . . . . . . . . . . . . 43

3.1.2 Witten Index . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.3 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.4 Transfer matrices . . . . . . . . . . . . . . . . . . . . . 45

3.2 SUSY chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Computations . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Entanglement . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Staggered SUSY chain . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Low staggering limit . . . . . . . . . . . . . . . . . . . 57

3.3.2 Large staggering limit . . . . . . . . . . . . . . . . . . 59

3.3.3 Entanglement . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Square octagon lattice . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 Square octagon chain . . . . . . . . . . . . . . . . . . . 71

3.4.2 Ground state structure . . . . . . . . . . . . . . . . . . 72

3.4.3 Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.4 Projected product state wavefunction . . . . . . . . . . 79

3.5 Numerical issues . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5.1 Basis configurations . . . . . . . . . . . . . . . . . . . . 88

3.A Appendix: Transforming to spin representation . . . . . . . . 89

3.B Appendix: Spectral flow calculations . . . . . . . . . . . . . . 91

3.B.1 2D Case . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.C Appendix: Criticality and CFT . . . . . . . . . . . . . . . . . 95

3.D Appendix: Calculated values . . . . . . . . . . . . . . . . . . . 96

4 Kitaev honeycomb lattice model 101

4.1 Finite size effects . . . . . . . . . . . . . . . . . . . . . . . . . 103

iii



4.1.1 Second-order finite size corrections . . . . . . . . . . . 105

4.1.2 Third-order corrections . . . . . . . . . . . . . . . . . . 106

4.1.3 Fourth-order corrections . . . . . . . . . . . . . . . . . 107

4.1.4 24-Spin (3i, 4j) computations . . . . . . . . . . . . . . 109

4.1.5 36-Spin (3i, 6j) computations . . . . . . . . . . . . . . 111

5 Conclusions 113

iv



Chapter 1

Introduction

The picture of physics that I find most striking is the analogy made by

Richard Feynman [1], in which he describes a physicist as being similar to

an individual attempting to discover the rules of a complicated board game

along the lines of chess, by observing only small portions of the board at

sporadic intervals. Over time specific rules governing how certain pieces can

be moved are deduced. Looking more closely these specific rules may be found

to be special cases of a more general rule, which can replace these. However

knowing the allowable moves of each piece does not automatically make one

an expert at playing the game. Even if the set of allowable moves of each

individual piece is small, the number of ways these moves can be combined

is astronomically large and thus attempting to systematically evaluate the

optimal move to make at each stage is highly non-trivial. To become a good

player one learns to recognise patterns in the game and over time develop

strategies for how best to approach them.

Quantum mechanics and quantum field theory are the most accurate

frameworks we have for describing the behaviour of physical systems where

the effects of gravity are unimportant. Similar to the situation with the

game, using these frameworks and taking into account all degrees of free-

dom to determine the behaviour of a physical system is impossible for any

but the simplest of systems. As a result to study a particular physical sys-

tem or physical phenomena we look for simplified models which capture the
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essence of the physical system, or exhibit similar properties to the physical

phenomenon under study.

This thesis is concerned with the exploration of exotic phases of strongly

correlated quantum lattice models, primarily via exact numerical methods.

The use of a lattice can be seen as a means of approximating a continuum or

in other cases is justified as approximating the crystal lattice structure found

in solids. The fact that these models are strongly correlated means that

perturbative approaches as well as attempts to make further approximations

that simplify the models are in general ineffective. An exotic phase in this

context is a phase with novel or interesting properties.

1.1 Topological phases of matter

Of particular interest to us are so-called topological phases. These phases

are effectively described by a Topological Quantum Field Theory (TQFT).

Topological phases posses long range order but unlike other ordered phases,

this order cannot be described by local order parameters. Instead this order

is described by properties dependent on the topology of the system manifold,

among which is the ground state degeneracy. An example of this is found

in the toric code model [2]. For this two dimensional model there is a single

ground state when the system is realised on a plane and a four fold degenerate

ground state when wrapped on a torus. Other characteristics of systems

exhibiting topological phases are topological entanglement entropy, a robust

spectral gap and critical edge modes described by conformal field theory

(CFT). As well as being fascinating in their own right, topological phases

are the essential ingredient for topological quantum computation.

Two dimensional quantum lattice models provide a setting for the the-

oretical investigation of the microscopic mechanisms leading to topological

phases and also a possible setting for their experimental realisation in atomic

and molecular systems [3, 4]. The simplest and most well known lattice model

exhibiting topological order is the toric code model [2]. This is an exactly

solvable model on a square lattice exhibiting an abelian topological phase.

Another important model is the Kitaev honeycomb lattice model [5]. This
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is a model of interacting spin half particles on a honeycomb lattice that

exhibits both abelian and non-abelian topological phases. The method of

constructing models with string net ground states introduced in [6] allows

the realisation of lattice models with arbitrary topological phases. However

these models can contain unphysical interaction terms involving large num-

bers of sites. Loop gas models which are realisable on lattices can also exhibit

topological phases [7, 8, 9, 10]. There is also indication that topological order

may exist in supersymmetric lattice models and in particular on the square

octagon lattice [11].

Some aspects of these models are discussed in this thesis. This consists

of work on supersymmetric lattice models(chapter 3) and on the Kitaev hon-

eycomb lattice model[12] (chapter 4) where finite size effects are investigated

on the torus.

1.2 Supersymmetry

Supersymmetry (SUSY) is a powerful theory which emerged first in the field

of particle physics. It allows for a solution of the mass hierarchy problem and

facilitates the unification of non-gravitational forces at high energies. The

core idea of SUSY is that for each particle there is a super-partner with the

same energy but with spin whose value differs by a half. For each fermionic

particle there is a bosonic super-partner with equal energy. To date no direct

experimental evidence has been found to prove the existence of supersymme-

try. This is attributed to supersymmetry being broken at low energies and

the super-partners being too massive to have been found in experiments car-

ried out to date. There is hope that the Large Hadron Collider could change

this and provide experimental evidence of supersymmetry. Despite the lack

of experimental confirmation the theory of SUSY has grown and spread to

other fields of physics including condensed matter physics.

We investigate a family of models called SUSY lattice models[13], relevant

to condensed matter physics which feature fermions on a lattice where the

interactions are tuned to a point where the states exhibit SUSY properties.

For the SUSY chain calculations of the finite size gap scaling, dispersion
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relation and entanglement entropy confirm that this model can be described

by a superconformal field theory and that the results from DoQO are correct.

For the staggered SUSY chain we present results of finite size gap scaling

calculations at different staggerings. We then focus on the staggering limits

and show exact expressions for the ground states and entanglement entropy in

these states for each case. These are supported with numerical calculations

where appropriate. For the square octagon SUSY model the one and two

point functions are calculated, the effect of adding defects are investigated

and the numerically calculated ground state is compared to a proposed trial

Projected Product State(PPS) wavefunction.

1.3 Numerical tools

Solving a quantum mechanical system means finding the eigenvalues and

eigenstates of a complete set of commuting observables. For a small set of

quantum many-body systems exact analytical expressions can be found for

these quantities. In other cases analytical insights can provide only qualita-

tive descriptions of the behaviour of the system. Numerical tools play a key

role by providing unbiased data for a given model which are used to form

and verify analytical descriptions and hypotheses. However these numerical

calculations can prove extremely challenging. Here we provide an overview

of the most common techniques for treating these systems.

1.3.1 Exact diagonalisation

The most straightforward numerical approach is to numerically diagonalise

the quantum observables. Using this method all quantities can be calculated

for a given system. However the dimensions of the matrices involved grow

exponentially with the the number of particles and as a result this method

is only tractable for relatively small systems. Despite this limitation this

technique remains extremely relevant due to the exact unambiguous results

it provides. Finite size scaling studies can also give a good indication of the

macroscopic model behaviour. This is the central numerical method used
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throughout this thesis.

It is possible to calculate many quantities relevant to research into topo-

logical phases with exact diagonalisation. These include the ground state

degeneracy, values of excitation gaps, spectral flows, dispersion relations,

expectation values of additional operators and entanglement properties.

We developed a code named DoQO (Diagonalisation of Quantum Ob-

servables). This is a large scale exact diagonalisation code capable of diag-

onalising observables of arbitrary systems of spin half or spinless fermionic

particles, with many-particle interactions, on arbitrary lattices or graphs, us-

ing large high performance computing resources and employing symmetries

where applicable.

1.3.2 Quantum Monte Carlo

Monte Carlo methods are a family of general methods which can be used for

calculating properties of physical systems [14]. These methods consider only

a portion of the complete phase space, obtained by sampling with the appro-

priate probability distribution. Quantum Monte Carlo methods extend these

methods to treat quantum systems and can provide very accurate results for

large numbers of particles. However for frustrated and/or fermionic systems

these methods are hampered by the ‘sign problem’ which severely impacts

their efficiency. The sign problem describes the appearance of negative val-

ues appearing as probabilities when certain quantum systems are mapped to

classical systems. It has been shown that a general solution to the sign prob-

lem is an NP-hard (nondeterministic polynomial-time hard) problem [15].

The models discussed in this thesis are afflicted with sign problems and thus

Quantum Monte Carlo methods are not used.

1.3.3 Approximative techniques

Approximative methods exist which attempt to truncate the full Hilbert

space to a relevant subspace using physically motivated assumptions. A

network of tensors is used to represent the states in this truncated Hilbert

space. The dimension of these tensors D is proportional to the amount of
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entanglement that can be accurately represented. For gapped systems with

local interactions the entanglement entropy is thought to follow the ‘area

law’ which says that the entanglement entropy is proportional to the area of

the boundary [16].

The much celebrated Density Matrix Renormalisation Group (DMRG)

[17, 18] and equivalent Matrix Product State (MPS) [19] methods are very

effective at treating gapped 1D quantum systems. This results from the

fact that the boundary of 1D systems is constant. This means that the low

lying states of gapped 1D systems can be accurately represented by a tensor

network with constant D.

For gapped 2D systems D must be increased as the boundary increases

to accurately represent the low lying states. In addition performing tensor

contraction operations exactly for 2D networks quickly becomes intractable,

with the result that further approximations are required. For these reasons

the use of approximative methods for treating 2D systems remains mainly a

research topic. Tensor Product States (TPS) [20] and Projected Entangled

Pair States (PEPS) [21] are generalisations of MPS to 2D systems. Tree Ten-

sor Networks (TTN) [16] and the Multi-scale Entanglement Renormalisation

Ansatz (MERA)[22] attempt to represent states with long range entangle-

ment more efficiently through the use of hierarchical tensor networks.

1.4 Thesis outline

Chapter 2 describes the developed exact diagonalisation code named Diago-

nalisation of Quantum Observables (DoQO) [23]. In chapter 3 SUSY lattice

models are discussed. After introducing the SUSY lattice models, results of

calculations for the SUSY chain, staggered SUSY chain and square octagon

SUSY models are presented. In chapter 4 details of investigations into the fi-

nite size effects in the Kitaev honeycomb lattice model are presented. Finally

chapter 5 discusses conclusions and future work.

6



Chapter 2

Diagonalisation of Quantum

Observables

In this chapter we discuss the exact diagonalisation method and present

details of a large scale exact diagonalisation code that we have developed.

This code has been named Diagonalisation of Quantum Observables (DoQO).

It is capable of constructing and diagonalising observables for spin half and

spinless fermionic particles on both regular lattices and general graphs. It

produces numerically exact data about the low energy part of the operator

spectrum and provides access to the full eigenfunctions, making it possible

to calculate useful physical quantities. Exact diagonalisation techniques, like

those implemented in DoQO, are essential for getting important physical

insights and also for understanding the limits of approximative techniques

which in principle allow larger systems to be studied. DoQO can exploit

physical symmetries which reduce the relevant basis set size and the related

memory requirements, while providing additional information about each

eigenstate. In addition, DoQO has been designed to work in parallel to take

advantage of modern High Performance Computing (HPC) resources and

has been benchmarked on various HPC platforms. The memory, load and

indexing issues are taken care of automatically using a number of custom

built and generalizable algorithms.

In the rest of this chapter we introduce essential concepts relevant to
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quantum observables and symmetries and then discuss the associated im-

plementation issues. In section 2.2 we provide an overview of the software

together with usage information. In section 2.3 the central components of

the software are explained in more detail. In section 2.4 the scaling and per-

formance of the code for a benchmark system on a number of different HPC

platforms is investigated. In the last chapter of the thesis, section 5 we briefly

outline additional features that could improve and extend the functionality

of this code. This includes extensions related to handling different particle

types as well as exploiting additional symmetries.

2.1 Quantum observables

The main objective of DoQO is to provide exact low energy spectral data of

quantum Hamiltonians, specifically ground state and low lying eigenstates

and eigenvalues. This data can be used to formulate and verify relevant

analytical models and to benchmark approximative techniques.

Quantum observables are self-adjoint operators which represent observ-

able physical quantities. Their eigenvalues are real numbers and together

with the related eigenstates correspond to the possible measurement out-

comes. A prominent example of an observable is the Hamiltonian. When

the Hamiltonian is time independent this observable represents the total en-

ergy of the system and generates quantum dynamics through the Schrödinger

equation. Its eigenvalues are the energy levels and the eigenstates are the

corresponding stationary states. In the context of condensed matter and

statistical physics we are generally interested in the ground state and/or low

lying part of the energy spectrum.

DoQO is designed to work with systems of spin half or spinless fermionic

particles on regular lattices or general graphs. It is possible to describe

interactions involving arbitrary numbers of particles. Each spin half particle

is a two-level quantum system whose states are vectors in a two-dimensional

Hilbert space H2. Likewise each site of a spinless fermionic system can be

either empty or occupied.

The Hilbert space of a system of n spin half particles is the n-fold tensor
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product
⊗n

1 H2, so its dimension is an exponential of the number of spin half

particles. DoQO tackles the system size limitation, which derives from the

exponential scaling of the basis set size, by several means. First, symmetries

can be used to reduce the basis set without compromising the quantitative

accuracy of the computed data. Second, DoQO exploits the sparsity of the

matrix representation to save memory. Lastly DoQO constructs the observ-

ables such that the diagonalisation procedure can be performed efficiently in

parallel on massively parallel distributed memory architectures.

2.1.1 Employing symmetries

The use of symmetries reduces the computational resources required to di-

agonalise an observable while simultaneously providing additional physical

information about each eigenstate. A symmetry operator (SO) is an operator

which commutes with the Hamiltonian. By working in the eigenbasis of a

SO and reordering the basis elements appropriately, the matrix representa-

tion of the observable becomes block diagonal. Each block corresponds to

a particular eigenspace of the SO and can be diagonalised separately. The

states resulting from the diagonalisation of a given block are labelled by a

quantum number that is the eigenvalue of the SO associated with that block.

DoQO is capable of exploiting the symmetries which conserve parity (sec-

tion 2.1.1.2), filling (section 2.1.1.1) and momentum (section 2.1.1.3). Where

multiple symmetries are compatible they can be exploited simultaneously.

Here we define these symmetries more precisely and show how DoQO deter-

mines and indexes the relevant eigenvectors of each SO.

2.1.1.1 Filling

The SO’s that conserve filling are defined as 1
2

∑
i(σ

z
i +1) for spin half systems

and
∑

i ni for spinless fermionic systems with i running over the subset of

sites for which filling is conserved. σz is one of the Pauli matrices defined

in section 2.B.1 and ni is the spinless fermionic number operator defined as

ni = c†ici where c†i and ci are the spinless fermionic creation and annihilation

operators respectively. Filling is related via a constant to magnetisation
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(defined as
∑

i σ
z
i ) for spin half systems and for spinless fermionic systems is

simply the number of fermions. These SO’s are diagonal in the standard basis

that DoQO uses. For spin half systems the standard basis refers to the basis

in which σz operators are diagonal and for fermionic systems, the number

occupancy basis. As a result of the SO’s being diagonal in the standard basis

no change of basis elements is required to exploit this symmetry. If filling

is conserved over a subset of sites this implies that parity (section 2.1.1.2)

is also conserved over that subset. In this respect conservation of filling is

stronger than conservation of parity. If filling is conserved over M subsets of

sites with each subset containing si sites there are
∏M

i (si + 1) blocks. The

dimension of the block with filling fi in each subset is
∏

i

(
si
fi

)
.

2.1.1.2 Parity

The SO that conserves parity is defined as
∏

i σ
z
i for spin half systems and∏

i(2ni − 1) for spinless fermionic systems. This symmetry says that the

parity of the magnetisation for spin half systems or filling (section 2.1.1.1)

for spinless fermionic systems is conserved. Here the products are over the

subset of sites for which parity is conserved. Like the SO’s that conserve

filling these operators are diagonal in the standard basis. DoQO can also

exploit situations where parity is conserved over subsets of spins or sites.

This results in a further reduction of the basis set size for each block and

thus the computational resources required. For example, if there are M

subsets of sites over which parity is conserved then there are 2M blocks each

with dimension 2N−M where N is the total number of sites.

2.1.1.3 Momentum

DoQO is capable of exploiting translational symmetry in two dimensions,

which conserves the momentum in each direction. The SO’s in this case are

the translation operators T = eix̂k̂ and the quantum numbers eik, where k

is the momentum with 0 ≤ k ≤ 2π. As these operators are not diagonal

in the standard basis a change of basis elements is required to exploit these

symmetries. In DoQO the method of representatives is used to work in the
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eigenbasis of the SO’s, and calculate the matrix elements of each block. This

method is discussed in [24, 25].

From each set of configurations which can be related via translation a

representative configuration |ψr〉 is selected. This is conventionally chosen

to be the configuration with the smallest numerical label in the set. An

eigenstate of the translation operators with a given momentum can be de-

termined from each representative configuration. These eigenstates have the

form of a weighted sum of states obtained by translating the representative

configuration. The weight of each state is a function of the momentum and

of the number of translations needed to cycle back to the representative con-

figuration. For a square lattice with L×L sites and translation operators T1

and T2, an eigenstate with momentum ki in the direction of Ti is given by:

|ψk1,k2,r〉 =
1

N

L−1∑
x1=0

L−1∑
x2=0

ei(x1k1+x2k2)|ψx1,x2r 〉

whereN is a normalisation factor ensuring 〈ψk1,k2,r|ψk1,k2,r〉 = 1 and |ψx1,x2r 〉 =

T x11 T x22 |ψr〉. This is in essence the discrete Fourier transform.

DoQO exploits the fact that the matrix elements for a given block can

be calculated by working with the representative configurations alone. This

can be clearly seen by expanding the expression for each matrix element in

a given block 〈ψk1,k2,r |H|ψk1,k2,r′〉.

2.1.1.4 Labelling

In order to implement the exploitation of symmetries, the basis elements of

each block must also be labelled appropriately. To do this DoQO uses per-

fect mapping functions for the symmetries which conserve parity and filling.

Sorted distributed arrays are used to label the representative configurations

when exploiting translational symmetries. The implementation details of the

so called perfect mapping functions used are explained in section 2.3.2 and

the use of distributed sorted arrays is discussed in sections 2.3.3.1 and 2.3.3.2.
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2.2 Software structure and usage

DoQO is written in C++ and makes extensive use of the PETSc [26, 27, 28]

and SLEPc[29] libraries which are required for DoQO to work. The XML

file format is used for some of the input files due to its extensibility. An

open source library named TinyXML[30] is used to parse the XML files and

is included with the DoQO code.

2.2.1 Compiling DoQO

A makefile is supplied with the DoQO source which can be used to build

DoQO. For this to work the PETSc and SLEPc libraries must first be present

and the relevant environment variables set. A README file is also supplied

which contains detailed instructions about compiling PETSc, SLEPc and

DoQO.

2.2.2 Basic usage

DoQO can be run as a single process or as multiple intercommunicating

processes. To run a single process of DoQO a command as in code block

1 is used from the directory containing the DoQO executable. The input

filename is passed to DoQO via the ‘-input’ switch.

Code block 1 Command used to launch a single process of DoQO.

./doqo -input sample_input.xml

To run multiple intercommunicating processes of DoQO the MPI launcher

application is used. This is named ‘mpiexec’ or ‘mpirun’ depending on the

MPI implementation in use. An example of the command used to launch 16

DoQO processes is given in code block 2.

Code block 2 Command used to launch DoQO with sixteen processes using
mpiexec.

mpiexec -np 16 ./doqo -input sample_input.xml
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The input file which is passed to the DoQO executable is an XML file

which contains all the parameters that control how DoQO runs. An example

of a simple input file is given in code block 3.

Code block 3 Sample input file for DoQO containing required parameters.
These are the model file which describes the observable, the task list file which
specifies the coefficient values for each task and the output prefix which is
the prefix used for the output files.
<?xml version="1.0" encoding="UTF-8"?>

<SIMULATION>

<PARAMETERS>

<MODEL_FILE>ising_chain_L_8.ham</MODEL_FILE>

<TASK_LIST>ising_chain_tasks</TASK_LIST>

<OUTPUT_PREFIX>ising_chain_L_8</OUTPUT_PREFIX>

</PARAMETERS>

</SIMULATION>

The file specified by the MODEL FILE parameter describes the observ-

able that is being diagonalised. An example of such a file for a system of spin
1
2

particles is shown in code block 4. This example describes the Hamiltonian

for the transverse field Ising model on a ring with eight spins.

H = J
8∑
i=1

σxi σ
x
i+1 + h

8∑
i=1

σzi

with σx8+1 = σx1 . The format of this file is:

• The first line specifies the number of sites.

• The second line contains the label ‘PARAMETERS’.

• The following lines up to the line containing the label ‘TERMS’ con-

tain the parameter names (one per line) of the coefficients used in the

definition of the observable.

• Next is a line containing the label ’TERMS’.
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• The rest of the lines specify the terms that make up the observable.

The format for these lines is:

– A comma separated list followed by an asterisk where each entry

is composed of a site index and an X,Y or Z which signify a σx, σy

or σz operator acting on the site specified by the site index.

– A comma separated list of the parameters that are multiplied

together to get the coefficient for each term.

There is an implicit identity for each site not explicitly mentioned. In this

way ‘* J’ would describe the identity operator over all sites multiplied by the

coefficient J . For spinless fermionic systems a similar format is used except

Code block 4 Input specification for Hamiltonian of Ising chain in a trans-
verse magnetic on an 8 site ring.

SITES 8

PARAMETERS

J

h

TERMS

1 X,2 X * J

2 X,3 X * J

3 X,4 X * J

4 X,5 X * J

5 X,6 X * J

6 X,7 X * J

7 X,8 X * J

8 X,1 X * J

1 Z * h

2 Z * h

3 Z * h

4 Z * h

5 Z * h

6 Z * h

7 Z * h

8 Z * h

instead of using X,Y and Z to represent σx, σy and σz we use C and A to
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represent the creation and annihilation operators c† and c respectively. Refer

to appendix 2.B for further details on constructing operators.

The file specified by the TASK LIST parameter contains a list of the pa-

rameter values to be used for each task. This file has one line per task, where

each line consists of a comma separated list of parameter assignments. These

parameters are used to calculate the coefficients for each term of the observ-

able. Any parameters which are not specified are set to zero. By specifying

appropriate parameter values in the task file, scans of the parameter space

can be performed with a single call to DoQO. An example of a task file with

seven tasks is given in code block 5.

Code block 5 Example of task file specifying seven tasks for the Ising chain
described in code block 4.

J = -1.0

J = -1.0, h = 0.5

J = -1.0, h = 1.0

J = -1.0, h = 1.5

J = -1.0, h = 2.0

J = -1.0, h = 2.5

J = -1.0, h = 3.0

DoQO produces XML output files. A general output file is created which

lists the specific output files that contain the results of each diagonalisation.

The name of the general output file is composed of the output prefix as

specified in the input file with the suffix ‘.output.xml’ appended. Details

about the code version and environment are also provided in this file. In

addition for each task and symmetry block a separate output file is created

containing the results of that diagonalisation. The information written to

these output files includes the eigenvalues converged, the error estimates as

well as additional information. This includes the basis set size, the time

taken and the number of iterations of the solver method used.
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2.2.3 Exploiting symmetries

To enable the use of symmetries in DoQO an element describing the symme-

tries to be exploited is added to the XML input file. The element is enclosed

within tags labelled ‘SYMMETRIES’. For each symmetry that one wishes to

exploit a child element describing that symmetry is added inside the initial

element. These child elements are enclosed between tags labelled ‘PARITY’,

‘FILLING’ and ‘MOMENTUM’ corresponding to the symmetries that con-

serve parity, filling and momentum respectively. Code block 6 contains an

extract of an input that has a symmetries element with a child element spec-

ifying a symmetry that conserves parity.

Additional details for each symmetry are given in a metadata file specified

by the ‘file’ attribute for each symmetry element. For the symmetries that

conserve parity and filling this metadata file specifies the subsets of sites on

which the parity or filling is conserved. For translational symmetries this file

specifies the lattice geometry and translation vectors. The format for these

files is explained in more detail later in this section.

DoQO will by default diagonalise an observable in each eigenspace of the

supplied symmetry operators one after another. An optional child element

can be added within each symmetry element that allows one to restrict the

calculation to specific eigenspaces. This element is enclosed by tags labelled

‘RELEVANT SECTORS’ and has an attribute called ‘number’ that specifies

how many of the eigenspaces are to be used. Each eigenspace to be used

is then specified by a child element of this element labelled by ‘SECTOR’

that encloses an integer that uniquely labels an eigenspace of the symmetry

operator. The details of how each eigenspace is labelled for each of the

symmetries that DoQO exploits is described later in this section. Code block

6 shows an example of an input file that specifies that DoQO exploit the

conservation of parity and that it is restricted to the eigenspaces of the parity

operators labeled one and three.

For the symmetry that conserves parity the metadata file identifies the

subsets of sites for which parity is conserved. This file contains one line for

each subset of sites. Each line consists of a bit string with the number of
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Code block 6 Input file specifying that the symmetry that conserve parity
should be used.

<SIMULATION>

<PARAMETERS>

...

<SYMMETRIES>

<PARITY file="subsets.txt">

<RELEVANT_SECTORS number="2">

<SECTOR>1</SECTOR>

<SECTOR>3</SECTOR>

</RELEVANT_SECTORS>

</PARITY>

</SYMMETRIES>

</PARAMETERS>

</SIMULATION>

bits matching the number of sites in the system. Each site corresponds to

a bit in this string with the site indices increasing from right to left. For

sites included in the subset, there is a ‘1’ in the position that corresponds

to that site and a ‘0’ otherwise. In code block 7 an example of such a

file for a system with eight sites is shown. Here two subsets of sites are

defined, one which spans sites with indices 1 to 4 and one that spans sites

with indices 5 to 8. The SO’s that conserve parity over these subsets of

sites for spin 1
2

systems are P0 =
∏4

i=1 σ
z
i and P1 =

∏8
i=5 σ

z
i . The four

eigenspaces with eigenvalues (p0, p1) = (1, 1), (1,−1), (−1, 1), (−1,−1) are

labelled with integers from zero to three respectively. If, as specified in code

block 6, only eigenspaces labelled one and three were used, this would select

the eigenspaces (p0, p1) = (1,−1), (−1,−1).

When using the symmetry that conserves filling the metadata file specifies

the subsets of sites over which filling is conserved. The format of this file is

the same as that used for the symmetry that conserves parity. In this case

the SO’s are Ci = 1
2

∑
j∈Ni(σ

z
j + 1) where Ni is the set of sites in the ith

subset. There are
∏

i(si + 1) eigenspaces where si is the number of sites in

the ith subset. These eigenspaces correspond to the possible fillings that each
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subset can have. If fi are the fillings for each subset then each eigenspace is

labelled by
∑

i(fi
∏j<i

j=0(sj + 1)).

Code block 7 File specifying two subsets of sites, 1 to 4 and 5 to 8.

00001111

11110000

The metadata file supplied when describing symmetries that conserve

momentum provides details of the lattice geometry as well as the translation

vectors for which the system is invariant. The information contained in this

file consists of two translation vectors in lattice units in each direction, the

normalised version of these vectors and the dimensions of the lattice in each

direction. Code block 8 shows an example of what this file looks like for a

four by four square lattice with periodic boundary conditions. The number

of eigenspaces of the translation operators is then n0n1 where n0 and n1 are

the numbers of translations possible in each direction. The corresponding

eigenvalues of the translation operators for these eigenspaces are e
2πix0
n0 and

e
2πix1
n1 where x0 and x1 are integers with 0 ≤ x0 < n0 and 0 ≤ x1 < n1. DoQO

uses numerical labels given by x0 +x1n0 to refer to each of these eigenspaces.

Code block 8 Example of the metadata file that would be supplied to
exploit translational invariance for a four by four square lattice. The LAT-
TICE VECTOR vectors specify the translation vectors in terms of lattice
sites. The NORM VECTOR vectors correspond to the same vectors except
normalised to one and the LATTICE DIMENSIONS specifies the size of the
lattice in each direction.

LATTICE_VECTOR1 = 1,0

LATTICE_VECTOR2 = 0,1

NORM_VECTOR1 = 1,0

NORM_VECTOR2 = 0,1

LATTICE_DIMENSIONS = 4,4
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2.2.4 Nearest neighbour exclusion

DoQO has the capability to work in a basis in which all configurations obey a

nearest neighbour exclusion condition. This condition only allows configura-

tions in which no two neighbouring sites are occupied. The supersymmetric

lattice models discussed in [13] enforce this condition. Being able to work in

this restricted basis significantly reduces the computational resource require-

ments for treating these systems. To enable this feature in DoQO a parameter

named ‘NN EXCLUSION’ is added to the input file. Code block 9 shows an

example of how this parameter is used. An XML file is also provided which

provides information about which sites are adjacent. An example of such a

file for a four site ring is shown in code block 10. A recursive algorithm that

finds these configurations more efficiently has also been implemented and is

described in section 3.5.1. The use of this algorithm is enabled by setting

the recursive attribute to true.

Code block 9 Parameter enabling nearest neighbour exclusion using adja-
cency file file.adj.

<SIMULATION>

<PARAMETERS>

....

<NN_EXCLUSION adjacency_file="file.adj"

recursive="true">true</NN_EXCLUSION>

....

</PARAMETERS>

</SIMULATION>

2.2.5 Additional parameters

DoQO supports additional parameters that can be specified in the input file.

What follows is a list of the parameters with a short description of each

(required parameters are marked with a ∗).

MODEL FILE∗: File describing the observable. Example of spin 1
2

opera-

tor in code block 4.

19



Code block 10 File providing adjacency information for a four site ring.

<?xml version="1.0" encoding="UTF-8"?>

<EDGES number="4">

<EDGE from="1" to="2" ></EDGE>

<EDGE from="2" to="3" ></EDGE>

<EDGE from="3" to="4" ></EDGE>

<EDGE from="4" to="1" ></EDGE>

</EDGES>

TASK LIST∗: The file containing the values of parameters for each task

that is to be run. Example in code block 5.

OUTPUT PREFIX∗: Prefix for output files.

MODEL TYPE: The type of observable that is being used. Currently

supported options are SPIN HALF and FERMIONIC. The default is

SPIN HALF.

VERBOSITY: Specifies the level of verbosity to use. For minimal output

while the code is running choose a small value and for more detailed

output choose a higher value for the verbosity. The range is from zero

to fifteen with the default set to one.

EIGENVALUES: Number of eigenvalues to retrieve for each diagonalisa-

tion. Default is two.

NN EXCLUSION: Specifies that neighbouring sites cannot be occupied.

Adjacency information required see section 2.2.4 for more details.
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SAVE STATES: Save states to disk for further analysis. Format attribute

can be set to ascii, binary or matlab to output vectors in human read-

able, binary (default) or matlab compatible format.

SAVE MATRIX: Saves each matrix to a file on disk. Again format at-

tribute can be set to ascii, binary or matlab to output vectors in human

readable, binary (default) or matlab compatible format.

BENCHMARK: Set initial vector for solver to all ones to get constant

number of iterations for benchmarking purposes.

SOLVER TYPE: Sets the type of solver to use. Any SLEPc eigenproblem

solver type can be used. To select a particular solver to use one specifies

the label for that solver. These are ‘arnoldi’ for Arnoldi, ‘lanczos’ for

Lanczos, ‘krylovschur’ for Krylov-Schur and ‘arpack’ for Arpack. The

default is to use Krylov-Schur.

MAX ITERATIONS: The maximum number of iterations of the solver

method to perform before giving up. Default is 500.

USE DISK: Use shared disk in basis list construction when using symme-

tries. Details at end of section 2.3.3.1.

USE BST: Use binary sorting tree instead of linked list in exchange of basis

indices. For further details see the last paragraph of section 2.3.3.2.

SOLVER TOLERANCE: Tolerance for converged eigenvalues. Default

is 10−13.
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DEGENERACY TOLERANCE: Tolerance for degeneracy analysis. De-

fault is 10−10.

PHASE TOLERANCE: Tolerance for comparing phases when exploiting

translational invariance. Default is 10−10.

As well as the parameters in the input file, it is possible to pass command

line arguments to change the behaviour of PETSc and SLEPc. A complete

list can be found in the PETSc and SLEPc documentation. Some useful

arguments are:

–eps monitor: Option to print detail of convergence after iteration.

–eps monitor draw: Option to show plot monitoring convergence (requires

X11 graphical environment).

–eps plot eigs: Option to plot approximations of converged eigenvalues (re-

quires X11 graphical environment).

2.3 Individual software components

In this section we provide technical details of some components of the DoQO

code. It is not essential to know these details to use DoQO. However they

provide a deeper understanding of how DoQO works and could shed light

on possible performance issues. They are also helpful when attempting to

extend the functionality of DoQO.

2.3.1 Parallelism

DoQO can take advantage of modern massively parallel distributed memory

machines. On these machines multiple DoQO processes are run simultane-
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ously on interconnected processing nodes. The key data structures, including

the matrix representation of the observable as well as the vectors used during

diagonalisation are partitioned among all the processes.

DoQO makes use of MPI as well as the PETSc [26, 27, 28] and SLEPc [29]

libraries. The MPI (Message Passing Interface) manages groups of processes

as well as allowing communication between the individual processes. PETSc

(Portable, Extensible Toolkit for Scientific Computation) is built on top of

MPI and provides distributed vectors and matrix data structures as well as

functionality for performing basic operations on these efficiently in parallel.

One such operation which is of particular relevance to iterative diagonali-

sation methods is the sparse matrix vector multiplication routine. SLEPc

(Scalable Library for Eigenvalue Problem Computations) is a library that

leverages the functionality of PETSc and implements a variety of iterative

eigensolver methods making use of the underlying PETSc data structures and

operations. MPI, PETSc and SLEPc have the added advantage of allowing

DoQO to be very portable.

In particular, DoQO has been designed to run on large distributed mem-

ory machines, where the amount of memory and the number of cores per node

is small, relative to the total amount of memory and number of cores. The

IBM Blue Gene machines are an extreme example of this where each node

contains only 1-2GB of memory and 2-4 processing cores. In contrast to dis-

tributed memory machines there are Shared Memory MultiProcessor (SMP)

machines. These possess multiple processors that share a single memory ad-

dress space. As well as these there is a growing trend of hybrid machines

which are distributed memory machines with so-called ‘fat’ nodes where each

node is a small SMP machine. In the case of SMP and hybrid machines it is

often possible to fit the vectors entirely within the memory of a single node.

This can simplify the implementation of exact diagonalisation techniques

and in particular the implementation of matrix free methods (discussed in

appendix 2.C). Most other exact diagonalisation codes use this approach.

While DoQO still works on these platforms it is on large truely distributed

memory machines, with basis sets of tens or hundreds of millions that DoQO

really stands out from the majority of other diagonalisation codes.
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2.3.2 Perfect mapping functions

Perfect mapping functions are used to index subsets of basis elements such

that the indices are consecutive integers. DoQO employs such functions

when exploiting the symmetries which conserve filling and parity. Here we

demonstrate how such functions work in the case of symmetries that conserve

filling. It is easily extended for symmetries which conserve parity.

To index all the possible configurations of c particles on n sites a bijective

function L is used which maps the set of bit strings with length n, containing

c ones and (n − c) zeros, to the set of natural numbers less than
(
n
c

)
. For

example if we have four sites with filling two the function operates as:

L(0011) = 0

L(0101) = 1

L(0110) = 2

L(1001) = 3

L(1010) = 4

L(1100) = 6

Given a bit string b of length n, with filling c and bits labelled from left

to right bi, 1 ≤ i ≤ n, we can use the index:

L(b) =
n∑
i=1

bi

(
n− i

c− (
∑i−1

j=1 bj)

)

for this bit string, where we have used the recursive relation:(
n

c

)
=

(
n− 1

c

)
+

(
n− 1

c− 1

)
,∀c > 0

The inverse function which given an index returns the corresponding bit

string can also be easily implemented. For n sites and filling c the algorithm

is:

1. Set i = 1 and set l to the value of the index.
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2. if l <
(
n−i
c

)
then bi = 0.

3. If l ≥
(
n−i
c

)
then bi = 1, l→ l −

(
n−i
c

)
and c→ c− 1.

4. if i < n increment i and repeat from step two.

These functions can also be used for parity symmetries. In this case we

map the set of bit strings with length n containing either an even or odd

number of ‘1’s to the set of natural numbers less than
∑

c∈P
(
n
c

)
where P is

the set of natural numbers less than n with the desired parity.

2.3.3 Distributed basis arrays

Where no deterministic method of mapping a basis element to its index (like

those described in section 2.3.2) is known a sorted distributed array of basis

elements can be used for this purpose. The sections that follow discuss how

these arrays are constructed and utilised.

2.3.3.1 Construction of the sorted distributed basis array

When exploiting translational invariance and/or using a model with a nearest

neighbour exclusion condition DoQO uses a distributed sorted array to index

the basis elements. The valid basis elements (VBE) are stored in this array

and indexed by their position within the array. In the context of exploit-

ing translational invariance the VBEs are the representative configurations

discussed in section 2.1.1. For models with a nearest neighbour exclusion

condition the VBEs are those configurations in which no two adjacent sites

are occupied. Two methods for populating these arrays in parallel have been

implemented in DoQO. Here we discuss the difficulties involved in populating

this array in parallel and how these are overcome.

In the absence of a deterministic method for finding and indexing the

VBEs DoQO iterates over the full list of possible basis elements (PBEs)

to find the set of all VBEs. Iterating over this list of PBEs in parallel and

efficiently populating a sorted distributed array with the VBEs is a non trivial

task. This is because the VBEs are not in general uniformly distributed

throughout this list.
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The first and default method can be broken into three steps:

1. Partitioning the list of PBEs equally among all processes, then iter-

ating over each of these partitions on each process and counting the

number of VBEs in each partition. These individual counts are then

communicated to all processes using a collective MPI gather operation.

2. These counts are then used to repartition the list of PBEs so that the

VBEs are more evenly distributed among the partitions. Each process

then iterates over the new partitions and counts the VBEs in each

partition. The counts from the first iteration are used where possible

to make this process more efficient. The counts are again communicated

among all the processes.

3. The counts of VBEs from the different processes are summed to deter-

mine the total number of VBEs. From this the size of the portion of

the final sorted distributed array on each process is calculated and the

space for this array is allocated. Using the counts from each process it

is also possible to determine the indices in the final sorted distributed

array of the first and last VBEs in each partition. Each process then

uses this information and starts iterating from the appropriate posi-

tion in the list of PBEs to populate its local portion of the final sorted

distributed array.

Figure 2.1 illustrates how this process works using four processes with

possible full basis set of 256 elements of which 76 are valid basis elements.

The second method makes use of a shared filesystem to create the sorted

distributed array. This method performs better in situations where the VBEs

are very sparsely distributed over the set of PBEs. This is the case for

models with a nearest neighbour exclusion condition. Here the set of PBEs

is partitioned as in the first method. Each process then iterates over these

partitions but this time writes each VBE it finds to a file on the shared

filesystem. Once this has completed each process communicates how many

elements it found within its own partition to the other processes. Each

process then allocates space for its portion of the array and populates this
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Figure 2.1: Figures showing the construction of the sorted distributed ar-
ray of basis elements using four processes with 76 elements out of a possible
256 elements. (a) Shows the initial partitioning of possible basis elements
amongst the four processes with the indices along the left and the number
of elements found within each partition shown within the partition itself.
(b) Shows the repartitioned possible basis set and as can be seen the basis
elements are more evenly distributed among the partitions. The arrows in-
dicate the places in the possible basis set from which the iterations begin to
populate the portions of the final distributed array. At the partition points
the correct global indices in the array are known so it is possible to begin
from these points on each process simultaneously. (c) Shows the sorted dis-
tributed array as it is stored across the memory of the four processes. The
lines to (b) show to which range of the possible basis the valid basis elements
belong.

by reading from the appropriate positions in the files on the shared filesystem.

To enable this method in DoQO the USE DISK parameter is set to true in

the input file as mentioned in section 2.2. This method requires that a shared

filesystem is available and its performance will depend on the performance

of this filesystem.

2.3.3.2 Using the sorted distributed array

In DoQO the matrix representation of a quantum observable is stored in a

distributed sparse matrix data structure provided by PETSc. Each process
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has ownership over a range of rows and stores all the non zero elements for

those rows. When using a sorted distributed array to index basis elements,

the row and column indices of each matrix element 〈ψa |O|ψb〉 correspond to

the global indices of the basis elements |ψa〉 and |ψb〉 in this array. For each

process the indices of the basis elements for each local row are easily obtained

from the local portion of the sorted distributed array. However to determine

the column indices it is necessary to communicate with the process that has

that basis element in its portion of the sorted distributed array. The fact

that the distributed array is sorted makes it possible to identify the process

on which a particular basis element is stored.

In DoQO the interprocess communication required to exchange indices

is done in an organised fashion using only peer to peer communication. In

this way synchronisation issues from collective communication operations

are avoided and the method is scalable. Each process works out all the basis

elements it will need indices for. It then requests the indices for these from

the relevant processes. Once these have been retrieved each process can

populate its own portion of the matrix. The amount of additional memory

required by each process to store these basis elements and indices is in the

worst case equal to the amount required to store the non zero elements of

the final sparse matrix. This memory is freed up once the matrix has been

created and is available during the diagonalisation.

A data structure is required on each process to accumulate the basis

elements corresponding to the columns for which indices are required. This

data structure stores the basis elements so they are sorted to avoid duplicate

entries and to facilitate the communication. Two different data structures

can be used for this purpose in DoQO. The default is the doubly linked list

implementation from the C++ standard template library and the alternative

is the AVL tree implementation from the BOOST intrusive package. The

AVL tree is more efficient and should be used where possible. However not

all C++ compilers support the BOOST intrusive package so in these cases

the doubly linked list can be used.

When using the doubly linked list it takes O(n2) to insert n items into a

sorted list. This results from the fact that it takes O(n) to find the correct
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position in the list to insert an item. The maximum length of list possible

is the size of the partition of basis elements stored on each process. This

is the basis size divided by the number of processes N/M . For basis sets

of O(109) even using O(103) processes the individual lists on each process

will be O(106). The number of operations required to fill each of these lists

is on the order of trillions or O(1012). This very quickly becomes the main

performance bottleneck.

An AVL tree is a self balancing binary search tree which takes O(nlog(n))

to insert n items. This is a significant improvement over the O(n2) it takes to

insert n items into the doubly linked list. This feature is enabled by setting

the USE BST parameter to true in the DoQO input file. DoQO must be

compiled with BOOST for this to work. See README for further details in

relation to compiling DoQO with BOOST.

2.4 Performance

A performance study of DoQO was undertaken to determine the most rele-

vant factors influencing the performance of DoQO. A benchmark system was

chosen and results were obtained for a variety of lattice sizes and numbers

of processors on different machines.

The benchmark system chosen was the Kitaev honeycomb lattice model

[5] (see chapter 4) with parameters Jx = −0.1, Jy = −0.45, Jz = −0.45.

These parameters were chosen to avoid any special points of the model’s

phase diagram. Two eigenvalues were calculated using the Krylov-Schur

algorithm for systems of 16, 20, 24 and 28 spins and to keep the number of

iterations constant for each system size the initial vector was set to all ones

(set BENCHMARK parameter to true in the input file).

The machines used were an Opteron based gigabit ethernet cluster, an

IBM Blue Gene/P and a Xeon based SGI ICE cluster with ConnectX In-

finiband interconnect. Plots of the strong scaling are shown in figures 2.2,

2.3 and 2.4. The speedup in each case is calculated as s = mtm
tn

where n is

the number of processors for which the scaling is being calculated, m is the

minimum number of processors on which the given system can be treated on
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and ti is the time taken on i processors.
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Figure 2.2: Scaling behaviour of benchmark on Opteron basis gigabit ethernet
cluster using up to 128 cores.

On the Opteron based gigabit ethernet cluster (figure 2.2) a speedup is

observed for the 20 and 24 spin systems up to 96 processors. This machine

consists of nodes with two AMD Opteron 250 2.4GHz processors and 4GB

or memory connected by a core routed gigabyte ethernet switch.

On the Blue Gene/P system (figure 2.3) impressive scaling is observed all

the way up to 2048 cores for 24 and 28 spin systems. The Blue Gene/P is

made up nodes consisting of four PowerPC 450 cores running at 850 MHz and

2GB of memory. These are connected with multiple networks including a high

speed low latency 3D toroidal network used for peer to peer communication.

Peaks can be seen in the plot at 512 and 1024 cores and troughs in-between.

It is thought that these are due to the fact that there are 512 cores on each

mid-plane and thus a more optimal mapping of the cores occurs when using

multiples of 512 cores [31].

On the SGI ICE machine (figure 2.4) good scaling is observed for the 28

spin system up to 2048 cores. For the 24 spin system the speedup drops off
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Figure 2.3: Scaling behaviour of benchmark on Blue Gene/P using up to
2048 cores.

towards 2048 cores. The nodes of this machine each consist of two quad core

Intel Xeon E5462 processors running at 2.8GHz and 12GB of memory. These

are connected via a ConnectX Infiniband interconnect.

2.4.1 Performance conclusions

From the performance study undertaken we conclude that the principle fac-

tors that influence the performance of DoQO are the performance of the

communications network and the available memory bandwidth.

The matrix vector multiplication operation which is the central operation

in DoQO involves significant interprocess communication. The gigabit ether-

net interconnect has substantially higher latency and lower bandwidth than

the interconnects found on the Blue Gene/P and the SGI ICE machines.

This explains the poor scaling performance past 64 processors which was

observed. The multiple special purpose networks used on the Blue Gene/P

for interprocess communication accounts for the superior scaling behaviour

observed.
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Figure 2.4: Scaling behaviour of benchmark on SGI ICE system using up to
2048 cores.

With sparse matrix vector multiplication the memory bandwidth is cen-

tral to ensuring that the processing cores are fully utilised. Even though

each core on the SGI ICE is significantly faster than those found on the Blue

Gene/P the time taken for the calculations on the same numbers of cores is

comparable. This perhaps indicates that the Xeon cores are not being fully

utilised due to insufficient memory bandwidth. Evidence of this is observed

by running DoQO on two and four cores of a Xeon quad core processor.

There is almost no perceptible gain in speed while using four cores over two

cores.

2.A Appendix: Matrix memory requirements

Here we discuss how to work out an upper bound on the amount of memory

required to store the non zero elements of a matrix operator. Each term of

an operator can contribute at most one non-zero entry per row.

Matrices are stored using Compressed Sparse Row (CSR) format. To
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store the matrix each non zero entry requires an integer for the column index,

a double for storing the value (two doubles in the case of complex values)

and for each row an integer is required to point to the starting position in the

values and columns arrays for that row. For systems with thirty two particles

and above, eight byte integers are required to accommodate the column and

row indices but for smaller systems four byte integers are sufficient.

If n is the number of spins in the system and t is the number of terms

then the upper bound on the amount of memory required to store all the

non zero elements using double and complex arithmetic and four and eight

byte integers are listed below (where D indicates double arithmetic and C

complex arithmetic and the four and eight specify the number of bytes used

for storing integers in each case).

MD4 = 2n(12t+ 4)

MC8 = 2n(16t+ 8)

MD4 = 2n(20t+ 4)

MC8 = 2n(24t+ 8)

As well as requiring memory to store the non zero elements, additional

memory is required by PETSc to store metadata. This data enables efficient

matrix vector multiplication operations in parallel. The amount of memory

required for this depends on the number of processes and the structure of

the matrix. Typically it is on the order of an additional 20%− 30%.

2.B Appendix: Operator Construction

The matrices representing the operators are generally extremely sparse. These

matrices are stored in sparse matrix format where only the non zero elements

and their indices are stored. This data is distributed uniformly across the

available processes.
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2.B.1 Spin half systems

This section provides explicit demonstrations of how quantum operators are

built up for the benefit of readers that are not familiar with these concepts.

The matrix for a spin 1
2

operator for a finite quantum system is made up of

a sum of terms. Each term can be a single site term or an interaction term

acting on multiple sites. Terms are written in terms of the Pauli matrices

and the identity matrix. The Pauli matrices used for spin half particles are:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
The term σx1σ

y
2 is an interaction term between the spin at position one

and the spin at position two. The matrix corresponding to this term results

from taking the tensor product of the matrices for the individual operators.

σx1σ
y
2 := σx1 ⊗ σ

y
2 =

(
0 1

1 0

)
⊗

(
0 −i
i 0

)
=


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0


When constructing the matrix for a term implicit identity matrices are

used for the sites not mentioned. For a three spin system the term σx1σ
y
2

becomes σx1 ⊗ σ
y
2 ⊗ I3.

The column index and value of the non zero entry corresponding to a

given term on a given row can be calculated easily. The process is as follows;

1. Set the column index to the given row index. Set the non zero value to

one.

2. For each σx and σy operator in the term flip the appropriate bit in the

binary representation of the column index. The bit to flip is the one

in the position corresponding to the site index of the σx or σy operator

in question. A bitwise exclusive or operator can be used to do this

efficiently.
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3. For each σz operator in the term check if there is a 1 in the binary

representation of the row index in the position on which the σz acts. If

there is multiply the value by minus one.

4. For each σy operator in the term check if there is a 1 in the binary

representation of the column index in the position on which the σy

acts. If there is multiply the value by −i and if not then multiply the

value by i.

Using this process one can determine the values and column indices of

all the non zero values for a given row. Each process then loops over its

local chunk of rows and sets the non zero values for those rows without any

communication with the other processes.

2.C Appendix: Matrix free methods

Matrix free methods refer to diagonalisation methods which do not store

matrix elements, but calculate them as they are needed. Significant savings

in memory result from using these methods which can enable calculations

for larger systems to be performed. These methods were investigated in the

context of DoQO, however they are not currently used due to complications

encountered while attempting to achieve acceptable scalability, whilst main-

taining the desired generality to deal with arbitrary spin half and spinless

fermionic systems, whilst at the same time exploiting physical symmetries.

It is hoped that future versions of DoQO will use these matrix free methods.

Here we discuss some of the issues encountered.

At the core of iterative exact diagonalisation techniques is the matrix

vector multiplication operation. For matrix free methods this operation is

performed by calculating the matrix elements as they are needed rather than

storing them in memory. While this is straightforward to implement for serial

architectures the intensive interprocess communication involved in parallel

implementations causes complications when using large numbers of processes.

In a parallel implementation each vector is divided into sub vectors of

dimension n = N
p

where N is the dimension of the vector and p is the number
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of processes. Each sub vector is stored in the memory of a different process

with processes labelled 0, 1, 2, ..., p − 1. We label the sub vector of vector x

stored by process i with xi and the elements of this sub vector are labeled

(xi)j with 0 ≤ j < n. While for matrix free methods the matrices are not

stored we will use a similar notation for matrices. In this case there are p2

sub matrices each of dimension n×n. The sub matrix Aij with 0 ≤ i, j < p of

matrix A contains elements from A with row indices in the range [in, (i+1)n)

and column indices in the range [jn, (j + 1)n). Elements of the sub matrix

Aij are labelled (Aij)kl with 0 ≤ k, l < n.

Using this notation for the matrix vector multiplication Ax = y the ele-

ments of the sub vector yi are given by:

(yi)j =

p−1∑
k=0

(
n−1∑
l=0

(Ai,k)j,l(xk)l

This expression shows that the elements of each sub vector of y can depend

on all the sub vectors of the x vector 1. To perform this operation in parallel

there are two approaches which can be taken which are:

1. Each process i multiplies the values from the sub vector xi by the

appropriate matrix elements from the sub matrices Aj,i, 0 ≤ j < p and

sends the products to the appropriate processes to add to the values of

the sub vectors yj, 0 ≤ j < p.

2. Each process i retrieves the values of the sub vector xj, 0 ≤ j < p from

the process j, multiplies these by the appropriate matrix elements from

sub matrices Ai,j, 0 ≤ j < p and adds the products to the values of the

sub vector yi.

These approaches are roughly equivalent and suffer many of the same issues.

The first approach has advantages resulting from the fact that it is cheaper to

send a specific group of values to another process than it is to retrieve a spe-

cific group of values, as this requires an additional request for the values. In

1Dependent on structure of the matrix A. yi depends on xj if the sub matrix Ai,j

contains non zero elements.
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light of this we examine further how the first approach may be implemented

and the issues encountered.

The most straightforward means of implementing this approach is to use

the PETSc function MatSetValues to add the products to the sub vectors of

the y vector on the relevant processes. When this function is called it buffers

the indices and values that are to be added and then when the VecAssembly-

Begin and VecAssemblyEnd functions are called the values are sent to the

relevant processes. The process used to send the values consists of a collective

all to all communication operation which communicates from all processes

to all processes how many values are to be sent from each process to each

process. A series of peer to peer exchanges are then used to send the actual

values. This technique does not scale well to large numbers of processes. This

is due mainly to synchronisation issues which mean that many processes are

left idle while waiting for other processes. There is freedom to choose how

often the assembly functions can be called. By allowing some of the values

to be buffered and calling the assembly functions less the efficiency can be

improved somewhat. However if all the values were buffered then almost as

much memory is needed as is required to store the sparse matrix entries and

no significant advantage is gained by using matrix free methods.

To overcome the synchronisation issues described in the above paragraph

the use of one sided communication operations which are part of the MPI-2

standard were investigated. However it was found that in practise due to the

implementation details these operations do not offer any advantage. The use

of the Global Arrays package [32] was also investigated and shows promise.

However this package was not available on the machines being used and a

lot of work would be required to use this package along with the PETSc and

SLEPc libraries.

Another approach aimed at overcoming the synchronisation issues de-

scribed above was devised. This approach involves only the use of peer to

peer communication. In this approach each process calculates the values that

it is to send to one other process. Process 0 calculates the values to send to

process 1, process 1 to 2 and so on up to process p − 1 to process 0. These

values are then sent using an MPI peer to peer communication operation.
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Each process then calculates the values to send to the next process and sends

them. This would be process 0 calculates the values for process 2, process 1

for process 3 and so on. This continues through p−1 iterations. This method

is much more scalable as all communication is peer to peer. However it is

necessary to calculate all the non zero elements of a sub matrix Ai,j of A at

each step. When using the method described in section 2.B for calculating

the non zero matrix elements it is natural to calculate all the non zero ele-

ments for a given column. Thus to calculate the non zero elements of a sub

matrix Ai,j one calculates the row indices of each of the non zero elements

from the columns with indices in the range [jn, (j + 1)n). Unless the row

indices lie within the range [in, (i+ 1)n) they are discarded. The amount of

row indices that must be calculated and subsequently discarded scales with

the number of processes being used and as a result becomes a bottleneck.

Figure 2.5 shows results of benchmarks which show that for a system with

basis size of 224 this technique scales reasonably well up to approximately

100 processes but after this no speedup is observed. It is possible that im-

provements could be achieved by optimising further the code that calculates

and evaluates the row indices or performing pre processing steps to allow the

non zero elements of a given sub matrix to be calculated more directly.
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Figure 2.5: Scaling behaviour of benchmark on Blue GeneP up to 2048 cores
with matrix free method.

When exploiting symmetries for which there are no perfect mapping func-

tions 2.3.2 to map basis elements to their indices a distributed array 2.3.3

is used. This further complicates the implementation of matrix free meth-

ods as extra communication is required to determine the indices of matrix

elements. This can be performed in a pre processing step as is done for the

matrix construction described in section 2.3.3.2 however this introduces sig-

nificant memory overheads which significantly reduce the advantage of using

matrix free methods in the first place.
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Chapter 3

Supersymmetric lattice models

The supersymmetric (SUSY) lattice models discussed here were first intro-

duced by Fendley et al. [13] and can be thought of as a generalisation of

supersymmetry from single particles to multi-particle states on a lattice. For

these models it is the overall state of the system that is fermionic or bosonic,

corresponding to states containing odd or even numbers of fermions respec-

tively. These models are extremely rich in the physics they exhibit. Among

the phases believed to exist in these models are critical, ‘super-frustrated’

and ‘super-topological’ phases.

In this chapter we introduce the SUSY lattice models, review some of

what is known to date and present results of numerical calculations that

have been performed for these models. In section 3.1 the Hamiltonian for

the SUSY lattice models is defined and explained along with properties of

the spectrum and useful commutation relations. This section also describes

briefly the use of the Witten index, cohomology techniques as well as trans-

fer matrix methods. In section 3.2 the SUSY chain is explored. This critical

model has been studied extensively [13, 33, 11, 34] and here we show numer-

ical results which support this work and allows us to verify the correctness of

our numerical tools for treating these models. The staggered SUSY chain [35]

is discussed in section 3.3. For this model we focus in particular on the stag-

gering limits. In section 3.4 we explore the square octagon lattice. For this

lattice we look at the effect of adding defects to the plaquettes and compare
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the properties of the numerically calculated ground states to those of trial

wavefunctions named Projected Product States (PPS) wavefunctions. Fi-

nally in section 3.5 we review issues encountered when performing numerical

calculations for these models.

3.1 Definition and introduction

The Hamiltonian for the supersymmetric lattice models we study here is

defined as the anti-commutator of the nilpotent supercharge operators Q

and Q†.

H = {Q†, Q} (3.1)

The Q† (Q) operator is defined as the sum of spinless fermionic creation

(annihilation) operators times the projector P〈i〉 at each site.

Q† =
∑
i

ciP<i>

Q =
∑
i

c†iP<i>

The projector P〈i〉 = 1 if all sites neighbouring site i are vacant and zero

otherwise. These projectors ensure that no two adjacent sites can be occupied

which is known as nearest neighbour exclusion.

P〈i〉 =
∏

j next to i

Pj =
∏

j next to i

(1− c†jcj) (3.2)

We now show explicitly how the Hamiltonian can be written as kinetic and

potential parts by expanding the general form of the Hamiltonian (equation

3.1) in terms of the fermionic creation and annihilation operators as well as
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the projectors P〈i〉.

H =Q†Q+QQ†

=
∑
i

∑
k

[c†iP<i>ckP〈k〉 + ciP〈i〉c
†
kP〈k〉]

=
∑
i

P〈i〉[c
†
ici + cic

†
i ] +

∑
i

∑
k not next to i

P〈i〉[���
���c†ick + cic

†
k]P〈k〉

+
∑
i

∑
k next to i

P〈i〉[c
†
ick +�

��cic
†
k]P〈k〉

=
∑
i

P〈i〉 +
∑
i

∑
k next to i

P〈i〉c
†
ickP〈k〉

The simplifications where c†ici + cic
†
i = 1 and c†ick + cic

†
k = 0 result from the

canonical fermionic anti-commutation relation {ci, c†k} = δi,k. The fact that

P〈i〉cic
†
kP〈k〉 = 0 when site k is next to site i can be recognised by noticing

that the projector P〈i〉 will include (1 − c†kck) in the product when site k is

next to site i so expanding we get:

P〈i〉cic
†
kP〈k〉 = [

∏
j next to i,j 6=k

(1− c†jcj)](1− c
†
kck)cic

†
kP〈k〉

Then taking out the terms acting on site k we get:

(1− c†kck)cic
†
k = cic

†
k − cic

†
kckc

†
k = cic

†
k − cic

†
k(1− c

†
kck)

= cic
†
k − cic

†
k + 0 = 0

The outcome of this expansion is that we can write the Hamiltonian as the

sum of kinetic and potential terms.

H = Hkin +Hpot

The kinetic part is written as:

Hkin =
∑
i

∑
k next to i

P〈i〉c
†
ickP〈k〉 (3.3)
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and contains hopping terms between neighbouring sites where the projection

operators ensure that the hopping is permitted by the nearest neighbour

exclusion condition. The potential part is written as:

Hpot =
∑
i

P〈i〉 (3.4)

and assigns energy to each configuration. More fermions are favoured en-

ergetically but there is an energy penalty for placing fermions too close to-

gether.

The spectrum is positive definite with ground state energy equal to zero1.

〈ψ|H|ψ〉 = 〈ψ|Q+Q− +Q−Q+|ψ〉

= |Q−|ψ〉|2 + |Q+|ψ〉|2

3.1.1 Commutation relations

We now discuss some important commutation relations.

[H,F ] = 0 (3.5)

Here F =
∑

i ni with ni = c†ici is the total number of fermions. This relation

tells us that the total number of fermions is conserved. Why this is so can

be seen by noting that the Hamiltonian is made up of hopping terms and

number operators only, neither of which changes the number of fermions in a

given configuration. This can be more clearly seen when the Hamiltonian in

written in terms of the spinless fermionic creation and annihilation operators

(equations 3.3 and 3.4).

[H,Q(†)] = 0 (3.6)

The Hamiltonian also commutes with the supercharge operators Q(†) which

results from the fact that these operators are nilpotent ((Q(†))2 = 0) and the

Hamiltonian is the anti-commutator of these operators. This commutation

relation indicates that states with finite energy form doublets which for the

1Ground state energy can be non zero when the supersymmetry is broken [33]
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appropriate chooses of basis can be written as {|ψ〉, Q|ψ〉} or {|ψ〉, Q†|ψ〉}.
If |ψ〉 is an eigenstate of the Hamiltonian then the following holds.

H|ψ〉 = E|ψ〉

Q(H|ψ〉) = Q(E|ψ〉) = H(Q|ψ〉) = E(Q|ψ〉)

The same can be done for Q†.

[F,Q] = −Q

[F,Q†] = Q†

The supercharge operators do not commute with F . It is straightforward to

derive these commutation relations.

[F,Q] = FQ−QF =
∑
i

ni
∑
j

cjP〈j〉 −
∑
j

cjP〈j〉
∑
i

ni

=
∑
i 6=j
((((

(((
(((([nicjP〈j〉 − cjP〈j〉ni] +

∑
i

[���
�niciP〈i〉 − ciP〈i〉ni]

= −
∑
i

cic
†
iciP〈i〉 = −

∑
i

[ci −��
�

c†icici]P〈i〉 = −Q

The cancelations are a direct result of the fermionic anti-commutation re-

lations. The same can be done for the commutator [F,Q†]. As a result,

applying one of the supercharge operators to a state changes the number of

fermions in that state:

H|ψ〉 = f |ψ〉

QF |ψ〉 = Q(f |ψ〉) = (FQ+Q)|ψ〉 = f(Q|ψ〉)

F (Q|ψ〉) = (f − 1)(Q|ψ〉)

The same can be done for Q†.
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3.1.2 Witten Index

The Witten index [36] is defined as W = tr[(−1)F e−βH ] where the trace

is over the entire Hilbert space, β = 1
kT

is the inverse temperature and

F =
∑

i ni is the total number of fermions. The absolute value of this gives

a lower bound on the number of zero energy ground states for a given SUSY

lattice model. States with finite energy always have a super-partner with the

same energy. This means that all the finite energy states cancel and what is

left is a trace over the singlet ground states. For certain lattice geometries not

all ground states occur at the same filling resulting in cancelations between

ground states. This is why the Witten index only provides a lower bound on

the number of ground states. In [33] results of numerical calculations of the

Witten index for different lattice geometries are presented.

3.1.3 Cohomology

Cohomology can be used to provide accurate information about the ground

state degeneracy of SUSY lattice models [37]. The ground states of these

models are singlet states that are annihilated by Q and Q†. The kernel of

an operator consists of all states which are annihilated by the operator, so

all ground states are in ker(Q). Singlet states also cannot be the result of

applying Q or Q† to any state. The image of an operator contains all states

which can result from the action of that operator on a state. Thus singlet

states are not part of the Im(Q). The ground states are all states in the

kernel of Q but not in the image. This is the definition for the cohomology of

Q which is HQ = kerQ/ImQ. Thus the dimension of the ground state space

of these models is the same as the dimension of the cohomology class of Q.

In many lattices the dimension of the cohomology class can be calculated

analytically [37].

3.1.4 Transfer matrices

Transfer matrix methods can be used to calculate the Witten index, the

partition function and also the dimension of the Hilbert space at each filling
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for SUSY lattice models [37, 11, 33, 38, 39]. For the closed 1D chain with L

sites the partition function is given by:

Z(z) = tr(T L) = tr

( 1 1

z 0

)L


The basis elements on which the transfer matrix acts correspond to the

two possible configurations on a site which are empty and occupied re-

spectively. The matrix elements of the transfer matrix T are given by

Tij = (1−δ2,ni+nj)z
ni where n1 = 0 and n2 = 1 are the number of fermions in

basis configuration one and two respectively. The top left entry corresponds

to adding an empty site to an empty site, the bottom left to adding an occu-

pied site to an empty site, the top right an empty site to an occupied site and

the bottom right an occupied site to an occupied site. Adding an occupied

site to an occupied site is not permitted by the nearest neighbour exclusion

condition and thus the bottom right matrix element is zero.

Setting the fugacity z = −1 results in the Witten index and setting z = 1

gives the dimension of the full Hilbert space. If the calculation is performed

symbolically the resulting polynomial in z tells the size of the Hilbert space

at each filling. Here the coefficient of the zn term is the size of the Hilbert

space at filling n. For example for the closed six site chain this works out to

be:

Z(z) = 1 + 6z + 9z2 + 2z3

which tells the size of the Hilbert space at fillings 0, 1, 2 and 3 are 1, 6, 9 and

2 respectively. Being able to calculate the dimension of the Hilbert space

is useful when trying to work out whether or not calculations are tractable.

Table 3.12 in appendix 3.D gives the dimension of Hilbert spaces for SUSY

models on various lattices calculated using transfer matrices.

For the open 1D chain where the end sites are not connected we take the

transfer matrix to the power of L − 1, multiply by a vector c = (1, z) and
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then sum the entries of the resulting vector.

Z(z) =
2∑

i,j=1

(T L−1)ijcj

Figure 3.1: Square octagon chain.

Transfer matrices can also be used for more complicated lattices. For the

square octagon chain, as shown in figure 3.1, the transfer matrix for adding

a plaquette to the chain is:

T = ABA =

(
1 1

z 0

)(
1 1

z2 + 2z 0

)(
1 1

z 0

)

=

(
1 + 3z + z2 1 + 2z + z2

z + z2 z

) (3.7)

The matrix A is the same as the transfer matrix for the 1D chain and adds

a single site to the chain, whereas the B matrix gives the weights for adding

the two sites which are at the top and bottom of each plaquette. Multiplying

them together gives the transfer matrix for adding a complete plaquette to

the chain. The partition function in this case for a closed chain with N

squares is:

Z(z) = tr(T N)

This method can also be used for 2D lattices in which case each transfer

matrix becomes a row to row transfer matrix. Here the weight of the entries

corresponds to the weight of adding a particular row configuration to another

row configuration. Calculations of the Witten index for various 2D lattices

using this technique were carried out in [33].

For the square octagon lattice on a cylinder with two columns and N

rows in the direction that wraps around the cylinder the partition function
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is given by:

Z(z) = tr((ABA)N)

where A is the transfer matrix for adding two sites and B is the transfer

matrix for adding four sites. These matrices are:

A =


1 1 1 1

z z 0 0

z 0 z 0

z2 0 0 0

 , B =


1 1 1 1

2z + z2 0 2z + z2 0

2z + z2 2z + z2 0 0

3z2 + 2z3 0 0 0


3.2 SUSY chain

The 1D SUSY chain is the simplest SUSY lattice model [13] and has been

studied extensively. Here we review some of the properties of this model and

show some numerical results which serve to support the existing work and

to confirm the accuracy of our numerical tools for treating these models.

On a chain each site i has two neighbouring sites i − 1 and i + 1. As a

result the projection operators P〈i〉 are defined2 as P〈i〉 = Pi−1Pi+1 = (1 −
ni−1)(1−ni+1). Putting this into the expressions for the kinetic and potential

parts shown in equations 3.3 and 3.4 the Hamiltonian is written as:

H = Hkin +Hpot

Hkin =
L∑
i=1

[Pi−1(c†ici+1 + c†i+1ci)Pi+2]

Hpot =
L∑
i=1

Pi−1Pi+1 =
L∑
i=1

(1− ni−1)(1− ni+1)

=
L∑
i=1

(1− ni+1 − ni−1 + ni−1ni+1) = N − 2F +
∑
i

ni−1ni+1

2For a closed chain with n sites site n + 1 is site 1 and site −1 is site n. For the open
chain the sites at the ends only have one neighbouring site.
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Figure 3.2: Plot of energy spectrum of six site closed SUSY chain against
fermion number. Super-partners are indicated by connected points and illus-
trations on the left show the number of configurations at each filling. Figure
taken from [40].

If there are one or more zero energy singlet ground states we say that

SUSY is unbroken [36], otherwise we say the SUSY is broken. For the 1D

SUSY chain the number of zero energy ground states has been computed

using the Witten index and cohomology [13] (details [11]). For a closed

SUSY chain there are two zero energy ground states when the chain length

L mod 3 = 0 and one zero energy ground state otherwise. For the open

SUSY chain there is a single zero energy ground state when L mod 3 = 0, 2.

For an open chain with L mod 3 = 1 the SUSY is broken and there are

no zero energy singlet ground states. Figure 3.2 shows the spectrum of the

closed six site SUSY chain. The doublet finite energy states and two singlet

ground states are clearly visible here.

In the thermodynamic limit the closed 1D SUSY chain is critical (see ap-

pendix 3.C) and is described by the simplest N = (2, 2) superconformal field

theory with c = 1 [11]. The N = (2, 2) means that both the holomorphic as

well as the anti-holomorphic fields satisfy an N = 2 superconformal algebra.

The open 1D SUSY chain is also critical in the thermodynamic limit but is

described by an N = 2 superconformal field theory.

It is possible to map the SUSY chain to the Heisenberg XXZ chain with

anisotropy parameter ∆ = −1
2

[41, 13, 33] (up to an overall constant and

with twisted boundary conditions). Figure 3.3 shows the mapping between

sites of the SUSY chain and the spins of the XXZ model. SUSY chains at
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different fillings correspond to XXZ spin chains of different lengths. The

XXZ chain has Hamiltonian:

HXXZ =
1

2

L∑
i

[σxi σ
x
i+1 + σyi σ

y
i+1 −∆σzi σ

z
i+1]

(a) (b)

Figure 3.3: Mapping of sites to spins. (a) Each occupied site along with
its links to the neighbouring unoccupied sites are mapped to the up spin
and each link between unoccupied sites is mapped to a down spin. (b) An
example showing the mapping from a six site chain to spins.

3.2.1 Computations

Finite size scaling (FSS) calculations of the energy gap were performed for

closed SUSY chains with lengths L = 3k where 3 ≤ k ≤ 13. The energy

gap is defined as the difference in energy between the ground state and first

excited state. Figure 3.4 shows the energies of the first and second excited

states plotted against the inverse chain length. Also included in the plot is the

expected scaling of the energy gap obtained from superconformal field theory

(SCFT) [11]. This is given by the expression E = 2πESCFT vF
L

with a correction

on the order of the inverse square length, ESCFT = 2
3

and vF = 9
√

3
4

. It is also

known that the first excited state will be doubly degenerate in the infinite

limit. From the plot it is clear that the difference in energy between the first

and second excited states goes to zero and that as the system size is increased

the energy gap converges to that predicted by SCFT and goes to zero in the

limit of infinite system size. The fact that the numerically calculated energy

values show good agreement with the analytical description confirms that

DoQO is working correctly for these models. Additionally the fact that the

ground state energy is identically zero and that all finite energy states have
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super-partners is further proof that the numerically calculated spectral values

are correct.
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Figure 3.4: First and second excitation energies and the average for the
closed SUSY chain plotted with inverse chain length. Expected behaviour
from SCFT also included.

By exploiting the translational invariance of the closed SUSY chain the

momentum of each state in the spectrum can be determined. Figure 3.5

shows the energy (rescaled) of the low lying states of the closed SUSY chain

with L = 45 and filling f = 15 plotted against momentum. The ‘tower of

states’ structure expected of conformally critical systems is evident here.

From the analysis given in [11] we know that for the closed SUSY chain

with length 3k, k ∈ Z , the highest weight states with the lowest energies are

V0,± 1
2
| 0〉 and V0,± 3

2
| 0〉. These states have conformal dimensions hL,R = 1

24

and hL,R = 3
8

respectively (see appendix 3.C for information on conformal

dimensions). The energy is given by the expression E = hL + hR − c
12

so the

energies of the states V0,± 1
2
| 0〉 are 0 and the energies of the states V0,± 3

2
| 0〉

are 2
3
. To relate these energies to the numerically calculated energy spectrum

we rescale the numerically calculated energy spectrum such that the first gap

is 2
3

[42].

These highest weight states have descendants which result from act-

ing on these states with the generators of the Virasoro algebra LL,−n and

LR,−m with m,n > 0. If states are labeled by their conformal dimensions

51



1 23

4
5 6 7 89

10

11

12

Figure 3.5: Dispersion plot for closed 1D chain with L = 45 sites at filling
f = 15. The energies have been rescaled so that the first excitation gap is 2

3
.

Fields corresponding to labels are listed in table 3.1. As a guide green (red)
lines are shown at energies n, n ∈ Z (2

3
+ n, n ∈ Z) corresponding to fields

V0,± 1
2

(V0,± 3
2
) and descendants.

|hL, hR〉 then the action of the generators of the Virasoro algebra are given by:

LL,−n|hL, hR〉 = |hL + n, hR〉 and LR,−m|hL, hR〉 = |hL, hR +m〉. The effect

on the energy of LL,−n and LR,−m is +n and +m respectively. The change in

momentum in terms of the conformal dimensions is given by hL−hR in units

of 2π
L

so the change in momentum under the action of LL,−n and LR,−m is
2nπ
L

and −2mπ
L

respectively. In the plot (figure 3.5) highest weight states and

some of their descendants have been labelled and the corresponding fields

are listed in table 3.1. There is good agreement between the numerically

calculated values and the CFT predictions for the low lying values which as

expected gets worse for higher energy states.

3.2.2 Entanglement

The entanglement entropy (EE) is a measure of how much entanglement

exists between two parts of a system. The EE between two parts of a system
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Highest weight Descendants
Label Fields Label Fields

1 V0,− 1
2

5 LR,−1V0,− 1
2

6 LL,−1V0,− 1
2

2 V0, 1
2

7 LR,−1V0, 1
2

8 LL,−1V0, 1
2

3 V0,− 3
2

9 LR,−1V0,− 3
2

11 LL,−1V0,− 3
2

4 V0, 3
2

10 LR,−1V0, 3
2

12 LL,−1V0, 3
2

Table 3.1: Fields corresponding to the states labeled in figure 3.5.

labelled subsystems A and B in the state |ψ〉 is defined as the von Neumann

entropy of the reduced density matrix of subsystem A defined as ρA = TrB(ρ)

or equivalently of subsystem B defined as ρB = TrA(ρ).

SV N = −Tr(ρA log(ρA)) = −Tr(ρB log(ρB))

The EE is zero when there is no entanglement and has a maximum value

of log(D), where D = min(dimHA, dimHB) when the two subsystems are

maximally entangled.

Another equivalent method which can be used to calculate the entangle-

ment entropy [43] involves getting the Schmidt decomposition of the state

|ψ〉 which gives:

|ψ〉 =
∑
i

e−
1
2
ξi |ψiA〉 ⊗ |ψiB〉

where |ψiA〉 ∈ HA and |ψiB〉 ∈ HB are orthonormal states spanning these

spaces. HA and HB are the Hilbert spaces of the states of subsystems A

and B respectively with the full Hilbert space given by H = HA ⊗HB. The

Schmidt decomposition of the state |ψ〉 is equivalent to getting the singular

value decomposition of the weight matrix Wα,β. The state |ψ〉 expressed in

53



terms of the weight matrix is:

|ψ〉 =
∑
α,β

Wα,β|ψαA〉 ⊗ |ψ
β
B〉

where α labels the configurations on subsystem A and β labels the configu-

rations on subsystem B. The singular values of this matrix are e−
1
2
ξi . The

EE in terms of ξi is given by:

SV N =
∑
i

ξie
−ξi

The area law states that the EE is proportional to the length of the

boundary. For 1D systems the boundary consists of the end points only and

therefore is constant. For 1D gapped systems the area law holds and the EE

saturates to a constant when the length of the subset becomes greater than

the correlation length. For critical 1D systems however the EE is related

to the logarithm of the length of the subset and continues to grow as the

subset size increases. For a large but finite critical system of length L the EE

represented by SV N of a subsystem A of length lA is given by the expression:

SV N =
c

3
log(

L

π
sin(

lAπ

L
)) + d (3.8)

for closed chains and:

SV N =
c

6
log(

L

π
sin(

lAπ

L
)) + d (3.9)

for open chains [44, 45, 46]. Here c is the central charge of the CFT describing

the critical point and d is a non-universal constant (different for open and

closed chains).

We now look at the EE for the 1D SUSY chain. For the closed case

we look at the EE for chains with lengths that are not multiples of three.

In these cases there is a single ground state which makes calculating the

EE more straightforward. Figure 3.6 shows the EE at different subsystem

sizes and different length chains in the ground state. Fits to the data with
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Figure 3.6: Entanglement entropy in the ground state of the closed SUSY
chain. l̄A = lA

L
where lA is the length of subsystem A. The function used for

the fits is shown in equation 3.8. The data points with the ‘x’ symbols were
not considered for the fits.

equation 3.8 are also shown with the dashed lines and the parameters of

the fits are shown in table 3.2. To obtain good fits to the data, the EE for

subsystems with lA < 3 and lA > L − 3 were excluded. It is known that in

the thermodynamic limit the closed SUSY chain is described by a CFT with

c = 1. The values obtained for c from the fits are in good agreement with

the expected value and get better with increasing system size.

Calculations of the EE were also performed for the open chain. The

results of these calculations are shown in figure 3.7. One thing that is im-

mediately apparent here is that the values of the EE here are substantially

lower than for the closed case. This is explained by the fact that for the

open system a subsystem here has only one boundary instead of two for

closed systems. The other significant difference in this case is that there

are oscillations appearing in the EE resulting from the way the system is

partitioned. This can be clearly seen in figure 3.7a. Fits were performed

for various system sizes using subsystem lengths that are multiples of three.

These fits are shown along with the data in figure 3.7b. The parameters of

the fits are also shown in table 3.2. The values for c obtained from the fits

are again close to the expected c = 1 and get closer with increasing system

size.
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Closed chain Open chain
Length c d Length c d

28 1.0582 0.7294 30 0.94918 0.1064
31 1.0521 0.7333 33 0.96175 0.1051
34 1.0473 0.7366 36 0.97260 0.1040
37 1.0433 0.7394 39 0.98207 0.1029
40 1.0400 0.7418 42 0.99040 0.1019
43 1.0371 0.7438 45 0.99780 0.1009

Table 3.2: Values of the fitting parameters obtained when fitting equations
3.8 and 3.9 to the data shown in figures 3.6 and 3.7 respectively. In each case
the error of the least squares fit is on the order of 10−6.

3.3 Staggered SUSY chain

The staggered chain [35, 47] is a variant on the regular chain where every

third site is staggered. For this model we show the results of gap scaling

calculations which serve to establish the nature of the phase for both open

and closed chains for each value of staggering parameter. Exact expressions

for the ground state(s) in each of the staggering limits are then presented.

Particular attention is paid to the infinite staggering limit of the open chain

for which we introduce the ‘kink’ picture. We then show expressions for

the entanglement entropy and entanglement spectrum in each case. These

are derived from the expressions of the ground state(s) and are verified with

numerical calculations where appropriate. The introduction of staggering

does not affect the ground state degeneracy or the filling at which they are

found. The supercharge operators are defined as Q(a)(†) = Q
(†)
1 +aQ

(†)
2 where

a is the staggering parameter. Q
(†)
1 acts on the sites represented by circles and

Q
(†)
2 acts on the sites represented by squares in figure 3.8. The supercharge

operators for the staggered chain of length L = 3k can be written as:

Q(a)(†) =
k−1∑
i=0

(P〈3i〉c
(†)
3i + aP〈3i+1〉c

(†)
3i+1 + P〈3i+2〉c

(†)
3i+2)
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Figure 3.7: Entanglement entropy in the ground state of the open SUSY
chain for (a) chain length L = 39 with all subsystem sizes and (b) various
lengths with 33 ≤ L ≤ 45 and subsystem sizes lA mod 3 = 0 with l̄A = lA

L
.

The function used for the fits is shown in equation 3.9.

Figure 3.8: Staggered chain.

which results in the Hamiltonian:

H =
∑
〈i,j〉

αiαj(c
†
icj + c†jci) +

∑
i

α2
iP<i>

where αi = a if i mod 3 = 1 and αi = 1 otherwise (sites are labelled from 0

to 3k − 1). Setting a = 1 corresponds to the regular chain which is critical

and separates two distinct phases.

3.3.1 Low staggering limit

In the low staggering limit the staggering parameter a→ 0. In this limit the

structure of the ground state is known exactly [48]. For the open chain the

single ground state consists of the configuration where all the staggered sites

are occupied. This configuration is illustrated for a chain of length L = 9

in figure 3.9 and in terms of the fermionic creation operators acting on the
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vacuum:

|ψGS1〉 =
k−1∏
i=0

c†3i+1| ∅〉 (3.10)

Here sites are labelled from 0 to 3k−1. It is easy to see from the Hamiltonian

why this configuration has zero energy. Any hopping terms to or from the

staggered sites have coefficient zero in this limit and the potential term on

this site contributes zero energy.

Figure 3.9: Configuration on staggered chain with L = 9 with all staggered
sites occupied.

For the closed chain of length L = 3k the two fold degenerate ground state

space is spanned by the ground state of the open chain of length L = 3k and

a state made up of a superposition of the 2k possible configurations with k

fermions such that no staggered sites are occupied. These configurations for

a chain of length L = 9 are shown in figure 3.10. This state can be expressed

as:

|ψGS2〉 =
1

2
k
2

k−1∏
i=0

(c†3i − c
†
3i+2)| ∅〉 (3.11)

Here sites are labelled from 0 to 3k − 1 and the label 3k is site 0. It is not

as straightforward to see that this state has zero energy in this limit. While

each configuration has finite energy the way the configurations are summed

results in a net energy of zero.

Figure 3.10: All possible configurations on closed staggered chain of length
L = 9 with filling F = 3 such that no staggered sites are occupied.
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(b) Open chain.

Figure 3.11: FSS of the excitation gap for the (a) closed and (b) open stag-
gered SUSY chain as a→ 0.

The gap in this limit is 2 with the energy of all excitations being multiples

of 2. FSS gap calculations for different values of the staggering parameter

0 ≤ a ≤ 1 show that as a→ 1 the gap goes to a constant value of 2 for both

closed and open chains. The results of these calculations are shown in figure

3.11.

3.3.2 Large staggering limit

In the large staggering limit as a → ∞ it becomes extremely energetically

expensive for the staggered sites to be occupied or for a fermion to hop to or

from one of these sites. In this case the ground state space of the closed chain

is spanned by the two possible configurations for which each staggered site

has an occupied neighbour. The presence of an occupied site next to each

staggered site makes it impossible for any fermions to be created on the stag-

gered sites. For a chain of length L = 3k, k = 3 the possible configurations

are shown in figure 3.12. For the open chain the ends are no longer connected

and as a result both ends may be occupied simultaneously. In this case for

a chain of length L = 3k there are an additional k − 1 configurations that

contribute to the ground state. The additional configurations for a chain of
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Figure 3.12: The two possible configurations on closed chain where each
staggered site has an occupied neighbour.

length L = 3k, k = 3 are shown in figure 3.13. The single ground state is an

Figure 3.13: Additional configurations possible in large staggering limit of
the open chain.

equal superposition over these configurations and has the form:

|ψGS〉 =
1√
k + 1

k+1∑
i=1

[
k−i∏
j=0

c†3j][
k−1∏

j=k−i+1

c†3j+2]| ∅〉 (3.12)

where sites are labelled from 0 to 3k− 1. FSS calculations of the energy gap
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(b) Open chain.

Figure 3.14: FSS of the excitation gap for the (a) closed and (b) open stag-
gered SUSY chain as a→∞.

were performed for both open and closed chains in the large staggering limit.

The results of these calculations are plotted in figure 3.14. The scaling of
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the gap is drastically different in each case in this limit. For the closed chain

as the staggering parameter increases a gap opens up and continues to grow

as the staggering parameter is increased (figure 3.14a). This excitation gap

can be attributed to configurations where staggered sites are either occupied

or not blocked by an occupied neighbouring site. For the open chain (figure

3.14b) the model remains gapless as the staggering parameter is increased.

However the gap no longer scales to zero linearly with the inverse system

size. In this regime in the thermodynamic limit there is a continuum of

states above the ground state. This regime is explored further in the next

section.

3.3.2.1 Excited states

In the previous section we showed that the ground state of the open staggered

chain of length L = 3k in the large staggering limit a → ∞ is made up of

a sum over k + 1 configurations. Each of these configurations does not have

any fermions on staggered sites, but at the same time each staggered site has

a neighbouring site that is occupied. We label these configurations |ψ1〉 to

|ψk+1〉 as in figure 3.15. One can view each of these configurations as having

Figure 3.15: All possible configurations for the open staggered chain where no
staggered site is occupied and each staggered site has an occupied neighbour.

a ‘kink’. This is simply a break in the regular pattern. In |ψ1〉 the kink is

on the far right and it moves to the left until it ends up on the far left in

configuration |ψk+1〉.
Since in these configurations the staggered sites are blocked, it is natural

to assume that these configurations are also the dominant configurations
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of the first excited states. We now show the derivation of an analytical

expression for the energies of these low lying states [49] and compare this to

results form numerical calculations. The Hamiltonian can be written in terms

of Q
(†)
1 and Q

(†)
2 where Q

(†)
1 acts on the regular sites represented by circles in

figure 3.15 and Q
(†)
2 acts on the staggered sites represented by squares. The

Hamiltonian for the staggered chain can then be expanded as:

H = a2(Q2Q
†
2 +Q†2Q2) + a(Q1Q

†
2 +Q2Q

†
1 +Q†1Q2 +Q†2Q1) +Q1Q

†
1 +Q†1Q1

First we look at the effect of the term Q1Q
†
1 on |ψi〉. Applying Q†1 on

the states |ψi〉 results in a sum of states, each with an additional fermion

inserted at the appropriate position as allowed by the nearest neighbour ex-

clusion condition. For |ψ1〉 and |ψk+1〉 there is only one appropriate position,

which is the very last site and the very first site respectively. For each ad-

ditional configuration applying Q†1 results in an equal superposition of the

configurations that have an additional fermion inserted at each of the two

available positions.

Applying Q1 to Q†1|ψi〉 results in a superposition over k+1 states for |ψ1〉
and |ψk+1〉 and 2(k+1) states for the other states. For |ψ1〉 and |ψk+1〉 one of

the configurations in the superposition will be the original configuration, |ψ1〉
or |ψk+1〉 respectively. For the other states |ψi〉 where 1 < i < (k+ 1) two of

the configurations will be instances of the original configuration |ψi〉. As well

as instances of the original configuration |ψi〉, there will be one instance of

the previous configuration |ψi−1〉, and one instance of the next configuration

in the list |ψi−1〉. However these will have a negative phase resulting from

the fermionic anti-commutation relations. In the case of the first and last

configurations |ψ1〉 and |ψk+1〉 there will only be a single instance of the

next and previous configurations respectively. Again these instances have a

negative phase.

In the superposition of configurations resulting from the application of

Q1Q
†
1 on |ψi〉 as well as the instances of configurations from the subset of

states |ψi〉, 1 ≤ i ≤ (k + 1) there are other configurations for which every

staggered site is not blocked by an occupied neighbour. We ignore these
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configurations for now. In summary acting on |ψi〉 with Q1Q
†
1 and ignoring

configurations where the staggered sites are unblocked results in:

Q1Q
†
1|ψ1〉 = |ψ1〉 − |ψ2〉

Q1Q
†
1|ψ2〉 = −|ψ1〉+ 2|ψ2〉 − |ψ3〉

...

Q1Q
†
1|ψk〉 = −|ψk−1〉+ 2|ψk〉 − |ψk+1〉

Q1Q
†
1|ψk+1〉 = −|ψk〉+ |ψk+1〉

If the states |ψi〉 are chosen as a basis Q1Q
†
1 can be written as the matrix:

1 −1

−1 2 −1 0

−1 2 −1

. . .

. . .

−1 2 −1

0 −1 2 −1

−1 1


This matrix has the form of a second derivative with eigenvalues given by

the expression [49]:

λn = 4sin2(
nπ

2k + 2
) (3.13)

where 0 ≤ n < k + 1. This result shows very good agreement with the

numerically calculated energies, even for reasonably small (L = 18) systems.

Figure 3.16 shows the energy of the low lying excitations for comparatively

small chains alongside the analytical expression in equation 3.13.

The match between this expression and the numerically calculated values

is surprisingly good considering this is just one of the terms of the Hamil-

tonian and configurations other than |ψk〉 are ignored. This is explained

by noting that configurations lying outside this subset of configurations con-

tribute to the low lying states and cancel with these terms. The weight with

which these configurations contribute is on the order of 1
a
. This can be seen
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Figure 3.16: Plot of the energies of low lying excitations of open staggered
SUSY chains with staggering a = 100 and lengths 3k with 4 ≤ k ≤ 8.
x = n
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. The equations used for the fits are f(n) = 4 sin2( nπ
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) and g(n) =

4( nπ
2k+2

)2.

by working through a very small example by hand. To verify this further,

calculations of the one point functions in the ground state and first excited

states at one of the staggered sites were calculated for different values of the

staggering parameter. The results of these calculations are shown in figure

3.17. Here it was found that the one point function at the staggered site

is inversely related to the square of the staggering parameter a. This indi-

cates that configurations with staggered sites occupied do indeed appear with

weight on the order of 1
a

in the ground state and low lying excited states.

Another point worth noting is that in the limit of large system size the

energies of the lowest states match those for the particle in a box model.

λn = 4sin2(
nπ

2k + 2
) ≈ 4(

nπ

2k + 2
)2

A fit for this expression is also shown in figure 3.16.
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SUSY chain plotted against the staggering parameter a. The dashed lines
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a2
.

3.3.3 Entanglement

We now look at the entanglement for the staggered SUSY chain. In both

high and low staggering limits there are exact expressions for the ground

state which can be used to determine exactly the entanglement entropy (EE)

and entanglement spectrum (ES) in these limits.

In the low staggering limit of the open SUSY chain there is no entan-

glement. Here there is a single ground state described by the expression in

equation 3.10. For any choice of partitioning it is possible to write this state

as a product of states from each subset. Thus the EE is zero and there is no

ES.

For the closed SUSY chain in the low staggering limit there are two ground

states. One state is identical to the ground state of the open chain and has

no entanglement. The other state (equation 3.11) has entanglement that is

constant for each type of partitioning. The first type of partitioning we look

at is where the system is partitioned such that each partition is made up of
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blocks of three sites, where the central site of each block is a staggered site. In

this case the EE between the subsets is a constant SV N = log(4) and the ES

consists of a four fold degenerate point: ξi = log(4), 0 ≤ i < 4. As discussed

in section 3.2.2 this is the expected behaviour for 1D gapped systems. Why

this is so can be seen by noting that a subset of this ground state that

consists of k blocks consists of configurations with fillings k and k + 1. For

the configurations with filling k there are three possible configurations on the

boundary sites: both vacant, left vacant or right vacant and for configurations

with filling k + 1 both boundary sites are always occupied. The ground

state can then be written as the equal superposition of four products states.

From these weights the EE and ES are easily calculated. For the other

possible choices of partitions the EE is also constant. For the case where

both boundaries of a partition are at one of the staggered sites there is

no entanglement. For the case where a single boundary is at one of the

staggered sites the EE is given by SV N = log(2) and the ES consists of a two

fold degenerate point with ξi = log(2), 0 ≤ i < 2.

In the large staggering limit on the closed SUSY chain each ground state

can be expressed as a simple product state over any subsets chosen so there

is no entanglement. For the SUSY open chain the ground state is shown in

equation 3.12 and the situation is more complicated. When an open chain of

length 6k is divided into two equal subsets it was found that it is possible to

analytically derive expressions for the reduced density matrix, the EE and

the ES [49]. Here we show how the reduced matrix can be derived from

the weight matrix and extend this technique to work with other choices of

partitioning.

When an open chain with 3k sites is divided into subsets A and B con-

taining lA = 3l and lB = 3(k − l) sites respectively the weight matrix Wi,j

has m rows and n columns where m = l + 1, n = k − l + 1. The elements of

this matrix are given by the expression:

Wi,j =
1√
k + 1

(δ0,i + δn−1,j − δ0,iδn−1,j)

Multiplying this matrix by its transpose results in an m ×m matrix which
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is the reduced density matrix of the subset A.

ρA = WW T = TrB(ρAB)

The matrix elements of this matrix are given by:

[ρA]i,j =

 1
k+1

for i > 0 or j > 0

n
k+1

for i = j = 0

This is a rank two matrix with eigenvalues given by:

λ± =
1

k + 1
(
m+ n− 1

2
±
√

(m− n− 1)2 + 4(m− 1)

2
)

and unnormalised eigenvectors of the form:

|x±〉 = | (n−m+ 1

2
±
√

(m− n− 1)2 + 4(m− 1)

2
, 1, 1, .......1〉 (3.14)

When an open SUSY chain with a multiple of six sites is cut in half, m = n

and the expression for the eigenvalues becomes:

λ± =
1

k + 1
(
2n− 1

2
±
√

4n− 3

2
)

When the chain is divided into subsets with lengths lA = 3l − 1 and

lB = 3(k− l) + 1 the weight matrix has dimension m×n with m = l+ 1, n =

k − l + 2. The elements of this matrix are given by the expression:

Wi,j =
1√
k + 1

(δ0,i + δn−1,j − 2δ0,iδn−1,j)

The related reduced density matrix resulting from the multiplication of this

weight matrix by its transpose again has dimension m ×m but in this case

has elements given by:

[ρA]i,j =

 1
k+1

for i > 0 and j > 0

n−1
k+1

for i = j = 0
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This is a rank two matrix with eigenvalues given by:

λ0 =
m− 1

k + 1
=

l

k + 1
, λ1 =

n− 1

k + 1
=
k − l + 1

k + 1

and unnormalised eigenvectors of the form:

|x0〉 = | 1, 0, 0, .......0〉, |x1〉 = | 0, 1, 1, .......1〉 (3.15)
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Figure 3.18: Numerically calculated EE data for the ground state of the open
L = 39 staggered chain with staggering parameter a = 50 plotted alongside
analytical results for the infinite staggering limit.

The EE in terms of the eigenvalues of the reduced density matrix is

SV N =
∑

i−λilog(λi) and the values of the ES are ξi = −log(λi). Using

the expression for the EE the analytical results were compared to numerical

data for an open chain with L = 39 and staggering parameter a = 50 (figure

3.18). There is almost exact agreement between the analytical and numerical

data. The very slight deviation can be attributed to the fact that taking the

staggering parameter to be a = 50 is not the infinite staggering limit.

In the limit of infinite system size where the system is partitioned into two

equally sized subsets it can be seen from the expressions for the eigenvalues

that both converge to a half. In this case the EE is SV N = log(2) and the

ES consists of two points at log(2). Figure 3.19 shows the convergence of the

EE and the ES with chain length L for the cases where the subset length
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Figure 3.19: Analytical (a) EE and (b) ES at different subset lengths plotted
against the logarithm of the chain length with L = 3k, 2 ≤ k ≤ 10000

lA = L
2

and lA = L
2
− 1.

The two points of the ES in each case can be interpreted in terms of

the ‘kink’ picture, discussed in section 3.3.2.1. In the case where the subset

length is not a multiple of three, it is clear from the eigenvectors (equation

3.15) that the two eigenvalues of the reduced density matrix correspond to

the cases where the ‘kink’ is in subset A only or in subset B only. In the case

where the chain is split into subsets with lengths that are multiples of three

it is possible that as well as the kink being in either subset it can also be split

by the partitioning such that half is in each subset. We define the vector |xA〉
which corresponds to the kink being completely in subset A and the vector

|xĀ〉 which corresponds to the kink being either not in A or split by the

partitioning. In terms of these vectors the eigenvectors of ρA (equation 3.14)

can be expressed as: |x±〉 = 1√
2
(|xA〉 ± |xĀ〉). In the infinite limit where

the eigenvalues are degenerate, the superpositions 1√
2
(|x+〉 ± |x−〉) are also

eigenvectors. Then 1√
2
(|x+〉 + |x−〉) = |xA〉 which corresponds to the kink

being completely in A and 1√
2
(|x+〉−|x−〉) = |xĀ〉 which corresponds to the

situation where either the kink is not in A or is split by the partitioning.
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3.4 Square octagon lattice

In this section we investigate the square octagon (SO) SUSY model[11]. The

SO lattice consists of both squares (plaquettes) and octagons. Figure 3.20

shows an illustration of a 3× 3 plaquette SO lattice.

Figure 3.20: 3 x 3 plaquette SO lattice with 36 sites.

It is known that the degeneracy of the ground state of the SO SUSY

model on a closed SO lattice with M × N plaquettes is 2M + 2N − 1 and

that on an open SO lattice there is a single ground state [35]. The ground

states are also always found at a quarter filling. This makes the SO SUSY

models stand out from the majority of other 2D SUSY lattice systems. The

majority of 2D SUSY models like the triangular and hexagonal SUSY models

have ground state degeneracies that grow substantially faster with the lattice

dimensions and exhibit ‘super-frustrated’ phases [35, 38].

From the cohomology picture of the ground states of the SO SUSY model

it is believed that defects on the plaquettes of this model could exhibit non-

trivial braiding properties indicating the existence of topological order and

a so-called ‘super-topological’ phase [50]. Questions of whether topological

order is present in these models, and if so, what are its characteristics are not

trivial to answer. In this thesis we present results of numerical calculations

which can be viewed as initial steps towards resolving these questions.

In section 3.4.1 the SO chain is discussed and the results of FSS calcula-

tions of the gap for the closed chain are shown. Section 3.4.2 shows results of

one point functions (defined in section 3.4.2) in the ground state. In section

3.4.3 defects and their effect on the ground state degeneracy are discussed.

Section 3.4.3.1 shows how to gradually introduce defects which can be used
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to cause a slight splitting of the ground state degeneracy which is useful for

distinguishing between ground states. Results of calculations of the one point

functions of systems with defects are also shown in this section. In section

3.4.4 the Projected Product State (PPS) wavefunction [49] is proposed as a

trial wavefunction and compared to the numerically calculated ground state

to access how well it captures the ground state properties.

3.4.1 Square octagon chain

The SO chain is the 1D limit of the 2D SO model and is shown in figure 3.21.

The low lying energy spectrum of the p plaquette SO SUSY model with 4p

sites at 1
4

filling is identical to that of the staggered SUSY chain (section

3.3) with 3p sites at 1
3

filling with staggering parameter a =
√

2. Why this

is true can be seen by noting that the low lying states of the SO chain do

not include any configurations in which both the upper and lower sites of

a plaquette are simultaneously occupied. Results of FSS calculations of

Figure 3.21: Square octagon chain.

the first three excitation gaps for both the closed and open cases of the SO

chain and staggered SUSY chain at a =
√

2 are shown in figure 3.22. From

these calculations it is clear that the low lying spectrum of both models are

identical in each case (for large enough systems).

It is also clear from these plots (figure 3.22) that the closed SO SUSY

model is gapped in the thermodynamic limit and that the open SO SUSY

model is gapless in this limit. While the open SO SUSY is gapless, this gap

does not close linearly with the inverse system length indicating that this

model is not conformally critical.
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Figure 3.22: Plots showing equivalence of low lying spectrum of SO chain
and staggered chain at staggering a =

√
2 (for sufficiently large chains). FSS

of the first three excitation gaps are shown for (a) closed SO SUSY chains
with 4p sites, 2 ≤ p ≤ 12, closed staggered SUSY chains at a =

√
2 with 3p

sites, 2 ≤ p ≤ 15, (b) open SO SUSY chains with 4p sites, 2 ≤ p ≤ 10 and
closed staggered SUSY chains at a =

√
2 with 3p sites, 2 ≤ p ≤ 14 all at

filling p which is 1
4

filling for the SO chain and 1
3

filling for the staggered SO
chain.

3.4.2 Ground state structure

Here we look at the one point functions at each site in the ground state of

the open SO SUSY model to get a better idea of the structure of the ground

state. For a ground state |ψGS〉 the one point function at site i is defined as

〈ψGS |ni|ψGS〉 where ni = c†ici is the number operator. The sum of the one

point functions at all sites in the ground state is always equal to the number

of plaquettes.

Figure 3.23 shows a plot of the one point functions at each site in the

ground state of the 3 × 3 plaquette open SO lattice. The numerical values

are displayed in table 3.5 in appendix 3.D. In this plot the one point functions

at each site are reasonably uniform. The values of the one point functions are

however greater than average on the boundary sites. This is explained by the

fact that these boundary sites only have two neighbouring sites compared to

three for the rest of the sites. This makes it more probable that these sites

are occupied, as less configurations with this site occupied are projected out
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Figure 3.23: One point functions at each site in the ground state of the 3× 3
plaquette open SO SUSY model.

due to the nearest neighbour exclusion. Also of interest is the fact that the

values of the one point functions on the non boundary sites of the boundary

plaquettes are less than average. This suggests that in the ground state it

is unlikely that two sites of a single plaquette are simultaneously occupied.

This is confirmed by the values of the two point functions for sites on the

same plaquette which are shown in table 3.7 in appendix 3.D. This serves

as motivation for using the Projected Product State (PPS) wavefunctions as

trial ground states (3.4.4).

3.4.3 Defects

Defects in the form of diagonal links can be added to the plaquettes of the SO

lattice as shown in figure 3.24 for a single plaquette. It is thought [51] that

Figure 3.24: A single plaquette with (a) horizontal, (b) vertical and (c) both
horizontal and vertical defects.

these defects could have non trivial braiding properties indicating the pres-

ence of topological order and a so-called ‘super-topological’ phase. Adding

defects increases the degeneracy of the ground state. This can be clearly
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observed by looking at the Witten index (section 3.1.2) which for SO SUSY

models provides the exact number of ground states. For a single open pla-

quette with no defects the Witten index is:

W = 1(−1)0 + 4(−1)1 + 2(−1)2 = −1

with a single horizontal or vertical defect it is:

W = 1(−1)0 + 4(−1)1 + 1(−1)2 = −2

and with both horizontal and vertical defects it is:

W = 1(−1)0 + 4(−1)1 + 0(−1)2 = −3

This shows that adding defects to a single open plaquette increases the

ground state degeneracy from one to two in the case of a single defect and

from one to three in the case of both horizontal and vertical defects. For

larger open systems adding these defects to a single square plaquette in-

creases the ground state degeneracy in the same manner. This has been

confirmed numerically where results of exact diagonalisation calculations of

open systems have exhibited the expected ground state degeneracies in each

case.

3.4.3.1 Gradually introducing defects

Adding defects to the plaquettes of the SO lattice increases the ground state

degeneracy as discussed above. When there is a degenerate ground state, the

states returned by exact diagonalisation are an arbitrary set of orthonormal

states which span this ground state space. By adding the defects gradually

we aim to split the degeneracy slightly to get a more natural choice of basis.

To gradually introduce defects weights are introduced on edges between

sites, where a weight of zero indicates the absence of a link and a weight of

one indicates the presence of a link. By increasing the weight on an edge

continuously from zero to one a link is gradually added. The weight on the
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edge connecting sites i and j is labelled eij. When an edge weight other than

zero or one is used the supersymmetry is broken and the ground state energy

is not identically zero. However as eij → 1 the ground state energy goes to

zero and the expected degeneracy is restored.

For (1−eij) small there is a slight splitting in the ground state degeneracy

which gives a natural basis for the ground state space. We now look at

how these weighting parameters are used in the Hamiltonian and show the

effect on the energy spectrum. We then calculate the one point functions

for systems where the weight on the defect link(s) approaches one and the

ground state degeneracy is split slightly.

Using the weights eij on each link the projectors P〈i〉 are modified to:

P〈i〉 =
∏
j 6=i

(1− eijc†jcj)

Using these modified projectors we expand the Hamiltonian along the lines

of what was done in section 3.1.

H = Q†Q+QQ† =
∑
i

P〈i〉[c
†
ici + cic

†
i ] +

∑
i

∑
{k:eik=0}

P〈i〉[���
���c†ick + cic

†
k]P〈k〉

+
∑
i

∑
{k:eik>0}

P〈i〉[c
†
ick + cic

†
k]P〈k〉

=
∑
i

P〈i〉 +
∑
i

∑
{k:eik=1}

P〈i〉[c
†
ick +�

��cic
†
k]P〈k〉 +

∑
i

∑
{k:0<eik<1}

P〈i〉[c
†
ick + cic

†
k]P〈k〉
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Now just looking at the terms P〈i〉[c
†
ick + cic

†
k]P〈k〉 where 0 < eik < 1.

P〈i〉[c
†
ick + cic

†
k]P〈k〉

= [
∏
j 6=k

(1− eijc†jcj)](1− eikc
†
kck)(c

†
ick + cic

†
k)(1− eikc

†
ici)[

∏
l 6=i

(1− eklc†l cl)]

= [
∏
j 6=k

(1− eijc†jcj)](c
†
ick + cic

†
k −���

���eikc
†
ickc

†
ici − eikcic

†
kc
†
ici

−����
��

eikc
†
kckc

†
ick − eikc

†
kckcic

†
k +
���

���
��

e2
ikc
†
kckc

†
ickc

†
ici + e2

ikc
†
kckcic

†
kc
†
ici)[

∏
l 6=i

(1− eklc†l cl)]

= [
∏
j 6=k

(1− eijc†jcj)](��
�c†ick −���c

†
kci + 2eikc

†
kci − e

2
ikc
†
kci)[

∏
l 6=i

(1− eklc†l cl)]

Thus the full Hamiltonian with the modified projectors is:

H =
∑
i

P〈i〉 +
∑
i

∑
{k:eik=1}

P〈i〉c
†
ickP〈k〉

+
∑
i

∑
{k:0<eik<1}

[
∏
j 6=k

(1− eijc†jcj)](eikc
†
kci(2− eik))[

∏
l 6=i

(1− eklc†l cl)]
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Figure 3.25: Plots of the energy of low lying states of 3×3 plaquette open SO
lattice against link weight of the horizontal defect on the central plaquette.

The effect of adding a defect with varying weights between zero and one

on the low lying energy spectrum is shown in the plots in figure 3.25. From

these plots it is clear that as the link weight ei,j → 1 the excitation gap

E1−E0 → 0. We now make use of this method to slightly split the degeneracy
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and calculate one and two point functions.

(a) (b)

Figure 3.26: One point functions in the (a) ground state and (b) the first
excited state of the 3× 3 plaquette open SO SUSY model with a horizontal
defect added with link weight of 0.999 to the central plaquette.

The one point functions in the ground state and first excited state were

calculated for the 3 × 3 plaquette open SO SUSY model with a horizontal

defect added to the central plaquette with weight e17,20 = 0.999. The results

are plotted in figure 3.26 and listed in appendix 3.D. The values of the one

point functions in the state with slightly lower energy (fig 3.26a) are almost

identical to those in the ground state of the system without any defects (fig

3.23). The overlap between these two states was calculated and found to be

0.9861 which confirms that these states are indeed very similar.

The one point functions for the state with slightly higher energy (fig

3.26b) are substantially different to those in the ground state. The over-

lap of this state with the ground state of the system with no defects was

calculated to be 5 × 10−20 which indicates that these states are essentially

orthonormal. An interesting feature of the one point functions of this state

are the substantially higher values on the sites at either end of the defect link

and the sites at the opposite sides of the plaquettes which are horizontally

adjacent to the central plaquette. Also of note is the substantially lower

values of the one point functions at the sites which neighbour the sites at

the end of the defect link. The case where a vertical defect is added to the

central plaquette is the same except the lattice is rotated by ninety degrees.

When looking at the case where there is a horizontal and vertical defect on
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(a) (b) (c)

Figure 3.27: One point functions in the (a) ground state, (b) first excited
state and (c) second excited state of the 3 × 3 plaquette open SO lattice
with a horizontal defect added with a weight of 0.99999 and a vertical defect
added with a weight of 0.99998 to the central square. It is interesting to note
that the ground state here is the same as the state with the horizontal defect
added and not the state with no defects as might be expected.

the central plaquette we want to split the three fold ground state degeneracy.

This is achieved by adding the horizontal and vertical defects with different

weights, both of which are close to one. For the calculation of the one point

functions for the 3 × 3 plaquette open SO SUSY model which are shown in

figure 3.27 and listed in appendix 3.D the horizontal defect has been added

with a weight of 0.99999 and the vertical defect with a weight of 0.99998.

Here the one point functions in the ground state (fig 3.27a) are almost

identical to those of the first excited state for the system with the horizontal

defect shown in figure 3.26b (right of figure). The overlap of 0.9998 provides

strong confirmation for how similar these states are. The first excited state

here (fig 3.27b) is essentially the same as the ground state of the system with

no defects and the ground state of the system with a horizontal defect added

to the central plaquette with weight of almost one (figs 3.26a and 3.23). The

overlaps here are 0.9726 and 0.9863 respectively. The second excited state

here is almost identical to the first excited state of the system where a vertical

defect is added with weight of approximately one (fig 3.26b rotated by ninety

degrees).
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3.4.4 Projected product state wavefunction

It has been suggested [49] that a good approximation for the ground state

of the SUSY model on the SO lattice is given by a projected product state

(PPS) wavefunction. To judge how well this PPS wavefunction approxi-

mates the actual ground state wavefunction we look at the overlap of this

wavefunction with the numerically calculated ground state. We also compare

quantities of interest calculated from both wavefunctions. These quantities

of interest here include correlation functions, the entanglement entropy and

the entanglement spectrum.

2

1 3
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8

Figure 3.28: Illustration of the open SO chain with two plaquettes.

The PPS wavefunction is constructed by taking the product of the ground

state wavefunction of each plaquette as if it were isolated from the rest of the

lattice and then projecting onto the subspace of the Hilbert space consist-

ing of configurations which satisfy the nearest neighbour exclusion condition.

The resulting wavefunction is then normalised. For the open two plaquette

SO chain shown in figure 3.28 the ground state of the plaquette on the left

if isolated is given by |ψ〉 = | 1〉 − | 2〉 + | 3〉 − | 4〉 where |n〉 is the configu-

ration on that plaquette in which all sites are empty except site n. The PPS

wavefunction for this lattice is then given by:

|ψ〉GS =
P̂

N
(| 1〉 − | 2〉+ | 3〉 − | 4〉)(| 5〉 − | 6〉+ | 7〉 − | 8〉)

=
1√
15

(| 1, 5〉 − | 1, 6〉+ | 1, 7〉 − | 1, 8〉 − | 2, 5〉+ | 2, 6〉 − | 2, 7〉+ | 2, 8〉

+��
�| 3, 5〉 − | 3, 6〉+ | 3, 7〉 − | 3, 8〉 − | 4, 5〉+ | 4, 6〉 − | 4, 7〉+ | 4, 8〉)

Here the crossed out configurations are those that are projected out because
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they are disallowed by the nearest neighbour exclusion condition. In the

next sections we test how good the PPS wavefunction is at approximating

the ground state of the the SO SUSY model.

3.4.4.1 Square octagon chain

For the open SO SUSY chain with two plaquettes as shown in figure 3.28 the

overlap of the ground state with the PPS wavefunction is very high indicating

that the PPS wavefunction is a good approximation to the ground state in

this case.

|〈ψGS|ψprod〉|2 = 0.9634

Figure 3.29 shows the one point functions at each site for both the PPS

wavefunction and the real ground state for this case. The values are shown

in table 3.9 in appendix 3.D. There is good agreement between the one point

functions of each wavefunction with the most significant difference occurring

on the sites at each end of the chain. The PPS wavefunction here fails to

recognise that it is more probable that a fermion is found here due to the

fact that these sites have two neighbours compared to three for the rest of

the sites. Two point functions across each plaquette were also calculated for

the real ground state to see if any configurations with more than a single

fermion per plaquette contribute to the ground state. By construction each

of these are zero for the PPS wavefunction. The values of the two point

functions horizontally across each plaquette (sites one and four and sites five

and eight in figure 3.28) in the ground state are 0.00461 and in the vertical

direction are zero. This tells us that configurations with two fermions on

opposite horizontal sides of a plaquette contribute to the ground state in a

very minor way and configurations with fermions on vertically opposite sites

of a plaquette do not contribute at all.

While it is a nice illustrative example, the chain with two plaquettes is

too small to infer how well the PPS wavefunction reproduces the features

of the ground state of the SO SUSY chain in general. The overlap of the

ground state with the PPS wavefunction has been calculated for open chains

with up to ten plaquettes and the results plotted in figure 3.30. As the sys-

80



(a) (b)

Figure 3.29: Plots of the one point functions at each site of the PPS wave-
function (a) and the actual ground state (b) for the two plaquette SO chain.

2 3 4 5 6 7 8 9 10
Plaquettes

0.0

0.2

0.4

0.6

0.8

1.0

O
v
e
rl
a
p

Figure 3.30: Plot of the overlap of the ground state and PPS wavefunction
plotted against the number of plaquettes for the open SO chain.

tem size is increased the overlap decreases approximately linearly while the

dimension of the Hilbert space grows exponentially fast. We infer that this

result indicates that the PPS wavefunction captures some of the ground state

structure well. The one point functions at all sites of the PPS wavefunction

and the numerically calculated ground state of the ten plaquette open SO

SUSY chain were calculated and are shown in figure 3.31. The values are

shown in table 3.10 in appendix 3.D. In this case there are dramatic differ-

ences between the one point functions of each state. The two point functions

across the plaquettes were also calculated for this case. Here it was found

that again the value of the two point functions between the top and bottom

sites of each plaquette is zero. In this case though the value of the two point
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(a)

(b)

Figure 3.31: One point functions of the (a) PPS wavefunction and (b) numeri-
cally calculated ground state of the open SO SUSY chain with ten plaquettes.

functions between the sites to the left and right of each plaquette is greater

at approximately 0.025. The specific values of these two point functions are

listed in table 3.11 in appendix 3.D.

Calculations of the entanglement entropy (EE) and entanglement spec-

trum (ES) of the PPS wavefunction and numerically calculated ground state

were performed which reveal that the PPS wavefunction fails to capture a

large amount of the entanglement present in the ground state of the SO chain.

Figure 3.32 shows plots of both the EE and ES. In figure 3.32a we see that

the EE is significantly lower for the PPS wavefunction and does not change

much with changes in subsystem size. The plot of the ES (figure 3.32b) shows

that while there are significantly less points in the ES of the PPS wavefunc-

tion, the lowest and most significant point is close to that of the numerically

calculated ground state. Product state wavefunctions by construction do not

have any entanglement. For the PPS wavefunctions the entanglement is in-

troduced by the projection to the Hilbert space of allowable configurations.

3.4.4.2 Square octagon lattice

We now investigate the PPS wavefunction for the full two dimensional SO

SUSY model by first looking at overlaps for various lattice sizes. We then
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Figure 3.32: Entanglement of PPS wavefunction and numerically calculated
ground state of the ten plaquette open SO chain. (a) Entanglement entropy
plotted against subsystem size where p is the number of plaquettes in sub-
system A. (b) Entanglement spectrum when chain is partitioned into two
equally sized subsystems.

look at the one point functions of the 3× 3 plaquette open SO SUSY model

with and without defects. Finally we look at the entanglement properties for

a 2× 4 plaquette system with different choices of partitioning.

2 3 4 5 6 7 8 9 10

1 0.963 0.889 0.796 0.699 0.605 0.517 0.438 0.368 0.307
2 0905 0.794 0.663 0.535
3 0.794 0.651

Table 3.3: Overlaps of PPS wavefunction with numerically calculated ground
states for open SO lattices with m × n plaquettes. The values of m and n
are given in the first row and first column of the table.

Table 3.3 shows the overlaps between the PPS wavefunctions and nu-

merically calculated ground states for various sized open SO lattices. It is

interesting to note that the overlaps for the two and three row lattices are

better than the chain with the same number of plaquettes. For example the

overlap for the 3× 3 lattice is significantly better than for 1× 9 lattice.

For the open 3×3 plaquette open SO model the one point functions for the
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PPS wavefunction are shown alongside those from the numerically calculated

ground state in figure 3.33, as well being listed in table 3.8 in appendix 3.D.

From these it can be seen that there is very good agreement between the

one point functions of the real ground state and of the PPS ground state

for this lattice. However again we see that the PPS wavefunction does not

adequately capture the fact that it is more probable for the boundary sites

to be occupied.

(a) (b)

Figure 3.33: One point functions in the (a) PPS wavefunction and (b) nu-
merically calculated ground state of the 3× 3 plaquette open SO lattice.

When a single horizontal defect is added to a single plaquette there are

two ground states as discussed in section 3.4.3. One of these ground states is

given by |ψGS1〉 = | 1〉 − | 2〉+ | 3〉 − | 4〉 and the other by |ψGS2〉 = | 1〉 − | 3〉
where the sites are labelled as in figure 3.34. When a single vertical defect is

added again there are two ground states given by |ψGS1〉 = | 1〉−| 2〉+| 3〉−| 4〉
and |ψGS2〉 = | 2〉 − | 4〉. When both horizontal and vertical defects are

added at the same time there are three ground states given by |ψGS1〉 =

| 1〉−| 2〉+ | 3〉−| 4〉, |ψGS2〉 = | 1〉−| 3〉 and |ψGS3〉 = | 2〉−| 4〉. To construct

the PPS wavefunctions for a SO lattice which has plaquettes featuring defects

one simply includes a different single plaquette wavefunction in each PPS

wavefunction for the plaquettes with defects.

In figure 3.35a the one point functions for the PPS wavefunction of the

open SO lattice with a horizontal defect are shown (and values listed in table

3.8 in appendix 3.D). These values are close to the values of the numerically

calculated ground state shown in figure 3.35b with the most significant devi-
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Figure 3.34: A single plaquette with (a) horizontal, (b) vertical and (c) both
horizontal and vertical defects.

(a) (b)

Figure 3.35: One point functions for (a) the PPS wavefunction and (b) the
numerically calculated ground state for the 3× 3 plaquette open SO lattice
with horizontal defect on the central plaquette. The numerically calculated
ground state shown here is the state with slightly higher energy when the
ground state degeneracy is split as described in section 3.4.3.1.

ations occurring on the boundary sites and the sites of the central plaquette.

The overlap between these states is 0.634, almost as good as the case without

defects. The case of the vertical defect is identical except that it is rotated

by ninety degrees.

We investigated eight choices of partitioning for the 2× 4 plaquette open

SO system. These can be split into groups which we call horizontal, vertical

and ‘L’ shaped. We describe each type of partitioning in terms of the shape

of one of the subsystems. There are four shapes in the horizontal group

labelled H1 to H4, corresponding to SO chains with one to four plaquettes.

In the vertical group there are two shapes labelled V2 and V4 corresponding

to 2 × 1 and 2 × 2 plaquette SO lattices. In the ‘L’ shape group there are

two shapes labelled L3 and L4 which correspond to three and four plaquettes
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Figure 3.36: Different types of partitioning of the 2 × 4 plaquette open SO
lattice with labels. (a) Shows choice of partitions H1-H4 and (b) shows V2,
V4, L3 and L4.
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Figure 3.37: Entanglement spectrum of the PPS and numerically calculated
ground state of the 2× 4 plaquette open SO SUSY model with partitioning
types (a) V2 and (b) V4.

arranged in the shape of the letter ‘L’. Illustrations of these partitions as well

as labels are given in figure 3.36.

The EE and ES has been calculated for both the PPS wavefunction and

numerically calculated ground state for each choice of partitioning. The EE

values are shown in table 3.4 and plots of the ES for each are shown in figures

3.37,3.38 and 3.39. These calculations show that while the PPS captures the

low end of the ES well, there is significant entanglement in the ground states

which is not captured by the PPS wavefunction.

86



0 1 2 3 4 5 6 7 8

i

0

1

2

3

4

5

6

7

ξ i

PPS
Ground State

(a)

0 10 20 30 40

i

0

5

10

15

ξ i

PPS
Ground State

(b)

0 50 100 150 200 250

i

0

5

10

15

20

25

ξ i

PPS
Ground State

(c)

0 50 100 150 200

i

0

5

10

15
ξ i

PPS
Ground State

(d)

Figure 3.38: Entanglement spectrum of the PPS and numerically calculated
ground state of the 2× 4 plaquette open SO SUSY model with partitioning
types (a) H1, (b) H2, (c) H3 and (d) H4.

0 50 100 150 200

i

0

5

10

15

20

25

30

ξ i

PPS
Ground State

(a)

0 50 100 150 200

i

0

5

10

15

20

ξ i

PPS
Ground State

(b)

Figure 3.39: Entanglement spectrum of the PPS and numerically calculated
ground state of the 2× 4 plaquette open SO SUSY model with partitioning
types (a) L3 and (b) L4.
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V2 V4 H1 H2 H3 H4 L3 L4

GS 0.6795 0.8156 0.5554 0.8265 0.9664 0.8763 0.9253 1.060
PPS 0.3989 0.4176 0.3821 0.5980 0.7975 0.7988 0.5975 0.796

Table 3.4: Entanglement entropy of the PPS wavefunction and numerically
calculated ground state for the 2×4 plaquette open SO lattice with different
partitioning types.

3.5 Numerical issues

A number of challenges were encountered while carrying out exact diago-

nalisation calculations for these SUSY lattice models. In this section these

challenges are discussed along with adaptions made to the DoQO code to

overcome these issues.

3.5.1 Basis configurations

A recursive method was developed to efficiently generate configurations which

satisfy the nearest neighbour exclusion condition for arbitrary graphs. This

method offers significant improvement over naive approaches which simply

iterate over all possible configurations checking each.

Figure 3.40: Tree representing configurations on a four site chain. Configu-
rations that are crossed out break the nearest neighbour exclusion condition.
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All the possible configurations of particles on a graph with N sites can

be represented by the leaves of a binary tree of depth N + 1 where the root

configuration contains no sites. The two immediate children of each config-

uration are related to their parent configuration by (i) the addition of an

occupied site or (ii) the addition of an unoccupied site. If a particular con-

figuration breaks the nearest neighbour exclusion condition then so too do

all its descendant configurations. Thus a list of all configurations satisfying

this condition can be constructed by traversing the tree and skipping any

branches where the parent configuration breaks the nearest neighbour exclu-

sion condition. Figure 3.40 shows an illustration of such a tree for a four site

chain. Configurations which break the nearest neighbour exclusion condition

are crossed out in this illustration. Using this algorithm it is possible to

restrict to a given filling by stopping along a certain path once the desired

filling has been reached.

This algorithm is easily adapted to run in parallel. In this case a breath

first traversal of the tree is performed on each process until there are at least

as many leaves with valid configurations as there are processes. These valid

configurations are then distributed equally among the processes and each

process performs depth first traversals on their configurations. Each pro-

cess saves the valid configurations it encounters on its traversal to a file on

disk similar to what was described in the last paragraph of section 2.3.3.1.

However this list of valid configurations is not ordered according to the nu-

meric label for each configuration. The method of building a matrix using

a basis list as described in section 2.3.3.2 assumes the list is ordered. To

overcome this issue a parallel quick sort algorithm was implemented to sort

this distributed array of basis configurations.

3.A Appendix: Transforming to spin repre-

sentation

Using the Jordan-Wigner transform it is possible to write the SUSY Hamil-

tonian in terms of spin 1
2

operators. The fermionic creation and annihilation
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operators can be represented using the spin half operators as:

ci = (
i−1∏
m=1

σzm)(
σxi + iσyi

2
), c+

i = (
i−1∏
m=1

σzm)(
σxi − iσ

y
i

2
)

Using these we can rewrite the projectors Pi as:

Pi = 1− ni = 1− c†ici

= 1− (
i−1∏
m=1

σzm)(
i−1∏
m=1

σzm)(
σxi − iσ

y
i

2
)(
σxi + iσyi

2
)

= 1− 1

4
(σxi σ

x
i + iσxi σ

y
i − iσ

y
i σ

x
i + σyi σ

y
i )

= 1− 1

2
(1− σzi ) =

1

2
(1 + σzi )

The hopping terms are written as:

c†ici+1 + c†i+1ci = (
i−1∏
m=1

σzm)(
σxi − iσ

y
i

2
)(

i∏
m=1

σzm)(
σxi+1 + iσyi+1

2
)

+ (
i∏

m=1

σzm)(
i−1∏
m=1

σzm)(
σxi+1 − iσ

y
i+1

2
)(
σxi + iσyi

2
)

= (�
���

�−iσyi σxi+1 + σyi σ
y
i+1 + σxi σ

x
i+1 +���

�iσxi σ
y
i+1

4
)

+ (
���

�iσxi+1σ
y
i + σxi+1σ

x
i + σyi+1σ

y
i −����iσyi+1σ

x
i

4
)

=
σxi+1σ

x
i + σyi+1σ

y
i

2

so the full kinetic term is written as:

Hkin =
L∑
i

1

8
(1 + σzi−1)(σxi+1σ

x
i + σyi+1σ

y
i )(1 + σzi+2)

However when using periodic boundary conditions with the chain this means

that the last site and the first site will interact. This interaction will be

different due to the convention we adopt when using fermions. For an n site
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chain the kinetic terms linking the start and end of the chain are

c†nc1 + c†1cn = (
n−1∏
m=1

σzm)(
σxn − iσyn

2
)(
σx1 + iσy1

2
)

+ (
σx1 − iσ

y
1

2
)(
n−1∏
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σzm)(
σxn + iσyn

2
)

= (
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σzm)(�
��
�iσxnσ
y
1 + σxnσ

x
1 + σynσ

y
1 −����iσynσ

x
1

4
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σzm)(
��

��−iσy1σxn + σy1σ
y
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x
n +����iσx1σ

y
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4
)

= (
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σzm)
σx1σ

x
n + σy1σ

y
n

2

The extra chain of σz operators breaks the translational invariance of the

model meaning that it is no longer possible to diagonalise in each momentum

sector for closed boundary conditions when using the spin 1
2

representation.

The potential term in spin representation is written as

Hpot =
L∑
i=1

1

4
(1 + σzi−1)(1 + σzi+1) =

L∑
i=1

1

4
(1 + σzi−1 + σzi+1 + σzi−1σ

z
i+1)

3.B Appendix: Spectral flow calculations

Spectral flow calculations involve twisting the boundary conditions of a model

and can prove very useful for probing the properties of lattice models in par-

ticular in the vicinity of critical points[52]. In particular scaling properties of

relevant operators of the conformal field theory can be deduced. Critical sys-

tems respond much more dramatically than non critical systems to changes

in boundary conditions. This can be attributed to the infinite correlation

length ‘sensing’ the change at the boundary. In this section we show how

these calculations are performed in the context of the SUSY lattice models.

No spectral flow calculations appear in this thesis, however the derivation

here is still relevant as it demonstrates the use of representative configura-
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tions which are used for implementing general space group symmetries.

When performing spectral flow calculations a parameter α is introduced

to the model which is used to specify the boundary conditions. A parti-

cle crossing the boundary picks up a phase of e2πiα or e−2πiα if crossing in

the opposite direction. Integer values of α correspond to periodic boundary

conditions (Ramond sector) whereas half integer values of α correspond to

anti-periodic boundary conditions (Neveu-Schwarz sector). Any terms in the

Hamiltonian that cause a particle to hop across the boundary are multiplied

by a phase of e2πiα or e−2πiα depending on the direction. A term in the

Hamiltonian written as c†Nc1 + h.c. becomes e2πiαc†Nc1 + h.c..

The model remains translationally invariant and the momentum depends

linearly on the twist parameter α. The translation operator TLα that acts on

a chain of length L and translates it by one site has eigenvalues:

λ = e2πi
p0
L e2πiαF

L

where p0 is an integer with 0 ≤ p0 < L and F is the number of fermions in

|ψ〉. Note that the translation operator adds a phase of e2πiα or e−2πiα for

each particle it carries over the boundary. It is also important to note that

for fermionic systems in general the application of a translation operator

to a configuration can result in a phase of eıπ due to the fermionic anti-

commutation relations.

Simultaneous eigenstates of both the Hamiltonian and translation oper-

ator for a given representative state (see section 2.1.1.3) |ψr〉 and eigenvalue

λ can be written as:

|ψλ,r〉 =
1√
Nλ,r

L−1∑
j=0

(λ∗)j(TLα )j|ψr〉

where the normalisation factor Nλ,r is calculated as:

Nλ,r =
L−1∑
j=0

L−1∑
j′=0

λj−j
′〈ψr |(TLα )j

′−j|ψr〉

92



The sums here can be expanded to give:

Nλ,r = L〈ψr|ψr〉+
L−1∑
j=1

(L− j)λ−j〈ψr |(TLα )j|ψr〉

+
L−1∑
j=1

(L− j)λj〈ψr |(TLα )−j|ψr〉

Then noting that (TLα )−j = e−2πiαF (TLα )L−j and λ−j = and λ−j = e−2πiαFλL−j

we rewrite Nλ,r as:

Nλ,r = L〈ψr|ψr〉+ L
L−1∑
j=1

e−2πiαFλL−j〈ψr |(TLα )j|ψr〉

= L
L−1∑
j=0

λ−j〈ψr |(TLα )j|ψr〉

The result is that the expression for Nλ,r is simplified and only contains a

single summation. The same procedure is performed for the matrix elements

〈ψλ,r′ |H|ψλ,r〉:

〈ψλ,λ,r′ |H|ψλ,r〉 =
1√

Nλ,r′Nλ,r
(
L−1∑
j=0

〈ψr′ |λj((TLα )†)j)H(
L−1∑
j=0

(λ∗)j(TLα )j|ψr〉)

=
1√

Nλ,r′Nλ,r

L−1∑
j=0

L−1∑
j′=0

〈ψr′ |λj(λ∗)j
′
((TLα )†)j(TLα )j

′
H|ψr〉

=
1√

Nλ,r′Nλ,r
(L〈ψr′ |H|ψr〉+ L

L−1∑
j=1

e−2πiαFλL−j〈ψr′ |(TLα )jH|ψr〉)

=
L√

Nλ,r′Nλ,r
(
L−1∑
j=0

λ−j〈ψr′ |(TLα )jH|ψr〉)

The resulting expression is significantly simplified and results in significant

reduction of computational resources required to perform spectral flow cal-

culations. This technique of simplification is not unique to spectral flow

calculations and translational invariance but can be used for rotation invari-
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ance, spin flip invariance, and mirror symmetries.

3.B.1 2D Case

If the symmetry operators of multiple symmetries commute with each other

then it is possible to exploit these symmetries simultaneously. Here we

demonstrate the use of multiple symmetries by deriving expressions for the

eigenvectors and matrix elements when performing spectral flow calculations

in two dimensions.

With a two dimensional system the boundaries can be twisted indepen-

dently of each other. We label the twist parameters in each direction α0

and α1 and the translation operators in each direction as TL0
α0

and TL1
α1

. The

eigenvalues of the symmetry operators are then written as:

TL0
α0
|ψ〉 = e

2πi
k0+α0F
L0 |ψ〉

TL1
α1
|ψ〉 = e

2πi
k1+α1F
L1 |ψ〉

where 0 ≤ k0 < L0 and 0 ≤ k1 < L1. The eigenvectors are then written as:

|ψ~k,r〉 =
1√
N~k,r

~L−1∑
~x=(0,0)

e−2πi(~x. 1~L
(~k+F~α))(T

~L
~α )~x|ψr〉

where the normalisation N~k,r is:

N~k,r =

~L−1∑
~x=(0,0)

~L−1∑
~x′=(0,0)

e2πi(~x. 1~L
(~k+F~α)−~r′. 1~L (~k+F~α))〈ψr |(T

~L
~α )−~x(T

~L
~α )~x

′|ψr〉

= L0L1

~L−1∑
~d=(0,0)

e2πi( ~−d)( 1
~L
.~k+ 1

~L
.F ~α)〈ψr |(T

~L
~α )

~d|ψr〉
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The matrix elements can then be written as:

〈ψ~k,r′ |H|ψ~k,r〉 =
1√

N~k,r′N~k,r

~L−1∑
~x=(0,0)

~L−1∑
~x′=(0,0)

e2πi(~x′−~x).( 1
~L
.~k+ 1

~L
.F ~α)〈ψr′ |(T

~L
~α )~x−

~x′H|ψr〉

=
L0L1√
N~k,r′N~k,r

~L−1∑
~d=(0,0)

e−2πi~d.( 1
~L
.~k+ 1

~L
.F ~α)〈ψr′ |(T

~L
~α )

~dH|ψr〉

3.C Appendix: Criticality and CFT

In this appendix the basic ideas of criticality and conformal field theory

(CFT) are described. These are very large areas and the treatment here is

by no means complete. A critical point is a point on a phase diagram at

which a continuous (also known as second order) phase transition occurs. At

such a transition the macroscopic properties of the system change abruptly

without a jump in the latent heat, or any discontinuity in the average value of

microscopic variables, as is the case for first order phase transitions. A typical

example of a critical point is the phase transition between the ferromagnetic

and anti-ferromagnetic phases of the two dimensional classical Ising model

[39]. Critical points only occur in the thermodynamic limit which is when the

system size L→∞ or equivalently when the lattice spacing a→ 0. Another

important property of critical points is that the correlation length ξ diverges

and there are fluctuations on all length scales.

The states at critical points are not only scale invariant but also confor-

mally invariant. A CFT is a quantum field theory that is conformally invari-

ant. CFT can be used to describe the long distance, low energy properties

of critical models [53] and is particularly effective for two dimensional sys-

tems where the group of conformal transformations is infinite. For a given

CFT characterised by its central charge c there are a number of primary

fields which transform simply when a conformal transformation is applied.

The way in which a primary fields transform is described by their associated

conformal dimensions. More information can be found on CFT in [54] and

[55].
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3.D Appendix: Calculated values

In this appendix we show the values of the numerically calculated one and two

point functions that are referred to in this chapter. We also show dimensions

of the Hilbert spaces containing the ground states for SUSY chains in table

3.12.

Table 3.5 shows the one point functions in the ground states of the 3 ×
3 plaquette open SO lattice without defects, with a horizontal defect and

with both horizontal and vertical defects on the central plaquette. In the

cases with defects the ground state degeneracy was split slightly to choose a

suitable basis as described in section 3.4.3.1 and states ordered by increasing

energy. Labelling of sites is shown in figure 3.41. Table 3.7 shows the two

point functions for this system. Here the two point functions are between

the sites specified (as labelled in figure 3.41) and the sites at the opposite

side of the plaquette.

1
2

3

4 5
6

7

8

9

10 11

12

Figure 3.41: Labelling of the sites of the 3 x 3 plaquette SO lattice. The
values at the unlabelled sites are the same as those at the symmetrically
equivalent labelled sites.

Table 3.9 contains the values of the one point functions for the ground

state and PPS wavefunction of the two plaquette open SO chain.

The values of the one point functions for the PPS wavefunctions on the

3 × 3 plaquette open SO lattice with and without defects on the central

plaquette are shown in table 3.8. Labelling of sites is shown in figure 3.41.
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Figure 3.42: Open SO chain with two plaquettes with sites labelled.
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Figure 3.43: Half of ten plaquette open SO chain with sites labelled.

Site No defect H defect HV defects #
1 0.33921 0.33922 0.35175 0.35175 0.33947 0.32719 4
2 0.16437 0.16407 0.16762 0.16762 0.16399 0.16036 4
3 0.33921 0.33947 0.32719 0.32719 0.33947 0.35175 4
4 0.16437 0.16428 0.16036 0.16036 0.16399 0.16762 4
5 0.26357 0.26384 0.28891 0.28892 0.26484 0.24077 4
6 0.15823 0.15884 0.20565 0.20555 0.15019 0.09483 2
7 0.31066 0.30953 0.21050 0.21059 0.32114 0.43167 2
8 0.31066 0.32237 0.43147 0.43167 0.32114 0.21059 2
9 0.26357 0.26458 0.24078 0.24077 0.26484 0.28892 4
10 0.15823 0.14953 0.09486 0.09483 0.15019 0.20555 2
11 0.24680 0.24464 0.47347 0.47344 0.24207 0.01070 2
12 0.24680 0.24418 0.01083 0.01070 0.24207 0.47344 2

9.00000 9.00000 9.00000 9.00000 9.00000 9.00000 36

Table 3.5: One point function values for GS of 3 × 3 plaquette open SO
lattice. Labelling of sites is shown in figure 3.41.
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Plaquette No defect H defect HV defects
1 1.00717 1.00704 1.00692 1.00692 1.00692 1.00692
5 0.99603 0.99605 0.99398 0.99398 1.00101 1.00805
8 0.99603 1.00105 1.00789 1.00805 1.00101 0.99398
11 0.98721 0.97763 0.96860 0.96828 0.96827 0.96828

Table 3.6: Sum of one point function values on each plaquette for the GS of
3 × 3 plaquette open SO lattice. Plaquettes are labelled by the label of the
site to the left of each plaquette as shown in figure 3.41.

Site No defect H defect HV defects
1 8.199e-03 8.192e-03 7.856e-03 7.854e-03 8.067e-03 8.276e-03
2 8.199e-03 8.073e-03 8.276e-03 8.276e-03 8.067e-03 7.854e-03
5 8.461e-03 8.470e-03 9.121e-03 9.121e-03 8.507e-03 7.897e-03
6 7.510e-03 7.462e-03 1.266e-04 1.289e-04 8.041e-03 1.595e-02
8 7.510e-03 8.087e-03 1.578e-02 1.595e-02 8.041e-03 1.289e-04
9 8.461e-03 8.499e-03 7.898e-03 7.897e-03 8.507e-03 9.121e-03
11 7.962e-03 2.475e-12 2.535e-12 2.532e-12 2.445e-12 2.682e-14
12 7.962e-03 7.865e-03 1.362e-04 1.073e-13 9.778e-12 1.013e-11

Table 3.7: Two point functions in ground states of 3× 3 plaquette open SO
lattice with and without defects.

Site No defect H defect V defect #
0 0.292903 0.292903 0.292903 4
1 0.207097 0.199851 0.214344 4
2 0.292903 0.292903 0.292903 4
3 0.207097 0.214344 0.199851 4
4 0.232462 0.210721 0.254202 4
5 0.216810 0.289279 0.144341 2
6 0.318267 0.289279 0.347254 2
7 0.318267 0.347254 0.289279 2
8 0.232462 0.254202 0.210721 4
9 0.216810 0.144341 0.289279 2
10 0.250000 0.500000 0.000000 2
11 0.250000 0.000000 0.500000 2

9.000004 0.000000 9.000002 36

Table 3.8: One point function values for PPS ground states of 3×3 plaquette
open SO lattice.
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Site Real GS PPS
1 0.341014 0.266667
2 0.228111 0.266667
3 0.228111 0.266667
4 0.202765 0.200000
5 0.202765 0.200000
6 0.228111 0.266667
7 0.228111 0.266667
8 0.341014 0.266667

2.000000 2.000002

Table 3.9: One point functions of the real ground state and PPS wavefunction
of the two plaquette SO chain. Labelling shown in figure 3.42.

Site Real GS Trial GS
1 0.511142 0.267949
2 0.197778 0.267949
3 0.112138 0.196152
4 0.491453 0.215390
5 0.168873 0.287187
6 0.172653 0.210236
7 0.451036 0.211617
8 0.160364 0.288568
9 0.223434 0.211247
10 0.407159 0.211346
11 0.157247 0.288667
12 0.270888 0.211319
13 0.362310 0.211326
14 0.156160 0.288675
15 0.316942 0.211325

10.000000 9.999998

Table 3.10: One point functions of the real ground state and trial ground
state of the ten plaquette SO chain. Sites labelled as in figure 3.43.
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Sites Real GS
1-3 0.021361
4-6 0.026068
7-9 0.027321

10-12 0.027709
13-15 0.027823

Table 3.11: Two point functions horizontally across the plaquettes for the
real ground state of the ten plaquette open SO chain. Sites labelled as in
figure 3.43.

Blocks Closed Open Closed SO Open SO
1 3 3 4 4
2 9 10 18 19
3 30 35 94 100
4 105 126 522 556
5 378 462 2994 3190
6 1386 1716 17520 18670
7 5148 6435 103940 110776
8 19305 24310 622866 663895
9 72930 92378 3761338 4009414
10 277134 352716 22852058 24360799
11 1058148 1352078 139522266 148741696
12 4056234 5200300 855317532 911876356
13 15600900 20058300 - -
14 60174900 77558760 - -
15 232676280 300540195 - -
16 901620585 1166803110 - -

Table 3.12: Dimensions of Hilbert spaces of SUSY chains calculated using
transfer matrices (section 3.1.4). For the regular chains each block is made
up of three sites and for the SO chain each block is a four site plaquette. The
dimension given is for the space where the filling is the same as the number
of blocks. This is the filling the ground state is found at in each case.
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Chapter 4

Kitaev honeycomb lattice

model

The Kitaev honeycomb lattice model [5] is a model of interacting spin half

particles which is known to exhibit both abelian and non-abelian topological

phases. The Hamiltonian for this model is written as:

H = −
∑

α∈{x,y,z}

∑
i,j

JαK
α
ij

where Kα
ij ≡ σαi ⊗σαj denotes the exchange interaction occurring between the

sites i, j connected by an α link; see figure 4.1. The plaquette operators are

defined as:

Wp = Kz
1,2K

x
2,3K

y
3,4K

z
4,5K

x
5,6K

y
6,1

where the numbers 1 through 6 label lattice sites on a single hexagonal pla-

quette p (see figure 4.1), are the closed loop operators around each of the

hexagons of the lattice. Since these commute with the Hamiltonian and

with each other we may choose energy eigenvectors |n〉 such that Wp =

〈n |Wp|n〉 = ±1. If Wp = −1, one says that the state |n〉 carries a vortex

at p. The thermodynamic system is known to exist in four unique phases;

see figure 4.2 and [5]. The three A phases are gapped and are related by

permutations of x, y and z directions. The transition to the gapless B phase

occurs when Jα = Jβ + Jγ.
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Figure 4.1: The honeycomb lattice and plaquette operator Wp.

Figure 4.2: Visual representation of the system parameter space in the ther-
modynamic limit. The A phases are gapped. The B phase contains gapped
vortices but gapless fermions [5].
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4.1 Finite size effects

In the abelian phases the model can be mapped to the toric code [2] using

Brillouin-Wigner perturbation theory[5]. This involves a perturbative expan-

sion around the fully dimerized points found at each of the corners of the

phase diagram (figure 4.2). However on finite sized tori there are additional

terms related to homologically nontrivial loops which split the expected topo-

logical degeneracy. Using Brillouin-Wigner perturbation theory expressions

for these finite size terms up to the fourth order were discovered. Calcula-

tions performed using DoQO numerically verified these finite size terms [12].

Note that this analysis applies only to the A phases of the system on a torus.

The lattice orientation in which we work is illustrated in figure 4.1. In

order to specify a toroidal cell, one need only specify two lattice vectors. The

length of the vectors gives the periodicity in that direction, i.e. the start and

end points of the vector specify the same point on the torus. In general we

require a minimum periodicity of two hexagon cells along any direction.

One should be aware that, because of the periodic boundary conditions,

certain seemingly different vector pairs can be used to describe the same

torus tiling. Note also that a rotation of a particular lattice vector pair by
2nπ

3
or reflection about the horizontal or vertical axis has the physical effect

of permuting the values of Jx, Jy and Jz. Our convention therefore will be to

fix one of the lattice vectors to ai, where a is an integer. The other lattice

vector may then be fixed to the positive quadrant without loss of generality.

However, even with this convention there is still some redundancy in the

definition and some caution must be exercised. In figure 4.3 we illustrate

some possible tilings and their associated lattice vectors.

The spectrum of any toroidal system depends a great deal on the under-

lying configuration. In the perturbative analysis of these configurations to

follow we will in general see two forms for the non-finite size fourth-order ef-

fective Hamiltonian. These Hamiltonians are locally identical (i.e. are of the

form
∑
Qp) but have different topological degrees of freedom. The fourth-

order non-finite size effective Hamiltonians that can be unitarily mapped

to the toric code will be denoted as HK (K for Kitaev) and those which
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Figure 4.3: Some periodic configurations of the lattice. Each configuration
is specified by two lattice vectors. Setting n = (i +

√
3j)/2 we see that

configurations (a) (2i, 2j) and (b)(2i, 2n) contain 8 spins. (c) (2i, 4j), (d)
(4i, 2j) and (e)(4i, 2n) are three 16-spin configurations. (f) (3i, 4j) is a 24-
spin system and (g) (3i, 3n) is an 18-spin system, the only one depicted with
an odd number of plaquettes. (h) (4i, 4j) and (i) (4i, 4n) are two possible
32-spin systems related to each other by a twist of the boundary conditions.
Note that configurations (g) and (i) are the only configurations shown that
are symmetric with respect to x, y and z links.
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Table 4.1: List of toroidal configurations and type of fourth-order non-finite
size Hamiltonian obtained in each A phase.

N Configuration Ax Ay Az
8 (2i, 2j) HW HW HK

8 (2i, 2n) HK HK HK

12 (3i, 2j) HW HW HK

12 (3i, 2n) HW HW HK

16 (2i, 4j) HK HK HK

16 (4i, 2j) HW HW HK

16 (4i, 2n) HK HK HK

18 (3i, 3n) HW HW HW

20 (5i, 2j) HW HW HK

20 (5i, 2n) HW HW HK

24 (2i, 6j) HW HW HK

24 (3i, 4j) HW HW HK

24 (6i, 2j) HW HW HK

24 (6i, 2n) HK HK HK

28 (5i, 2j) HW HW HK

28 (5i, 2n) HW HW HK

30 (3i, 5n) HW HW HW

32 (2i, 8j) HK HK HK

32 (4i, 4j) HK HK HK

32 (4i, 4n) HK HK HK

32 (8i, 2j) HW HW HK

32 (8i, 2n) HK HK HK

36 (3i, 6j) HW HW HK

50 (5i, 5n) HW HW HW

cannot as HW (W for Wen [56]). In the table 4.1 we list some of the possi-

ble small finite toric configurations and note the form of the non-finite size

fourth-order contributions in each of the A phases. We can now review the

finite size corrections that enter the perturbative expansion for small toroidal

configurations.

4.1.1 Second-order finite size corrections

In order to calculate the second-order corrections we see that, in almost all

toroidal configurations, the only two term sequences that connect up basis
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elements of the dimerized subspace are those like Kx
ijK

x
ij and Ky

ijK
y
ij. Since

these terms connect each basis element to itself they are therefore constant

[5]. However, in the (ai, 2j) configurations and the eight-spin (2i, 2n) config-

uration, because of the tight confinement, sequences like Kx
ijK

y
ij and Ky

ijK
x
ij

can connect up different basis elements of the dimer subspace.

For the N = 8 spin (2i, 2n) configuration the non-constant second-order

effective Hamiltonian is:

H(2) =
1

2|Jz|
[J2
x(σx1σ

x
2 + σx3σ

x
4 ) + J2

y (σx2σ
x
3 + σx1σ

x
4 )]

where the subscripts are shown in figure 4.3(b). For all (ai, 2j) configurations

the spectral properties of the Az phase are different from the Ax and Ay

phases. In the Az phase the second-order effective system is governed by a

simple Ising spin chain Hamiltonian:

H(2) =
1

2|Jz|
JxJy

N/2∑
n=1

σynσ
y
n+1

where the subscripts (see for example figure 4.3(a)) are modulo N/2.

4.1.2 Third-order corrections

To consider the third-order perturbation correction for finite systems we play

an identical game except that this time we must consider weighted sums over

terms like:

〈a |V | j〉〈j |V | k〉〈k |V | b〉

This means that we need three term sequences, Kα
ijK

β
lmK

γ
no, that connect

up the dimerized basis elements | a〉 and | b〉. Sequences like this occur for

example in the Ax and Ay phases of (ai, 2j) configurations with a > 2, and

in all the A phases of the 18-spin (3i, 3n) configuration. This 18-spin system

is unusual because the unit cell is 3× 3 plaquettes and it cannot be mapped

to the toric code in any of its A phases.

We illustrate two of the six third-order finite-size terms in figure 4.4. The
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full effective third-order Hamiltonian can be written as:

H(3) =
3

8|Jz|2
[J3
x

2∑
n=0

σx3n+1σ
x
3n+6σ

x
3n+8 − J3

y

2∑
n=0

σxn+1σ
x
n+4σ

x
n+7]

where the numbering of the effective spins used (figure 4.3(g)) are modulo 9.

Setting J = Jx = Jy gives a spectrum with 3 degenerate energy levels at:

E(3) =


+ 3|J |3

2|Jz |2

0

− 3|J |3
2|Jz |2


where the upper and lower splittings are 96 times degenerate and the 0 energy

term is 320 times degenerate.

Figure 4.4: Graphical representations of two of the six third-order finite size
corrections terms for the 18-spin (3i, 3n) configuration.

4.1.3 Fourth-order corrections

In this section we examine the additional finite size terms that appear in the

fourth-order perturbative expansion. As an example we consider the 16-spin

(2i, 4j) configuration in the Az phase. This particular configuration is impor-

tant in that all the alternative non-constant fourth-order terms are present

in one form or another. In figure 4.5 we illustrate some of the ways that

different basis elements are connected for the 16-spin (2i, 4j) configuration.

The plaquette terms Qp are of type (a). There are also 16 sequences that

go around the torus in the vertical direction and 12 that go in the horizon-
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tal direction. The overall non-constant fourth-order effective Hamiltonian is

therefore quite a complicated entity with a number of different excitation

types; see figure 4.5. The full fourth-order effective Hamiltonian for this

configuration may be written as:

H(4) = −
J2
xJ

2
y

16|Jz|3
8∑

n=1

(Qn +Rn − 5An)−
J2
xJ

2
y

16|Jz|3
4∑

n=1

(Zn + 5Yn)

− 5

16|Jz|3
(J4
x

2∑
n=1

Xn + J4
y

4∑
n=3

Xn)

where the Rns are (horizontal) strings of the form σzσxσzσx, with the σxs

Figure 4.5: Some different four term sequences that non-trivially connect up
the dimer basis vectors on the 16-spin (2i, 4j) configuration lattice. Type
(a) is a plaquette term Qn and is valid for all non-horizontal configurations.
Types (b) and (c) are horizontal string terms Rn and Zn respectively. Type
(d) and (e) are vertical strings Yn and An respectively. Types (f) and (g) are
vertical Xn strings.

operating on dimers that are acted on at both ends by a σx or σy in the

full system. The horizontal Z terms contain four effective σz terms and the

vertical X and Y strings contain four effective σxs and σys respectively. The

eight (vertical) A terms are mixtures of two effective σy and σx terms; see

figure 4.5.
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4.1.4 24-Spin (3i, 4j) computations

A case study was undertaken for the 24-spin (3i, 4j) lattice configuration

where calculations were performed using the DoQO code described in chap-

ter 2. As the system size is increased certain finite size terms drop out.

Extending the 16-spin (2i, 4j) configuration (figure 4.5) to a 24-spin configu-

ration can be done in two different ways. Extending the system vertically to

a (2i, 6j) configuration means taking the X, Y and A terms from the fourth-

order calculation and adding in additional Z and R terms. If we extend the

system horizontally, so that we have a (3i, 4j) plaquette configuration, all

the Z, R and X terms drop out while additional Y and A ‘vertical’ terms

must be added as shown in figure 4.6.

Figure 4.6: Some different four term sequences that non-trivially connect up
the dimer basis vectors on the 24-spin (3i, 4j) configuration lattice. Type
(a) is a plaquette term Qn and is valid for all non-horizontal configurations.
Types (b) and (c) are vertical string terms An and Yn respectively.

In this case, if we set J = Jx = Jy, the full effective Hamiltonian can be

written as:

Heff = cI + Jeff (HK +H
(4)
FS) +O(J6)

where HK is the toric code Hamiltonian on the effective lattice, Jeff =

J4/(16|Jz|3) and:

H
(4)
FS = −5(

6∑
n=1

Yn −
1∑

n=1

2An)

One way to demonstrate the accuracy of the above calculations is to

subtract out the low order finite size contributions from the numerically

calculated spectrum. This leaves the toric code contribution plus higher order
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corrections. First we define σ(M) as the appropriately ordered spectrum of

any operator M and then note that:

σ(H)− E0

Jeff
− σ(H

(4)
FS) = σ(HK) +O(J2)

In figure 4.7 we plot the lowest four values of the left hand side of this equation

as a function of J2. The splitting of the four-fold degenerate ground state

due to the sixth-order finite size effects is clearly demonstrated.

Figure 4.7: (σ(H) − E0)/Jeff − σ(H
(4)
FS) versus J2. Lifting of the (3i, 6j)

toroidal honeycomb model ground state degeneracy via sixth-order finite size
effects.

We now look at the details of the calculations that are summarised in

figure 4.7 which shows the lowest four values of (σ(H)−E0)
Jeff

− σ(H
(4)
FS) plotted

against J2.

The calculation of (σ(H)−E0)
Jeff

involves the diagonalisation of the Hamilto-

nian operator for the Kitaev honeycomb lattice model on the 24-spin (3i, 4j)

lattice configuration. The basis size for this calculation is 224 (or 16.78×106)

and was carried out with DoQO on 2048 cores of a Blue Gene/P supercom-

puter. To ensure the correct ordering as indicated by the σ notation extra

terms were added which apply an energy penalty to states which contain

vortices (any state for which Wp = −1 for any p). The operator that was
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diagonalised was:

H + 50(12I −
∑
p

Wp)

The energy of the ground state was subtracted from each of the retrieved

eigenvalues and these were then blown up by dividing by Jeff .

The procedure to calculate σ(H
(4)
FS) is similar except in this case H

(4)
FS is

defined on the effective lattice which has 12 spins in this case and a basis size

of 4096 elements. Again it is necessary to add additional terms to ensure that

the states returned do not contain any vortices. To do this we define the Wp

operators on the effective lattice. TheWp operators on the effective lattice are

written as Qp = σzdσ
y
rσ

z
uσ

y
l where the subscripts denote the relative position

of the effective site for each plaquette, down,right,up and left respectively.

The result of this case study is that by subtracting the fourth order finite

size terms we were able to reproduce the expected four fold degenerate ground

state of the toric code up to the sixth order as show in figure 4.7. These

sixth order terms appear as second order in J resulting from the fact that

the spectrum was divided by Jeff , which contains J4.

4.1.5 36-Spin (3i, 6j) computations

It is useful to ask for what configurations the perturbative expansion to the

fourth-order is equivalent to the toric code Hamiltonian. Using the arguments

like those above we see that we can rule out all finite size terms at the

fourth and lower orders in the Az phase of the 30-spin (3i, 5n) configuration.

However, the effective fourth-order Hamiltonian is not unitarily equivalent

to the toric code and is of type HW in all A phases. However, the Az phase

of the 36-spin (3i, 6j) (or equivalently (3i, 6n)) configuration has finite size

effects on the sixth order and above only, and the fourth-order perturbative

expansion can be unitarily mapped to the toric code Hamiltonian. Figure

4.8 shows a plot of the 36-spin (3i, 6j) configuration. Calculations for this

lattice configuration have been performed which verify that there are no non-

constant finite size effects lower than the sixth order for this configuration.

The basis set for this lattice configuration is 236 (or 64 × 109) which is
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Figure 4.8: The 36-spin (3i, 6j) configuration with and its associated toric
code lattice.

too large to be tractable on the available computational resources without

exploiting symmetries. By exploiting the conservation of parity along each of

the rows and the conservation of momentum in the horizontal direction the

calculation reduces to 192 calculations, each with a basis set of 230

3
. It was

possible to perform calculations for these using 4096 cores of the Blue Gene/P

supercomputer. See section 2.1.1 for details about the symmetries DoQO is

capable of employing. The results as expected show a four fold degenerate

ground state up to the sixth order and agree with results obtained using the

exact solution for the model [12].
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Chapter 5

Conclusions

In conclusion I will reiterate the most salient points and refer to possible

further work.

This thesis centres around the development and application of the large

scale exact diagonalisation code named DoQO (Diagonalisation of Quantum

Observables) [23]. DoQO is a versatile tool which can perform calculations

for a broad range of models on a large range of platforms. The most sig-

nificant features are its ability to work for arbitrary spin half and spinless

fermionic models with many-particle interaction terms, to exploit physical

symmetries and to work efficiently in parallel on high performance comput-

ing architectures. DoQO can be used effectively on standard workstations

to treat systems with basis sets on the order of 105, and on large capability

machines it can treat systems with basis sets on the order of 109 and possibly

more.

While DoQO has significant capabilities, many improvements and exten-

sions are possible some of which I will now list. The implementation of matrix

free methods discussed in section 2.C could make possible larger calculations

as a result of the savings in memory. Extensions to treat other particle types

would allow calculations to be performed for additional systems. Some possi-

ble additional particle types include: particles with spin greater than a half,

fermions with spin as well as deformed spins. In addition the ability to mix

particle types could prove useful. The ability to exploit additional symme-
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tries would also be useful to further reduce the basis set size and provide

additional information.

A significant portion of the thesis is devoted to the investigation of SUSY

lattice models (chapter 3). This treatment focuses on the staggered SUSY

chain (section 3.3) and the square octagon (SO) SUSY model (section 3.4).

In section 3.3 the behaviour of the staggered SUSY chain in the staggering

limits is explored in detail. Expressions for the ground states, entanglement

entropy and entanglement spectrum are described and numerical verification

is provided where appropriate. We are also interested in the behaviour of

these models away from the staggering limits. In particular in the vicinity

of the critical point at a = 1, and when the staggering parameter a =
√

2,

because at this staggering the model is related to the SO SUSY chain.

For the SO SUSY model a number of results are shown in section 3.4.

Calculations for the SO SUSY chain confirm that the low lying spectrum

of this model is identical to that of the staggered SUSY chain at staggering

a =
√

2. FSS calculations of the gap indicate that the closed SO chain is

gapped and the open SO chain is gapless. In future we would like to establish

if there is a gap in the full SO SUSY model but FSS calculations are very

challenging here.

Calculations to investigate the ground state structure of the SO SUSY

model were also undertaken and the results are discussed in section 3.4.

Among these are calculations of the one and two point functions in the

ground state(s) of the ten plaquette SO chain and the 3 × 3 plaquette SO

SUSY model with and without defects. The Projected Product State (PPS)

wavefunctions are proposed and their ability to reproduce features of the

ground state are investigated. These investigations consist of calculations

of overlaps as well as comparisons of one point functions and entanglement

properties for each. From these investigations we conclude that the PPS

wavefunctions manage to capture some of the ground state structure, as ev-

idenced by the non exponential decay of the overlaps with increasing system

size, the qualitative similarities between one point functions and the accurate

reproduction of some of the low lying points of the entanglement spectrum.

It is clear though from the differences in entanglement properties and one
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point functions that there is significant structure that is not captured by

the PPS wavefunctions. In addition the non zero values obtained for the

two point functions in the ground state indicate that configurations featur-

ing plaquettes with two fermions contribute to the ground state. In future

it would be interesting to investigate so-called PPS2 wavefunctions. These

supplement the standard PPS wavefunctions with configurations featuring

plaquettes with two fermions.

Investigations of finite size effects in the Kitaev honeycomb lattice model

were also discussed. Here analytical expressions for finite size terms up to the

fourth order for finite toroidal configurations were deduced from perturbation

theory. Using DoQO we were able to numerically verify these expressions and

extract the finite size effects from the numerical data.

There have been other projects which have benefited from the use of

DoQO that have not been mentioned in this thesis. One such project con-

cerned the investigation of two dimensional multipartite valence bond states

[57] where calculations performed using DoQO were used to verify results of

DMRG calculations.
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