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Abstract-Techniques for observing the flow of people are 
creating new means for observing the dynamics between people 
and the environments they pass through. This ubiquitous con- 
nectivity can be observed and interpreted in real-time, through 
mobile device activity patterns. Recent research into urban 
analysis through the use of mobile device usage statistics has 
presented a need for the collection of this data independently 
from mobile network operators. In this paper we demonstrate 
that by extracting cumulative received signal strength indication 
(RSSI) for overall mobile device transmissions, such information 
can be obtained independently from network operators. We 
present preliminary results and suggest future applications for 
which this collection method may be used. 

Index Tenns-RSSI, Erlang, human monitoring, geo-temporal 
weighting. 

Mapping applications which present the flow of human 
activities are now becoming increasingly common, one of the 
main contributions to this is the vast amounts of information 
made available from mobile devices. In 2007 the number of 
mobile phones in Ireland numbered 5.3 million [ l ]  while the 
human population numbered 4.3 million [2]. It is quickly 
becoming the norm in the developed world that mobile phone 
devices are outnumbering people. The developing world too 
has seen a rapid surge in mobile device numbers as mobile 
networks are often easier and cheaper to install compared to 
that of landline networks. 

As a result of this ever expanding technology, activities that 
once required a fixed location and connection can now be 
achieved with higher flexibility, which enables users to act and 
communicate more freely. The usage patterns obtained from 
mobile device activity can enable us to model the dynamics 
of human flow in modem environments [3]. 

The ability to detect such activity has become increasingly 
important due to growing interest in the provision of loca- 
tion based services (LBS). LBS researchers have developed 
techniques for the detection of people in the proximity of an 
area other than through examining mobile usage statistics. One 
common approach is to use vision based techniques which 
utilises camera surveillance systems to identify crowd numbers 
and behaviour [4], [5], [6].  However, theses types of systems 

invoke certain social issues with regards to privacy [7], [8]. 
As stated in Doyle er al. [9], the mobile phone usage statistic 

commonly employed in mobile usage mapping applications 
is a measure of network bandwidth used. Qpically, this is 
collected at a base station within a mobile operator's network, 
or by use of special software installed on mobile phones. The 
metric by which this activity is measured is known as an Er- 
lang. An Erlang is one person-hour of phone use, which could 
represent one person talking for an hour, two people talking for 
half an hour each, 30 people each speaking for two minutes, 
and so on [lo]. A more modem interpretation of this metric 
would be to consider the quantity of digital data transferred, 
regardless of the form of communication, such as voice, SMS, 
and data. This method was valuable in the past due to the 
restricted nature of mobile telecommunications which were 
fundamentally voice-only networks. Modem networks have an 
progressively diverse range of usages which do not linearly 
correspond to intensity of communication. For instance text 
messaging uses very little bandwidth though is an important 
form of communication. 

As an alternative to collecting data throughput measure- 
ments, we have adopted a technique for monitoring the cu- 
mulative electromagnetic energy in the frequency band of 
client-side mobile phone transmissions (i.e. mobile device 
to base station transmission band). By analysing these RSSI 
values over time and space through a collaborative network of 
sensors, we propose that results can be obtained that are of 
comparable quality to the more invasive network bandwidth 
metrics (Erlang). Such measurements can be easily achieved 
using well known circuitry for Received Signal Strength 
Indication (RSSI) [ I  11, [12]. The information gathered is 
inherently anonymous due to the absence of information 
decoding. As a result, it is impossible to deduce individual 
identities or phone information content from the raw data 
collected and stored in the proposed system, thus avoiding 
the potential ethical issues faced by both vision based and 
network operator polled systems. 

In the rest of this paper, we highlight the use of an energy 
detecting device to monitor mobile spectrum activity for the 
purpose of mapping mobile device activity. Section I1 gives 
an overview of some related work in this field. Section I11 



describes the proposal put forward by this paper. Section IV 
details the experimental setup adopted to measure the temporal 
RSSI data, from which useful information is extracted. Sec- 
tion V presents the results of experiments carried out focusing 
on the collection of RSSI mobile device data under different 
scenarios. Section VI summarises the conclusions of the work 
to date and outlines future directions for research. 

This section presents on overview of some work related to 
the collection and analysis of human movement data. This 
can be grouped into real time urban flow mapping, location 
tracking and spectrum strength collection. 

A. Real Time Urban Flow Mapping 

The emergence of new mapping applications which present 
the flux of people in an attempt to demonstrate the dynamics 
of metropolitan cities highlights the recent growth and interest 
relating to tracking human flow on urban scales. Over the last 
few years this research area has seen steady growth with large 
projects starting in European and Asian cities. The monitoring 
of mobile phone usage patterns has been the major data 
source used to extract the human behavioural patterns needed 
for these applications. Other sources such as passive tolling 
of Bluetooth devices, as well as techniques including GPS 
tracking and short range tracking have been utilised in the 
past but theses do not scale easily in urban environments. 

Amsterdam Real Time [13] and Cityware Research 
Group [14] are examples of such projects. The Amsterdam 
Real Time project aimed to construct a dynamic map of 
Amsterdam, Netherlands, based on trace lines produced from 
the collection of GPS data relating to peoples movements. 
Each person volunteered in the experiment and was equipped 
with a GPS receiver. This receiver fed the GPS coordinates of 
the volunteer to a central system in real time. Maps produced 
were solely based on this GPS data. In the UK, the Cityware 
research group supplemented the pedestrian flow data typically 
gathered as part of a space syntax analysis with data on 
Bluetooth devices passing through pedestrian survey gates. 

To date there are two main methods for the gathering 
mobile usage information: data collection at the operator level; 
and through modified mobile phone software. The first area 
requires the cooperation of mobile operators to provide data 
on a macro level of urban areas. Graz in Real Time [IS], 
the Mobile Landscapes project [3], Real Time Rome 1161 and 
Bangkok Metropolitan Project [I71 are examples of projects 
which utilised this network operator data. 

The Graz in Real Time project is a real time mobile phone 
monitoring system based on cell phone traffic intensity, traffic 
migration (hand overs) and traces of registered users as they 
moved through the city of Graz. 

The Mobile Landscapes project collected network usage 
data in the Milan, Italy. When combined with the geograph- 
ical mapping of cell areas, a graphical representation of the 
intensity of urban activities and their evolution through space 

and time was produced. From this they were able to detect 
events such as national holidays and major sporting events. 

The Real Time Rome was MIT's SENSEable City Lab- 
oratory contribution to the 10th International Architecture 
Exhibition in Venice, Italy. The project was the first example 
of an urban-wide real time monitoring system that collects 
and processes data provided by telecommunications networks 
and transportation systems. It used location data from mobile 
phone subscribers provided by Telecom Italia, public buses 
ran by a local transport company Atac and taxis run by the 
cooperative Samarcanda. 

Horanont and Shibasaki [I71 presented an implementation 
of mobile sensing for large-scale urban monitoring in Bangkok 
Metropolitan, Thailand. They used Erlang data from Advanced 
Info Service PLC (AIS), a leading mobile operator in Thailand. 
They showed that large scale monitoring of clusters of Erlang 
data from mobile base stations were able to provide indirect 
interpretations of spatial patterns of urban life and its temporal 
dynamics. 

However, there are difficulties with this approach, most 
notably the legal and privacy issues that prevent operators 
delivering such information to outside researchers. In addition, 
even with best efforts, there is no guarantee that data from 
theses sources is always available, complete or accurate. Net- 
work operators continually optimise their network throughout 
the day, using temporary towers. This adds to the level of 
uncertainty into these fixed point measurements as network 
topologies become more dynamic. A more fundamental issue 
arises regarding spacial accuracy as the spatial resolution of 
the usage statistics is dependent on both the operators network 
topology and base station hardware. 

As a result approaches have emerged which aimed to ad- 
dress these issues by placing embedded software applications 
on the mobile devices to log data. Estonia group project [18] 
and MITs Reality Mining project [19] are examples of projects 
which utilise this approach. 

Ahas and Mark [18] tracked the mobile phones of 300 users 
for a social positioning application. They combined spatio- 
temporal data from phones with demographic and attitudinal 
data from surveys, creating a map of social spaces in Estonia. 

MITs Reality Mining project illustrated that it was possible 
to extract common behavioural patterns from the activities of 
94 subjects. The subjects were issued with mobile phones pre- 
installed with several pieces of software that record and sent 
research data on call logs, Bluetooth devices in proximity, cell 
tower IDS, application usage, and phone status. This yields 
valuable, person specific results but the solution may not 
be easy to scale considering the large numbers needed to 
represent urban and suburban populations. 

B. Mobile Phone Location Tracking 

Most indoor environment based localisation research to 
date has focused on the accurate localisation of objects and 
people using short-range signals, such as WiFi [20], [2 I], [22], 
Bluetooth [23], ultra sound [24], and infra-red [25]. Outdoor 



localisation is almost exclusively performed using the Global 
Positioning System (GPS). 

Otsason et al. [26] showed that an indoor localisation 
system based on wide-area GSM fingerprints can achieve 
high accuracy, and is in fact comparable to an 802.1 1-based 
implementation. To date there are two major ways for mobile 
phone locations to be tracked in mobile networks, namely 
network-centric and device-centric localisation. In network- 
centric systems, base stations make the measurements of 
distance to a mobile phone and send the results to a cen- 
tralised location at which the location of the mobile device 
is calculated. In device-centric systems, the handset performs 
the calculation itself on the basis of environmental information 
gathered from the network. Hybrid solutions are also possible, 
which try to combine the advantages of both. 

The American National Standards Institute (ANSI) and 
the European Telecommunications Standards Institute (ETSI) 
stated that mobile positioning systems can be classified under 
the following technologies: cell identification, angle of arrival, 
time of arrival, enhanced observed time difference, and as- 
sisted GPS [3]. 

Cell identification; The available coordinates of the serv- 
ing base station are associated with the mobile device. 
The accuracy of the locational information depends upon 
the physical topology of the network. . ~ n ~ l e  of arrival (AoA); The AoA method uses data from 
base stations that have been augmented using arrays of 
smart antennas. This allows the base station to determine 
the angle of incoming radio signals, making it possible to 
then determine the location of a handset by triangulating 
known signal angles from at least two base stations. 
Time of arrival (ToA); Position here is determined by 
triangulating the time needed for a packet to be send 
from a phone to three finely synchronised base stations 
and back. 
Enhanced observed time difference (E-OTD); This re- 
quires handsets to be equipped with software that locally 
computes location. Three or  more synchronised base 
stations transmit signal times to the mobile device, the 
embedded software of which calculates time differences 
and therefore distance from each base station making 
triangulation possible. 
Assisted global positioning system (A-GPS); Here devices 
use both GPS and a terrestrial cellular network to obtain 
geographic positioning. 

C. Spectrum Signal Strength Collection 

To collect the cumulative electromagnetic energy in the 
frequency range of client-side mobile phone transmissions, 
one must be able to measure and quantify the energy in the 
specific energy band occupied by client-side mobile phone 
transmissions. This is effectively measuring the signal strength 
in a specific frequency band of energy [ l l ] ,  a common 
technique in wireless communications. To do this reliably an 
energy detecting device is used which returns a received signal 
strength indication (RSSI) parameter. Energy detecting devices 

can easily be purchased or built. Due to such readiness in 
availability, RSSI has been considered in the past as a sensing 
parameter. A number of applications have provided insight into 
its usefulness, both WU et al. 1271 and Stoyanova et al. 1281, in 
particular, describe the key issues which affect RSSI accuracy. 
They are summarised as: . The orientation of the antenna; . Transceiver variation; . Multipath fading and changes in environment. 

Multipath fading and environment changes contribute the 
main variance in RSSI data. This relates to part of the 
electromagnetic energy radiated by the antenna of a transmitter 
reaching a receiver by propagating through different paths. 
Along these paths, interactions known as propagation mecha- 
nisms may occur between the electromagnetic field and various 
objects. To model theses mechanisms, propagation prediction 
models have been devised to provide an accurate estimate of 
the mean received power or path loss (PL) for a specified 
frequency band based on geographical information about the 
environment. Empirical, semi-deterministic, and deterministic 
models are the main classes which describe mobile channel 
characteristics [29]. As these propagation models describe how 
a signal may act in a given environment, they must be used 
when trying to gain insight into positions of signal sources. 

In recent years cognitive radio systems [30], [3 I], [32] have 
become increasingly viable and signal strength measurement 
is a key element in the detection of primary user spectral occu- 
pancy. To improve performance, they have explored a number 
of techniques that can be used to address these issues, such 
as collaborative sensing between multiple RSSI detectors [33], 
[34]. By cross-correlation and signal processing, non-random 
signals can be detected and analysed. Similar approaches can 
be applied with existing transmissions to detect usage and 
extract statistical patterns. 

Our proposal is based on the measurement of localised 
cumulative strength of mobile device emissions through the 
use of an RSSI sensor. We propose that this data can provide 
a suitable alternative to operator obtained data. Results will 
demonstrate the proposed method can capture mobile phone 
activity and display the spacio-temporal patterns contained 
within. 

As an alternative sensing parameter, cumulative received 
signal strength (RSSI) offers several advantages over network 
usage data; . RSSI data can be collected without the cooperation of 

mobile operators or mobile device user. 
RSSI as a metric is independent of modulation type, so 
RSSI can be used for GSM protocols and 3G protocols. 
Geo-spatial RSSI data can provide fine resolution making 
it possible to localise events very accurately and quickly. 
RSSI collection hardware can easily be modified to 
observe different metrics, making a network deployment 
very flexible. 



However, individual sensor measurements of wideband sig- 
nal strength measurements have limitations in terms of lo- 
calised accuracy. This is due to limiting channel characteristics 
and the inability to distinguish between a single near device 
transmitting with high power and several users far away trans- 
mining with low power. The question then is how to reliably 
collect this information taking into account such factors. 

By adopting techniques commonly utilised in cognitive 
radio systems, we propose that these accuracy issues may be 
mitigated. First, by spatially and temporally weighting each 
RSSI data point form a sensor with corresponding points 
from other radios in the geographical area nearby, the RSSI 
accuracy can be improved [33] [34]. Second, modelling the 
environment with accurate models will help quantify the data 
and give insight into its behaviour. Third, calibration with 
respect to base station coverage will reduce effects caused by 
mobile device transmission power variation. Finally, the spatial 
sampling topology of the sensor network will be a dominant 
factor in determining performance, particularly when variable 
sensor heights are also considered. Thus methods for insuring 
topology uniformity must be taken into account. 

To distinguish between the RSSI signal generated by one 
user near the sensor and several users further away we will 
deploy a dense network topology. This will insure that spectral 
energy readings from each sensor can be localised to some 
degree. To localise such activity there are several possible solu- 
tions. One is to localise activity based on a sensor identification 
technique, similar to the cell identification used to identify a 
mobile device position in a cellular network. Here the sensor 
node with the associated highest RSSI value is deemed to be 
the coordinate of the activity. This will however offer reduced 
spatial resolution. Thus a more advanced technique, which 
combines multi-sensor information, would be a more suitable 
approach. 

IV. EXPERIMENTAL WORK 

A. Experimental Setup 

Our experiments were based on the measurement of 
localised cumulative strength of mobile device emissions 
through the use of a custom-made RSSI sensor. The main com- 
ponent used to measure the RSSI intensity was a true power 
detector from Analog Devices (chip pan number AD8362) 
paired with a single omni-directional GSM 900 antenna. The 
AD8362 device returns a voltage which linearly corresponds 
to the RF spectrum power passed through it. It operates with a 
65dB dynamic range, ranging from -55dB to IOdB. To obtain 
a measure of the performance, experiments were camed out 
within a building on NU1 Maynooths North Campus. The 
measured performance of two such sensors were compared 
to that of a spectrum analyser, the results of which can be 
found in Section V. 

Doyle et al. [9] described the capabilities of such a sensor 
with respect to picking up different types of phone activity. 
This paper highlighted the capability of such sensors for pick- 
ing up even shorter bursts of mobile transmission energy with 
both text message and phone call activity clearly identified. A 

technique for the extraction of areas of high temporal dense 
activity was also demonstrated. From this information, areas 
around each hour mark of high temporal density were high- 
lighted, these times coincided with the starting and finishing 
times of lectures, thus demonstrating that RSSI can provide 
the information needed to monitor human behaviour. 

To further validate the capabilities of the sensing devices 
and feature extraction methodology, we designed two experi- 
ments which tested different scenarios of mobile phone activ- 
ity. The focus was to test our method for geo-spatial temporal 
weighted signal processing. Both experiments took place in 
the foyer of the Engineering building at NU1 Maynooth under 
controlled conditions (no other phone activity). The result can 
be seen in Section V. 

Experiment 1: Obtain RSSI measurements from a phone 
call while a person is walking in a uniform direction. The 
path taken is depicted in Fig. la. 
Experiment 2: Measure readings from a phone call while 
a person is walking in a non-uniform direction. The path 
taken is depicted in Fig. Ib. 

(a) Path taken in Experiment 1 (b )  Path taken in Experiment 2 

Fig. 1: Layout of sensors and path walked by a phone user 
for a controlled test carried out in Engineering foyer on NU1 
Maynooth's North Campus. A and B indicate the positions of 
sensors A and B respectively. 

B. Processing Method 

Various signal processing algorithms can be applied to assist 
with extracting interesting patterns from measured mobile 
phone signal strengths. Our approach has focused on a geo- 
spactial temporal based scheme that identifies time periods 
with interesting behaviour. One early implementation is ex- 
plained in this Section. Its layout is depicted in Fig. 2. 

The spectral energy, which was sampled at a rate of 2kH2, 
and is denoted as s(k). The signal processing method applied 
to these samples consists of four stages. 

Stage 1: Detect the presence of a mobile transmission as 
governed by a cut-off threshold t 



Fig. 2: Signal processing performed on raw RSSI data. Feedi 
gives an nIh order weighting. 

where T in this instance is chosen to be -55dBm. the 
minimum detectable level of the energy detecting chipset. 

Stage 2: Downsample the data by a factor of T, this is 
done by replacing every block of T samples by its average 

where sb(i) is the downsampled data set and T is the 
downsampling factor. Decimation should be application 
specific. While it can trim down the noise within the 
data, excessive decimation may reduce the signal of short 
temporal events, such as text messages. 

. Stage 3: Smooth the data using a moving average filter 
(MAF) of width (2W + 1) samples 

where sf(i) is the resulting filtered data set. 

Stage 4: Given a vector of readings from a set of n 
sensors 

apply a geo-spatial temporal weighting using a truncated 
Gaussian Kernel. Here, si(k) the sensor reading from 
the i'th sensor, has an associated coordinate in space 
(xi,yi) relating to the position of the sensor. To achieve 
this weighting, points are calculated in space-time by 
a collaborative weighting of readings taken from each 
sensor node. A point in space-time sc(x,y,k) can be 
calculated using, 

where gip(x, y, k) is the geo-spatial temporal weight cor- 
responding to reading s;(p) and 2 j  + 1 is the width of 
the truncating window in time. The weight gip(x,y, k) is 
given by 

giP(x, y, k) = gp(x, xi)gpb, ~ i ) g ~ ( k p  p )  (6) 

where 

ing output back into the geo-spactial temporal weighting stage 

Here, u and v are placeholders for the corresponding 
variables in Eq. 6. u, denotes the initial spreading factor 
assigned to each dimension and P is a scaling factor 
controlling the spread given to those points whose weight 
is over the lower limiting threshold y such that, 

where c > 1. The effect of this stage is to weight each 
RSSI data point from a sensor with corresponding spatial 
and temporal points from other sources such that readings 
that are both spatially and temporally close are amplified. 

The results shown here reflect measurements of wide band 
mobile phone RSSI taken on NU1 Maynooth North Cam- 
pus. Fig. 4 illustrates the sensitivity comparison between a 
spectrum analyser and RSSI sensors, whose architecture is 
described in Section IV-A. It can be seen that the readings 
from RSSI sensors, though less precise, resemble that from a 
spectrum analyser. 

Fig. 3 presents the measurements collected in an experiment 
prior to geo-spatial temporal weighting. The experiments are 
carried out to verify the ability of signal processing algorithm 
to highlight the movement of mobile devices in an indoor 
environment. Fig. 5 and Fig. 6 show how the geo-spatially 
temporally weighted points in space may be visualised in the 
form of contour maps that highlight device activity picked up. 

The temporal shift of energy can clearly be observed as the 
positions of the phone calls, in voice communication mode, 
vary in space. Currently, a preliminary method is employed 
to interpolate the data over space. This consisted of adopting 
the sensor nodes positions as the centre of energy annealing 
the signal as we moved further out. Note weights represented 
in each contour plot are relative measures compared to that 
of surrounding areas. As a result the measure of dominance 
should be considered relative and not as an absolute value. 

Future work will involve more advanced methods which 
may take into account pre-defined information gathered from 
geographical information systems (GIs) and channel models 
relating to the mobile spectrum band of interest. Nevertheless, 



Fig. 4: RSSI measurements obtained in the foyer of NU1 Maynooth's Electronic Engineering building showing the relationship 
between the sensor nodes used and a spectrum analyser: (a) locations of calls made in the foyer, the positions of the sensing 
nodes and spectrum analyser; (b) readings taken from a spectrum analyser; (c) readings taken from sensor A; (d) readings 
taken from sensor B 

(a) RSSI measurements obtained from sensor A 

;O I ~ O  150 2b0 2;0 3bn 3'50 4b0 I 
Sample No. 

(b) RSSI measurements obrained from sensor B 

Fig. 3: RSSI measurements obtained in the Engineering foyer 
of NU1 Maynooth for both experiments 1 and 2. 

these early results suggest that localised cumulative RSSI data 
could be a valuable source of information when trying to 
extract flow information from mobile devices. 

VI. CONCLUSIONS 

This paper summarised the work being canied out in the 
area of mapping mobile phone activity on urban and localised 
scales. At the same time, an overview is presented on popular 
localised tracking techniques and issues which relate to the 
reliable measurement of mobile spectrum RSSI. Experiments 

demonstrate that the detection of mobile spectrum RSSI can 
provide useful information when monitoring mobile device 
activity in a localised context. This information is gathered 
without the cooperation of mobile network operators or users 
and retains usage anonymity due to the lack of information 
decoding. We presented a preliminary technique for the de- 
tection and visualisation of mobile activity flow within indoor 
environments. 

This proposed approach could also be used to complement 
traditional techniques for mapping mobile device activity. For 
instance, one could use the network operator data, if available, 
to model the dynamics of a city or town while localised RSSI 
data, within such an urban environment, is used to observe the 
dynamics of specific buildings or localised areas. Nonetheless, 
our research is still in its preliminary stages, so additional 
validation is needed. 

For this purpose, a mobile sensor network aimed at the 
collection of RSSI data is under construction. It will first be 
distributed throughout the North Campus of NU1 Maynooth 
with a view to expanding it into the nearby South Campus 
and town of Maynooth in longer term. This project will otfer 
an opportunity to understand some of the dynamics relating 
to university student life. Moreover, focusing on temporal and 
spatial patterns of mobile phone activity may shed light on 
how we interact with our local environment. 

We hope to address such questions as how buildings really 
used on campus, how to determine where people can be found 
as opposed to where they pass through and how to identify 
interesting localised events as they occur in time and space. 
The answers to these questions would pave the way for a 
number of interesting applications. A real time map of human 



(b) Sampled at 12.5s (c) Sampled at 18.75s 

(d) Sampled at 25s (e) Sampled at 3 1.25s 

Fig. 5: Mapping of RSSI information obtained after the geo- 
spatial temporal weighting process for time slot of experiment 
1 in Fig. 3 at different sampling times. 

flow could be produced showing the real time movements of 
student population, both indoor and outdoor. The map could 
provide insights to university planning authorities to decide on 
the location of student services or emergency services in the 
event where rapid response is required. 
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