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In black hole thermodynamics a cosmological constant dmrtes a pressure to the equation of
state whose the conjugate variable is a ‘volume’. It is shdvat, for a negative cosmological
constant, this ‘thermodynamic volume’ is the volume of spagcluded by the event horizon,
when quantum gravity corrections are ignored. This appliddack holes in any dimension with
any event horizon geometry compatible with Einstein’s ¢igua, such as spheres, tori, spaces of
constant negative curvature or, in general, any Einsteinespith constant Ricci scalar. Quantum
corrections to the volume are calculate for the BTZ blaclehol
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1. Review of black hole thermodynamics

A black hole has surface temperature= £ 27'(’ wherek is the surface gravity, and entropy,
s=1 ZF’ whereA is the event horizon areé3 = Gyh, with Gy Newton’s constant and= 1), [1].
In the descrlptlon of black hole thermodynamics, the blagle ImasdM is usually identified with
the internal energ¥e which, in the absence of rotation or electric charges, shbelconsidered to
be a function of the entropy and the volume [2].

The first law of black hole thermodynamics is usually written

dM =

87TGNdA TdS (3=Q=0),

at zero pressure. The (Helmholtz) free enefgyT,V ), is the Legendre transform &{(S V)

AK
8nGy

F=E-TS=M-

In a Euclidean path integral formulation the acti@g, is related to the free enerdfythrough
the bridge equation
F=-TInz,

whereZ =e %,
Hawking has also shown that the heat capacity of a Schwalddalack hole is negative,
hence it is thermodynamically unstable. For the Schwaiizbahetric rp = 2G\M, T = SHGHNM,

andA = 161G M?2. The free energy evaluates to

E_ M h
2 16nGNT’

and the heat capacity is

JE 0°F 8nGyM?

C= =-T =— 0.

oT ~ oT? R

The instability is due to thermal radiation from the blaclkehon a vacuum it t radiates with power
2\ 3

P~ AHT34 GZMZ Since the energy availableis= M the lifetime will bet ~ % ~ GNTM ~ %

As the black hole loses energy through radiation it shrinkg this suggests that the heat
capacity calculated above cannot be interpreted as thechpatity at constant volume.

2. Enthalpy
When pressure is included in any thermodynamic system ttddir reads
dE=TdS — PdV

Which raises the question, where is ddV term in black hole thermodynamics? To answer this
include a cosmological constafit This contributes pressurReand energy density= —P = ﬁ,
[3] see also [4]. This modifies the thermal energy

E=M+&Vv=M-PV = M=E+PV
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which suggests that black hole mass should be identifiedemithalpy rather than internal energy,
[3, 5]
M=H(SP).

With a cosmological constant included the Schwarzschild &#lement is
d?s= —f(r)dt?+ f1(r)dr? +-r2d2Q, (d2Q = d6? +sir? 8d¢?),

with 2G\M A
firy=1-2N5 22
(r) r 3
For A > 0 there are both inner and outer event horizons, making thititen of a single tempera-
ture ambiguous in general, so to avoid such ambiguities steéceto/A < 0. ThenP = —ﬁ > 0.
The event horizon is at= r,, where

fir)=0 = M=—"(1-2¢2).
() =0 2Gn < 3r“>

Now identifyingM with the enthalpy, and using= %

A .
Guiz gives

1

1 [(34S)\? 8Gn/3 P
H(SP)= 2GN <T> (1 3 >

The temperature is then determined by the standard themaaoulyg relation

_ (0H _ h(1-Ar)

We can now ask, what is the thermodynamic volum@,The thermodynamic definition is

_ [oH 4(1393%  4md
V‘(ﬁ) évsﬁ_s’

which is the three dimensional volume excluded by the blaatk,as suggested for other reasons
in [3].
The Gibbs free energy is Legendre transforniids, P)

G(T,P)=H-TS=-TInZ

G

Information is lost if one interprets lhas a function off andV, [2], sinceV = 525 . and so

)

results in a differential equation with an undetermineédgmnation constant.
This distinction between the Helmholtz free energy and tlitgh& free energy will almost
certainly be important in the AdS/CFT approach to condemsatler systems [6].

0G

G(T,P)=-TInZ ( 36




Black hole enthal py Brian P. Dolan

The heat capacity is now clearly the heat capacity at cohptassure,

oH T 8GNPr3,S+1
Cr= 2 =  Cp= 1] = e
P <0T>P P <8GNPegIS—1

A

L

This diverges for-Ar2 = 1: the black hole is unstable|if\| too small, stability require¥ > Ty_p
with Ty_p the temperature of the Hawking-Page phase transition, [7],
2GNP

Th_p="H .
H-P T

2.1 Equation of state

From (2.1) we have the equation of state

e - o (%) o (2]

and theP —V diagram is shown below, with red lines being curves of canisia The region below
and left of the blue line is unstable.

——

3. BTZ black hole

It is instructive to consider the special case of 2-dimensions, since more is known about
guantum corrections in this case than in other dimensiof][8 he line element can be expressed
as

d?s= —f(r)dt?+ f1(r)dr? +r?d¢?,
with
r2
L2
giving horizon radiust, = +/8GyML. The Hawking temperature i5= @ and the Beckenstein-
Hawking entropy isS= 2% (with £p; = hGy in three dimensions).
Identifying the Schwarzschild mass with the enthalpy- M, the above results give

2
H(SP)zﬂj'szP,

f(r) = —8GyM + N=—5),

L2
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where agairP = — 2.
The equation of state is

1 /I
PVz2 = —T
Alpy
and the thermodynamic volume,
V =md,

again agrees with ones naive geometrical intuition.
The Gibbs free energy evaluates to minus the enthalpy,

G=H-TS=-M,

and the heat capacity is strictly positive fdr> 0,

S o
o

which never diverges at finite temperature.
These results should be compared pi&; with

(2
(equivalent to settingl = —g&- in BTZ). In this case the enthalpy = —g5- is constant and
T = 0, implying that the Gibbs free energy is
1
G=H=—-—>.
8Gn

If M < ﬁ in BTZ, pure AdS has lower free energy, implying a phase transitiof at h
but this is of a different nature to the Hawking-Page phaaesition in four (or more) dimensions.

2GnyP
T )

3.1 Quantum correctionsto entropy and volume

To understand quantum corrections to the BTZ thermodyrani@, [9], it is useful to first
expand the discussion to include rotating black-holes.aFmtating BTZ black hole with angular
momentumJ,

1

2
ds? = —f(r)dt? + 10 50 )

2, .2
dre+r (d(p—r—zdt

where ) -
r 16G¢J
f(r)= (—SGNM+p+r7£\‘>.

There are now both inner and outer event horizons at

()

1
2

r2 —4GyML2{ 1+
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In the region exterior to, the Hawking temperature is

F(ry) (1 —r2)R

T= —
4m 2m2r |

Now Wick rotate to Euclidean time— —itg, J — iJe whiler. — rg . andr_ — irg _ with

2
JE
1 —

Then it is useful to define the complex variable

1
2

rg . =4GyML? +1

_TEHirey
L

parameterising the upper-half complex plane, sima@) > 0, in terms of which the inverse Hawk-
ing temperature can be written

1 re . L2 L 1
= ’ — =_Im(-=).
2nTt (r2_+r¢ )h R T

The partition function, including quantum corrections bcoaders in perturbation theory (but
not including non-perturbative corrections), was obtdiime[9] and is most easily written in terms
of q=€"T as

L2
Zgrz = (qq) "N |‘L!1—q”\‘2.
n=
Having described the more general case we now restrict dgaln= 0. ThenT = ;—;L—ﬁz
T= irf andq = e 4% Thel=0 partition function then reads

T2 o

Zgrz = €7°CN rL(l - e_4"2”LﬁL) -
n=

In terms ofx = T—h-'- = 2r_ﬁL the Gibbs free energy is

e e
G(T,P) = —TInZgrz = —ﬁ yoT ;ln(l— g4},
n—

One finds that quantum corrections reduce the entropy béleBe&kenstein-Hawking value,
1
S< - x area
< 4 X

From the equation of state, expresse® 8, P), we obtain the “quantum volume”

2 °° n
=71 |1 - 8GN — —_—,
T h[ NLnZZe4n2nX_1]

which is lower than the naive geometrical volume.

9G
V(TP = o2
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P — classical

guantum

\

\Y

4. Higher dimensional black holes

The case of higher dimensional black-holes proceeds asiioseg2, with minor modifica-
tions. The line element is

d®s= —f(r)dt? + f~1(r)dr2+r%d2Qq),

d
2m2
r(s
let the event horizon be ardtdimensional Einstein space

R .
Rijzagij i,j=1,...,d

whereQ g, = is the volume of a-dimensional unit sphere. In fact this can be generalised to

with constant Ricci curvatur® (positive, negative or zero) and unit radius voluf@g, (e.g. flat
torus, orCP? for evend). Then

R l6nGy M 2N
f(r) = - — r2
d(d—l) Q(d)d rd-1 d(d—l—l)

is a solution of théd + 2)-dimensional Einstein equations with Cosmological camtsta In terms
of the Planck Iengthég, = hGy, the Bekenstein-Hawking entropy is
Qg rd A
(d 'h P—

s=—9_h = .
4 (g 87Gy

Now identifying the mass with the enthalgy(S P) = M, leads to

_1
d

1
S| R [4¢4S 16mGyP [ 448, S\ ¢
se- 2052 (459) e ()’
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giving thermodynamic volume

v_ (9H) _ Qe
\dP)g d+1°

which is the naive geometrical result The equation of state i

1 1

i (d+1)v>d+1 <(d+1)v>d+1

T= R 16nGyP [ Y ,
4rd { < Q(d) N Q(d)

and the heat capacity is

2
16nGNP<‘gg'S> IR
Co = @

IN]

404, S\ d
16MGyP (ﬁj)) “R
ForR > 0 there is a Hawking-Page phase transition at

2h R(d)GNP
7=, TN
d T

For flat a event horizorR = 0, the heat capacity is the particularly simple expression

Cp=4d.

5. Conclusions

It has been argued that a Cosmological constant indu&s/aterm in the first law of black
hole thermodynamics. The black hole mass is then most figtidantified with theenthalpy,
H(SP):

dM =dH =T dS+VdP,

whereP = —ﬁ. The Gibbs free energy 5(T,P) = —-TInZ.

This identification gives the correct Hawking temperatumf the standard thermodynamic
relation T = (%)P and allows one to define a “thermodynamic volune= (‘;—g)T, which,
classically, agrees with the naive geometrical reéu’rtﬁ in (34 1)-dimensions. From the specific
example of the BTZ black-hole if2 + 1)-dimensions one expects quantum gravity corrections to
the Bekenstein-Hawking entropy and the thermodynamicraelu

The heat capacity at constant pressu@pis= - but this, and the equation of stAtgT, P),
9S
will also get quantum corrections. "
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