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Abstract

Distributed Interactive Applications (DIAs) enable geographically dispersed users

to interact with each other in a virtual environment. A key factor to the success

of a DIA is the maintenance of a consistent view of the shared virtual world for

all the participants. However, maintaining consistent states in DIAs is difficult

under real networks. State changes communicated by messages over such networks

suffer latency leading to inconsistency across the application. Predictive Contract

Mechanisms (PCMs) combat this problem through reducing the number of messages

transmitted in return for perceptually tolerable inconsistency. This thesis examines

the operation of PCMs using concepts and methods derived from information theory.

This information theory perspective results in a novel information model of PCMs

that quantifies and analyzes the efficiency of such methods in communicating the

reduced state information, and a new adaptive multiple-model-based framework for

improving consistency in DIAs.

The first part of this thesis introduces information measurements of user behavior

in DIAs and formalizes the information model for PCM operation. In presenting the

information model, the statistical dependence in the entity state, which makes using

extrapolation models to predict future user behavior possible, is evaluated. The

efficiency of a PCM to exploit such predictability to reduce the amount of network

resources required to maintain consistency is also investigated. It is demonstrated

that from the information theory perspective, PCMs can be interpreted as a form

of information reduction and compression.

v



The second part of this thesis proposes an Information-Based Dynamic Extrapo-

lation Model for dynamically selecting between extrapolation algorithms based on

information evaluation and inferred network conditions. This model adapts PCM

configurations to both user behavior and network conditions, and makes the most

information-efficient use of the available network resources. In doing so, it improves

PCM performance and consistency in DIAs.
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Chapter 1

Introduction

1.1 Introduction

This thesis proposes that concepts from a branch of applied mathematics called

information theory can be utilized to understand the operation and efficacy of

distribution mechanisms in a class of software systems known as Distributed In-

teractive Applications (DIAs). DIAs are a group of software systems that enable

geographically distant users to collaboratively interact with each other in a simu-

lated virtual environment. By utilizing the cutting-edge development of computer

graphics, human-computer-interfaces, and networking technologies, DIAs offer the

implementation of shared time, shared space, and shared presence through exchang-

ing information across the network [Singhal and Zyda 1999]. The earliest form of

a simulated environment dates back to the Head-Mounted Display in 1960’s, which

presents changing perspective images to users as they move their heads and gives the

users the illusion of seeing three dimensional objects [Sutherland 1968]. In recent

decades, DIAs have seen significant deployments in the areas of military simulations

(e.g. SIMNET [Calvin et al. 1993; Miller and Thorpe 1995], DIS [IEEE 1998], and

HLA [IEEE 2000]) and academic virtual networked communities (e.g DIVE [Frécon

and Stenius 1998], NPSNET [Capps et al. 2000]). However, it is the world of online

entertainment systems (e.g. Ultima-Online [Origin Systems 1997], Quake [Kushner

1



CHAPTER 1. INTRODUCTION

(a) (b) (c)

Figure 1.1 Examples of various DIA systems. (a) SIM-
NET [Cosby 1995]. (b) DIVE [Frécon 2004]. (c) Quake [Kushner
2002].

2002], Xbox Live [Microsoft 2005b]) that has seen the greatest proliferation of DIAs

in commercial applications. Figure 1.1 illustrates scenes from representative DIA

systems from each of the three application areas.

By no means an exhaustive list, key milestones DIA systems to be introduced in the

following sections encompass most of the efforts and primary software systems that

have contributed to DIAs development. These systems all showed some emphasis on

innovations in supporting scalable interactive virtual environments, since communi-

cation of state changes of the shared virtual environment among a massive number

of participants has been a key design challenge throughout the evolution of DIAs.

1.1.1 Military Simulations

In the early years of DIAs, primary research efforts had been devoted to the military

domain, focusing on developing large-scale simulations (hundreds of entities). Dur-

ing the years between 1983 and 1990, the US Defense Advanced Research Projects

Agency (DARPA) and the US Army sponsored the development of the SIMNET

(SIMulator NETworking) program with the purpose of enhancing collective skills

training in a dynamic and free-play environment [Miller and Thorpe 1995]. As the

first successful implementation of a large-scale, real-time, human-in-loop military

simulation system, SIMNET defined core concepts and principles relating to the

2



CHAPTER 1. INTRODUCTION

management of a shared environment among distributed participants. It provided

the foundation for a new generation of battlefield simulations and other DIAs. SIM-

NET employed the Object/Event Architecture, in which the virtual world is modeled

as a collection of objects interacting with each other through a series of events. Each

simulation node representing an object is completely autonomous, in that the re-

ceiving nodes have the responsibility to determine the effect of an event on them,

and not the simulation node that initiates the event. Dead reckoning algorithms

are used to minimize communications processing, whereby a simulation node only

transmits an entity update message when the true state it represents diverges from

a calculated state model by more than a pre-determined threshold. The receiving

nodes extrapolate remote entity states from the position, orientation, and velocity

information in the latest update message. SIMNET also applied the selective fidelity

principle, where simulation fidelity varies among components with different interac-

tion needs [Miller and Thorpe 1995]. The most significant applications of SIMNET

simulators and protocols include Forward Area Air Defense System (FAADS), Com-

bat Vehicle Command and Control (CVCC), Nonline-of-Sight (NLOS) Missile, and

Counter Target Acquisition System (CTAS) [Atwood et al. 1991; Miller and Thorpe

1995].

In an attempt to build SIMNET to a consensus standard for distributed simulations,

all of its essential elements were incorporated in the Distributed Interactive Simula-

tion (DIS) standards [IEEE 1998]. The DIS standards defined Protocol Data Unit

(PDU) structures and protocol families for various functionalities required by DIS-

compliant applications, such as CCTT (Close Combat Tactical Trainer) [Johnson

et al. 1993] and STOW (Synthetic Theater of War) [Calvin et al. 1995], as shown

in Figure 1.2. These functionalities include Entity Information/Interaction, War-

fare, Logistics, Simulation Management, Distributed Emission Regeneration, Radio

Communications, Entity Management, Minefield, Synthetic Environment, Simula-

tion Management with Reliability, Live Entity Information/Interaction, and Non-

Real Time Protocol. Dead reckoning and collision detection algorithms are also

specified to reduce network traffic.

As the most recent family of standards for Distributed Interactive Applications, the

3
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(a) (b)

Figure 1.2 Examples of distributed military simulation systems.
(a) CCTT. (b) STOW.

High Level Architecture (HLA) provides a general framework to support distributed

simulation applications [IEEE 2000]. The HLA defined the Object Model Template

(OMT), which is a standard documentation of the data to describe a particular

model, as a basis for reusability. Simulation applications (termed federates) are

connected and coordinated through a generic communication interface, called the

Federate Interface Specification, to address interoperability. Operations and data

exchange are supported by the Run-Time Infrastructure (RTI) software. Although

the HLA aims at flexibility of the simulation architecture, it lacks the support for

dynamic extension and composition of the object model. The Extensible Run-Time

Infrastructure (XRTI) has addressed this problem by defining the Reflection Object

Model (ROM) to dynamically extend the object model [Kapolka 2003]. The XRTI

also defines a common message protocol for its run-time infrastructure. The RTI-

integrated STOW is one of the significant HLA-compatible platforms [Calvin et al.

1999].

1.1.2 Academic Virtual Networked Communities

Academic research on DIA applications pays closer attention to the on-screen rep-

resentation of participants, as avatars, and user collaborations. The early systems

were mainly designed for local use and only supported a small number of users. One

of the first such works is Reality Built for Two (RB2) which, as the name suggests,

4



CHAPTER 1. INTRODUCTION

supported up to two users [Blanchard et al. 1990].

As the applications scaled up, academic research focused on developing network soft-

ware architectures for large-scale (more than 1000 participants) virtual networked

environments. The NPSNET (Naval Postgraduate School Networked Virtual Envi-

ronment) series developed by the NPSNET Research Group is the longest contin-

uing academic research effort in networked virtual environments. The first version

NPSNET-1 was demonstrated in 1991, and the following NPSNET-2 and NPSNET-

3 improved graphic and database access. NPSNET-Stealth supports SIMNET data

and protocols. NPSNET-IV (as shown in Figure 1.3(a)) in 1993 compiled with DIS

protocols and incorporated dead reckoning algorithms. It also developed the first

3D virtual environment suitable for dispersed users over the Internet using IP pro-

tocols [Macedonia et al. 1994; Macedonia 1995; Macedonia et al. 1995]. The most

current incarnation NPSNET-V constructs a shared base-level component archi-

tecture to fulfill the infrastructure requirements of a large-scale, consistent online

virtual world [Capps et al. 2000], namely:

• Run-time extensibility. NPSNET-V defines a Dynamic Behavior Protocol

to allow run-time addition and interpretation of new application components.

Protocols that map network messages to behaviors in the virtual world are

also developed.

• Composability. NPSNET-V offers an infrastructure that supports composi-

tion of heterogeneous contents and applications during run-time by using the

Extensible Markup Language (XML) to form a structured data description.

• Scalability in complexity and number of participants. NPSNET-V uses

the Lightweight Dictionary Access Protocol (LDAP) to build a hierarchical

distributed database. The data is replicated across several servers to avoid

a single bottleneck. Inter-entity communications preferably use a multicast-

based network architecture to reduce traffic load.

Aside from the NPSNET series, many other research efforts have contributed in

5
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(a) (b) (c)

Figure 1.3 Examples of typical academic DIAs. (a) NPSNET-
IV [Macedonia et al. 1995]. (b) SPLINE. (c) MASSIVE [Greenhalgh
et al. 2000].

the development of general software architectures for Distributed Virtual Environ-

ments (DVEs). The PARADISE distributed simulation system developed by the

Distributed Systems Group at Stanford University employed an improved reckon-

ing algorithm called the “position history-based dead reckoning”. It also introduced

the “projection aggregations” technique that only transmits summary information

of a group of distant or uninterested remote entities, which do not merit the local

viewer’s experience at high detail [Singhal 1996; Singhal and Cheriton 1996]. The

SPLINE (Scalable Platform for Large Interactive Network Environments) system

shown in Figure 1.3(b) introduced the concept of breaking a virtual space into inde-

pendently processed regions (or locales), to which different multicast addresses are

assigned [Barrus et al. 1996; Waters and Anderson 1997]. The DIVE (Distributed

Interactive Virtual Environment) system provides a flexible application-dependent

partitioning mechanism by introducing an application-level backbone to connect

different locales (also termed as worlds) [Carlsson and Hagsand 1993; Frécon and

Stenius 1998; Frécon 2004]. The Chiba system adopts the idea of region-based com-

munication and uses SpaceFusion technique to achieve a dynamical partitioning of

the virtual world [Sugano et al. 1997]. Information from multiple regions is fused

and presented to the users. The MASSIVE (Model, Architecture and System for

Spatial Interaction in Virtual Environments) system (Figure 1.3(c)) incorporates

the concept of spatial trading, in which the virtual world is structured, or divided,

based on the user’s range of awareness or interest [Greenhalgh and Benford 1995a,b;

6
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Greenhalgh 1998; Greenhalgh et al. 2000].

An incomplete list of other notable developments in collaborative virtual environ-

ments includes MR Toolkit [Shaw et al. 1993], AVIARY [Snowdon and West 1994],

BrickNet [Singh et al. 1995], PaRADE [Roberts et al. 1995], RING [Funkhouser

1995], Workbenches [Krüger et al. 1995], CAVERN series [Leigh and Johnson 1996;

Roussos et al. 1997; Leigh et al. 1997; Park et al. 2000], Community Place (formally

known as CyberPassage) [Lea et al. 1997], NetEffect [Das et al. 1997], VLNET [Sun-

day Pandzic et al. 1997], Virtual Society [Lea et al. 1997], AGORA [Harada et al.

1998], Living Worlds [Wray and Hawkes 1998], Virtual Playground [Schwartz et al.

1998], WorldToolKit [Rahn 1998], CIAO [Sung et al. 1999], COVEN [Babski et al.

1999], DEVA3 [Pettifer et al. 2000], DVECOM [Choukair and Retailleau 2000a,b],

Urbi et Orbi [Verna et al. 2000], Virtual Park [Joslin et al. 2001], CyberWalk [Ng

et al. 2002; Chim et al. 2003], VELVET [de Oliveira and Georganas 2003], DI-

VIPRO [Marsh et al. 2004] and ATLAS [Lee et al. 2007], MACVE [Lin et al. 2007;

Zhang and Lin 2007]. DIP [Zimmermann et al. 2008] and PECOLE [Saddik et al.

2008].

1.1.3 Networked Multiplayer Games

Due to the widespread availability of the Internet and high-performance PCs and

game consoles (such as the XBox [Microsoft 2005a]), networked multiplayer com-

puter games have been the most rapidly developing area in DIAs during the last

decade. Currently, Massively Multiplayer Online Games (MMOGs) support thou-

sands of users simultaneously interacting with each other in the simulated virtual

worlds [GameSpy 2003].

Although it is the last decade that has seen the huge popularity of MMOGs, the

history of this game genre can be traced back to the earliest networked mainframe

in the 1970s. There is a general agreement that MMOGs grew out of MUDs (Multi-

User Dungeons), which was completed in 1978. In 1985, LucasFilm created a virtual

online world called Habitat that supported up to 64 users on a private network named

7
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(a) (b)

Figure 1.4 Scenes from typical Online Games. (a) Doom [Kush-
ner 2002]. (b) Second Life [Linden Laboratories 2003].

QuantumLink [Farmer et al. 1994]. The first persistent virtual world considered to

be “large-scale” was Meridian 59 in 1996 [GameSpy 2003]. It paved the way for the

later burst of MMOGs in lots of ways such as the gaming interface, price model,

text overhead, etc.

First Person Shooter (FPS) games such as Doom [id Soft 1993] and Quake [id Soft

1996] (as shown in Figure 1.4(a)) gained global popularity in 1990’s. They gave

players a first-person view of the virtual world. While Doom simply communicates

updates at constant rates without any remote prediction scheme, Quake takes the

advantage of unreliable transport for continuous communication and a variety of

data compression methods to reduce game traffic. Quake was also featured with full

3D graphic rendering [Kushner 2002].

In 1997, Origin Systems released Ultima-Online [Origin Systems 1997], a true pioneer

in the area of role-playing games, which introduced the concept of dividing the entire

virtual world into separate shards ran by different server-clusters. It then spawned

Lineage [NCsoft 1998] who had 4 million subscribers in 2002 [Castronova 2002].

The popularity of these games has reached the point where virtual social structures

involving a massive number of interacting players have emerged [Seay et al. 2004].

A more recent example of such “on-line society” is the persistent online virtual world

Second Life [Linden Laboratories 2003], which provides an ever-evolving 3D virtual

community built by the player themselves in real-time (Figure 1.4(b)). This virtual

8
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world has achieved a full virtual economy in which virtual treasure can be traded

for real world currency.

1.1.4 Networking Issues

To achieve real-time interaction among multiple simultaneous users from geograph-

ically distant locations, a significant amount of information must be transmitted

across the underlying communication network to maintain consistency between views

of the shared virtual environment simulated on different hosts in a DIA. Therefore

application layer protocol design in DIAs has to take into account various factors

such as available network bandwidth, latency, lower layer protocol performance, and

overall communication architectures.

1.1.4.1 Network Bandwidth and Latency

The two primary inhibiting factors to large-scale deployment of DIAs are finite

network bandwidth and non-zero network latency [Capps and Stotts 1997]. Network

bandwidth refers to the rate at which data can be transmitted along the inter-host

connection. It can also be referred to as throughput per time unit. Despite the lack

of a commonly accepted definition, latency, throughout this thesis, refers to the time

taken to communicate data between the application layers of the two participating

nodes [Delaney et al. 2006a].

Network latency can be decomposed as the sum of two types of delay from different

sources: processing delay and propagation delay. The processing delay refers to the

time taken to parse the packet and manage the transmission from source node to the

destination, through the intermediate route. This includes application processing

(such as compressing/decompressing and encrypting/decrypting) and operations on

the relaying network nodes (such as packet framing/deframing, buffering, queuing,

flow/congestion control). The propagation delay refers to the time required for

the whole packet to be transmitted from the source to the destination node. This

9
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includes the delay associated with the physical signal transmission speed and the

delay related to the data transmission rate defined by the network bandwidth of the

inter-node connection [Delaney et al. 2006a].

The limited network bandwidth restrains the frequency of the information exchanges

between the participants. If the data transmission rate exceeds the bandwidth of

the network link, the latency will increase due to queuing of the packets and loss

of data may eventually occur. The effect of high network latency harms the partic-

ipants’ sense of shared space, time and presence. It also affects user performance

and behavioral strategies [Vaghi et al. 1999; Park and Kenyon 1999; Gutwin 2001;

Armitage 2003; Henderson 2003; Meehan et al. 2003; Sheldon et al. 2003; Beigbeder

et al. 2004; Yasui et al. 2005; Claypool 2005; Claypool and Claypool 2006]. For dif-

ferent types of interaction, Table 1.1 summarizes user tolerances to network latency

before notable performance declines.

Due to the heterogeneous and packet-relaying nature of the Internet, packets may go

through different routing paths, router queuing lengths and buffer times, which re-

sults in a different latency for each transmitted packet. This unpredictable variation

in network latency is referred to as jitter [Blow 1998; Smed et al. 2002b]. Jitter may

cause more severe consistency problems than latency itself since it impedes users to

adapt their strategies to network latency. With a low average latency of 10 ms and

jitters up to 500 ms, a collaboration environment is almost as bad as one with a

200 ms latency but no jitter [Park and Kenyon 1999]. Also, jitter might twist the

causal-effect chain of the events, since the packet notifying an event may arrive after

the effect it triggered [Zhou et al. 2007].

1.1.4.2 Communication Architectures and Transmission Protocols

A DIA consists of a number of connected computers. Careful design of the commu-

nication architecture protocols to organize all the participating nodes and efficiently

disseminate information among them is crucial to the implementation of the shared

environment.
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Table 1.1 Latency tolerances for different interactions

Application Latency tolerance

Telephone conversation 100 ms [Cheshire 1996]

Web browsing Tens of seconds [Bhatti et al. 2000]

DIS Military simulations 100–300 ms [IEEE 1996]

Target tracking in Virtual Reality 225 ms [MacKenzie and Ware 1993]

Warcraft III 500–800 ms

[Claypool 2005; Sheldon et al. 2003]

Virtual RC car racing 200 ms [Pantel and Wolf 2002a]

Madden NFL football 500 ms [Nichols and Claypool 2004]

XBlast 139 ms [Schaefer et al. 2002]

Unreal Tournament 2003 60–100 ms

[Beigbeder et al. 2004; Quax et al. 2004]

Quake 150–180 ms [Armitage 2003]

Everquest 2 500 ms [Fritsch et al. 2005]

Generally speaking, there are two basic architectural network topologies: client-

server (C-S) and peer-to-peer (P2P). In the C-S architecture, all end-users (clients)

are connected to a central server node. The server is responsible for collecting all the

up-to-date entity states from the controlling clients, maintaining a definitive view of

the environment and distributing entity information to the related clients. Exam-

ples of systems employing the C-S architecture include RB2 [Blanchard et al. 1990],

RING [Funkhouser 1995], VLNET [Sunday Pandzic et al. 1997], NetEffect [Das et al.

1997], AGORA [Harada et al. 1998], DVECOM [Choukair and Retailleau 2000a,b],

BrickNet [Singh et al. 1995] and MASSIVE-2 [Greenhalgh 1998]. In the P2P archi-

tecture, the participating hosts play equal roles and directly exchange information

with each other. Examples of the P2P architecture include SIMNET [Calvin et al.
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1993], MASSIVE-1 [Greenhalgh and Benford 1995a], DIVE [Carlsson and Hagsand

1993], MR Toolkit [Shaw et al. 1993] and NPSNET [Macedonia et al. 1994].

It is relatively easier to maintain consistency in a C-S system since the server acts as

a central authority that controls the data distribution. However, the problem is that

the server may become a bottleneck when the quantity of clients and data in the

application scale up. The distributed structure of the P2P architecture improves

local responsiveness and reduces the system’s dependence on centralized control,

but global consistency is difficult to maintain since the replicated versions of the

world vary among users. These two basic topologies can be combined to build

hybrid architectures where the responsibilities of object database maintenance and

communication control are shared by clients and servers. In typical hybrid systems

like SPLINE [Waters and Anderson 1997] and PaRADE [Roberts et al. 1995], groups

of clients are assigned to different servers. Intra-group clients communicate in the

C-S mode, while inter-group communications are relayed between servers in a P2P

manner. The concept of the three architectures is shown in Figure 1.5.

Aside from network architectures, communication protocols guarantee that data

transfer is proceeded between the network nodes following well-defined procedures

so that each message has its exact meaning and provokes intended response. These

protocols can work at different layers of OSI (Open System Interconnection) or

TCP/IP reference model [Tanenbaum 1998]. Most DIA applications support IP

(Internet Protocol) protocol at the network layer, and vary in protocol choices at

the application layer and the transport layer.

The two most commonly employed transport layer protocols by DIAs are the Trans-

port Control Protocol (TCP) and the User Datagram Protocol (UDP) [Tanenbaum

1998; Roehl 1995]. TCP provides a connection-orientated stream communication

that guarantees all packets are received intact and in the correct order. However,

this best-effort nature of TCP comes with the cost of a packet header up to 64

bytes [Tanenbaum 1998], which translates into latency. UDP, on the other hand,

disregards these sophisticated control schemes, which means that packets may occa-

sionally get lost or arrive in an incorrect order. As a result, UDP packets are more
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Figure 1.5 Different network architectures.

lightweight and preferred in communicating time-sensitive data such as entity state

update information. Reliability if required is usually left to the application layer

when using UDP.

Except for the transport layer protocols that are designed for general-purpose com-

munications, there are also application layer protocols that are optimized specifically

for large-scale distributed interactions. The Real-Time Application Level Protocol

for Distributed Interactive Video (RTP/I) regards events, states, state changes and

state queries as the four basic data types for DIAs communication, and is thor-

oughly optimized to meet the demand of DIA functionalities [Mauve et al. 2001]. A

good overview of other application-specific protocols can be found in Delaney et al.

[2006b].

Each computer or host machine in a DIA runs the DIA software and maintains

a local instance of the virtual environment, which is presented to the human-user

who controls a virtual entity/object through this local host (or owner). Such an

13
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entity is the representative of the user in the virtual world. The state of the entity

provides a complete description of this entity at a moment of time. The local host

also observes the states of other entities controlled by remote hosts. In order to

maintain consistency and enable real-time interactions in the face of the networking

issues, a careful design (in terms of balancing performance and network resource

consumption) of entity state distribution schemes is required. Typically, effects of

the human interactions and operations are managed, based on the entity state replica

in this world instance, to maximize local responsiveness of the application. The true

state of the entity controlled by the local host machine is presented to the user with

high fidelity. The changes of the local entity state are transmitted periodically in

Entity State Updates (ESUs) for the remote host machines to maintain their own

version of this local entity state with lower fidelity.

ESU packets constitute the majority of the network traffic during a DIA simulation.

Therefore the regulation of ESU transmission is of prime importance in consistency

maintenance in DIA deployment. One important group of consistency maintenance

mechanisms, collectively known as Predictive Contract Mechanisms (PCMs) have

been proposed and are widely used to reduce the amount of data transmission re-

quired to maintain consistency in DIAs [Calvin et al. 1993; Mellon and West 1995;

Singhal and Zyda 1999; Frohnmayer and Gift 2000; Pantel and Wolf 2002b; Delaney

et al. 2006a; McCoy et al. 2007; Yu et al. 2007]. PCMs introduce a form of controlled

inconsistency by reducing the number of ESUs transmitted across the network in or-

der to minimize latency caused by an overloaded network. The reduction of update

transmission is governed by predetermined parameters on the local host, such as an

inconsistency threshold or a constant update packet rate. On the remote hosts, the

intermediate entity motion between two updated states is extrapolated using some

prediction algorithm that, at some level, reflects the user behavior pattern. In spite

of the inconsistency introduced by the reduced number of updates, the reduction

in network traffic would in theory result in a reduced load on the network link and

hence reduced latency, which, would in turn, ameliorate the overall inconsistency.

The most commonly deployed PCM is known as Dead Reckoning (DR), which makes

use of the current state derivatives and polynomial equations to extrapolate future
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entity states [Miller and Thorpe 1995; IEEE 1998; Pantel and Wolf 2002b]. Standard

DR algorithms are simple and readily applicable to most DIA scenarios, but ignore

the contextual dependence of the behavior of an entity that makes its future states

predictable. There has been significant research focused on improving prediction

accuracy by employing statistical modeling techniques to generate better prediction

models that capture and reflect more human behavioral patterns [Zukerman and

Albrecht 2001; Delaney and Ward 2004; McCoy et al. 2007]. These approaches at-

tempt to produce accurate entity motion models to reduce the data transmission

required to maintain a certain level of consistency. One problem with these alter-

native predictors is that they only produce better accuracy when the user motion

complies with the motion model implied by the predictor under use. Also, there

has been no method to measure the predictability of the user behavior and how the

predictability is used by these predictive techniques. There is clearly a need for a

method to quantify and analyze the utilization of such predictability by PCMs for

further optimization of PCM operation.

Adaptive user modeling approaches have been proposed to account for changes in

user behavior. These techniques consist of parallel entity state models predicted

by a pool of extrapolation algorithms. Only the state model estimated by the

best performing algorithm, which is dynamically selected according to certain local

accuracy criteria, is presented to the users [Lee et al. 2000; Delaney et al. 2003;

McCoy et al. 2005]. However, the impact of changing the extrapolation model under

use on the remote inconsistency is not clear, since the data transmission over the

underlying network is not considered.

Choosing suitable values for the error threshold or a constant update rate in order to

balance the trade-off between the number of update packets and consistency is also

an important performance issue [Lee et al. 2000; Yu and Choy 2001; Chen and Chen

2005; Roberts et al. 2008; Kenny et al. 2009]. Consider rate-based PCMs for example.

A low update rate reduces the network load and inconsistency caused by latency, but

at the same time introduces an extra level of inconsistency by reducing the amount

of state information transmitted. The remote host has to use the previously received

ESU for a long time interval before a new update arrives, which leads to inconsistency
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in the extrapolated remote entity model. On the other hand, a very high update

rate increases the amount of data transmitted between participants and has negative

impact on remote inconsistency due to the increased latency induced if the traffic

exceeds the network bandwidth. The increases and decreases of inconsistency from

the application layer and network layer perspectives can be jointly summarized as

the Consistency-Throughput Trade-off , which states that [Singhal and Zyda 1999]:

It is impossible to allow dynamic shared state to change frequently and

guarantee that all hosts simultaneously access identical versions of that

state.

Consequently, it is difficult to ascertain the overall effect of modifying the inconsis-

tency control schemes. The suitability of the PCM configurations in the application

must be examined with respect to network conditions in order to maximize utiliza-

tion of the underlying network resources [Marshall et al. 2008].

1.2 Objectives of this Thesis

The focus of this thesis is a theoretic investigation into the predictability of represen-

tative types of user behaviors within DIAs, and how this predictability is exploited

by the operation of PCMs in maintaining consistency with reduced data transmis-

sion. The development of an information-based mechanism to improve consistency

maintenance is also proposed.

In the first part of this thesis, a novel information model for PCMs will be proposed

to facilitate analysis of consistency maintenance mechanisms in DIAs. Attributes of

entity motions relating to the temporal dependence in their state-evolutions, and the

efficiency of PCMs in utilizing this dependence for building the remote entity state

model will be quantified and analyzed using concepts and measurements derived

from information theory. This analysis will show that the performance of a PCM in

consistency control depends on the amount of information about the user behavior
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it extrapolates. This thesis will demonstrate that the proposed information model

provides new perspective in understanding the Consistency-Throughput Trade-off

and the optimization of the entity state dissemination protocols. In particular, the

operation of PCMs can be interpreted as a form of information reduction and video

compression.

In the second part of this thesis, the design of a novel Information-Based Dynamic

Extrapolation Model for rate-based PCMs will be presented. The proposed infor-

mation model enables an evaluation of the performance of a PCM that combines

the application and network layer perspectives. This thesis will demonstrate that by

using the Information-Based Dynamic Extrapolation Model, the operation of PCMs

implemented within a DIA can be dynamically adapted to match the user behav-

ior and the network in which they operate, thus allowing both the application and

network level performance to be improved.

1.3 Original Contributions of this Thesis

A number of original contributions are presented throughout the work contained in

this thesis. The major contributions of this work are as follows:

1. A novel information model for Predictive Contract Mechanisms is developed.

The information model employs concepts and techniques derived from informa-

tion theory to quantify and analyze the efficiency of PCMs in communicating

reduced state information in return for controlled inconsistency. The proposed

information theoretic approach is a model-independent framework that can be

applied to any predictive schemes employed by a PCM.

2. Based on the information model, the operation of PCMs are modeled as an

information generation, reduction, transmission and reconstruction process.

The entity state distribution in a DIA is seen as an information flow. The

information perspective interprets consistency maintenance using PCMs as
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a lossy video compression and presents novel insights into the Consistency-

Throughput Trade-off that DIAs face.

3. A dynamic extrapolation framework, referred to as the Information-Based Dy-

namic Extrapolation Model, is developed to allow the operation of PCMs to

be aware of the application layer user behavior and network layer performance.

An analysis of the performance of the Information-Based Dynamic Extrapola-

tion Model demonstrates that the dynamic extrapolation framework can make

the most information-efficient use of the available network resources to deliver

the highest information about the local entity state to the remote entity state

model and thus optimize consistency in a DIA.

During the course of the development of each of these key contributions, a number

of other important contributions are also made:

1. Various entity state evolutions of representative user behaviors within DIAs are

analyzed from the viewpoint of information theory. Information measurements

present a general and quantified description of the statistical dependence in

entity motions, and highlight their predictability characteristics that enables

the use of PCMs to maintain consistency with reduced ESU transmission.

2. An analysis of a number of representative PCMs, including standard DR and a

recently proposed PCM (Neuro-reckoning [McCoy et al. 2007]), with respect to

their utilization of the information available for remote extrapolation, is con-

ducted through experimental studies. It is demonstrated that the performance

of an extrapolation model depends on its efficiency to exploit the information

encapsulated in the received ESUs. This analysis also implies further improve-

ments for the current techniques.

3. The trade-off between packet rate and packet size modification within the

Information-Based Dynamic Extrapolation Model is examined to achieve an

efficient usage of the available network resources.
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4. An analysis of inter-entity interaction within a First-Person Shooter (FPS)

style networked multiplayer computer game is conducted using the informa-

tion measurements. Windowed Cross-Mutual-Information presents a quanti-

fied and visual description of the time-evolution of the state-dependence among

interacting users. Such an analysis reveals the possibility of exploiting cross-

entity predictability to further reduce the data transmission required for main-

taining consistency in a DIA.

1.4 Outline of this Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 gives an extensive review of concepts and techniques relating to

consistency maintenance in DIAs. Predictive Contract Mechanisms are also ex-

plored in this chapter to provide a foundation for the work presented through-

out this thesis. A discussion of general video compression procedures points

out the analogy between video compression and consistency control in DIAs,

and reveals that the basic functionalities in managing state sharing in DIAs

can be treated as a form of video compression.

• Chapter 3 reinterprets Predictive Contract Mechanisms from an information

theory perspective. Following a brief review of the concepts and techniques in

information theory, the information model is formalized based on an informa-

tion analysis performed on each of the components of PCMs. Inconsistency

arising from the execution of PCMs is modeled as information loss.

• Chapter 4 presents and discusses the results from applying the information

model to different type of user motions. The predictability of the user behav-

iors are quantified, and then the operation of PCMs to utilize this predictabil-

ity is evaluated through comparative studies. Improvements to the current

extrapolation schemes are also suggested.
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• Chapter 5 proposes the Information-Based Dynamic Extrapolation Model.

The results from the simulation employing this dynamic extrapolation model

to maximize bandwidth utilization efficiency are also discussed.

• Chapter 6 offers final concluding remarks and potential future directions that

arise from the work presented throughout this thesis.
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Chapter 2

Background and Related Works

2.1 Introduction

In this chapter, the existing literature relating to the work presented throughout

this thesis is explored. The chapter is divided into two main parts.

The first part of the chapter deals with the issues surrounding consistency and consis-

tency maintenance in DIAs. Following definitions of common terms and terminology

used in the area, Distributed Interactive Applications are categorized based on the

nature of the different types of interactions involved. The key elements that define

consistency, the main objective of DIAs, and consistency measures are then explored.

A specific class of consistency maintenance techniques known as Predictive Contract

Mechanisms, such as the well-known Dead Reckoning and various extensions to it,

are extensively reviewed in terms of network traffic reduction in order to overcome

network limitations to provide a consistency view of the virtual environment. This

provides a necessary foundation for the work presented in this thesis.

The second part of the chapter deals with the area of video compression. The op-

erations of general video compression are first introduced, with particular focus on

the relationship between the contextual dependence in the raw video and the com-

pression. Finally, the link between video compression and consistency maintenance
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in DIAs is pointed out, providing the motivation for the work presented throughout

this thesis.

2.2 Distributed Interactive Applications (DIAs)

2.2.1 Terminology

A Distributed Interactive Application is a networked software system that seeks to

maintain global consistency when responding to multiple simultaneous non-determi-

nistic inputs [Delaney et al. 2006a]. DIAs have been referred to by many different

terms as summarized in Table 2.1. These terms reflect various research emphases

of this application class, such as education, gaming, group editing, collaborative

performing, and etc. In this thesis, we adopt the term Distributed Interactive Ap-

plication [Diot and Gautier 1999; Lee et al. 2000] because it is a generic term that

embraces the two essential elements of these networked applications, namely dis-

tributed (participants of the system are located so far away from each other that

message transmission among them involves non-negligible delay compared to the

time between events in a single process [Lamport 1978]) and interactive (the systems

is at least partially driven by inputs from human users through a human-computer-

interface and feeds back with appropriate response [Delaney et al. 2006a]):

A Distributed Interactive Application is a networked software system that

seeks to maintain global consistency when responding to multiple simul-

taneous non-deterministic inputs.

For the convenience of discussion in the following sections and chapters, common

terms deriving from the development of DIAs and repeatedly used in this thesis will

now be defined.

• Entity/Object: a virtual component in a DIA that can in some way change

22



CHAPTER 2. BACKGROUND AND RELATED WORKS

Table 2.1 Various terms that overlaps with DIAs.

Computer-Supported Cooperative Work [CSCW 1986]

Groupware System [Ellis and Gibbs 1989]

Distributed Virtual Environment (DVE) [Stytz 1996; Lui 2001],

[Frécon and Stenius 1998],

[Lee et al. 2007]

Shared Virtual Environment (SVE) [Waters and Barrus 1997]

Distributed Interactive Simulation (DIS) [IEEE 1998]

Collaborative Virtual Environment (CVE) [Benford et al. 1994; Chris 1999],

[Greenhalgh and Benford 1995a],

[Babski et al. 1999],

[Park and Kenyon 1999],

[Vaghi et al. 1999]

Networked Virtual Environment (NetVE) [Singhal and Zyda 1999]

Distributed Interactive Media (DIM) [Mauve et al. 2001]

Networked Interactive Entertainment (NIE) [Diot and Gautier 1999],

[Qin 2002]

its state [Stytz 1996; Roehle 1997]. An entity can be active or passive [Sing-

hal and Zyda 1999]. A passive entity either remains entirely static as a part

of the scene designed or, such as an autonomous Bot controlled by software

alone [Roehle 1997], moves deterministically. The behavior of an active en-

tity controlled by a human user is non-deterministic, thought it may be at

some level predictable due to environmental constraints or the behavior of the

participant controlling.
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• Avatar: a dynamic entity controlled either by a participant or automati-

cally by the system [Diot and Gautier 1999]; an entity controlled by a human

user [Roehle 1997] and conveys the identity, presence, location, and activities

to others [Capin et al. 1997; Benford et al. 2001]; the visual embodiment of a

user and the means of interaction with the others through expressing his/her

presence and actions [Yura et al. 1999; Yu and Choy 2001].

• Agent: an autonomous entity controlled by software alone [Roehle 1997]; a

software process that has autonomous behavior. It does not necessarily have

to be represented by a graphics entity [Capin et al. 1997].

• Virtual Environment/World: the set of information needed to render a

participant’s view of an application’s time-constant state [Mauve et al. 2001];

the simulated software system in which entities interact and communicate with

one another, and the integrated set of algorithms, attributes, elements, and

structures that comprise the system [Singhal and Zyda 1999].

• State: a complete description of an entity at a single moment in time [Churchill

et al. 2001]. The dynamic state or dynamic state vector is the collection of

information that describes an (active) entity in full [Roehle 1997]. The cur-

rent location, velocity, orientation, and any other attributes of an entity that

change over time are part of its state. The information relating to state changes

should be shared among the participants. This information is also referred to

as dynamic shared state [Singhal and Zyda 1999]. Static state of an (passive)

entity, on the other hand, remains fixed over time.

• Participant: a real person who participates in the networked virtual envi-

ronment and is represented by an avatar [Capin et al. 1997].

• Event/Action: the state of an entity in a DIA may change for two reasons:

event or passage of time. An event is what causes a state change that is

not a fully deterministic function of passage of time [Mauve et al. 2001]. An

event may be external or internal [Mauve 2000b]. External events are user

interactions or user-initiated operations, such as the user changes the direction

of the entity movement. Internal events are non-deterministic state changes
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within the application itself, e.g. the generation of a random number. Also,

an event can either be deterministic or non-deterministic according to the

predictability of its occurrence [Roberts and Sharkey 1997; Sharkey et al. 1998].

• Host: a computer system within a DIA that controls and inserts entities into

the DIA and observes the actions of other entities, whether machine or human

controlled [Stytz 1996]. To a specific entity, the local host is the host that

controls that object, and the remote hosts are all the other hosts that observe

and interact with it.

• Node: A general term denoting either a switching element in a network or a

host computer attached to a network [IEEE 1996]. A node can be a source ma-

chine, router, destination machine, or any other device that processes data [De-

laney et al. 2006a].

Other terms will be defined as they are encountered.

2.2.2 Classification of DIAs

A DIA consists of interactive entities controlled by distributed participants con-

nected by a network. The features of DIAs suggest two categorizations of DIAs: A

first categorization is by how the participants are distributed in terms of network

topology, which is described in section 1.1.4.2; and a second categorization is focused

on the different types of interactions that a DIA tries to provide to the users.

An interaction between entities in the context of DIAs is a communication that

causes a change of their states [Natrajan and Reynolds 1999]. Hence, interactions,

and the corresponding DIAs, can be classified based on two characteristics of the

mechanisms that an entity in the environment can change its state. The first charac-

teristic is the way that entity state changes are driven: discrete or continuous [Mauve

2000b; Mauve et al. 2001; Zhou et al. 2001]. In discrete applications, the entities

change their states only as a result of events initiated either by the human users

or the application itself. The entity states between the events remain static. The
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shared document in a collaborative editing system is an example of a discrete entity.

In continuous applications, entities change their states in response to the passage of

time, in addition to non-deterministic events. State changes of a continuous entity

between the events are governed by state evolution laws relating to the specific en-

tity dynamics implemented by the application. An aviation simulation system is an

example of such continuous applications. The pilot of an airplane may change the

speed and orientation from time to time, generating user initiated actions. The air-

plane changes its position between the actions according to the simulated physics.

It is worth noting that discrete state changes are a necessary element of a con-

tinuous DIA, because a system composed of pure “time-driven” entities, which do

not accept events and evolve deterministically by the passage of time, is considered

non-interactive.

The second characteristic in this classification is the means by which the participants

take actions to an object in the environment: turn-based or concurrent. In turn-

based applications such as board games, users make their moves in turn so that

only one of them can interact with the object at one time instance. In concurrent

applications, users may take simultaneous actions to the same object at the same

time. The effect of such actions is resolved by concurrency control algorithms [Ellis

and Gibbs 1989; Sung et al. 1999]. Most of the DIAs discussed in Chapter 1 are

concurrent systems. Based on these two characteristics, DIAs can be generally

classified into four categories [Zhou et al. 2001]. Figure 2.1 illustrates this general

taxonomy in two dimensions.

• Continuous Concurrent Applications: the entity states evolve as a joint

result of discrete events and the passage of time. Participants my take their

action concurrently. Most DIAs such as SIMNET, DIS, MMOGs are examples

of such applications.

• Continuous Turn-Based Applications: such applications consist of con-

tinuous entities, but participants can only take their actions in turn. Examples

include tennis games where the ball and players moves continuously, but the

players must take turn in generating events to the object, i.e. hitting the ball,
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Turn-based Concurrent

Discrete

Continuous Continuous Turn-based 

e.g. tennis games

Discrete Turn-based 

e.g. chess games

Continuous Concurrent 

e.g. SIMNET, MMOGs

Discrete Concurrent 

e.g. collaborate editing

Figure 2.1 General taxonomy of DIAs based on the types of in-
teractions involved in the applications.

as implied by the rule of the game.

• Discrete Concurrent Applications: participants may take actions concur-

rently, but the entities only accept events as the reason to change entity states.

Examples include collaborative editing systems.

• Discrete Turn-Based Applications: in such applications, entities in the

environment only change their states in response to discrete events initiated

by the application or human users, who make their moves in turn. An example

is online chess games.

It is important to make a classification to DIAs before discussion on consistency

maintenance because the meaning and requirement of consistency may vary for

different interaction contexts. For discrete applications, the entity state changes

are solely driven by non-deterministic events and are independent of the passage

of time. Therefore the correct order of the events, rather than the exact times of

their occurrences, is sufficient to guarantee a correct entity state evolution. For

continuous systems, on the other hand, the exact times when the non-deterministic

events take place become necessary since entity states also evolve with the passage

of time.
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Another classification based on the management of time divides DIAs into two

classes [Lamport 1978; Delaney et al. 2006a; McCoy 2007; Marshall 2008]:

• Logical/Causal/Virtual Clock Applications: in such applications, a clo-

ck is just a way of assigning a number to an event. Time is regarded as a

sequence of ordered events, which stands still if no event happens. Logical

clocks are sufficient for discrete DIAs.

• Physical/Absolute/Wall Clock Applications: in such applications, time

is based on a periodic clock which is in most of the cases consistent with the

real world clock. In the Internet, Physical clock is synchronized to coordinated

universal time (UTC) by a network of servers using Network Time Protocol

(NTP [Mills 1991]). Continuous DIAs is generally run by physical clocks.

Throughout this thesis, DIAs to be explored are assumed to consist of distributed

participants organized using either the peer-to-peer or client/server architectures.

Each participant, through a host machine, controls an interactive entity with real-

time, continuous, and concurrent state variables. Such DIAs try to embrace the

following features that are necessary in synchronizing entity states to mimic real-

world interactions [Bouillot and Gressier-Soudan 2004]:

• Causality: the well-known “happening before” relation [Lamport 1978]. Pre-

serving the temporal relation of the events guarantees the correct causal-effect

relationship, which is vital to the users’ understanding to the environment.

• Concurrency: multiple users can take actions on the same object at the same

time.

• Simultaneity: if two, or more, actions performed by different participants

are perceived by one user as simultaneous, then any participant will perceive

the actions as simultaneous.

• Instantaneity: the time between the taking place of an action and the play-

out of its effect from a user’s perspective is negligible. This requires that the

system’s response time must be short.
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Now, the issue of maintaining consistency in a distributed continuous DIA will be

explored in the next section.

2.3 Consistency

Conceptually, a DIA consists of a group of distributed users who have access to

a distributed database that contains dynamic shared entity states [McCoy 2007].

Changes made to the shared states by the human users interacting within the en-

vironment must be appropriately reflected within the distributed database to build

the sense of shared time, space and presence. Therefore, maintaining consistency in

a DIA not only provides a consistent view of the virtual world to the users, but also

directly affects the level of interactivity offered by the application. However, under

a realistic network environment, some of the four features needed to imitate the

real world interactions are contradictory. For example, achieving both simultaneity

and instantaneity is impossible in the face of non-zero network latency, because in-

stantaneity requires that an action is operated on the local host immediately, while

the remote hosts could only receive the update of this event after some time re-

lating to the latency, which makes simultaneity impossible. This is also known as

the Consistency-Responsiveness Trade-off [Bhola et al. 1998; Bouillot and Gressier-

Soudan 2004].

The requirements to maintain consistency are specified and analyzed using con-

sistency models. Consistency models put constraints on the temporal and spatial

relations of entity state versions for different users. Consistency models can be dis-

tinguished by the types of clock and event-playout schemes utilized [Bouillot and

Gressier-Soudan 2004]:

• Wall-clock based models use synchronized wall clock time to define consis-

tency criteria.

• Logical-clock based models use logical time stamps to define consistency

criteria.
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• Ultimate based models order data before playing the action out to the users.

“Ultimate” means the operation of an action can be delayed for “a non-determi-

nistic amount of time”. Ultimate consistencies provide very bad responsiveness

and may break the temporal order of the events, and are thus particularly

inappropriate for continuous applications. Simultaneity is not supported by

ultimate consistency. Logical-clock based ultimate consistency preserves the

order of the events playout and are used in some discrete applications such

as chatting and whiteboard systems with additional concurrency resolution

schemes [Strom et al. 1997; Chen and Sun 1999; Galli and Luo 2000; Li et al.

2000; Sun and Chen 2000].

• Deadline based models express a wall-clock relationship between the initia-

tion and playout of an action. This notion requires that an action is operated

on all the sites no later than a specific delay after its generation (reading on

time), or at an exact time after its generation (reading at the specific time).

Among all consistency models, Perceptive Consistency has the strictest con-

sistency criterion, because it requires that any action is played simultaneously

(in terms of an exact instance in wall clock time) to everyone interacting.

In this way, it provides simultaneity, concurrency management and causality.

The drawback of this model is that the local operations of the events must

be delayed to be synchronized with the remote operations [Gautier and Diot

1998; Mauve 2000a; El Saddik et al. 2003]. The responsiveness is thus con-

strained by the local delay. Perceptive Consistency is the closest to the “What

You See Is What I See” model [Stefik et al. 1987] and is formally defined as

absolute consistency in Qin [2002]. Late Consistency [Qin 2002] is a relaxation

of perceptive consistency in that the local actions are executed immediately.

The remote operations of the actions are still delayed and synchronized as

in perceptive consistency. Late Consistency trades simultaneity for a good

responsiveness. It is worth noting that in perceptive and late consistencies,

the operation of an action is delayed to be executed at the same time on all

the remote hosts, which means that this delay must be no less than the worst

transmission latency. This implicates that a remote host who receives the
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Figure 2.2 General taxonomy of consistency models [Bouillot
and Gressier-Soudan 2004]. Perceptive Consistency imposes the
strictest consistency constraints.

action early has to wait until the last remote host receives this action. The

time delay of the action operation can be determined as a constant response

time [Gautier and Diot 1998; Mauve 2000a], or based on the network Round

Trip Time (RTT) [Akyildiz and Yen 1996; El Saddik et al. 2003].

Figure 2.2 illustrates a number of consistency models in terms of the two dimensions

discussed above. Notice that consistency models based on wall-clock and deadline

criteria generally impose stronger constraints. Throughout this thesis, the following

definition of consistency proposed by Delaney [2004] is used:

Consistency is the maintenance of a uniform dynamic shared state across

all participants in a DIA.

The limitations of the network negatively impact on consistency maintenance in a

DIA and cause inconsistency that manifest itself in a number of ways [Sun et al.

1998; Vaghi et al. 1999; Zhou et al. 2001]:

• Divergence/Presentation Consistency: the different users’ views of the
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virtual world may vary because events may be executed at different times or

in different orders.

• Causality Violation/Interaction Consistency: due to the non-determi-

nistic latency in update transmission, events may be operated out of their

cause-effect order. For example, in a shooting game involving three users on

different hosts, player A opens fire and then player B is killed as a result. Due

to an unreliable connection, the event of B’s death might arrive earlier than

its cause, namely A firing, on an observing host C. The cause-effect order of

this event pair is broken.

• Expectation/Intention Violation: occurs when the actual effect of an

event by the initiating user is different from the intended effect.

The focus of this thesis is the divergence dimension of inconsistency, namely the

difference between the views of the entity states on the local and remote host ma-

chines. In the next section, common metrics quantifying inconsistency in DIAs are

reviewed.

2.3.1 Consistency Metrics

Defining a measure for the degree of consistency in a DIA is an important issue

for the detection and resolution of the arising inconsistency as the system operates.

Most consistency measurements in the literature generally focus on the spatial or

temporal divergence between the local and remote versions of the same entity state

variable.

The most popular spatial metric of consistency is the Euclidean distance between

the positions of the local and remote versions of an entity in the environment, which

is also referred to as drift distance [Gautier and Diot 1998]. The shared state in

the DIA is considered inconsistent when the spatial inconsistency is large compared

to a pre-determined threshold, which is usually related to the size of the avatar.

The Exported Error [Aggarwal et al. 2004] examines the state difference of an entity
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between different hosts at the time a state update arrives at the remote host. This

difference is due to the remote host using the previous updated information to model

the entity state during the time when the latest update is still in transmission.

Temporal consistency metric, or Phase difference [Lui 2001], considers the difference

in times of the operations of the same event on the different sites, and is closely

related to network latency.

While spatial consistency metrics only consider the instantaneous divergence of the

shared state and temporal consistency focuses on the duration of an inconsistency

but not the effect of applying events at diverged time instances, a time-space con-

sistency metric has been proposed by Zhou et al. [2001, 2004] based on the premise

that both the magnitude of an inconsistency and its duration affect the human per-

ception of the inconsistency. This metric combines the time and space metrics into

a single inconsistency metric as shown in (2.1):

Ω =











0 , if |∆(t)| < ε,
∫ t0+τ
t0

|∆(t)| dt , if |∆(t)| ≥ ε,
(2.1)

where
∆(t) is the instantaneous spatial difference of the entity state on different hosts,

t0 is the time when the difference starts,

τ is the duration that the difference lasts,

ε is the minimum distance that a human user can discern.

In this definition, the time-space inconsistency Ω represents the area under the

graphical evolution of the spatial inconsistency over a specific period of time for

a particular entity. If the spatial inconsistency ∆(t) is negligible compared to the

human perception limit throughout the time period of interest, we have Ω = 0, and

the Absolute Consistency is achieved [Zhou et al. 2001] since different users have the

same view of the entity all the time. An equivalent metric is proposed by Li et al.

[2004].

Inconsistency is defined as an information cost that combines spatial deviation,

uncertainty and communication overhead [Wolfson et al. 1998]. Uncertainty by
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concept means the area where an entity can possibly reside at a specific moment,

but is however not formally defined in the literature.

2.3.2 Consistency Maintenance Mechanisms

For continuous DIAs, the dynamic nature of the entity states makes it impossible

to achieve absolute consistency, because the local entity states change during the

latency caused by transmitting any update to the remote host. Still, a number

of techniques have been developed to help maintain sufficient consistency in DIAs

under constrained network conditions. Based on their handling of the Consistency-

Responsiveness Trade-off, these techniques fall into one of two categories [Jefferson

1990; Bhola et al. 1998; Vaghi et al. 1999; Fujimoto 2001; Cronin et al. 2004]:

• Optimistic/Aggressive: An optimistic mechanism promotes the user’s per-

ception of local interaction by performing speculative computation of the en-

tity state before being confirmed by update packets or synchronized with other

hosts in the application. The speculated state saves local response time if sub-

sequently determined correct. The inconsistency arising from incorrect spec-

ulations must be rolled back by some repair scheme such as Time Warp [Jef-

ferson 1985].

• Pessimistic/Conservative: A pessimistic mechanism does not indulge any

speculative computation. The system only updates the entity state when it is

synchronized with all other nodes. Such precaution avoids violation of causal-

ity and ensures consistency at the expense of interactivity.

Optimistic mechanisms prefer responsiveness over consistency, and vice versa for

pessimistic mechanisms. Therefore, optimistic mechanisms are generally more fa-

vorable to real-time interactive applications from the perspective of a participant.

Various consistency maintenance mechanisms can also be classified into three class-

es [Delaney et al. 2006a]:
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• Information Management Techniques reduce the amount of data that has

to be transmitted over the network to compensate for the effect of network lim-

itations in an DIA. Examples of information management techniques include

Predictive Contract Mechanisms [Mellon and West 1995; Delaney et al. 2006a],

relevance filtering [Van Hook et al. 1994; Bassiouni et al. 1997] or interest man-

agement [Morse et al. 2000; Boulanger et al. 2006], packet bundling [Liang et al.

1999], and data compression [Gutwin et al. 2006].

• Time Management Techniques manipulate the passage of time in the ap-

plications to mask the effect of network latency. Examples of such techniques

include bucket synchronization or local-lag [Gautier et al. 1999; Mauve et al.

2004], local perception filtering [Sharkey et al. 1998], predictive time manage-

ment [Roberts and Sharkey 1997], and lockstep synchronization [Blow 1998].

• System Architecture Techniques seek to improve the efficiency of pro-

cessing and disseminating data throughout a DIA. Examples include commu-

nication protocols and network architectures, and sufficient Quality-of-Service

(QoS) [Greenhalgh et al. 1999; Choukair and Retailleau 2000a,b].

The three categorizations discussed here are not mutually exclusive within their

respective angles. Hybrid approaches can be designed to suit the particular demand.

In addition, extensive reviews of aspects of networking and consistency in DIAs can

be found in published works [Stytz 1996; Macedonia and Zyda 1997; Roehle 1997;

Benford et al. 2001; Smed et al. 2002a,b; Joslin et al. 2003, 2004; Delaney et al.

2006a,b].

The focus of this thesis is information management techniques, which try to optimize

consistency by tuning the amount of data transmission across the network for a

reduction in latency. This would in turn improve overall consistency. The operation

of one important group of information management techniques, namely Predictive

Contract Mechanisms, is now discussed in the next section.
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Host A
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Host C

Remote ghosts

Local entities (players)

ESU exchanges over the network

Figure 2.3 The Players and Ghosts paradigm in Predictive Con-
tract Mechanisms.

2.4 Predictive Contract Mechanisms (PCMs)

In order to enable real-time interaction, Predictive Contract Mechanisms typically

distribute the dynamic shared entity states in a Players and Ghosts paradigm [Blau

et al. 1992]. During a simulation, the entity controlled by the human user through

the local host machine is called a Player and maintains accurate and instantaneous

state information in response to the user’s inputs. An associated Ghost entity is

maintained by each remote host as an approximation to the true entity state of

the player for remote entity modeling and interaction. The local host transmits

Entity State Updates about changes to the true entity state of the player at given

instances in simulation time so that the remote hosts can maintain sufficient level

of consistency of the shared state. The concept is explained in Figure 2.3.

By employing the ghost representation, PCMs maximize responsiveness because the

effect of the local user action is rendered immediately, providing the sense of real-

time interaction. Therefore, consistency of the shared state must be to some extent

compromised because of the Consistency-Responsiveness Trade-off. PCMs employ
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a form of controlled inconsistency by reducing the number of ESUs in order to

minimize inconsistency caused by latency for transmitting data across an overloaded

network.

PCMs can be classified into two classes, namely rate-based and threshold-based

PCMs, relating to the regulation of ESU transmission. In a rate-based PCM, syn-

chronization messages are transmitted by the local host at a lower rate than the

entity states are simulated. On the remote host, extrapolation methods are used

to make entity state speculation from previous ESUs when the newest update is

not available. ESUs are transmitted constantly in rate-based PCMs, even if the

predicted entity state model is sufficiently close to the associated local state. In

threshold-based PCMs, on the other hand, the local host employs the same ex-

trapolation method as the remote host to model the entity states, and ESUs are

only generated when necessary, that is when the divergence of the local state model

from the true entity state violates a limit specified by a pre-determined threshold

metric. The most widely-used threshold based PCMs is known as Dead Reckoning

(DR) [Lin and Schab 1994; Miller and Thorpe 1995; IEEE 1998; Pantel and Wolf

2002b]. Due to its popularity, except in Chapter 5, threshold-based PCMs are as-

sumed when PCMs are referred to in the discussions throughout this thesis unless

otherwise stated. Issues to be discussed in the following sections and chapters can

be easily modified to be applied to rate-based PCMs.

2.4.1 Dead Reckoning (DR)

Dead reckoning, as the name suggests, originated from the ancient navigation tech-

nique that estimates one’s location based on a starting point and velocity. It was

introduced as a motion prediction mechanism in SIMNET [Calvin et al. 1993; Miller

and Thorpe 1995] and formally defined as a data transmission reduction technique

in IEEE DIS standards [IEEE 1998]. DR operates on the premise that there is no

need to transmit an update as long as the true and extrapolated entity states are

sufficiently close and the difference between them falls in a tolerable limit.
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Figure 2.4 The framework of DR as a representative of general
PCMs.

The framework of DR is shown in Figure 2.4. In dead reckoning, a local controlling

host runs two parallel models for the entity under its control — a high-fidelity

motion that represents the true entity state and a low-fidelity local model estimated

from contextual dynamics by some extrapolation method. The low-fidelity model

represents the remotely approximated entity state and is constantly compared to the

true entity motion. An ESU (typically containing the current derivative information

of the true motion such as position and velocity) is generated by the local host and

transmitted to the remote host when the difference between the high-fidelity and

low-fidelity models violates a given threshold. The same extrapolation method is

also applied at every remote host to produce a remote model of the entity state from

the most recently received packet. Using the same extrapolation model and ESUs

as the remote host, the local model is produced for the local host to monitor the

inconsistency arising from the reduced number of synchronization messages. It is

however worth noting that due to network latency, the remote model keeps diverging

during the period of ESU transmission while the local model has been corrected.

Therefore, the difference between the true entity state and the remote model (namely

remote inconsistency) will be different from local inconsistency between the high-

fidelity motion and the local model.

The operation of PCMs is commonly divided into two main components: prediction

and convergence [Singhal and Zyda 1999], which will be further discussed in detail

in Section 2.4.2 and 2.4.3, respectively.
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• Prediction: The prediction/extrapolation algorithms estimate future entity

states from state derivatives included in the latest available ESUs. Prediction

algorithms define how future entity state can be obtained from the current in-

formation so that redundant data transmission is saved. The current majority

of DR mechanisms use polynomial extrapolation equations to predict entity

state from state derivatives [Lin and Schab 1994; Cai et al. 1999; Lee et al.

2000].

• Convergence: Convergence algorithms define how the diverged remote model

is corrected when the remote host receives a new message, so that the rendered

motion looks perceptually plausible. Generally, instead of abrupt correction

or “snap”, error is gradually corrected over several steps along a modeled path.

Currently, polynomial equations are the most commonly used convergence

algorithms [Lin and Schab 1994; Singhal and Zyda 1999; McCoy et al. 2007].

It should be noted that the convergence is the post-operation taken for the sole

purpose of better perceptual experience for the human-users [Singhal and Zyda

1999]. It does not affect update packet generation or bandwidth consumption.

In addition to ESUs relating to local threshold violation, most systems send out an

update if there is no ESU sent within a timeout period to maintain consistency in

the face of update packet lost and to detect removal or disconnection of an entity

from the environment. Any entity that has not sent an update for a number of

timeout periods is considered deleted [Srinivasan 1996]. Such updates are also called

heartbeat or keep alive packets. These updates are relatively rare compared to the

regular ESUs and are not related to the shared dynamic state, thus they are not

considered in the following sections and chapters of this thesis.

2.4.2 Extrapolation Equations

The polynomial equations used in standard DR can be generally described in the

form of a truncated Taylor expansion of a time-dependent, real-value continuous

function f(t) [Lin and Schab 1994]. In the following discussion, time series x(k) =
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Table 2.2 The first three orders of DR extrapolation equations.

Extrapolation order Extrapolation equation Truncation error

Zeroth-order xτ = x0 O(τδ)

First-order xτ = x0 + ẋ0 · τδ O((τδ)2)

Second-order xτ = x0 + ẋ0 · τδ + 0.5ẍ · (τδ)2 O((τδ)3)

where: xτ is the dead reckoned value of x at time t = t0 + τδ,

x0 is the current value of x at time t0,

ẋ0 is the first-order time derivative of f(t) at time t0,

ẍ0 is the second-order time derivative of f(t) at time t0.

f(tk), tk = kδ, k = 1, 2, . . . is a general representation of any state variable suitable

for extrapolation (such as positional coordinates) in a DIA, with a constant simu-

lation time-step δ. This assumption is considered reasonable for most DIAs where

the shared dynamic states simulate the real-world object movement. Given state

derivative information of f at step t0, the nth-order extrapolated state at a predic-

tion span of τ steps from t0 in the future is predicted as in (2.2) by expanding f

around the point t0 + τδ:

f(t0 + τδ) =
n
∑

i=0

f (i)(t0)

i!
(τδ)i, (2.2)

where f (i)(0) is the ith derivative of f(t) at time t0. The truncation error is estimated

as O((τδ)n+1), which means the prediction error is no more than a constant multi-

plied by (τδ)n+1. The first three orders of dead reckoning extrapolation equations

are elaborated on in Table 2.2.

The zeroth-order equation represents the situation where no extrapolation is used

and the remote model just remains at the last updated value until the next update

comes. The first-order equation represents the case of a linear extrapolation as the

extrapolated model falls in a linear path starting from the last updated value with

the constant initial velocity. Similarly, the second-order extrapolation assumes a
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constant acceleration and is also referred to as quadratic extrapolation.

Dead reckoning relies on different orders of entity state derivatives to extrapolate

future states. In DIA practice, some applications can read the current derivative

information. For example, the second-order derivative can be accessed by Newton’s

law in those applications that translate the user input to the force applied to the en-

tity. There are also alternative polynomial equations that estimate state derivative

information using a short history of updates (Position History-Based Dead Reck-

oning [Singhal 1996]), i.e. the updated values [x0, x−1, x−2, . . .], [ẋ0, ẋ−1, ẋ−2, . . .],

and etc. in the ESUs arrived at time [u0, u−1, u−2, . . .], in the order from the most

recent (current) update to the older ones. The update intervals are denoted as

[∆u−1 = u0 − u−1,∆u−2 = u−1 − u−2, . . .].

The most popular estimation of the first-order derivative of x at the point t0 requires

two successive values of x, namely x0 in the most recent (current) arrived update and

x−1 in the last update arrived at time u−1. The estimation is the average velocity

over the update interval ∆u−1 as shown in (2.3) [Lin and Schab 1995; Singhal 1996;

Hanawa et al. 2005; Hanawa and Yonekura 2005, 2006]:

ẋ ≈
x0 − x−1

∆u−1
. (2.3)

Like in the first-order case, the second-order derivative information can also be es-

timated in a series of approximations using parabolic interpolation [Lin and Schab

1995; Singhal 1996] or a Lagrange polynomial [Pantel and Wolf 2002b; Hanawa et al.

2005; Hanawa and Yonekura 2005, 2006]. Alternative second-order extrapolations

requires up to three most recently arrived updates. Some approximation equations

of the first and second-order derivatives of x at time t0 for the second-order extrap-

olation (Table 2.2) are given as follows:

ẍ0 ≈
ẋ0 − ẋ−1

∆u−1
; (2.4)

ẍ0 ≈ 2

(

x−1 − x0

∆u2
−1

+
ẋ0

∆u−1

)

; (2.5)
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ẍ0 ≈ x0
2

∆u−1(∆u−1 + ∆u−2)
− x−1

2

∆u−1u−2
(2.6a)

+x−2
2

∆u−2(∆u−1 + ∆u−2)
,

ẋ0 ≈ x0

(

1

∆u−1
+

1

(∆u−1 + ∆u−2)

)

− x−1

(

1

∆u−1
+

1

∆u−2

)

(2.6b)

+x−2
∆u−1

∆u−2(∆u−1 + ∆u−2)
.

Mathematically, adding higher-order derivatives to the extrapolation equation im-

proves prediction accuracy for a very close future. However, higher-order derivatives

introduce higher sensitivity to rapid changes of the entity motion and may result in

highly jerky approximations. In addition, due to the discrete nature of DIA simula-

tion, estimation error related to numerical approximation of high-order derivatives

makes them unreliable. The computation complexity of the approximation algo-

rithms imposes higher implementation overhead. For those applications which have

direct access to accurate instantaneous derivatives, extra network load is needed to

transmit the additional derivative information to the remote host, leading to nega-

tive impact on consistency. Consequently, high-order predictors are seldom used, and

first and second-order DR are the most commonly deployed PCMs in DIAs [Singhal

and Zyda 1999]. For the same reasons, the second-order extrapolation does not al-

ways outperform the first-order extrapolation in DIA practice [Lin and Schab 1995;

Hanawa and Yonekura 2005; McCoy 2007].

2.4.3 Convergence Equations

At the moment an ESU arrives at the remote host, the most straightforward cor-

rection of the modeled entity state is to put the received new state into display

immediately at the time of receipt. By doing this, the inconsistency arising from

the inaccurate remote extrapolation is instantly corrected. However, the sudden

jump in the displayed entity may negatively impact the user perception provided by

the DIA. Hence, the preferred method is to gradually correct the entity state along

a modeled path over a period of time [Lin and Lin 1994]. Such mechanisms are

called smoothing techniques. The instant correction, also the simplest convergence
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method, is called the zeroth-order convergence or snap equation [Singhal and Zyda

1999].

Generally, Starting from a starting position xs (usually the modeled state before

the arrival of the update), the converging state moves along a path specified by the

particular convergence equation and ends with a desired final position of smoothing

xf over a period of c simulation steps. Then the remote model continues with

extrapolation, as discussed in the last section.

The first-order convergence defines a simple linear smoothing path that directs the

converging state to a future extrapolated position along a straight line. The equation

is given by (2.7) [Lin and Lin 1994]:

xi = xs + (xf − xs)
i

c
, i = 1, . . . , c, (2.7)

where xi is the ith converging position. The linear convergence is also employed in

the IEEE DIS standards [IEEE 1998].

Lin and Lin [1994] defines a cubic-spline convergence equation that corrects the

remote modeled state along a smooth curve to a future extrapolated point. The

cubic-spline convergence is relatively complicated compared to the linear smoothing

equation, but the trajectory preserves continuity in velocity, which is more percep-

tually desirable. The cubic-spline convergence equation is given by (2.8):

xi = [cδ (ẋs + ẋf ) + 2 (xs − xf )]
i3

c3

+ [−cδ (2ẋs + ẋf ) + 3 (xf − xs)]
i2

c2
(2.8)

+iδẋs + xs, i = 1, . . . , c,

where ẋs and ẋf are the DR velocities in the previous and the newly arrived ESUs,

respectively.

Figure 2.5 illustrates the operation of DR with the first-order extrapolation and

linear convergence as an example of typical PCMs. When the local model error

reaches the threshold h, a new update is generated and the local model is corrected

to the true entity state immediately. Hence the local threshold puts an upper bound
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Figure 2.5 Visual illustration of DR as a typical PCM. In this
example, the first-order extrapolation and linear convergence is em-
ployed.

on local model deviation. But the remote model keeps diverging from the real

dynamic motion because transmitting an ESU from the local host to the remote

host endures the inevitable network latency. The now out-of-date ESU received

earlier is still in use on the remote site over the period of the network latency of

L simulation steps. Therefore the remote model suffers from additional latency-

induced error beyond the local error threshold. Consider the time of simulation step

k = 0 when the local host generates a new update. By the time the ESU arrives

at the remote host, the accumulation of the remote inconsistency Re is described

as [Zhang et al. 2009]:

Re = h +
L−1
∑

k=0

∆v(k)δ = h + Lδ∆v, (2.9)

where ∆v(k) is the difference in velocity between the real dynamic and the remote

extrapolation (i.e. the previously received reckoning velocity) at the simulation tick

k, and ∆v is the average difference in velocity over the time of the message trans-

mission. From a spatial perspective, Equation (2.9) identifies the three aspects that

determines the remote inconsistency: the local threshold, network latency, and the

inaccurate velocity. Among these factors, the local threshold is deterministic, the

network latency is uncontrollable, and the difference in velocity depends on how the

prediction model fits the entity dynamic. Therefore, the extrapolation algorithm is

the core of the whole mechanism.
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2.4.4 Extensions to Dead Reckoning

Under limited network conditions, PCMs such as dead reckoning rely on extrap-

olation techniques to maintain consistency with a reduced number of transmitted

ESUs. There has been much previous work focusing on improving the standard

DR technique in two general directions: managing the value of local threshold that

controls ESU generation; and exploring advanced extrapolation techniques that give

better accuracy in predicting future entity state.

The first category of techniques attempt to reduce the number of ESUs by adapting

the local threshold based on user behavior. Cai et al. [1999], Lee et al. [2000], and

Shim and Kim [2001] differentiate the local threshold values based on the distance

between the objects. As the distance between two entities increases, the possibility

of the two interacting becomes less and there is no need to send as many update

messages between the hosts that control the entities. A fuzzy dead reckoning algo-

rithm that takes all properties of entity (e.g. position, size and view angle etc.) into

consideration when adjusting the level of threshold is proposed by Chen and Chen

[2005]. This algorithm employs fuzzy correlation degree to measure the relationship

between entities and determine the level of threshold under use. Behavior complex-

ity of entity based on the frequency of rotation behavior is used to determine local

threshold level in Yu and Choy [2001]. The motivation for this technique is that for

the same threshold value, complex behavior tends to generate more update messages

than smooth behavior, therefore the local threshold must be increased during erratic

behavior periods to reduce network load of the DIA. The “Pre-reckoning” algorithm

identifies the sudden changes in the user behavior, such as a rapid change of direc-

tion, when breaches of the threshold are likely to take place [Duncan and Gracanin

2003]. In such situations, update packets are transmitted before the threshold viola-

tion. Roberts et al. [2005], Marshall et al. [2006], and Roberts et al. [2008] examine

the suitability of employing different consistency metrics as the local threshold. The

traditional spatial threshold is suitable for user behaviors with a high curvature

(meaning that the entity diverges from previous direction rapidly), while the time-

space threshold works well in low curvature cases where the orientation of the entity
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motion changes slowly. A hybrid threshold scheme that evaluates both metrics si-

multaneously as the simulation runs was also proposed. Under this scheme, an ESU

is generated as soon as either of the metrics reaches the threshold. Kenny et al. [2006]

uses linguistic user feedback to determine an appropriate threshold value based on

psycho-perceptual measures of the user perception of the environment. The results

tentatively suggest that a larger threshold for a fast paced application could elicit

a similarly acceptable user experience as a smaller threshold for a slow paced sce-

nario. As stated by the Consistency Throughput Trade-off, these techniques reduce

network traffic at the cost of a less accurate remote model of the true entity state,

or vice versa.

Adjusting local threshold value indirectly controls the frequency of ESU generation

(and also the data transmission rate) of the DIA. A direct transmission rate control

scheme for rate-based PCMs based on the distance between the objects has been

proposed [Shim and Kim 2001], where update packets are sent at a higher rate for

closer entities. Marshall et al. [2006] examine the issue of optimizing the update

packet rate under constrained network bandwidth. As shown in Figure 2.6, if the

network is heavily loaded, a reduced data rate could reduce inconsistency caused by

the latency for transmitting the update packets through the network that connects

the hosts. However, if the network is not heavily loaded, the insufficient update

information is the main contributing factor of inconsistency. Reducing the amount

of data transmission now contributes little in reducing latency and simply results in

worse inconsistency due to the lack of updates sent to the remote host [Marshall et al.

2006]. The Consistency Optimization (CO) algorithm adjusts the update packet rate

for a rate-based PCM so that the data rate matches the available network bandwidth

estimated from latency trends [Marshall et al. 2008].

The second category of extension techniques attempt to explore better extrapolation

models to improve dead reckoning based on the premise that an accurate entity state

model can reduce the number of updates needed to be transmitted to the remote

host, and can also improve consistency between the arrivals of the ESUs. Generally,

these techniques employ Predictive Statistical User Modeling to build a user behavior

model from collected data and then infer user actions, behaviors, goals, intentions,
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N e t w o r k t r a f f i cA v a i l a b l e b a n d w i d t h
O p t i m a l r e g i o n

L i g h t l y l o a d e d H e a v i l yl o a d e dI nconsi st ency

Figure 2.6 Inconsistency in different network conditions. The
optimal region for data transmission rate is near the available net-
work bandwidth.

and/or preferences in both real and virtual environments [Zukerman and Albrecht

2001]. The two main approaches adopted to build predictive statistical models are

content-based and collaborative. Content-based models assume repeatability of the

user behavior under similar circumstances and use the past behavior (the collected

data) of an individual user as a reliable indicator of its future actions. Collaborative

approaches estimate user behavior model from the historical behavior of a group of

similar users based on the assumption that a user behaves similarly to other users

sharing common attributes such as the same goal or preferences. The collaborative

approaches are suitable for modeling a user identified as a member of a known group

encounters a new scenario, where information about the user for a reliable individual

model is not available. The primary forms of predictive statistical models are: linear

models, neural networks, Kalman Filter, Artificial Potential Field, Term Frequency

Inverse Document Frequency (TFIDF) models, Markov models, Bayesian networks,

classification and rule-induction methods [Zukerman and Albrecht 2001; Delaney

and Ward 2004; McCoy et al. 2006, 2007; Shi et al. 2009]. The Neuro-reckoning

technique [McCoy et al. 2006, 2007] that uses Artificial Neural-Networks to build

user behavior models to further reduce entity state updates in DIAs will be further

reviewed in Section 2.4.5.

Prediction models can also be dynamically adapted to improve the performance of
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extrapolation under different circumstances. In Position History-Based Dead Reck-

oning, a period of rapid changes in the moving direction of the entity invokes the

first-order predictor, while the second-order equation is used when the entity is mov-

ing towards stable orientations [Singhal 1996]. Lee et al. [2000] adaptively select the

extrapolation formula according to the current type of motion identified as one of the

three classes: smooth (circular), bounce, and jolt. Delaney et al. [2003] reveals that

within DIAs such as racing games, the participants interact with the environment

with fixed goals and follow specific trajectories to achieve their goals. These trajecto-

ries are identified, stored at each host, and then used for extrapolation if the entity

is reckoned to be following one of them. The employment of the pre-determined

trajectories significantly reduce the number of ESU transmissions and prediction

quality. This Hybrid Strategy Model (HSM) mechanism switches to standard DR

for short-term deviation if the entity diverges from the long-term trajectory. The

Dynamic Hybrid Strategy Model (DHSM) extends HSM by recalculating extrapo-

lation models at run-time as users pursue their dynamic goals [McCoy et al. 2005,

2006].

2.4.5 Neural-Reckoning (NR)

Neuro-reckoning extends the first-order predictor in standard DR in two respects [Mc-

Coy et al. 2007]. Firstly, instead of just referring to the current velocity of the entity

when generating an update packet, it produces a “long-term” velocity that compen-

sates for expected changes of entity velocity over multiple steps ahead in the future.

Secondly, NR employs Artificial Neural-Networks to learn behavioral patterns in

the entity motion from contextual dynamics to estimate the future velocity changes.

The basic philosophy is illustrated in Figure 2.7. At the time of an error threshold

violation, the local host employing standard first-order DR would transmit the in-

stantaneous position and velocity information for the remote host to extrapolate the

remote entity state model using the first-order equation. Under the NR mechanism,

however, the local host first employs a bank of neural-network predictors to estimate

a probable position of the entity on a relatively long time scale. It then replaces
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Figure 2.7 Visual illustration of Neuro-reckoning.

the current velocity in first-order DR (DR velocity) with an “NR velocity” that ex-

trapolates from the current entity state through the estimated future position. By

distributing the NR velocity as a predictive derivative that implicitly embraces ex-

pected changes in the entity motion, NR directs the local and remote model towards

more likely, and thus more stable, directions. The ultimate goal is to further reduce

the number of ESUs exchanged among the host machines due to the violation of the

local error threshold. Consequently, the modeled motion is less dynamic or detailed

since NR overlooks transient changes in the entity motion and only manifests an

averaged overall effect of the object movement.

The NR prediction module uses a bank of neural-network predictors to estimate the

entity state over a prediction horizon of q+1 simulation steps (Figure 2.7) from d+1

most recent entity state vectors (e.g. multidimensional position xk, velocity vk, and

orientation θk). The neural network predictors are implemented using a collection

of static Multi-Layer Perceptrons (MLPs), which have been shown to have good

mapping capabilities for modeling entity behaviors in a number of related applica-

tion domains, including autonomous robot motion [Behnke et al. 2004], Distributed

Interactive Simulation [Henninger et al. 2000, 2001], MMOGs [Thurau et al. 2003,

2004], Networked Virtual Environments [Garrett et al. 2002; Aguilar et al. 2003; Sas

et al. 2003], and Adaptive Hyper-media applications [Frías-Martínez et al. 2005]. As
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Figure 2.8 Diagram illustration of a neural-network predictor. A
total of q such neural-networks (one for each prediction span τ) are
required to predict successive changes in the entity’s velocity [Mc-
Coy et al. 2007]

shown in Figure 2.8, each MLP contains a single input-layer with m neurons, a sin-

gle hidden-layer with n neurons, and a single output-layer with d neurons, arranged

in a fully connected m-n-p feed-forward architecture. Each MLP is trained using

the standard Levenberg-Marquardt Back-Propagation (LM-BP) algorithm based on

the mean squared error (MSE). Equation (2.10) – (2.13) shows the calculation of

the NR velocity. In NR, each neural-network predictor is responsible for approxi-

mating a functional mapping gτ (·) that relates the input entity state vectors s̃k to

the future change in velocity ∆ṽk+τ within the maximum prediction span q. Based

on the predicted changes in velocity, a series of estimated intermediate entity state

vectors are iteratively calculated for increasing values of τ . The difference vector

between the final predicted future state x̂k+q+1 and the current entity state xk is

then normalized and scaled by the current speed |xk| to give the NR velocity vector

as shown in (2.13). When an update is triggered by the event of error threshold vio-

lation, instead of the current velocity, the NR velocity is calculated and transmitted

over the network to the remote host as a part of the standard update packet.
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Input entity state vectors: s̃k = [xk,vk, . . . ,vk−d,θk, . . . ,θk−d] , (2.10)

Neural-network predictors: ∆v̂k+τ = gτ (s̃k), τ = 1, . . . , q, (2.11)

State vector extrapolation:



























x̂k+1 = xk + vkδ,

v̂k+τ = vk + ∆v̂k+τ , τ = 1, . . . , q,

x̂k+τ+1 = x̂k+τ + ∆v̂k+τδ, τ = 1, . . . , q,

(2.12)

NR velocity: v̂k =
xk+q+1 − xk

|xk+q+1 − xk|
· |vk| . (2.13)

As complicated as it might seem, neuro-reckoning only involves replacing the velocity

prediction procedure on the local controlling host, which means it is a self-contained

component that can be easily integrated into standard DR: from the perspective

of the remote host, the operations of receiving and extrapolating synchronization

messages remain exactly the same as standard first-order DR.

On a final remark, a neural network, like other statistical learning techniques, re-

quires large amount of prior information from training datasets to extract patterns

in user behavior, and is thus application-dependent (meaning that the neural net-

work predictors must be re-trained for different application scenarios). However, the

idea of employing predictive velocities to comply with long-term movement trends

applies well in general DIAs.

2.5 DIAs as a Media Class

From the perspective of communication, Distributed Interactive Applications store

and deliver information to communicate between humans, as well as between hu-

mans and machines, in a way that enables real-time interactions among dispersed
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participants. Therefore DIAs can be viewed as a form of media, or more specifically

multimedia because the communications in DIAs often incorporate multiple forms

of information content and processing including plain and formatted text, graphics,

images, sound, animations, video, and interactive virtual reality objects [Kinsner

2002].

DIAs and general forms of media have the common fundamental functionality of

sharing dynamic states in different time and space. The term state means the en-

tity state in DIAs as discussed in this chapter, and refers to the specific form of

representation of the content in a particular media, such as sound wave signals in

audio media and successive frames in a video. DIAs and media both reproduce the

time-evolution of the original dynamic state (the true entity state in DIAs or the

raw media) as precise and exact as possible. The key characteristic that differen-

tiates DIAs from the traditional media is that DIAs attempt to provide real-time

interaction to the users and, thus, impose strong constrains on the timeliness of the

shared state. The user’s perception of the virtual world and their performance in

various interactive tasks are more subject to time differences in displaying the same

entity state for different users. Traditional media, on the other hand, only require

relative temporal relationship between the states. They can be stored or buffered

before play out and are less sensitive to delay.

Indeed, the link between DIAs and media has not gone unnoticed within the lit-

erature. Comerford [1996] noted the emergence of Interactive Media that use the

Internet as the new communication channel to carry traditional media communica-

tion such as phone, radio and television. Such interactive media include Internet

chatting, radio and video conferencing, etc. Mauve et al. [2001] defined a media

class called Distributed Interactive Media or DIM (Table 2.1) which allows a set of

spatially separated users to interact synchronously with the medium itself. The

DIM model consists of Shared State and State Changes caused by passage of time or

by events. An interactive medium is often partitioned into several sub-components,

which break down the complete state of the medium into more manageable parts and

allow the participants of a session to track only the states of those sub-components

in which they are actually interested. A substantial part of an interactive medium
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usually remains constant over the course of a session and is called the environment.

By its definition, DIM covers most application domains of DIAs. However, aside

from two equivalent terms, the existing work does not explore the link between

DIAs and media much further.

Besides similar functionalities, DIAs and media also share a common challenging

issue. The amount of data used to share the dynamic state must be reduced or

compressed to fit into the available communications channels, namely the underlying

network with limited bandwidth. In DIAs, PCMs make use of user behavior models

to predict expected future entity state and reduce the amount of data transmissions

for maintaining consistency. By employing the local error threshold, inconsistency

within human perception tolerance is discarded. Following a similar philosophy,

video compression models the raw media through statistical or dictionary models

and transforms it to eliminate redundant and irrelevant information to reduce the

size of compressed video. In the next two sections, general procedures of video

compression techniques (the focus is video or motion picture compression for the

ease of illustration and comparison) is briefly reviewed and compared to the PCM

operation, showing that PCMs can been seen as a form of video compression that

reduces the amount of data required to represent the dynamic virtual world at the

cost of a controlled level of inconsistency.

2.5.1 Video Compression

Video compression can be generally separated into lossless and lossy approaches.

Lossless compressions reduce the size of the video data without any information loss

so that the video can be reconstructed exactly the same as the original. Lossless

compressions remove redundant information in the raw video. For example, in a

video clip of a moving car, the constant background (trees and the lane) is redun-

dant and unnecessary to be restored in all frames of the clip. The background can be

“borrowed” from a previous frame and combined with the new position of the car to

recover the exact current frame. Lossy compressions remove irrelevant information

in the raw video for a further reduced data size, meaning that the reconstructed
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Figure 2.9 Redundancy reduction and irrelevancy removal [Kin-
sner 2002].

video would be inaccurate to some negligible extent. In the moving car video ex-

ample, the movement of the car is the critical content of the video and has to be

accurately delivered, while the subtle movements of the leaves on the trees are rela-

tively irrelevant and thus can be ignored without causing much noticeable difference.

Figure 2.9 illustrates the two compression approaches. General video compression

techniques employ both lossless and lossy approaches to achieve a high compression

ratio.

In video compression, the aim of the compression is to reduce the amount of data (in

digital bits) needed to store a video, or the bit-rate used to play the video for a unit

time. The raw video consists of a series of frames representing the static images of

the video at particular time instances. Each frame contains pixels of data which are

arranged in a spatial order to form the whole image. A coder compresses the raw

video by storing the original frames in an encoded form that removes redundant and

irrelevant information. The redundant information is re-inserted to the frames by a

decoder to reconstruct the video. But the irrelevant information loss is irreversible.

A coder and decoder pair are referred to as a “codec”. In video signals, bit-rate

reduction generally comes from spatial and temporal redundancy and psychovisual

irrelevancy [Tudor 1995]. Spatial and temporal redundancy is based on the fact that

pixel values are dependent and correlated with their neighbors both within the same
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frame (spatial) and across frames (temporal). To some extent, the value of a pixel

is predictable from the values of neighboring pixels. Psychovisual irrelevancy comes

from the limited response of the human eye to fine spatial detail. Controlled im-

pairments introduced to detail near object edges or around “shot-changes” (changes

in the scene content of a video) are unlikely to be visible to a human observer.

In this section we take MPEG (Moving Pictures Expert Group) codec as a repre-

sentative example of video compression. MPEG has developed several versions of

video compression standards since 1988 (MPEG-1, MPEG-2, MPEG-4, etc.), which

share similar codec architecture since MPEG-2. Two key techniques employed in an

MPEG codec are intra-frame Discrete Cosine Transform (DCT) coding and Inter-

frame motion compensation prediction [Tudor 1995; Koenen 2002].

A two-dimensional DCT transforms the pixel matrix representing an image into

DCT coefficients that indicates the contributions of particular orthogonal spatial

frequencies and thus removes spatial redundancy, in a similar way as a Fourier

Transformation removes redundancy in a temporal signal. In an MPEG codec, DCT

is performed on small 8 × 8 or 16 × 16 pixel blocks of the image to produce blocks

of DCT coefficients. For typical blocks from natural scenes, pixel values change

smoothly among neighboring area. So the DCT coefficients would consist of many

zeroes or near-zeroes for higher frequencies. A Variable-Length Coding (VLC) is

used to further reduce the code length. Both DCT and VLC are lossless.

Motion compensation exploits temporal redundancy by attempting to predict the

frame to be coded from a previous “reference” frame, because within a tiny time

step, it is very likely that only parts of the whole scene get moved and each moving

part changes its position as a whole object, instead of individual pixels. So all the

pixels in that part share the same motion vector. Again, in the moving car example,

if a complete frame is transmitted to the decoder as a reference frame, then all the

information needed for the next frame is a motion vector indicating the distance

and direction that car moves over the time interval between the two frames. The

simplest and basic method of detecting such a motion is a “block-matching” search in

which blocks in the frame to be coded and the reference frame are compared and the
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Figure 2.10 Basic block diagram of MPEG video codec [Tudor
1995; Koenen 2002].

“best” offset is selected on the basis of the minimum error. Motion Compensation is

also lossless.

Figure 2.10 shows the codec structure (without further details) of an MPEG system.

The coder subtracts the motion-compensated frame from the original to form a

“difference” image, which is transformed with DCT. The coefficients are quantized

to discard spatial irrelevancy. These quantized values are coded using VLC and

transmitted to the decoder combined with motion vectors. In the decoder, the

quantized DCT coefficients are decoded and inverse transformed to produce the

difference image. This is added to the motion-compensated prediction generated

from previously decoded frames to produce the reconstructed output frame. The

information loss in this process comes mainly from the quantization.

The motion compensation procedure makes some of the encoded frames dependent

on the reference frame and impossible to be decoded independently. In addition,
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the motion vector of the block to be coded can also be “backward” detected from

a future frame. In MPEG-2, three types of frames are defined. Intra frames (I-

frames) are coded without reference to other frames. Only moderate compression is

achieved by reducing spatial redundancy, but not temporal redundancy. I-frames are

used periodically as access points where decoding can begin. Predictive frames (P-

frames) can use the previous I or P-frame for motion compensation and may be used

as a reference for frames afterwards. P-frames offer better compression compared

to I-frames by reducing both spatial and temporal redundancy. Bidirectionally-

predictive frames (B-frames) can use the previous and next I or P-pictures for motion

compensation, and offer the highest degree of compression. The backward motion

compensation requires the coder to reorder the natural display order of the frames so

that the B-frames are transmitted after the frames they reference, which introduces

an extra reordering delay. Such delay is acceptable for traditional video.

2.5.2 PCMs as a Video Compression

Compare Figure 2.4 and Figure 2.10, and it is obvious that PCMs in DIAs and

video compression follow the same basic framework and working philosophy. All

highlighted components in Figure 2.10 have their counterparts in PCMs:

• The original frames and true entity state represent the content that

is intended to be shared for the users. In video compression, each original

frame can be seen as a set of variables of the pixel values that represent the

instantaneous state of the video content at a specific time instance, just like

the time-variant state variable in DIAs.

• Motion compensation and extrapolation model represent the method

intended to remove temporal redundancy between states/frames at different

times so that the real content can be transmitted with lower network traffic.

The temporal dependence is embodied by the motion compensated vectors in

video compression or state derivatives in PCMs. Predictive statistical model-

ing techniques can be used to facilitate extracting such dependence [Koenen
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2002]. In theory, motion compensation and extrapolation are both lossless and

the removed redundancy can be re-inserted to accurately rebuild the original

state/frame.

• Quantization and local threshold represent the lossy compression opera-

tion that removes irrelevant information for a further reduced bit-rate. The

difference between the predicted state/frame and the true state is rounded up

so that negligible details are discarded. Such removal is irreversible and causes

information loss.

Note that DCT and VLC, aiming to reduce the spatial redundancy within a frame,

are typically unnecessary for the relatively simple state variables in DIAs. It is

then apparent that PCMs can be seen as a form of video compression, which, un-

like traditional compression, imposes stronger constraints on timeliness to provide

interactivity. That is also why backward prediction is not used in PCMs.

From the perspective of video compression, the Consistency Throughput Trade-off

that PCMs try to deal with can be seen as the trade-off between the reconstructed

quality and bit-rate, or Rate-Distortion Trade-off [Cover and Thomas 2006]. This

is also the core philosophy in the work presented throughout this thesis. To further

investigate the trade-off, a quantified metric of the redundancy and irrelevancy iden-

tified and removed by the extrapolation and local threshold is needed. This metric

must be generic and does not imply any particular form of extrapolation scheme.

However, no consistency metric discussed in this chapter has given such measure-

ment of the redundancy (as such that future states can be extrapolated from the

current state) and perceptual irrelevancy (as such that inconsistency below the local

threshold is assumed insignificant to human perception and is ignored).
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2.6 Concluding Remarks

In the first part of this chapter, concepts and issues relating to DIAs and consistency

are reviewed as they apply towards the work presented throughout this thesis. Com-

mon terms and a taxonomy of DIAs are defined. PCMs are extensively discussed

in the context of consistency maintenance within a distributed, real-time system.

Dead reckoning and its extensions as outlined in detail within this part.

In the second part of this chapter, general video compression approaches are briefly

reviewed in the context of MPEG video compression. The link between PCMs and

video compression is demonstrated by pointing out that they work in the same basic

framework and philosophy and share similar components. PCMs can then be seen

as a form of video compression. Although entity state variables in DIAs are simpler

than the frame data in video, the real-time interaction provided by DIAs imposes

very strict constraints on time and delay. The Consistency Throughput Trade-off

in DIAs can be seen as the trade-off between the reconstructed quality and bit-

rate. This analogy provides the motivation for and underlines the work presented

throughout this thesis, and forms the basis for the proposal of a novel model of

PCMs in the later chapters of this thesis.

In the next chapter, concepts and techniques in information theory is briefly intro-

duced and reviewed, based on which an information model of PCMs is proposed.

This information model uses statistical predictability to measure the temporal re-

dundancy captured by the extrapolation models. The irrelevancy discarded by the

local threshold is measured by information loss. Such an information metric is gen-

eral and applies to any form of predictive extrapolation.
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An Information Model For

Predictive Contract Mechanisms

3.1 Introduction

In the previous chapter, consistency maintenance issues are reviewed surrounding the

two fundamental trade-offs in Distributed Interactive Applications, namely the Con-

sistency Throughput Trade-off and Consistency Responsiveness Trade-off. To deal

with these trade-offs, Predictive Contract Mechanisms, including the well-known

dead reckoning defined in the IEEE DIS Standards [IEEE 1998], attempt to maxi-

mize local responsiveness and reduce network throughput by allowing for a controlled

inconsistency. Network traffic is reduced through non-periodic Entity State Update

transmission. The remote consistency is, to some extent, maintained by using ex-

trapolation formulas to remotely estimate the entity dynamics in the short-terms.

Inconsistency arising from the combination of a reduced number of ESUs and an

inaccurate prediction is (indirectly) controlled by the local error threshold.

The re-interpretation of PCMs as a form of video compression demonstrates that

it is the temporal dependence in the evolution of entity behavior that enables the

employment of predictive extrapolation methods to speculate entity dynamics over
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short time scales. Prediction accuracy depends on how much temporal dependence

is utilized by the specific extrapolation model under use. Standard DR mechanisms,

for example, sacrifice remote predictive accuracy for low computational complex-

ity, low network traffic overhead and ease-of-implementation by employing simple

polynomial prediction equations that ignore further useful dependence in contextual

dynamics aside from instantaneous state derivatives [Singhal and Zyda 1999]. On

the other hand, the extensions to standard DR develop advanced prediction mod-

els that take (application-dependent) patterns in user behaviors into consideration

and improve prediction accuracy at higher costs, which could come from higher

computational complexity, higher network traffic loads, or loss of generality.

Following the philosophy of works reviewed in the last chapter, one can always in-

troduce some new predictive scheme that has not been used in extrapolating entity

state and investigate the effectiveness of this scheme in reducing ESU transmission.

It is then natural to ask the question of how to design an optimal extrapolation

method that uses as much contextual information as possible and provides the high-

est prediction accuracy so as to reduce the amount of synchronization messages to

the minimum. Unfortunately, such a question cannot be answered using current

approaches, not only because there may not be a universal optimal extrapolation

mechanism that is effective for all kinds of user behavior, but also because there has

not been any existing measure of what contextual information is there to be uti-

lized for extrapolation in the first place. In other words, there is a lack of a general

metric of the amount of the temporal dependence in entity dynamics. In a continu-

ous motion the future state is related to the current state and such redundancy (or

predictability) enables extrapolating future state given the current entity state.

In this chapter, we propose an information model that measures the temporal de-

pendence as predictability of the entity state to be extrapolated from the contextual

dynamics. The predictability is measured as a reduction in uncertainty about the

entity state to be predicted and is related to the data size (number of bits) required

for transmission. The information model takes a novel perspective towards PCMs

and provides a quantified analysis to the Consistency Throughput Trade-off.
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In the first part of this chapter, concepts such as Entropy and Mutual Information

and the techniques used to estimate them from practical data are reviewed, providing

a necessary foundation for the subsequent proposal of the information model.

In the second part of this chapter, the information model for PCMs is formalized.

The operation of PCMs is modeled as information generation, compression, trans-

mission and reconstruction. Inconsistency arising from the local threshold, latency

and inaccurate extrapolation is measured as information loss. In this way, the in-

formation model interprets PCMs as a lossy video compression.

In this respect, the emphasis throughout this chapter is placed on defining and

specifying the information model of PCMs, rather than deriving or proposing specific

predictive behavioral models.

3.2 Information Theory Basis

3.2.1 Entropy and Mutual Information

In this section we introduce the basic definitions required for subsequent develop-

ment of the ideas described later in this thesis. All the definitions and methods

discussed here are given in discrete terms, as state variables of all entities in a

virtual environment are finite and discrete.

In information theory, the predictability of one variable provided by another is mea-

sured by the reduction of uncertainty by knowing the latter, instead of the absolute

difference between the values of the two. We first introduce the concept of entropy,

which is a measure of the uncertainty of a random variable. Consider a random

variable X with m possible states {x1, x2, . . . , xm}, each with probability p(xi). To

measure the uncertainty of the variable state, or how unpredictable its state is, the

entropy H(X) of the variable is defined as [Cover and Thomas 2006]:

H(X) = −
m
∑

i=1

p(xi) · log p(xi). (3.1)
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If the base of the logarithm is 2, the entropy is expressed in bits. If the log is to the

natural logarithm base e, the entropy is measured in nats. Throughout this thesis,

all entropies will be measured in bits. An equivalent definition interprets the entropy

of X as the expected value of the random variable log 1
p(x) as shown in (3.2) [Cover

and Thomas 2006]:

H(X) = E

[

1

log p(x)

]

, (3.2)

where E [·] denotes expectation.

Entropy measures the degree of complexity and unpredictability of the variable. For

a completely deterministic variable X, there is some state x∗ such that p(x∗) = 1,

which means that X is completely predictable since it is fixed at x∗ with absolute

certainty. The entropy is H(X) = 0. On the other hand, for a completely random

variable Y (such as a fair dice roll) with a uniform probability p(yi) = 1
m

for all the

possible states, its entropy is the maximum (H(Y ) = log m) and there is no way

to predict its value since every state is equally possible. In general, a variable with

more possible states or the probability is more evenly distributed has larger entropy

and is more complex and less predictable.

The entropy of a variable is also a measure of the amount of information (or data)

required on average to describe the variable. Imagine determining the result of a

fair dice roll, which can be described as p(xi) = 1
6 , xi = 1, 2, . . . , 6, by the minimum

number of binary questions. An efficient first question “is it no larger than 3?” splits

the probability in half. Then the question “is it 1?” following a positive answer to

the first question may give the final result with 1
6 chance. Otherwise the result can

be determined by the answer to the third question “is it 2?”. Similar questions can

be asked if the answer to the first question is “no”. Therefore we can have the result

with no more than three questions. It is shown that the minimum average number

of binary questions required to determine a random variable X lies between H(X)

and H(X) + 1 [Cover and Thomas 2006]. In the case of dice roll, it is somewhere

between log 6 and 3.

If the answers to a series of binary questions are appropriately encoded, the con-

cept of entropy can answer the question “what is the average length of the shortest
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description of the variable?” or “what is the shortest code length for a lossless com-

pression of the variable?” [Cover and Thomas 2006]. This is especially important in

network communications. Imagine transmitting a deterministic variable to a remote

receiver at a fixed frequency. The only necessary transmission is a packet with the

static state x∗, which is negligible over time. However, it takes a data unit of average

size of H(Y ) = log m bits each time to inform the receiver of the state of the totally

random variable, if the data unit is properly encoded in binary [Cover and Thomas

2006]. Generally, more complex variables with higher entropy require larger amount

of information or data to fully describe them.

The definition of the entropy of a single random variable can be extended to a

pair of inter-dependent variables X and Y with possible states {x1, x2, . . . , xm} and

{y1, y2, . . . , yn} respectively. Considering (X,Y ) as a single vector-valued random

variable, the joint entropy H (X,Y ) is defined as

H(X,Y ) = −
m
∑

i=1

n
∑

j=1

p(xi, yj) · log p(xi, yj), (3.3)

where p(xi, yj) denotes the joint probability that X is in the state xi and Y is in

the state yj.

The conditional entropy H (X | Y ) of the variable X given Y is defined as the

expected value of the entropies of the conditional distributions, averaged over the

conditioning variable Y :

H(X|Y ) = −
m
∑

i=1

n
∑

j=1

p(xi, yj) · log p(xi | yj), (3.4)

where p(xi | yj) denotes the conditional probability that X is in the state xi, given

Y is in the state yj. The chain rule in (3.5) shows the natural relationship among

the three entropies defined above: the joint entropy of a pair of random variables

(X,Y ) is the entropy of X combined with the conditional entropy of Y given the

conditioning variable X, and vice versa.

H(X,Y ) = H(X) + H(Y | X) (3.5)

= H(Y ) + H(X | Y ).
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For arbitrary variables, we always have

H(X) ≥ H(X|Y ), (3.6)

with equality if and only if X and Y are independent. Equation (3.6) highlights

that conditioning reduces entropy or information cannot hurt [Cover and Thomas

2006]. It states that knowing Y may also give some knowledge about X and thus

reduces the overall uncertainty of the latter. Thus, mutual information I(X;Y ) is

defined as the reduced uncertainty of X due to the knowledge about Y :

I(X;Y ) =
∑

xi,yj

p(xi, yj) · log
p(xi, yj)

p(xi) · p(yj)

= H(X) − H(X | Y ). (3.7)

By symmetry, it also follows that:

I(X;Y ) = H(Y ) − H(Y | X) (3.8)

= I(Y ;X).

The mutual information in (3.7) is also called cross-mutual-information [Jeong et al.

2001], and the unconditional entropy of X is the auto-mutual-information between

the variable X and itself:

I(X;X) = H(X). (3.9)

Mutual information can also be defined through the concept of relative en-

tropy [Cover and Thomas 2006]. Relative entropy is a measure of the difference

between two distributions. Given two probability mass functions p(x) and q(x), the

relative entropy is defined as:

D(p‖q) =
∑

xi

p(xi) · log
p(xi)

q(xi)
. (3.10)

with equality if and only if p(x) and q(x) are the same. Relative entropy is also called

discrimination information or Kullback-Leibler distance [Cover and Thomas 2006].

Although the relative entropy does not satisfy symmetry and triangle constraints

required by the ordinary definition of a “distance”, it is very helpful to consider it as a

distance, because relative entropy measures the knowledge obtained if the description
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I ( X ; Y )
H ( X , Y )

H ( X ) H ( Y )
H ( X | Y ) H ( Y | X )

Figure 3.1 Venn diagram of mutual information and the en-
tropies.

of the random variable X is changed from q to p. Typically p represents the true or

verified distribution of data after observation or experiment, while q represents an

approximated or assumed model of X. In this case, the relative entropy measures

the information about X obtained from the observation or experiment.

From this perspective, the interdependence between the variables X and Y can be

measured as the distance between the true joint probability p(x, y) and the prod-

uct probability p(x)p(y) under the independence assumption. Therefore another

definition of mutual information is given by (3.11):

I(X;Y ) = D [p(x, y)‖ (p(x)p(y))] (3.11)

=
∑

xi,yj

p(xi, yj) · log
p(xi, yj)

p(xi) · p(yj)
. (3.12)

The equivalence of the two definitions is shown in (3.12).

The relationship between mutual information and the entropies can be illustrated by

set operations in the Venn Diagram in Figure 3.1. Notice that mutual information

represents the intersection of the two single entropies.

Mutual information measures the interdependence between the variables X and Y .
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This information increases the predictability of X by making some of its states more

probable than the case before Y is known.

3.2.2 Numerical Estimation of Information

3.2.2.1 Naive Algorithm

All the concepts introduced in the previous section involve knowledge about re-

spective probability functions, which are normally not known in practice. To apply

information theory to DIA in practice, the probability functions involved must be

estimated from discrete data, which is a non-trivial process that requires significant

research efforts [Steuer et al. 2001; Paninski 2003]. In this section, we start with a

simple approach to estimate probability and mutual information from experimen-

tal data. Consider two sequences x(k) and y(k), k = 1, 2, . . . , N as collections of

N samples of X and Y at time instances k. Let ri be the number of cases that

x(k) = xi, and rij the number of occurrences that x(k) = xi and y(k) = yj at the

same time. In the simple algorithm, the mass and joint probabilities are estimated

as the frequencies of occurrences [Steuer et al. 2002]:

p̂(xi) =
ri

N
, p̂(xi, yj) =

rij

N
. (3.13)

The straightforward probability estimation in (3.13) is directly derived from the plain

understanding of discrete probability. Such an approach is easy to implement but

relies on the availability of very large sample sizes to produce reasonably accurate

results. In a small dataset, the randomness of the sampling process would manifest

and lead to biased probability estimation. Figure 3.2 presents a simple example to

illustrate this “Finite-Size Effect”. In this example, the simple algorithm is used to

estimate the probability of having “1” when tossing a dice repeatedly for N times.

When N = 30 (a sample size considered to be small for the state space of 6), it is

very unlikely that each of the 6 possible results are sampled exactly 5 times. Hence

the estimated probability is diverged from the true value. Only in very large sample
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Figure 3.2 Estimating the probability of having “1” when tossing
a dice, using the simple algorithm. The estimated probability in
each sample size N is marked by a dot in the figure, and the true
probability value 1

6 is indicated by the solid line.

sizes does the estimated probability converge to the true value indicated by the solid

line in Figure 3.2.

To address the Finite-Size Effect when using the simple probability estimations in

information calculation by (3.7), an additional correction term has to be applied

to the original definition of mutual information in (3.7) to eliminate the systematic

bias [Steuer et al. 2002]:

I(X;Y ) ≈
∑

xi,yj

p̂(xi, yj) · log
p̂(xi, yj)

p̂(xi) · p̂(yj)
−

mxy − mx − my + 1

2N
. (3.14)

Here, mx, my denote the number of unique state values in x(k) and y(k), and mxy

is the number of unique values of [x(k), y(k)] combined as a vector variable. It is

then apparent from the correction term that the sample size N must be considerably

larger than the number of possible state combinations to constrain the Finite-Size

Effect. For all possible state values, rij ≥ 10 (rij defined as in (3.13)) is considered

the rule of thumb for the simple algorithm to provide a good estimation [Roulston

1999]. Unfortunately, in general DIA practice, where the entity movement may pass

through a large space, the requirement of the sample size could become so large

rendering it impractical to use the simple algorithm to estimate probabilities and
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information in experimental studies. In such cases, a better algorithm which can

generate accurate estimation results in small datasets is necessary.

3.2.2.2 Kernel Density Estimation Algorithm

In order for improved information estimations in small datasets, an alternative (and

improvement) to the simple algorithm based on Kernel Density Estimation (KDE)

was suggested by Moon et al. [1995] and was found to be superior to the naive es-

timation in terms of a better convergence of the estimate to the underlying density

[Moon et al. 1995; Steuer et al. 2002]. Instead of simply counting the occurrence

of the variable whose probability is to be estimated, KDE employs a form of kernel

function to calculate the contribution of a sampled data point to the probabilities

of its neighborhood. Let r(k) = [x(k), y(k)] be a two-dimensional variable repre-

senting the combined sample. The KDE estimation of the joint probability using a

multivariate Gaussian kernel K(·) is given by Moon et al. [1995]:

p̂(r) =
1

N

N
∑

k=1

K

(

[r − r(k)]S−1[r − r(k)]T

h2

)

, (3.15)

K(w) =
1

(2π)
d
2 hddet(S)

1

2

exp(
−w

2
), (3.16)

h =

[

4

d + 2

]
1

d+4

N
−1

d+4 . (3.17)

where d is the dimension of r (d = 2 in this case), h is the kernel bandwidth, and

S is the covariance matrix on r(k). When estimating the probability at r, each

observation r(k) gives a weight based on the kernel function and the distance w

between r and r(k). The estimated probability is the local weighted average of

the contributions of the sampled data points in the neighborhood. The bandwidth

h controls the range of the neighborhood and the optimal value for the Gaussian

kernel in (3.16) is shown in (3.17).

Figure 3.3 gives a graphical illustration of KDE algorithm using a very simple one-

dimensional example. In this example, two state values are sampled with occurrences

proportional to the heights of the vertical bar at each of the values. The solid curves

denotes the kernel functions for the two sample values. It can be seen that the
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Figure 3.3 A graphical illustration of KDE algorithm. The esti-
mated probability (dashed curve) is the sum of each kernel function
(solid curve) at the point to be estimated. The height of the ver-
tical bars are proportional to the frequencies of the observed data
points.

Gaussian kernel places Gaussian “bumps” at the observed positions. The probability

estimation (the dashed curve in Figure 3.3) is then given by the sum of the “bumps”

at the state value to be estimated. Notice that the vertical bars in Figure 3.3 also

indicate, in a relative sense, the frequencies of the sampled data. When estimating

the probability at the state value of 3, the simple algorithm would produce a zero

probability for lack of an observation at this position. In a small dataset, such an

absence of observation could be the consequence of the insufficient sample size rather

than the characteristic of the variable itself. The estimated impossibility would result

in misleadingly reduced uncertainty of the variable and overestimated information

values. However, in KDE algorithm every sampled data point (at position 1 and 4 in

this example) contributes to the estimated probability located in its neighborhood

and produce a non-zero probability at position 3, even if it is not observed in the

sample. KDE is not subject to observed sample data and has been demonstrated

particularly advantageous with small datasets (with very low sampled occurrence

frequencies) in generating reasonably accurate estimations [Moon et al. 1995; Steuer

et al. 2002].
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Although KDE algorithm generates accurate probability and information estima-

tions in small sample sizes, it is much more complicated than the naive algorithm

and causes increased computation complexity (especially for the calculation of the

kernel function). Therefore, for the purpose of this thesis to demonstrate that infor-

mation measures are a valid means for examining and understanding PCMs, we will

in the following chapters and sections use the simple estimation algorithm where

possible. The KDE algorithm is employed in cases where large datasets are not

available.

3.3 Information Model

As discussed in Chapter 2, PCMs rely on extrapolating short periods of future

entity state from the received entity state updates to maintain a sufficient level of

consistency while minimizing network traffic. The underlying motive and philosophy

of the information model for PCMs presented here is that update packets can be

used to extrapolate future entity states because of the temporal dependence among

states at different times, therefore contextual entity state holds some knowledge that

enables PCMs to locate potential entity states in the future. For example, standard

DR directly uses the current state derivatives to predict future entity states assuming

the entity motion status remains the same; NR references a history of recent entity

motion to produce an estimate of future state, and directs the local and remote

models along a path through that predicted future state. This is based on the

assumption that the true dynamic of the entity during the prediction horizon does

not diverge very much from the expected averaged path.

Naturally, to further improve the performance of PCMs, a quantified investigation of

the temporal dependence in entity behavior is necessary. In the proposed informa-

tion model, such dependence is measured by mutual information between the entity

states at different time instances. The mutual information measures the amount of

knowledge in the contextual dynamics that can be used to reduce the uncertainty

in predicting a future entity state. Figure 3.4 explains the uncertainty reduction
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using a simple illustrative example, in which users control objects moving around

the limited space in a virtual environment. From the perspective of the remote host,

the object controlled by another local host could be anywhere within the area before

any update information arrives. In terms of probability, this little knowledge about

the true entity state is represented by a uniform distribution over the whole space,

which indicates that the entity state is unpredictable because any position is equally

possible from the viewpoint of the remote host. The uncertainty of the entity state

is very high. Once an ESU for the object has arrived, the remote host would have

some information, for example the updated position, about the true entity state. For

a DIA that simulates realistic object movement, it is then very likely that the local

entity only moved over a short distance during the period of network latency, and is

now located within a small area near the update position. Therefore in the distribu-

tion under the condition of the update, some states now become more probable than

others, making the true entity state now more predictable. The update information

reduces the uncertainty of the entity state by making some of the state values more

probable. The uncertainty can be further reduced if additional information (veloc-

ity, acceleration for example) is available. So the amount of information about the

true entity state in the ESU determines how much predictability can be used by the

remote host to estimate the future entity state. The proposed information model

focuses on measuring such predictability in the contextual dynamics, and how this

information is transmitted by the ESUs for the remote host to build a remote model

of the entity state.

In a DIA, there are several sources of information about future entity states: physical

laws such as limit of speed and acceleration, gravity; environmental constraints

such as obstacles and fixed path or lanes; and repeatable patterns of structured

behavior that indicates user interactions. The proposed information model focuses

on measuring the contextual information in structured user behavior, namely the

temporal redundancy in the contextual dynamic (i.e., the immediate history of the

entity state to be extrapolated, which is very much related to the state), and how

this information is transmitted by the ESUs for the remote host to build a remote

model of the entity state.
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Figure 3.4 A simple illustration of how dependence can be used
to reduce the uncertainty of the entity state.

Before going through a detailed discussion of the information model, it is worth not-

ing that several measures of dependence other than the information metric (such as

Euclidean distance, Pearson correlation, Windowed Cross-Correlation, etc. [McCoy

et al. 2004]) are available. However, most of them only measure specific dependency

patterns, such as linearity in the case of the Pearson’s correlation, and consequently

can only be of utility for a specific class of extrapolation methods that explore the

particular pattern. In DIAs, predictability in user behavior is generally nonlinear

and complicated because of its complex dependence on many factors such as user

experience, knowledge of the shared virtual environment, user intentions and goals,

environmental structures, layout and constraints, and common behavior exhibited

by groups of similarly experienced users [McCoy 2007]. Using the existing methods

to measure entity motion predictability could therefore be misleading as they will

be ignoring useful temporal dependence in other forms than a particular pattern of

entity movement (for example, an entity tends to remain roughly the same velocity
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as the previous moment) [Li 1990]. Such situation is illustrated by a simple com-

parison shown in Figure 3.5. In this instance, the Pearson’s correlation rxy defined

in (3.18) is used to measure the dependence between two sets of sampled data x(k)

and y(k), each consists of N = 41 data points.

rxy =
1

N

N
∑

k=1

(

x(k) − µx

σx

)

(

y(k) − µy

σy

)

, (3.18)

where
µx and µy denote the sample means of x and y respectively,

σx and σy denote the standard deviations of x and y respectively.

In Figure 3.5(a), the Pearson’s correlation gives the highest coefficient (rxy = 1),

indicating perfect linear dependence between x and y. Every increase ∆x in x is

corresponding to a proportional increase ∆y. However, in Figure 3.5(b), due to the

obvious non-linear relation between the two datasets, the same ∆x leads to variations

∆y and ∆
′

y with the same magnitude but in opposite directions. Therefore the effect

of a variation in x on y is offset and the correlation coefficient is now zero. Such

a vanished correlation does not imply that the two variables are independent, but

merely suggests that there is no obvious linear relationship between them. In fact,

the two datasets in Figure 3.5(b) can be perfectly determined from each other, just
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Figure 3.5 Using the Pearson’s correlation and mutual informa-
tion to measure the dependence between two datasets given by (a)
y(k) = x(k) and (b) y(k) = x(k) · (4 − x(k)).
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as the case in Figure 3.5(a). The Pearson’s correlation fails to reflect the non-linear

dependence between the two variables.

The mutual information, on the other hand, accurately captures the deterministic

relationships and gives the highest mutual information (log 41 = 5.35 bits) for both

linear and non-linear dependence. By using probabilistic measures, the information

metric is independent of any particular type of user behavior pattern and provides

a general measurement of the temporal dependence in any possible form that can

be used to extrapolate future entity state.

3.3.1 Information Generation

For the ease of illustrating the information model, the true entity dynamic on the

local controlling host is represented by a discrete time series x(k) = {x(1), x(2), . . .},

where x(k) is the entity state (position) at the kth simulation step. The modeling

of other forms of entity state can be formalized in a similar manner. The value of

x(k) varies within a finite discrete set of entity state values S = {si}. The remote

model x̂(k) = {x̂(1), x̂(2), . . .} is the state approximation simulated by the remote

host using PCMs.

Information generation refers to the evolution of the local entity state. From the

information theory perspective, the information model regards the time-evolution of

the true entity dynamic as constantly generating information about itself. At each

simulation step, the determination of the current state of the local entity by the ap-

plication simulation process fully removes the uncertainty of the current entity state

before it is simulated. The amount of information generated by the rendering of this

state depends on the complexity of the entity dynamic. For example, determining

the current state of a random walking movement in the environment obviously gives

more information than the state simulation for a motion with a constant velocity.

As the simulation continues, the information generated at each simulation step con-

stitutes a flow of information that accounts for the time-evolution of the entity state

value. The average information generation rate, also the state uncertainty at each
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step, can be measured by the entropy H(x) of the entity trajectory:

H(x) = −
∑

si

px(si) log px(si), (3.19)

where px(si) is the probability function of the entity state. The set of entity state

values S covers the complete state space. It is very likely that in a DIA an entity

only travels over part of the whole space. The unexplored territory would produce

zero probabilities in (3.19) and does not affect the information calculation.

The information generation rate in (3.19) is a memoryless entropy that measures

the amount of information needed to locate one entity state with absolute accuracy

without any knowledge about its previous dynamic, i.e., the amount of uncertainty

about the entity state before receiving any update packet. Since PCMs operate

solely based on the latest update packet rather than the entire motion history, this

memoryless entropy is a suitable foundation for the information model. This infor-

mation generation rate is also the minimum amount of data in number of bits needed

to represent a complete description of the current entity state where no PCM is used

in the DIA. In such a case, the complete description of the entity state at all the

simulation steps are transmitted to the remote host. Assuming the same informa-

tion is received by the remote host, a perfect remote model of the local entity state

with the absolute accuracy can be rebuilt. Therefore, the information generation

rate in (3.19) represents the ideal case of a complete replica of the local entity state

dynamic on the remote host, and the highest consistency is achieved.

However, such complete state replication is not achievable in practical DIAs, mean-

ing that it is impossible to have the necessary information to eliminate the state

uncertainty directly through using complete descriptions. Instead, PCMs make use

of extrapolation methods to explore contextual dependence in previously received

ESUs for information about the entity state. The information model uses mutual

information to measure the amount of the useful temporal dependence between an

ESU and the entity state to be extrapolated.

Let u(k) denote the entity state update generated at the kth simulation step. It

should be first noted that the content of u(k) varies for different extrapolation
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models under use. In the zeroth-order extrapolation, the ESU only contains the

current position x(k) of the entity. u(k) could also be a vector variable if additional

information is included in the ESU, such as the velocity v(k) and acceleration a(k)

if the first or second-order equation is used. Consider predicting a future entity

state x(k + τ) at a particular prediction span τ from the ESU u(k). The available

knowledge or dependence between the information source and the entity state to be

extrapolated is measured by Available Information I(u;xτ ):

I(u;xτ ) = I(u(k);x(k + τ))

=
∑

u(k),x(k+τ)

pux(u(k), x(k + τ))

· log
pux(u(k), x(k + τ))

pu(u(k))px(x(k + τ))
. (3.20)

The update packet series u(k) is hypothetical in that it consists of prediction pa-

rameters at every simulation tick, which would be sent out with an update packet if

necessary. This mutual information is the average amount of knowledge in an ESU

that can be used to predict the entity state τ steps later than its generation.

The available information I(u;xτ ) in (3.20) is the core of the information model for

PCMs because it quantifies the amount of temporal dependence between the ESU

and the entity state to be extrapolated. This dependence is the total information

available for extrapolation models to speculate the entity state in future. The gen-

erality of the information metric guarantees that the measured mutual information

I(u;xτ ) takes all forms of user behavioral structures or patterns into consideration

and sets an upper bound to the amount of information that can possibly be ex-

plored by any predictive extrapolation for the purpose of reducing the uncertainty

of a future state value.

I(u;xτ ) represents the information characteristic of the true entity state dynamic

and evolves in two dimensions, namely the prediction span τ and ESU content

u(k). Firstly, it is obvious from (3.6) that including more parameters in the ESUs

would generally increase the available information about a future entity state and

offer the extrapolation model more potential to give better predictions. This “infor-

mation cannot hurt” explains why advanced predictive statistical models (such as
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Neuro-reckoning) outperforms simple polynomial equations in prediction accuracy

— they take advantage of better information sources which usually consist of longer

referencing history of the entity dynamic. However, it is not guaranteed that the

additional parameters in the ESUs bring more information. This depends on the

characteristics of the dynamics. For example, transmitting an additional velocity

value to extrapolate future states for a randomly walking entity does not bring any

additional information than the simple positional update since the extra parameter

is irrelevant, nor does including the acceleration value into the ESUs when extrap-

olating a constant-speed movement increase the amount of available information

because the parameter is redundant for this particular entity dynamic under consid-

eration. The information metric enables a discrimination of the parameters in the

ESUs in term of their capacity in providing information about the entity state to be

extrapolated.

I(u;xτ ) also varies with prediction span τ . This time-evolution of I(u;xτ ) with in-

creasing prediction spans characterizes the regularity of the entity dynamics. For a

deterministic entity motion (such as the state of a programmed Bot) whose actions in

the future can be determined by its state history and environmental constraints, the

current ESU, containing the appropriate parameters, could hold full information

about all the entity state changes that follow. In this case the mutual informa-

tion I(u;xτ ) would remain at the full information rate H(x) for all the prediction

spans. In the other extreme, namely the completely random motion case, the future

movements of the entity are independent of the current status and the information

I(u;xτ ) would drop to zero for any prediction span τ > 0. Figure 3.6 illustrates the

time-evolution of the mutual information I(u;xτ ) with increasing prediction spans.

Entity dynamics in practical DIAs are generally neither random nor deterministic.

In the case where the prediction span τ = 0, I(u;x0) is essentially the auto-mutual

information in (3.9), and the message holds enough information to eliminate all the

uncertainty H(x) of the current entity state. Hence the current state can be deter-

mined with absolute certainty, which is obvious because the state itself is updated.

However, an ESU typically has partial information about the future entity states,

which decays with increasing prediction spans since the future entity states become
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Figure 3.6 A simple illustration of the amount of the avail-
able information I(u;xτ ) in an ESU for the entity state changes
for increasing prediction spans τ . An ESU typically has the full
information H(x) about the current entity state and only partial
information about the future states.

more and more independent of the current motion status (described by parameters

such as position, velocity, etc.). This partial information enables the extrapolation

models to predict the future entity states with some level of certainty and precision.

The information metric provides a measurement of the information preservation of

the ESUs: those ESUs whose mutual information I(u;xτ ) drops more slowly with

increasing prediction spans clearly hold greater potential in giving sufficient predic-

tion accuracy for a longer period of time and allow for a further reduction in updates

transmission under the same inconsistency requirement.

3.3.2 Local Compression

PCMs rely on employing extrapolation models to predict entity state at multiple

steps in the future from one update message so that network traffic for transmitting

the update messages can be reduced to go through the network connections without

causing congestion. The reduction in network traffic is (indirectly) regulated by the

local error threshold. It has been shown in the previous section that it is the mutual

information residing in the ESUs that enables the speculation of the future states.

However the partial information is not capable of providing completely accurate

prediction and the extrapolation error grows with time as the mutual information
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Figure 3.7 The sum of the available information for all the pre-
diction spans within the local functioning period TLf is encapsu-
lated in the ESU for future state extrapolation. The partial infor-
mation included reduces the information rate, taking the form of a
compression.

I(u;xτ ) decays with increasing prediction spans. Therefore the state model esti-

mated from an ESU becomes increasingly irrelevant to the true entity state, and

the resultant inconsistency is more likely to exceed the desired level. A violation

of the error threshold would trigger a new message update to the remote host to

replace the outdated ESU with updated information. The information volume deliv-

ered by an ESU forms the foundation for controlling the inconsistency arising from

extrapolating future entity states from the ESU.

To measure the amount of useful information in an ESU intended for extrapolation,

the Functioning Period , Tf of an ESU is defined as the time period during which

the ESU is being used as the information source for building an entity state model

by the extrapolation method. On the local host machine, the inaccurate prediction,

which triggers the generation of the ESU, is immediately corrected. The ESU is then

extrapolated by the prediction scheme under use to build the local entity state model,

until the prediction error exceeds the threshold again and a new ESU is generated.

Therefore the Local Functioning Period TLf of an ESU is the time period between

the generations of its own and the next ESU. As shown in Figure 3.7, the amount

of locally stored mutual information in an ESU u(k) is the sum of the available
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information I(u;xτ ) for all the prediction spans within its local functioning period:

MIs =
∑

τ∈TLf

I(u;xτ ). (3.21)

In the continuing simulation of a DIA, the stored information in (3.21) can be

averaged over the functioning period to give a locally stored information rate Rs,local,

as shown in (3.22). Rs,local characterizes the average amount of information provided

by the local host machine for modeling of the entity state at each simulation step.

Notice that an ESU only has partial information about the future entity states.

Thus Rs,local is a reduced information rate lower than the perfect information rate

H(x) under the complete replica scheme. The information loss causes inconsistency

in the modeled entity state due to the remaining uncertainty.

Rs,local =
MIs

TLf

. (3.22)

For a given entity dynamic and ESU content, the locally stored information rate is

regulated by the local error threshold. A large error threshold allows for the modeled

entity state to diverge farther from the true entity state before sending a new update,

and generally leads to a longer functioning period. According to (3.21), the longer

functioning period would in turn increase the total amount of stored information in

an ESU. However, the average information rate for extrapolating the modeled state

at each step, due to the non-ascending feature of the available information I(u;xτ )

for typical DIAs, would be compromised. The inconsistency is consequently more

severe. From the information perspective, increasing the local threshold prefers a

lower network load over a better modeled fidelity in the Consistency Throughput

Trade-off. On the contrary, a smaller error threshold leads to a relatively shorter

functioning period. The information in one particular ESU is reduced but the in-

formation rate is higher because the stored information is updated more frequently.

The information metric also provides mechanisms by which the value of the local

error threshold can be selected based on the regularity of the entity dynamics. A

quite slow information drop with increasing prediction spans can be expected for
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entity motions such as a car-racing game, where objects mostly move along their

assigned lanes. In this case, a large error threshold is preferred because the ESUs

stay in effect longer without causing much further information loss, and network

traffic is reduced. In other scenarios such as First Person Shooting (FPS) games, for

example, where players shoot enemies out of random hiding places, mutual informa-

tion would drop faster, and the ESU functioning period has to be short to include

timely information and thus a small threshold is better.

The employment of the local error threshold allows entity states at multiple sim-

ulation steps to be modeled from one update packet. However, although an ESU

has full information about the current state, it only bears partial information about

the future states, and the rest of the information is lost. From the viewpoint of the

information model, the local operation of PCMs can be seen as a lossy compression,

just like in video compression where the negligible difference between the original

frame and the motion-compensated frame is quantized and ignored for a shorter

code length. Using one packet to predict multiple future states eliminates temporal

redundancy in the user motion, and ignoring inconsistency below the local threshold

reduces irrelevancy (assuming state difference below the threshold is perceptually

tolerable). In this way, PCMs reduce the perfect high information rate H(x) down

to the lower stored information rate Rs,local. The irreversible information loss in the

process causes inconsistency in the modeled entity dynamic.

3.3.3 Information Transmission

To implement a synchronized virtual world in a networked environment, the reduced

information about the local entity dynamic must be transmitted to the remote host

through the underlying network. Due to the limited network bandwidth, the network

data transmission always comes with non-zero network latency. As shown in (2.9)

and Figure 2.5, network latency introduces extra transmission error to the remote

model. The remote host has to rely on the now out-of-date information in the

previous received ESU to extrapolate the remote entity state model when the new

update is still in transmission. The new ESU is only utilized by the remote host
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Figure 3.8 The impact of network latency on remote inconsis-
tency is represented by the shifting of the local functioning period.
This delay further reduces the available information for the remote
host due to the decreasing feature of the temporal dependence in
the entity dynamic.

after its arrival at the remote host.

From the perspective of the information model, the impact of network latency on

consistency maintenance in DIAs is characterized by a shift of the functioning period

of the ESU. As shown in Figure 3.8, the ESU is being extrapolated only from the

time it arrives at the remote host (its generation time delayed by the period of

network latency) until the next ESU comes. Consider the simple case of constant

network latency for the ease of illustration. The Remote Functioning Period TRf of

an ESU is obtained by shifting its local functioning period TLf by a period of the

network latency towards increasing prediction spans. As a result of the descending

feature of the mutual information I(u;xτ ), this shift adds further information loss

in two aspects. Firstly, the information stored for the extrapolation of states during

the transmission period, with relatively high information quality, is wasted because

the remote host is still extrapolating the previous ESU. Secondly, the current ESU

must be extrapolated for further prediction spans, where the information quality

is lower, when the next ESU is being communicated. Consequently, the available

information for remote extrapolation is further reduced by the network latency.

When the ESU arrives at the remote host after the network latency L (measured

in simulation steps), the remotely stored information rate Rs,remote is the average
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information within the remote functioning period of the ESU:

Rs,remote =

∑

τ∈TRf
I(u;xτ )

TRf

, (3.23)

TRf = TLf + L.

The information model reveals that minimizing network latency is especially impor-

tant for consistency maintenance since it improves the utilization of the high quality

information for small prediction spans.

The latency-induced information loss does not concern traditional video compres-

sion because the video can be buffered before being played out without causing

significant distortion in user perception of the video. However, in DIAs which im-

pose constraints on timeliness of the data transmission, minimizing latency-induced

information loss is a key factor that facilitates the implementation of real-time in-

teractivity under limited network resources.

3.3.4 Remote Reconstruction

Remote reconstruction refers to the process whereby the remote host machine ex-

trapolates the update information in the latest ESU to build the remote entity state

approximation. The remote entity state is calculated from the parameters in the

ESU by the extrapolation equation. From the information and compression perspec-

tive, the parameters in the ESU capture some of the dependence in the true entity

dynamics, from which the redundancy in the original entity dynamics removed by the

local compression is reinserted by the extrapolation equations. In the “PCM-Video

Codec” analogy, remote reconstruction can be seen as the decoding stage where a

full frame is estimated from the arrived I/P-frames, using motion compensation.

Given the available information in the ESU, the fidelity of the reconstructed entity

state model depends on the efficiency of the extrapolation equations in exploiting

the information. A good prediction model that suits the patterns and structures

in the original entity dynamics could extract and interpret a higher portion of the

delivered available information so that the reconstructed remote model could reflect

characteristics of the true entity state more precisely and exhibit better consistency.
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The proposed information model measures the suitability of an extrapolation model

for a particular entity dynamic from the viewpoint of uncertainty reduction. As dis-

cussed in the previous section, the information arriving at the remote host machine is

typically incomplete. The information loss (as the gap between the highest entropy

rate H(x) and the available information in Figure 3.9) is the main lossy element of

the compression scheme, and such loss is irreversible. The available information,

supposedly utilized in full, only provides so much knowledge about the true entity

state as to constrain the future state to be extrapolated to a few probable values.

However, an extrapolation model, taking the form of a function or an equation,

is a deterministic mapping g(u(k), τ) from the parameters in an ESU u(k) to the

modeled state x̃(k + τ). This deterministic relation ignores the potential possibili-

ties of the future states other than the predicted value. Therefore, only part of the

delivered information in the message is extrapolated. For a specific prediction span

τ , the extrapolated information I(x̃τ ;xτ ) is defined between the prediction result x̃τ

and the true entity state xτ to measure the information utilization efficiency of the

prediction model:

I(x̃τ ;xτ ) = I(x̃τ (k);xτ (k))

=
∑

x̃τ (k),xτ (k)

px̃τ xτ (x̃τ (k), xτ (k))

· log
px̃τ xτ (x̃τ (k), xτ (k))

px̃τ (x̃τ (k)) · pxτ (xτ (k))
, (3.24)

x̃(k + τ) = g(u(k), τ), k = 1, 2, . . . ,

where the state speculation series x̃(k + τ), k = 1, 2, . . . consists of the prediction

results extrapolated from the update packet series u(k) for a particular prediction

span τ . It is then clear from (3.24) that the ESUs act as a information carrier that

conveys information about the true entity state to the estimated state model.

The extrapolated information in (3.24) measures the average information from the

messages utilized by the prediction model in producing the prediction result at the

given prediction span, and it is apparently bounded by the available information

in (3.20), as illustrated in Figure 3.9. The efficiency of utilizing the provided in-

formation indicates the suitability of the extrapolation model under use to exploit

patterns in the user behavior. The additional information loss caused by inadequate
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Figure 3.9 When the entity state model is extrapolated on the
remote host, the utilized information is constrained by the imper-
fect prediction model, which can only explore part of the delivered
available information about the true entity dynamic.

extrapolation (illustrated by the light blue area between the available and extrap-

olated information) is theoretically recoverable. The extrapolated information of a

better prediction model would approach the available information. Following similar

reasoning, the information rate that is actually utilized information rate Ru,remote

by the prediction model is calculated as in (3.25):

Ru,remote =

∑

τ∈TRf
I(x̃τ ;xτ )

TRf

. (3.25)

Ru,remote measures the amount of information about the true entity state that the

remote state model contains. Such information goes through local compression,

transmission and remote reconstruction. From the perspective of the remote user, a

high information rate indicates that he/she is offered a rendered remote entity state

model from which the true entity state could be determined with a high confidence

level. This in turn, by providing a reliable entity state model, facilitates the remote

user in responding to and interacting with the local entity.

Figure 3.10, with the notations shown, re-interprets the framework of PCMs in

Figure 2.4 from the perspective of information theory and lossy compression.

Through the local compression, transmission, and remote reconstruction, the infor-

mation rate H(x) generated by the local simulation of the entity state is gradually
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Figure 3.10 The framework of Predictive Contract Mechanisms
based on information theory and lossy compression perspective.

reduced to Ru,remote between the true and modeled entity states. The arising incon-

sistency from employing PCMs is measured as information loss during the process.

The spatial analysis of dead reckoning in Figure 2.5 and (2.9) identifies three fac-

tors, namely the local threshold, network latency and inaccurate prediction models,

which determine the remote inconsistency. In the information model, these elements

of PCMs are seen as causing information loss and increasing the uncertainty of the

remote entity state model. From an information perspective, each time the infor-

mation is reduced by one of the steps in the PCM operation, the requirement on

the minimal number of bits necessary for reconstructing the remote model is also

reduced. In this way, the Consistency Throughput Trade-off in consistency main-

tenance in DIAs can be seen as a Rate-Distortion Trade-off in video compression.

In this trade-off, PCMs optimizes consistency by lowering data rate at the cost of a

certain level of distortion between the true and modeled entity states.

3.4 Concluding Remarks

Throughout the first part of this chapter, the concepts and technologies in infor-

mation theory used in the information model is introduced and reviewed. The

philosophy underlying the information theory approach towards PCMs is that a

quantified analysis of the temporal dependence in entity dynamics, which enables

the employment of predictive modeling schemes to speculate future entity states
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instead of updating them through network communications, could bring a novel

perspective and insight towards consistency maintenance in DIAs. Furthermore, it

is a prerequisite for optimization of PCMs under constrained network resources.

In the second part of this chapter, an information model is proposed as a general

framework for the analysis of information flow in PCMs. In the information model,

PCMs can be viewed as an information processing scheme whose role is to discard

irrelevant information within a tolerable perception limit (the local error threshold),

store useful information using the minimal data units (the ESUs), and remotely

reconstruct the entity state with sufficient fidelity. A set of information metrics

is defined to measure the amount of information conveyed or lost at each step of

the PCM operation. Finally, a re-interpreted framework for PCMs based on the

information and compression perspective is presented.

In the next chapter, the information model is implemented and applied to several

entity dynamics from various environments, demonstrating the utility of the infor-

mation model to general DIA scenarios and exemplifying information analysis to

PCMs. This work also provides a foundation for new techniques improving consis-

tency maintenance in DIAs from the information perspective.
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Chapter 4

Information Model

Implementation

4.1 Introduction

In the previous chapter, the information model for PCMs is proposed as a general

framework to facilitate quantifying the trade-off between consistency and throughput

in DIAs based upon an information theory and video compression perspective [Zhang

et al. 2008, 2009]. The information model enables measurement and analysis of the

efficiency of PCM operation in exploiting the information about the user behavior

in the reduced entity state updates.

This chapter aims to illustrate the utility of the proposed information model by

conducting experimental studies and information analysis on various entity motions

and PCM techniques. The information model is implemented at two levels. The first

part of this chapter uses the information metrics to measure the predictability of a

number of datasets derived from entity motions in experimental DIAs. This analysis

is motivated by the information perspective that the predictability, or temporal

dependence, in entity behavior enables the use of predictive schemes to extrapolate

entity state models. The performance of a general PCM is therefore subject to the
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predictability of the user behavior. Two types of motion data are considered in this

study: motions simulated from explicit models that control the predictability of the

generated trajectories, and datasets collected from user behaviors within realistic

DIA scenarios.

The second part of this chapter implements the information model and analyzes the

complete operation of PCMs. This analysis evaluates their performance in utilizing

the available predictability from the user behavior when building the remote model

of the entity. Three extrapolation models, namely first and second-order dead reck-

oning and neuro-reckoning, are employed to extrapolate an entity motion collected

from human-user behaviors in a realistic DIA. In this case the DIA is represented by

a First-Person Shooting (FPS) game. The suitability of the extrapolation models is

then comprehensively studied and compared from the information perspective. This

implementation of the information model reveals that the ability of an extrapolation

scheme to provide sufficient consistency with reduced network traffic depends greatly

on its efficient utilization of the predictability inherent to the entity’s motion.

Finally, the concept is extended from intra-entity dependence to an inter-entity

analysis. Specifically, statistical inter-dependence between state-evolutions across

different entities in a DIA is measured using mutual information. The interaction

between users exhibits drastic changes over time and such cross-entity dependence

also provides predictability about the state of one object from the other one that is

closely interacting with the former. From the viewpoint of video compression, such

inter-entity predictability demonstrates spatial redundancy among different elements

in the virtual environment, and could be exploited to further reduce the network

traffic for maintaining a consistent view of the shared virtual world.

4.2 Measuring Motion Predictability

As discussed in Chapter 3, one of the primary factors influencing the successful de-

ployment of PCMs is entity motion predictability. A simple entity dynamic exhibits

strong temporal dependence, from which the extrapolation models can estimate the
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future entity state with high certainty. Such entity states can be shared among

the dispersed participants with low network traffic. A complicated entity motion,

on the other hand, can be defined as that motion which presents frequent irregular

changes in state and leaves little useful information in its behavior, making the ac-

curate speculation of its future state very difficult. Maintaining a consistent view of

the state of such an entity requires higher network throughput for transmitting the

frequent synchronization messages.

In this section, to examine the information characteristics of various entity trajec-

tories, motions simulated by explicit models are consider first. The motion models

used here describe particular aspects commonly seen in user behaviors within DIAs.

In particular, modeled motions include three deterministic motion models (smooth,

bounce, and jolt) and a complex motion derived from the combinations of the three

deterministic models. Such modeled motions exhibit controlled predictability and

can be used to validate the results from the information measurements. Collected

motion data from two realistic DIA scenarios, namely a Pong game and a virtual

navigation environment, are then examined using the proposed information met-

rics. Once again, all the simulations and analysis in this chapter are based on

one-dimensional motion data for ease of illustration and discussion. The same pro-

cedures can be easily generalized to multi-dimensional data with increased compu-

tation complexity.

4.2.1 Predictability Measurement Overview

As discussed in Chapter 3, the temporal dependence in an entity dynamic is em-

bodied in the contextual dynamics of the object and can only be measured with

respect to a certain information source that carries such dependence. In particular,

the predictability of an entity motion x is measured by the amount of information

about its future state. Such information is encapsulated in the combination of in-

stantaneous motion status (position, velocity, etc.) in an ESU u for a particular

extrapolation model. This is formalized by the available information I(u;xτ ) in
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(3.20) for increasing prediction spans τ . The utilization of this encapsulated pre-

dictability by the extrapolation model is measured by the extrapolated information

I(x̃τ ;xτ ) in (3.24). The measured mutual information is scaled to the entropy H(x)

of the entity motion to remove the effect of the range of the entity state space on the

absolute information values. Therefore, the predictability in this section measures

the degree to which the total uncertainty of an entity state in the future could be

eliminated by knowing the current motion status. High predictability of a motion,

if properly used by the extrapolation model, enables an accurate prediction of its

future state and better consistency with lower network traffic. The predictability

available in the motion and extrapolated by the extrapolation model is defined in

(4.1) and (4.2), respectively:

Available predictability =
I(u;xτ )

H(x)
, (4.1)

Extrapolated predictability =
I(x̃τ ;xτ )

H(x)
. (4.2)

To measure the predictability of the entity motions, two kinds of information sources,

the first and second-order update packets, are examined in terms of the amount of

information about the future entity state evolution embraced in them. These extrap-

olation models are chosen due to their overwhelming popularity in DIA deployments.

For an entity motion x(k), the elements in an ESU u(k) and the prediction equations

for the two extrapolation models are summarized in Table 4.1. The availability of

the motion status varies among different datasets because of the different nature of

motion generation in the various application domains. For modeled motions, the

Table 4.1 Elements in an ESU and the prediction schemes for

the first and second-order extrapolation models.

Extrapolation order ESU elements Extrapolation equation

1st x(k), ẋ(k) x̃(k + τ) = x(k) + ẋ(k) · τδ

2nd x(k), ẋ(k), ẍ(k) x̃(k + τ) = x(k) + ẋ(k) · τδ

+1
2 ẍ(k) · (τδ)2
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state derivatives can be directly recorded during the simulation, while for data col-

lected form realistic DIAs they may have to be derived from other states that are

available. The methods to acquire the prediction parameters will be respectively

discussed in Section 4.2.3 for each particular motion type.

4.2.2 Data Collection

4.2.2.1 Deterministic Motions

Assessing entity behaviors can be difficult as they are generally complicated and

depend heavily on the type of application domains that the human users interact

within. However, an entity’s motion can at least locally be described by one of a

number of representative curve classifications that define and describe the common

characteristics of such motions [Singhal 1996]. That is to say, the complicated entity

motions in DIAs can be modeled as combinations of several base “prototypes” that

are much simpler and easier to study. In Lee et al. [2000], entity motions have been

classified according to one of the following three descriptive types: smooth, bounce

and jolt.

The smooth or circular motion, as shown in (4.3), can be produced by an entity

moving around a fixed point in a two-dimensional virtual environment at constant

angular velocity [Lee et al. 2000]. The one-dimensional representation of the smooth

motion is a sinusoidal curve with the same period and amplitude. Circular motion

describes the motion mode where the entity’s velocity smoothly changes in direction

rather than in magnitude [Singhal and Cheriton 1995], and the speed of the entity

remains unchanged. Figure 4.1(a) shows an example of such a trajectory with a

period of 32s and an amplitude (or radius) of 50m. The motion is simulated at a

rate of 20Hz (i.e. a constant simulation time-step of δ = 50ms)

x(t) = A cos(ωt), (4.3)

t = kδ,

ω =
2π

T
,
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Figure 4.1 Examples of one-dimensional entity states for (a)
smooth motion (period = 32s, amplitude = 50m), (b) bounce mo-
tion (period = 16s, amplitude = 50m), and (c) jolt motion (period
= 32s / 4s, amplitude = 50m / 10m. All the modeled motions are
simulated at a rate of 20Hz.

where:
k is the index of the current simulation step,

δ is the simulation step interval,

A is the amplitude (or radius) of the smooth motion,

T is the period of the smooth motion.

A bounce motion can be produced by an entity moving back and forth through a

90-degree arc (centered at a fixed point) at a constant angular velocity [Lee et al.

2000]. The entity’s motion direction is reversed at each collision or “turn”, but retains
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a constant speed. Such a trajectory describes the motion characteristics where

a smoothly moving entity occasionally exhibits sudden changes in entity motion

direction, which are mostly caused by object collisions or circumventing an on-

coming enemy [Singhal and Cheriton 1995]. As in (4.4), a bounce motion can be

described as a variation of the smooth motion. Figure 4.1(b) shows an example of

bounce motion with a period of 16s and an amplitude of 50m.

x(t) = A |cos(ωt)| . (4.4)

As formalized in (4.5), the jolt motion describes a more complicated motion char-

acteristic that arises as a result of frequent bounce motion. A jolt trajectory can

be produced by an entity that spins itself while moving in a circle [Lee et al. 2000].

Figure 4.1(c) presents an example of jolt motion. In this instance a period of 32s

and an amplitude of 50m for the inner (circular) motion, and a period of 4s and an

amplitude of 10m for the outer (spin) motion are chosen.

x(t) = A1 cos(ω1t) + A2 cos(ω2t), (4.5)

ω1 =
2π

T1
,

ω2 =
2π

T2
,

where:
A1 and A2 are the respective amplitudes of the inner and outer motions,

T1 and T2 are the respective periods of the inner and outer motions.

From a visual perspective, the three basic motion types introduced above exhibit

increasing changes in motion status (described by entity velocity, acceleration, etc.).

However they are all deterministic as the entity states only evolve with the passage

of time once the parameters are set. From the information perspective, these deter-

ministic motions leave no uncertainty for the future entity state and are among the

simplest entity dynamics possible. It is clear that the bounce and jolt motions can be

derived from variations of the simple smooth motion. Therefore, the smooth motion

is considered representative of the deterministic motions and will be examined using

the information model in the following sections. The bounce and jolt motions, to-

gether with the smooth motion, will be used to generate a non-deterministic motion
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with controlled irregularity and randomness.

4.2.2.2 Motion with Controlled Randomness

In a virtual environment, an entity’s motion rarely exhibits a single motion type

(as described with the three deterministic motions) over its lifetime. As the entity

interacts in the environment with other entities, its motion changes accordingly

in response to the various stimuli or events such as collision with obstacles in the

territory and engagements with other participants. As a crude approximation to

such a more realistic entity dynamic, a complex motion that evolves with random

factors in addition to the passage of time is introduced here to account for the non-

deterministic state changes that characterize human-controlled behaviors in shared

virtual world. The complex motion describes the unpredictable changes in motion

type by randomly selecting among each of the three deterministic motion types

(smooth, bounce, or jolt) for random intervals of time using random inputs for

every motion. The model parameters (the amplitudes and periods) are restrained

within minimum and maximum values.

Figure 4.2 shows an example of a complex motion that consists of 16 intervals of

randomly selected deterministic motions. Each switching of the motion model is

denoted by a vertical dashed line. This type of curve exhibits both smooth, rapid

changes and sharp, unpredictable changes [Singhal and Cheriton 1995; Singhal 1996].

The random switching brings some level of irregularity to the entity state dynamic.

Clearly, given a history of the entity motion, there would always be some uncertainty

that remains about the future state. The predictability of motions generated by such

a “white box” style model is controlled by the constrained intervals of allowed model

parameters.

4.2.2.3 Pong Game Motion

The first, and very simple, application scenario uses motion data from a single-

user “Pong-like” game developed in Java. Pong is among the very first multiplayer
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Figure 4.2 An Example of one-dimensional entity states for a
complex motion. The period of the deterministic motion in each
interval is randomly selected within 3 – 8s, the amplitude is selected
within 8 – 20m, the period and amplitude of the outer circle for each
jolt motion is selected within 1 – 3s and 4 – 10m, respectively.

video games and has achieved widespread popularity. By its nature, the behavior of

the players are homogeneous, and thus the Pong-like application scenario developed

here is simplified to the form of a single-player game. The game scenario is shown

in Figure 4.3(a). The environment consists of a rectangle area surrounded by three

“walls” and a moving paddle. A ball moves at constant speed around the area

delineated by the walls and the paddle. The direction of motion of the ball is reversed

when it hits the walls or the paddle, causing it to bounce back. The player tries to

keep the ball from going outside by moving the mouse-controlled paddle on the right

side. The paddle is designed to be controlled by a mouse, instead of a keyboard, to

embrace features of the continuous movement of the human user’s hand. The entity

state is the position of the center of the paddle, which is a one-dimensional variable

since the paddle only moves vertically. The geometrical structure of the application

domain is shown in Figure 4.3(a). The possible entity states range from 40 to 200

pixels, and are sampled at a frequency of 100Hz, or a simulation step of δ = 10ms.

Figure 4.3(b) shows a typical trace of the paddle movement. The motion is highly

structured and can be considered to consist of "awaiting phases" during which the

paddle stops at a position expected on the trajectory of the on-coming ball, and the

"chasing phases" when the user moves the paddle to the next expected ball position.
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Figure 4.3 (a) The one-user Pong-like game scenario. The height
of the paddle is 60 pixels, and the possible entity states range from
40 to 200 pixels. (b) An example of the pong game motion. The mo-
tion is highly structured visually and consists of a series of awaiting
phases and chasing phases.

4.2.2.4 Navigation Motion

The second practical motion data used here is a head motion dataset from the Step

World-In-Miniature (StepWIM) navigation environment, a hands-free multi-scale

navigation in a semi-immersive virtual space [LaViola Jr. et al. 2001]. Figure 4.4(a)

and (b) show the scenes of the navigation system. In the StepWIM, the 3D virtual

environment is projected into a miniature version as a 2D road map placed beneath

the human user’s feet such that the actual position of the user in the virtual environ-

ment coincides with the approximate location of his/her feet in the miniature. The

user can use the StepWIM to navigate to a specific place in the virtual environment
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by simply walking to the desired location in the miniature. An animated view of the

virtual environment is scaled up and shown to the user according to his/her location

in the miniature.

A segment of the navigation motion is shown in Figure 4.4(c). The entity state is

measured in application units. As in all the above sections, only one dimension

coordinate is used as the entity state motion. The state is sampled at a frequency of

1607Hz, which is significantly higher than simulation rates in general DIAs. How-

ever, this high sampling rate bears no impact on the measurement of the information

characteristics of the motion as the temporal dependence between entity states at

two time instances is inherent to the entity dynamic and is independent of the in-

termediate samples.
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Figure 4.4 Scenes in StepWIM system of (a) the miniature ver-
sion of the virtual environment and (b) the scale-up virtual environ-
ment shown to the user [LaViola Jr. et al. 2001]. (c) An Example
of the one-dimensional entity motion in the StepWIM navigation.
The entity state is measured in application units and sampled at
1607Hz.
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Compared to the pong game motion, the StepWIM navigation motion exhibits more

smooth changes in the dynamic. Such a motion could be more predictable and

embrace more temporal dependence in the time-evolution of the entity state, as the

user’s exploration of the virtual environment experiences little abrupt changes.

4.2.3 Results and Analysis

For the smooth and complex motions, the first and second-order derivatives, needed

for the investigation of entity motion predictability, can be derived from their explicit

motion models and directly recorded by the simulation process. However, for the

pong game and StepWIM navigation motions, only positional state of the entity is

recorded. Therefore the state derivatives in the two DR methods must be estimated

from historical positions according to (2.3) and (2.4), respectively.

For ease of illustration, entity states in all the motions to be examined are presented

in application units. The typical inconsistency measurement, drift distance D (as

defined in (4.6)) is used as the spatial inconsistency measure.

D =
1

N

∑

k

|x(k) − x̃(k)| . (4.6)

Details about the motion trajectories to be examined, including the simulation fre-

quencies, sample sizes N , ranges of the entity state value combinations and the

frequency of their occurrences in the dataset, are summarized in Table 4.2. To en-

sure sufficient sample sizes, a state sample occurrence statistics in the “OCC (95%)”

row denotes that 95% of the possible combinations are sampled with occurrences

higher than the shown value. More specifically, the entity in the smooth motion

moves from -250 to 250 units, giving a range of 501 different state values, and 95%

of these values are sampled at least 16 times in the simulation. In a DIA simulation,

it is very likely that the entity passes by a particular position with different velocities,

and Table 4.2 shows that there are 1000 different values for such a two-dimensional

vector variable [x, ẋ] in the smooth motion. Based on statistics in Table 4.2, the
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datasets for the smooth, complex and pong game motions are considered sufficient

for the simple algorithm to generate accurate information estimations since the ma-

jority of the state combinations are sampled at least 10 times (Section 3.2.2.1).

However, some parameter combinations in the navigation dataset are only sampled

for very low occurrences. Therefore the simple probability estimation cannot gener-

ate sufficiently accurate results. To measure the information characteristics of the

navigation motion using the limited data, the Kernel Density Estimation algorithm

introduced in Section 3.2.2.2 is employed.

4.2.3.1 Smooth Motion

Figure 4.5 and Figure 4.6 present the results of DR extrapolation and motion pre-

dictability measurement of the smooth motion, respectively. In Figure 4.5(a) and

(b), and also the cases in which other motions are examined, the visual representa-

tions of the true and modeled motions under a local threshold of 16 units is shown

to present typical situations under a moderate threshold value. Results for other

threshold values are similar. Based on these results, observations and discussion

Table 4.2 Details about the motion trajectory data.

x ẋ ẍ (x, ẋ) (x, ẋ, ẍ)

Smooth Range 501 499 485 1000 1000

20Hz, N=16000 OCC (95%) 16 32 32 16 16

Complex Range 1717 13 16 5712 6471

20Hz, N=100000 OCC (95%) 30 40 50 10 10

Pong Range 161 15 16 853 1290

100Hz, N=114700 OCC (95%) 40 60 120 10 10

Navigation Range 565 5 3 1020 1290

1607Hz, N=20695 OCC (95%) 8 539 3592 2 2
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Figure 4.5 Results of extrapolating the smooth motion. High-
lighted sections of the true motion and the local model extrapolated
by (a) the first-order equation and (b) the second-order equation, at
the local error threshold of 16 units. (c) The total number of ESUs
generated by the two extrapolation models due to error threshold
violations for increasing local error thresholds. (d) The accuracy
metrics for the two PCMs for increasing local error thresholds. The
logarithm of the increasing local error thresholds is used to highlight
details at small values.

regarding the smooth motion are made as follows:

• It can be seen in Figure 4.5(a) and (b) that the second-order extrapolation

model agrees more with the true entity motion in that it exhibits a curvature

that complies with the smooth motion. This is especially obvious at the be-

ginning of the simulation during the time 0–3s. The second-order derivative

captured the trend of a decreasing velocity and the modeled motion conse-

quently goes down with the true motion, while the first-order model goes along

with the initial velocity and diverges from the true motion. The local error

threshold is violated soon, generating the request of an ESU transmission.
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Figure 4.6 Results of measuring information characteristics of
the smooth motion. (a) Probability distribution of the entity state.
(b) Conditional probability distribution p(xτ=1|u = [−149, 1]) and
unconditional probability p(xτ=1). The amount of information en-
capsulated in and extrapolated from (c) a first-order ESU and (d)
a second-order ESU for increasing prediction spans.

• The less jerky motion modeled by the second-order extrapolation is consistent

with the results of ESU generations shown in Figure 4.5(c) and the inconsis-

tency results shown in Figure 4.5(d). The second-order model maintains better

locally estimated spatial consistency (with the exception of marginally larger

inconsistency when the threshold is very tight) with less number of ESUs.

From this perspective, the second-order extrapolation model is to be preferred

over the first-order model.

• Statistics in Table 4.2 reveals the deterministic nature of the smooth motion.

The sampled two-dimensional vector variable (x, ẋ) is a small subset of the

whole possible space that scales up to 501 × 499. This indicates very high

dependence between the two variables. Notice that including an additional
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acceleration parameter does not expand the range of possible ESU values for

second-order extrapolation. The acceleration value can be determined by the

instantaneous position and velocity of the entity. Therefore the acceleration

value is redundant for the smooth motion from the information perspective.

• The entity state in the smooth motion is distributed rather evenly, like a

uniform distribution (Figure 4.6(a)). The entity state of the smooth motion

appears slightly more often at the two ends of the possible state set, because

the entity moves with very low speed near the peaks and valleys as illustrated

in Figure 4.1(a). This broad distribution suggests that it is difficult to predict

the entity state in a smooth motion without prior knowledge ( such as knowing

its deterministic nature and the motion model). The entropy H(x) = 7.385

bits indicates that the shortest average length of data required to describe the

smooth motion state at each simulation step with absolute accuracy is 7.385

bits. Again, this required data rate does not consider any useful temporal

dependence that could be extrapolated to speculate the future entity state.

• Figure 4.6(b) exemplifies how the information in an ESU is used to re-

duce the uncertainty of a future state. By receiving a first-order DR ESU

u = [x = −149, v = 1]), the uniform distribution p(xτ=1) of the entity state

xτ=1 becomes a conditional probability (p(xτ=1|u = [x = −149, v = 1])). In

this extreme case, the next entity state is “pinned” to one value by the infor-

mation in the ESU because the smooth motion is deterministic. Generally, the

knowledge in an ESU rules out a vast number of state values and restrains the

value of the next state to a few possibilities.

• In Figure 4.6(c) and (d), the two ESUs both facilitate perfect predictability

not only for the current entity state but also for all that follow at increasing

prediction spans. This is not surprising considering the deterministic nature

of the smooth motion. It can be easily derived from the smooth motion model

in (4.3) that given the position and velocity of the entity, the phase ωt of

the circular motion is determined, and so is the subsequent movement of the

object. From this point of view, the instantaneous position and velocity in the

first-order ESU are sufficient to store all the information needed to extrapolate
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the entity motion precisely, and the acceleration parameter in the second-

order ESU is redundant for extrapolating future entity state. The perfect

information storage in Figure 4.6(c) and (d) is typical for all deterministic

motions as long as the necessary parameters are included in the ESU.

• It is not expected, though, that both the first and second-order extrapolation

models can make use of all the available information in building the entity

model, as shown in Figure 4.6(c) and (d). At first glance, it might seem in

conflict with the fact that neither of the two models is capable of maintain-

ing absolute consistency under a non-zero local error threshold (Figure 4.5),

while the perfect information encapsulation and utilization of the two extrap-

olation models suggest otherwise. This apparent contradiction originates from

the philosophy of the information metric to measure the relationship between

the true and modeled entity dynamics based on uncertainty reduction, in-

stead of spatial similarity. The situation is explained using a simple example

in Figure 4.7, which displays a full dataset of 5 simulation steps for a trivial

simulation used for illustrative purposes. Although the initial extrapolation
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Figure 4.7 A simple illustration of the difference between mutual
information and spatial inconsistency. Though spatially diverged,
the modeled path still has full information about the true entity
motion because of the absolute certainty between the two motions.
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vector is not perfect and the modeled path diverges from the actual motion,

the mutual information is still perfect, as in the situation with the smooth

motion, because the actual motion can be determined with absolute certainty

from the modeled path based on the one-on-one relationship between the two

motions. Therefore the modeled path has full information about the true mo-

tion, but it is not perceptually presented in the best way. In the case of the

smooth motion, the second-order extrapolation model exhibits better consis-

tency than the first-order model because the second-order derivative, even if

it brings no more information, helps interpret the extrapolated information in

a visually more appropriate form. The contradiction between the information

metric and the spatial measurement suggests that given an appropriate trans-

formation scheme, the first and second-order extrapolation models are capable

of providing the same highly accurate entity state model of the deterministic

smooth (or other) motion.

4.2.3.2 Complex Motion

Based on the results of DR extrapolation in Figure 4.8 and motion predictability

measurement in Figure 4.9, a number of observations and discussion regarding the

complex motion can be made:

• As with the smooth motion, the second-order model outperforms the first-order

model by generating significantly less ESUs (Figure 4.8(c)) and maintaining

a lower inconsistency (Figure 4.8(d)). The curvature the second-order extrap-

olation exhibits complies with the complex motion (obvious examples can be

identified during the time 90 – 100s and 115 – 120s in Figure 4.8(a) and (b)),

giving a perceptually more favorable entity state model. From this perspec-

tive, the second-order extrapolation model, again, is to be preferred over the

first-order model, which is not unexpected given that the complex motion is

a random combination of motion types that are derived from the smooth mo-

tion. Therefore the complex motion shares the common preference towards

second-order DR as the smooth motion.
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• A number of “peak states” with relatively higher probabilities can be found

in Figure 4.9(a). Such peak states indicate the places where the entity moves

slowly, or changes direction of movement. Therefore, the entity state in the

complex motion is unevenly distributed, compared to the smooth motion.

Without any prior knowledge of the motion (such as previous motion status),

such a probability distribution means that the entity state could be predicted

more easily since the peak values are more probable than others. However, the

entity state is more broadly distributed since the entity movement is randomly

assigned to one of the three motion models and is therefore no longer periodic.
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Figure 4.8 Results of extrapolating the complex motion. High-
lighted sections of the true motion and the local model extrapolated
by (a) the first-order equation and (b) the second-order equation, at
the local error threshold of 16 units. (c) The total number of ESUs
generated by the two extrapolation models due to error threshold
violations for increasing local error thresholds. (d) The accuracy
metrics for the two PCMs for increasing local error thresholds. The
logarithm of the increasing local error thresholds is used to highlight
details at small values.
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Figure 4.9 Results of measuring information characteristics of
the complex motion. (a) Probability distribution of the true mo-
tion, giving an entropy H(x) = 10.47 bits. The amount of informa-
tion encapsulated in and extrapolated from (b) a first-order ESU
and (c) a second-order ESU for increasing prediction spans. The
extrapolated predictability in a first-order ESU is re-drawn as a
base line for comparison in (c).

The entity could go through a quite large space over time. The wide range of

possible states results in low values of the probabilities, even for those peak

states, and a higher entropy H(x) = 10.47 bits.

• Unlike the situation in the smooth motion, neither of the two ESUs could

preserve perfect predictability for increasing prediction spans (Figure 4.9(b)

and (c)), because of the randomness introduced in the complex motion model.

Firstly, this incomplete information implies that based on the parameters in

the ESUs, it is impossible to predict the future entity state with absolute

accuracy under a non-zero local error threshold, regardless of any form of

prediction scheme used.
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Secondly, as the introduced randomness is purely “external” (governed by a

random number generation by the simulation process rather than the entity

behavior), any set of prediction parameters based on historical motion status is

incapable of providing sufficient information for building an absolute accurate

entity state model.

Finally, the available predictability in an ESU decays with increasing predic-

tion spans rather slowly, because the entity motion is still deterministic within

each interval between the random motion type switches. The temporal depen-

dence between the current motion status and future states is still strong, if not

perfect, as most of the information is encapsulated in the ESU. Although the

complex motion only introduces limited uncertainty to the motion, the decay-

ing available information characterizes non-deterministic entity motions that

make state update transmissions necessary to maintain consistency in DIAs.

• The second-order ESU exhibits no significant advantage over the first-order

ESU in conveying available information. As discussed in the smooth motion

case, within each deterministic motion interval, the second-order ESU includes

a redundant parameter and is just as good as the first-order ESU in storing

available information. The random motion type switches, on the other hand, is

independent of the entity motion status. Thus the second-order ESU conveys

no additional information about the random element of the motion. This

invariant information content in the two type of ESUs is mostly due to the

external randomness introduced by the particular complex motion model.

• Due to the randomness introduced in the complex motion, the available pre-

dictability in the ESUs is not fully utilized by the extrapolation models when

building the entity state model (Figure 4.9(b) and (c), dashed curves). It is

apparent that the perfect mapping illustrated in Figure 4.7 is compromised.

However, the two extrapolation models utilize most of the available informa-

tion as a result of the piecewise-deterministic nature of the entity dynamic.

It is also worth noting that the second-order model extrapolates more infor-

mation, though not much more, than the first-order model (the extrapolated

predictability in a first-order ESU is drawn as a base line for comparison, and
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the ordinate in this figure is reduced to the range of interest). The extrapo-

lated entity motion modeled by the second-order equation reflects the highly

curved feature of the complex motion, which agrees with the results presented

in Figure 4.8.

Due to the similarity between the motion elements that compose the complex mo-

tion and the smooth motion, the information measurement of the complex motion

exhibits similar characteristics to the smooth motion, such as high efficiency in con-

veying and utilizing entity motion predictability. From the information perspective,

the updated parameters in the two types of ESUs manifest potential for better spatial

consistency. The available information in an ESU decays with increasing prediction

spans because of the randomness introduced by the motion type switches in the

entity dynamics. But this randomness is governed by an external factor, namely

the random number generation that controls the motion parameters for each section

of the motion. This controlled uncertainty differentiates the modeled motions from

the motion data collected from practical DIA applications, where the uncertainty

in the time-evolution of the entity state is largely driven by the inherent factor of

user behavioral patterns. The predictability in entity motions that embrace the

human-in-the-loop factor is investigated in the following sections by implementing

the information model on the collected entity dynamics.

4.2.3.3 Pong Game Motion

The following observations and discussion regarding the pong game motion can be

made based on the results of DR extrapolation in Figure 4.10 and motion predictabil-

ity measurement in Figure 4.11:

• Unlike the situation with the modeled motions, where the second-order model

is favorable for extrapolation, Figure 4.10(c) and (d) show that the first-order

equation maintains comparable consistency to that afforded by the second-

order model, but with a significantly reduced number of entity state updates.
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Figure 4.10 Results of extrapolating the pong game motion.
Highlighted sections of the true motion and the local model ex-
trapolated by (a) the first-order equation and (b) the second-order
equation, at the local error threshold of 16 units. (c) The total
number of ESUs generated by the two extrapolation models due to
error threshold violations for increasing local error thresholds. (d)
The accuracy metrics for the two PCMs for increasing local error
thresholds. The logarithm of the increasing local error thresholds
is used to highlight details at small threshold values.

This advantage is especially evident at smaller threshold values, where the

average prediction error of the first-order model is even lower.

• Further scrutiny of Figure 4.10(a) and (b) reveals that the advantage of the

first-order model over the second-order equation is due to the particular pat-

tern of the user behavior in this case.

It seems that the entity (namely the paddle in this game scenario) remains

occasionally stationary at the positions where the moving ball is expected to

hit the paddle and bounce back. When the object is about to enter this “static

phase”, speed decreases for a short period. This decreasing speed causes a
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Figure 4.11 Results of measuring information characteristics of
the pong game motion. (a) Probability distribution of the true
motion, giving an entropy H(x) = 5.80 bits. The amount of in-
formation encapsulated in and extrapolated from (b) a first-order
ESU and (c) a second-order ESU for increasing prediction spans.
The extrapolated predictability in a first-order ESU is re-drawn as
a base line for comparison in (c).

state update as a result of a threshold violation as the modeled path diverges

from the true motion. In the first-order extrapolation, this update convey-

ing a zero velocity state update indicates and directs first-order motion model

into the static phase. However, in the second-order model, where the accel-

eration parameter adds additional inertia, the modeled path would diverge

faster from the true motion and the ESU generation would in many cases be

triggered before the entity becomes static. This ESU with non-zero velocity

and acceleration consequently leads to another error threshold violation dur-

ing the static phase, after which the second-order motion model converges to

the true motion. The extra spikes of the second-order extrapolation near the

start of the static phases is obvious around 1s and 3s in Figure 4.10(b) and
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account for most of the additional ESUs of the second-order model shown in

Figure 4.10(c). It is unlikely to find extra spikes when the paddle starts mov-

ing after hitting the ball because the entity motion status is well synchronized

during the static phases.

• It is very clear in Figure 4.11(a) that the entity motion is a combination of

static phases with significantly higher probability state values and moving

phases with low probability states. Unlike the modeled motions, the static

phases are distributed rather evenly through the entity space. Such highly

structured movement is expected to be regular and predictable. The entropy

of the entity state is 5.80 bits.

• In contrast to the situation for the modeled motions, the amount of predictabil-

ity provided by the ESUs decreases rather fast as the prediction span increases

(Figure 4.11(b) and (c)): about 40% of the full information is lost during the

interval of 1000ms. Compared to the available information in a first-order ESU,

the second-order ESU includes more information by taking an additional state

derivative (information cannot hurt), even though the extra parameter does

not make significant difference because of the simple and inaccurate estima-

tion of the second-order derivative and the particular user behavior pattern as

explained above.

• As can be expected, the available predictability in the ESUs is not fully utilized

by the extrapolation models. Nevertheless, the first-order extrapolation model

utilized 90% of the information provided (Figure 4.11(b)), since the entity, for

most of the time, either stays still, awaiting the approaching ball, or moves

smoothly towards the next expected contact position.

• The predictability extrapolated by the second-order equation exhibits more

interesting behavior (Figure 4.11(c)). During the static or transition stages

in the entity dynamic, the acceleration parameter of the entity is mostly at

very small values such that it takes time to manifest its effect on the entity

movement. Therefore, the extrapolated information is at first just as good

as the information extrapolated by the first-order equation (the extrapolated
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predictability in a first-order ESU is drawn as a base line for comparison).

However, when the prediction span grows, the second-order extrapolation ex-

hibits significant advantage over the first-order extrapolation in utilizing pre-

dictability.

Although the second-order equation does not translate the extra information

into better perceptual fidelity (Figure 4.10(d)), which is explained in the addi-

tional spikes situation, the information advantage suggests that a better, and

possibly more complicated, extrapolation scheme could present an improved

consistency result. For example, using the acceleration parameter, an extrap-

olation scheme could detect the decreasing trend in entity speed and recognize

the coming static phases. The spikes before the static phases could then be

avoided by converging the state model to the static motion directly, instead of

extrapolating the state model using the second-order equation all the time.

4.2.3.4 Navigation Motion

The results of DR extrapolation and motion predictability measurement for the

navigation motion are presented in Figure 4.12 and Figure 4.13, respectively. A

number of observations and discussion are made as follows:

• For most part of the true and modeled trajectories shown in Figure 4.12(a) and

(b), the two DR models exhibit similar visual extrapolation performance. One

exception is that in the period of 9 – 10s, the second-order model is impacted

by the transient fluctuation in the entity motion, and produces a jerky path due

to the sensitivity of the acceleration parameter. Such a fluctuation is filtered

or ignored by the first-order model by giving an averaged but less dynamical

prediction. In Figure 4.12(c) and (d), the second-order extrapolation generates

a few more ESUs and maintains a slightly better consistency than the first-

order extrapolation. The difference between the two extrapolation models for

this navigation motion is not significant.

• In Figure 4.13(a), the probability of the entity states is distributed rather
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Figure 4.12 Results of extrapolating the StepWIM navigation
motion. Highlighted sections of the true motion and the local model
extrapolated by (a) the first-order equation and (b) the second-
order equation, at the local error threshold of 16 units. (c) The total
number of ESUs generated by the two extrapolation models due to
error threshold violations for increasing local error thresholds. (d)
The accuracy metrics for the two PCMs for increasing local error
thresholds. The logarithm of the increasing local error thresholds
is used to highlight details at small threshold values.

evenly. Most of the state values only appear with probabilities under 1%. This

probability observation is consistent with the navigation behavior where the

user would typically explore an unfamiliar virtual space with steady movement.

The entropy of the entity state is 7.61 bits.

• It is obvious by comparing Figure 4.13(b) and (c) that the two types of

ESUs provide almost the same information about the future entity state. In
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Figure 4.13 Results of measuring information characteristics of
the StepWIM navigation motion. (a) Probability distribution of the
true motion, giving an entropy H(x) = 7.61 bits. The amount of
information encapsulated in and extrapolated from (b) a first-order
ESU and (c) a second-order ESU for increasing prediction spans.

Table 4.2, there are only three possible velocity and acceleration values sam-

pled in the dataset, which indicates that the object is exploring a rather lim-

ited space with slow and stable velocities. The navigation motion is so smooth

that the additional acceleration parameter in the second-order extrapolation

model appears to be irrelevant to the entity motion. Such redundant informa-

tion is misinterpreted and leads to lower information utilization values for the

second-order extrapolation model. This observation agrees with the spatial

inconsistency results in Figure 4.12. Therefore, the first-order extrapolation

model is preferred for the navigation motion for presenting at least equal ESU

generation and consistency performance without transmitting any redundant

information.

• The steady exploration behavior is rather regular compared to the pong game
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motion in that about 90% of the full information is preserved by the updated

parameters over a prediction span of 400ms. This indicates that the navi-

gation motion itself is potentially highly predictable. However, only 60% of

the available information is extrapolated by the prediction models, which in-

dicates that it is a better extrapolation scheme that is necessary to improve

the performance of PCMs for this particular motion, rather than more data.

Throughout the discussion of the results from measuring the predictability of various

entity dynamics using the information metrics, the following general observations can

be made:

1. The entropy of an entity motion denotes the minimal amount of data in bits

required to describe the entity state at each time instance. The entropy value

depends on a number of factors such as the scale of the virtual space and

the user movement. A high entropy alone does not indicate a complicated

movement as information from contextual dynamics could be explored by ex-

trapolation methods to effectively reduce uncertainty of the future entity state

so that the entity state can be shared with reduced data transmission.

2. Entropy measures the average uncertainty of a single entity state without con-

sideration of its relationship with preceding entity dynamics (see the introduc-

tion of H(x) in (3.19)). For example, the state uncertainty of 7.385 bits for the

smooth motion could be completely removed because the future entity state

could be determined with absolute certainty based on the full information, if

properly interpreted, in the first and second-order ESUs. The predictability of

the entity motion, from the predictive perspective, is the reduced uncertainty

about the future entity state after the information in the contextual dynamics

is taken into consideration.

3. The predictability of an entity motion can be measured by the mutual in-

formation between the currently known motion status and the future entity

dynamics for increasing prediction spans. The amount of information avail-

able in the update data consequently depends on the selection of parameters,
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i.e. entity position, velocity, etc. In general, a larger set of update parameters

could always improve the information capacity.

4. The available predictability encapsulated by a specific set of motion parameters

is characteristic of the entity dynamic itself. The performance of a PCM

depends on how much information can be utilized by the extrapolation model

under use to build the entity state model. A bad extrapolation model, even if

provided with more information, could mis-interpret the available information

in the entity state updates and lead to poor information delivery performance

and inadequate consistency.

5. For deterministic motions, perfect information could typically be conveyed by

appropriate update parameters and extrapolation models. However, a high

extrapolated predictability figure does not always guarantee a modeled path

with high fidelity, because the information measurement focuses on certainty

relationships between two variables instead of spatial similarity. In the case of

a higher information and low fidelity, a transformation of the modeled path can

always be found to re-interpret the modeled entity motion with high perceptual

accuracy (Figure 4.7).

6. For non-deterministic motions, the available predictability provided by the

updated parameter based on the current motion status decays with increasing

prediction spans. More complicated motions exhibit rapid information drop as

the temporal dependence among contextual dynamics fades quickly with time.

The extrapolated predictability is bounded by the available predictability, and

whether or not additional parameters can improve the information utilization

depends very much on how much the user behavior and the motion pattern

implied by the extrapolation model comply with each other.

The results presented above measure the predictability of the entity dynamics. In

the next section, the impact of PCM operation and network latency on utilizing such

predictability to build the remote entity model is examined through a complete “life

cycle” information analysis of the ESUs.
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4.3 Comparison of PCMs using the Information Model

In this section, to show how the predictability in user behavior is locally encap-

sulated, transmitted and remotely extrapolated by PCMs to maintain a sufficient

level of consistency with reduced network traffic, the information model proposed in

Chapter 3 is implemented for a motion dataset collected from a realistic FPS (First

Person Shooting) game application. The inconsistency caused by discarding predic-

tion errors within the threshold limit is measured as the information loss, and the

effect of latency on the remote inconsistency is also measured from an information

perspective. Analysis of the information model is presented through a comparison of

the standard polynomial DR algorithms and the Neuro-reckoning technique (Section

2.4.5), demonstrating that the information approach applies to both standard and

novel PCMs.

4.3.1 Overview

To demonstrate the information model, experiments are conducted under a repre-

sentative DIA environment based on the Torque Game Engine (TGE) [Lloyd 2004],

a commercial game engine that enables the development of a real-time, interactive,

 

(a)

 

[ ]

(b)

Figure 4.14 (a) A screenshot of the FPS game scenario. (b) The
entity state space of the DIA.
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continuous, concurrent distributed application. As such, the TGE-based game ap-

plication is a very capable representation for the many types of real-world DIAs

characterized by similar attributes, and the data collected can be considered repre-

sentative of what one would expect to observe in a commercial networked multiplayer

computer game or some similar applications. The simulation scenario, developed by

McCoy et al. [2004], is shown in Figure 4.14(a). In the simulation, players who

control the avatar using a keyboard (for translation movements) and a mouse (for

rotations) in first-person perspective are “born” at one of a collection of randomly as-

signed “spawn-points” as starting locations. The goal of the players in the simulation

is to be the first to reach a pre-specified “hit-point” score-limit by attacking others

using projectile-based weapon with unlimited ammo, and “disabling” the opponents.

A health-meter of each entity, which quantifies the amount of damage left before

being disabled, is viewable to the controlling player in real-time. Disabled players

are reborn at one of the spawn-points and re-join the game with full health-meters.

This “deathmatch” scenario involves typical user behaviors in general DIAs, such as

exploration, chasing, circumvention and engagement. Such a DIA is now analyzed

from the information perspective.

Figure 4.14(b) illustrates the entity state space in the simulation. The entity con-

trolled by a human participant during the game play is allowed to move in a 3D

virtual space. However, it is observed that the z-coordinate of the entities almost

remain invariant throughout the simulation (as they rarely jump), and is removed

from the data to be examined. At the simulation step k, an entity is modeled by its

position x(k), velocity v(k) and orientation θ(k), each of which is a two-dimensional

vector. The entity position and velocity are coordinates and speed along the x-axis

and y-axis respectively, in terms of game units. The orientation, which describes

the facing direction of the player, is the sine and cosine coordinate pair of the posi-

tive angle from the x-axis to the line of the orientation. Again, as throughout this

thesis, the presented results are based on the x-coordinate of the entity position

for the convenience of illustration. In the standard polynomial DR techniques, it

is straightforward to treat the entity motion as a one-dimensional movement as the

prediction is conducted within each dimension separately. In neuro-reckoning, on
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the other hand, the prediction of the x-coordinate of an entity state also involves

overall state values from the other dimension as it is considered to affect the x-

coordinate dynamic. Therefore it should be noted, as shown in (2.10)–(2.13), that

the neuro-reckoning uses information from two-dimensional states to extrapolate the

one-dimensional motion examined in this section. The measurement presented here

can be easily generalized, at the cost of increased computation, to multi-dimensional

scenarios by treating the states as vector variables. The game is simulated at the

rate of 20Hz, with the constant simulation step of δ = 50ms.

The PCMs examined here are standard DR with the first and second-order pre-

dictors, and neuro-reckoning. For the first-order predictor, the x-component of the

entity velocity vector is directly taken as the first-order derivative. The second-order

derivative in the second-order extrapolation, which it is not recorded during the sim-

ulation, is estimated as the velocity change during two consecutive steps (as in (2.4)).

NR uses the neural network predictors trained and validated under the same game

scenario in [McCoy et al. 2007], where the maximum prediction time-delay d and the

maximum prediction horizon q were set as 3 and 10 simulation steps respectively to

give optimized prediction accuracy. Therefore, the NR velocity vector is predicted

based on the motion descriptions of the most recent four steps and pointing through

a predicted position at 0.55s in the future. Similar to the case of first-order DR, the

x-axis component v̂x(k) of the NR velocity v̂(k) (see (2.13)) is used in extrapolating

the one-dimensional entity dynamic. The derivatives contained in an entity state

packet generated at simulation step k are summarized in Table 4.3.

Table 4.3 Derivative information in an update packet

PCMs Derivative information

1st-order DR x(k), ẋ(k) = vx(k)

2nd-order DR x(k), ẋ(k) = vx(k), ẍ(k) = vx(k)−vx(k−1)
δ

NR x(k), ẋN (k) = v̂x(k)
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In the experiment, the human-users are asked to repeatedly play the game for about

85 minutes, and the entity state trajectories of the human-users are then combined

to form a true entity motion with the length of N = 102053 steps. The DR and NR

algorithms are then ran on this true entity motion with varying local thresholds and

simulated fixed latencies.

Details of the recorded dataset in terms of the number of possible values and occur-

rences of entity states, derivatives, and their combinations in each type of packet are

summarized in Table 4.4. It is then clear that parameters in an NR ESU provide

significantly larger possible value space and potentially higher capacity for carrying

information about the entity behavior. However, such a large sample space makes

the available entity trajectory insufficient for the simple algorithm to generate de-

cent probability estimation. Therefore, KDE estimation algorithm is used later in

the information measurement.

4.3.2 Packet Generation and Spatial Inconsistency Results

Firstly, the performance comparison of the three reckoning techniques based on

traditional metrics, namely packet generation and spatial inconsistency, is presented.

Table 4.5 shows the number of packets generated by each of the PCM schemes,

under a series of increasing local error thresholds measured in terms of games units.

To put the threshold values into some perspective, the size of the entity avatar is

approximately 5.7 units. The lowest simulated error threshold of 2 units represents

a fairly tight threshold, about one third of the entity size. In contrast, the largest

simulated error threshold of 64 units represents a very relaxed threshold. Network

Table 4.4 Ranges and occurrences of state values in the dataset.

x ẋ ẍ ẋN (x, ẋ) (x, ẋ, ẍ) (x, ẋN )

Range 456 7 11 39 3169 6143 16895

OCC (95%) 201 5700 2310 2005 13 5 3
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Table 4.5 Number of packets generated by each of the three

PCMs

Threshold (units) 1st-order DR 2nd-order DR NR NR reduction (%)

2 11799 12312 10431 13.11

4 7586 7929 6507 16.58

8 4943 5173 4358 13.42

16 3165 3307 2962 6.82

32 2035 2108 1948 4.47

64 1222 1270 1191 2.60

conditions are simulated by increasing fixed latencies. In the last column of the

table, the heading “NR reduction” refers to the percentage reduction in the number

of entity state update packets generated against either the first or second-order DR,

whichever generates less packets for that particular error threshold. A positive values

indicates a superior performance by the NR technique.

Across thresholds, NR outperforms the two standard DR, giving packet generation

reductions ranging from 2.6% up to over 16% against the best performing standard

DR model. This is more apparent from inspection of Figure 4.15 which provides

a comparison of the locally reconstructed state trajectories by the three reckoning

techniques. It can be observed around the time of 85s how NR compensated for

expected changes in the future entity trajectory and avoided unnecessary ESUs.

From the visual perspective presented in Figure 4.15, especially at 77 – 80s, NR

“cuts through” corners by extrapolating towards a future estimated point on the

entity’s trajectory and produces an averaged state model [McCoy 2007].

In addition, first-order DR slightly outperforms second-order DR for all the thresh-

olds simulated as a consequence of the rapidly changing entity velocity (or accelera-

tion) that is representative in First-Person Shooter (FPS) application domains [Pan-

tel and Wolf 2002b]. In this case, the second-order predictor imposes too much
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Figure 4.15 Results of extrapolating the Torque FPS motion.
Highlighted sections of the true motion and the local model extrap-
olated by (a) the first-order equation, (b) the second-order equation,
and (c) the NR technique at the local error threshold of 16 units.
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inertia into the modeled motion by considering acceleration. It is interesting that

second-order DR and NR both take into consideration more derivative information

other than the current velocity but result in contrary performance compared to first-

order DR. This demonstrates that the performance of any PCM depends on how

well the prediction model fits the pattern in the user behavior so that the update

parameters in the packets can be efficiently utilized. This will be further investigated

from the information perspective in a quantified manner.

Figure 4.16 presents the remote inconsistency, measured as drift distance, arising

from extrapolating the original entity motion using the three reckoning techniques

for varying local error thresholds and latencies. The effects of latency are included

to examine the impact of limited network conditions on the performance of PCMs.

Once again, NR outperforms standard DR, yielding the lowest remote inconsisten-

cies for varying thresholds and latencies. It should be noted that since NR generates

the least updates (Table 4.5), the NR models are corrected less often, which gives

the remote model more time to diverge from the true motion. However, NR still

presents the best inconsistency results. This is because instead of relying on the

current derivative state information, which changes rapidly, the predictive NR ve-

locity compensates and averages out the potential changes in the entity motion, and

gives a less dynamic but more stable entity state model. Second-order DR leads to

higher remote inconsistency than first-order DR, especially at small error thresholds,

because the second-order model diverges from the true entity trajectory faster and

rises to the error threshold more frequently.

4.3.3 Information Model Results

The information model in Chapter 3 focuses on a “life cycle” analysis of the syn-

chronization messages. The messages act as a information carrier that includes and

conveys information about entity dynamics, with inevitable loss, to the remote entity

state model.
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Figure 4.16 The remote inconsistency, measured as drift dis-
tance, arising from the extrapolations by the three PCMs for in-
creasing fixed latencies under local thresholds equal to (a) 2, (b) 4,
(c) 8, (d) 16, (e) 32, and (f) 64 units.
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Figure 4.17 Results of measuring available information I(u;xτ )
in the ESUs of the three reckoning techniques using the simple
probability estimation algorithm.

For comparison purposes, the information capacity measured by the simple estima-

tion algorithm (Section 3.2.2.1) is shown in Figure 4.17. The included information

for the first and second-order extrapolation ESUs decay for increasing prediction

spans as expected. However, the information capacity of the NR ESU stands out

as it almost has perfect information capacity for future entity states, suggesting

that a future entity state as far as 1s from the current time instance can be nearly

perfectly determined from the current motion status. This high information value

is intuitively suspicious. Consider the low occurrence of the sampled NR ESUs in

Table 4.4. There are many ESU values that are sampled only once, which would in

turn correspond to only one value of future entity state and result in a deterministic

relationship in estimating information capacity. Such a deterministic relationship,

however, is the consequence of the insufficient sample size rather than the entity

behavior. Therefore the simple estimation algorithm can lead to overestimated in-

formation values in Figure 4.17.

To generate sufficiently accurate probability and information estimations from the

limited dataset, the KDE algorithm is employed and the information capacity re-

sults for the three types of ESUs for increasing prediction spans are presented

in Figure 4.18. Through a comparison of the different results in Figure 4.17 and

Figure 4.18, it is obvious that the KDE algorithm corrects the overestimated high

information value of the NR ESU, which now exhibits a noticeable information drop
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Figure 4.18 Results of measuring available information I(u;xτ )
in the ESUs of the three reckoning techniques using the KDE prob-
ability estimation algorithm. The amount of information available
for extrapolation in an ESU within (a) the local functioning period
of the first-order ESU (TLf1), second-order ESU (TLf2), NR ESU
(TLfN ), and (b) the remote functioning period of the first-order
ESU (TRf1), second-order ESU (TRf2), NR ESU (TRfN ).

at large prediction spans. Consequently, all the following results are based on the

improved information calculation using the KDE algorithm.

Figure 4.18 presents the available information about future entity motion encapsu-

lated in each type of ESU for increasing prediction spans. Firstly, an entropy of

H(x) = 8.81 bits is given by the true entity motion, and that is the average amount

of information or data per simulation step required to reconstruct the entity motion

with perfect fidelity, assuming every entity state is transmitted to the remote host

under ideal network conditions. However, PCMs make use of the content of just

one message to extrapolate future entity states at multiple steps, to reduce update

frequency.

The delayed-mutual-information in Figure 4.18(a) and (b) compares the information

capacity of the three types of packets for future entity states at increasing prediction

spans. For standard DR, as can be expected for any non-deterministic entity motion

data collected from practical DIAs, the information capacity of both the first and

second-order packets decrease rather rapidly with increasing prediction spans. In

the FPS game scenario where user’s motion changes fast, instantaneous derivatives

of the entity state bear little knowledge that could account for the user’s future
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behavior in long term. It can then be expected that the entity state must be updated

more frequently under the first and second-order DR extrapolations. Throughout

all the prediction spans, the second-order packet embraces more information about

future dynamics since an additional acceleration value is included. This information

advantage of the second-order ESU over the first-order packet is however marginal

compared to the NR update message, which is now discussed.

The NR packet exhibits much lower information loss compared to the standard DR

packets. Notice that the NR packet has exactly the same structure as the first-order

DR packet (Table 4.3). This high information capacity is a result of two designing

philosophies of NR. Firstly, the value of the NR velocity in the update packet is

calculated by neural networks based on the knowledge from 17 referencing values

(two-dimensional velocity and orientation vectors for each of the 4 most recent steps,

and the current entity position) including state derivatives from the other dimen-

sion of the entity trajectory, while first and second-order DR employ 2 and 3 values

respectively from contextual dynamics of a single dimension. The high volume of

referenced historical data gives NR considerable advantage over the standard DR

packets in carrying information for extrapolation. Secondly, unlike the instanta-

neous derivatives in the standard DR packets which describe the current motion

status of the entity, the calculated NR velocity is aimed at a predicted future po-

sition over a relatively long time interval (10 simulation steps in this experiment),

which gives the NR velocity a greater tendency to keep information for long term

prediction. Figure 4.18 explains, from the information perspective, why the NR

velocity can accurately capture and compensate for expected changes of the entity

state over a long time interval, and outperforms standard DR with significant packet

transmission reductions.

By allowing for modeling error within human perception (controlled by the local

threshold error), PCMs make use of the incomplete information about the future

entity dynamic in the messages to trade consistency for less network traffic. In

other words, each ESU is responsible for modeling multiple steps of future entity

states within its functioning period. Generally a larger threshold means a longer

functioning period and additional information loss due to the outdated content in
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Table 4.6 Included information on the local host (sender)

Local threshold TLf (ms) Included information rate Rs,local (bits/step)

(units) DR NR DR NR

1st 2nd 1st 2nd

2 432 414 489 7.47 7.54 8.24

4 672 643 784 7.02 7.12 7.88

8 1032 986 1171 6.50 6.62 7.51

16 1612 1543 1723 5.91 6.05 7.15

32 2507 2421 2619 5.34 5.47 6.77

64 4176 4018 4284 4.76 4.84 6.35

the previous ESU, which leads to a looser inconsistency bound. On the local host,

the local functioning period of the message TLf begins from the time this message

is generated and ends at the generation of the next update. The information within

the local functioning period is the information included in the packet and ready for

transmission. The average local functioning period and included information per

simulation step Rs,local, as in (3.22) are summarized in Table 4.6. Figure 4.18(a) il-

lustrates the local information encapsulation under the strictest local error threshold

of 2 units. Due to the significant advantage over the other two types of packets, the

NR packet carries the most information. The information in the NR packet is less

vulnerable to the negative impact of extended functioning period compared to the

DR packets, due to the larger amount of information it carries. The second-order

ESU has an extra information source, and thus contains more information than the

first-order packet.

On the remote host, only outdated information can be employed to build the remote

model because the message has to go through the network and hence experiences

transmission delay. The remote functioning period can be seen as the local function-

ing period delayed by a period of the network latency (an example at network latency
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of 100ms is shown in Figure 4.18(b)). This delay further compromises information

quality in the message because the mutual information decreases as the prediction

span grows. The remaining information within the remote functioning period TRf is

the amount of information available for the remote extrapolation. Based on (3.23),

the remote available information Rs,remote in the three types of messages is com-

pared in Figure 4.19. It is then obvious from the information perspective that the

information in the NR packet is less vulnerable to the negative impact of network

latency compared to DR packets, due to the high quality of information capacity.

On the remote host, only part of the available information is actually utilized by

PCMs in reconstructing the remote model. Figure 4.20 compares the extrapo-

lated information I(x̃τ ;xτ ) over increasing prediction spans for the three prediction

schemes. It is interesting that in spite of the high values of the available informa-

tion, NR does not have that much advantage in utilizing the information over the

standard DR methods. The information extrapolated by NR extrapolation exhibits

noticeable decays with increasing prediction spans. This is because the extrapola-

tion equation in use under NR is as simple as the linear extrapolation after all, as

a result of the simplicity of integrating NR into the PCM architecture. The first-

order NR equation cannot fully interpret the delivered information. Therefore the

compensated trajectory loses details of the entity’s dynamics (Figure 2.7) and the

huge information advantage of the NR velocity is wasted. Overcoming this requires

a more complicated extrapolation algorithm. For example, the remote host could

employ a reverse process of the NR velocity prediction, by making use of the neural

network predictors trained on the local site to reconstruct the intermediate state

changes within the maximum prediction horizon based on the included information.

However, such an extrapolation algorithm will compromise the transparency of NR

to the remote host. In addition, it should be noted that NR does utilize more infor-

mation than standard DR over long time scales, when the prediction span approaches

and goes beyond the maximum prediction horizon of 550ms. This is also the time

scale at which the NR vector extrapolates through the estimated future state. The

information measurement captures, in a quantified way, the NR preference towards

long-term and averaged motion trend over instantaneous derivatives, and how this
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Figure 4.19 The available information rate Rs,remote on the re-
mote host for the three PCMs for increasing fixed latencies under
local thresholds equal to (a) 2, (b) 4 , (c) 8, (d) 16, (e) 32, and (f)
64 units.
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Figure 4.20 Results of measuring extrapolated information
I(x̃τ ;xτ ) in the ESUs of the three reckoning techniques, and the
amount of information utilized from an ESU within the remote
functioning period of the first-order ESU (TRf1), second-order ESU
(TRf2), NR ESU (TRfN ).

preference improves the NR performance in reducing update packets.

Although the second-order DR packet provides more information to the remote

reconstruction than the first-order DR packet (Figure 4.19), it only has a slight

advantage in extrapolating entity states over first-order DR on very short time scales,

due to the sensitivity to the instantaneous motion of the acceleration parameter.

For most of the prediction spans, second-order DR is no better than first-order

DR. Combined with the results presented in Figure 4.16, this result shows that

higher throughput (as second-order DR has larger packet size) does not guarantee

better consistency or information quality. The information in the message has to

be interpreted properly and efficiently. The information metric shows that with the

information available, there may exist some other way, other than the second-order

equation, to better utilize the information contained in the acceleration information

included in the second-order DR packet.

Finally, the extrapolated information Ru,remote within the remote functioning period,

as in (3.25), is the information about the true entity state that is reconstructed in

the remote model (an example at network latency of 100ms is shown in Figure 4.20).

Based on (3.25), the remotely extrapolated information Ru,remote in the three types
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Figure 4.21 The extrapolated information rate on the remote
host for the three PCMs for increasing fixed latencies under local
thresholds equal to (a) 2, (b) 4, (c) 8, (d) 16, (e) 32, and (f) 64
units.
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of messages is compared in Figure 4.21 for varying network latencies and local error

thresholds. Due to the imperfect extrapolation equation, NR only exhibits moderate

advantage over the standard DR methods at large thresholds or latencies. NR does

not deliver higher information rate at small thresholds and latencies because of its

preference towards a steady motion model that considers long-term state changes.

In such situations, the ESU are generally sent very frequently and the two standard

DR have the advantage in short-term predictions.

Comparing the remote information results in Figure 4.21 and the remote inconsis-

tency results in Figure 4.16, it should be noted that second-order DR exhibits worse

consistency than first-order DR at larger latencies, but their information metrics are

approximated equal. This indicates that although second-order DR diverges farther

from the true motion, the true entity state is almost equally predictable from the

second-order DR extrapolation as it is from the first-order DR extrapolation, be-

cause the information model views the problem from the perspective of predictability

rather than spatial similarity. Again, some better extrapolation equation might be

able to properly make use of the information in the second-order DR packet to give

a better spatial consistency.

Figure 4.22 shows the information utilization efficiency (by scaling the reconstructed

information by the corresponding available information in Figure 4.19) of the three

mechanisms for a threshold of 8 units. Beyond the inconsistency performance shown

by the traditional perspective, the information analysis reveals the potential of the

NR message to give further improvement in remote inconsistency control, as only the

lowest portion among the three mechanisms is used by the simple linear extrapolation

in the current NR algorithm. First-order DR, as the most widely deployed prediction

scheme, is the most information-efficient extrapolation equation investigated here.

Through performance comparison of three prediction schemes, namely first and

second-order DR, and NR, under a novel information model perspective, the fol-

lowing insights can be observed:
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Figure 4.22 Information utilization efficiency at a local threshold
of 8 units.

1. NR achieves a reduction in the number of update packets compared to stan-

dard DR, because it employs a large amount of information in producing the

predictive NR vector.

2. On the other hand, the simple linear extrapolation for the purpose of trans-

parency of integrating NR into standard DR framework hinders good utiliza-

tion of the available information. NR could be further improved by some

advanced extrapolation method.

3. First-order DR is the most information-efficient extrapolation in that most of

its delivered information is used to reconstruct the remote model.

4. Second-order DR does not properly utilize the additional information in the

acceleration parameter into building the remote model, and is thus unsuitable

for the game scenario investigated here.

In the information model, aspects of consistency maintenance, namely entity dy-

namics, prediction algorithms, threshold, and network latency are analyzed using

an integrated information metric. Factors causing inconsistency are viewed as in-

formation loss or reduction on information rate. From the information perspective,

PCMs can be viewed as a form of lossy information processing where, by allowing
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for local modeling error within the threshold, the original information rate H(x) of

the entity dynamic is reduced to the local storing rate Rs,local. The network latency

endured by the transmission adds further information loss and only an information

rate of Rs,remote arrives on the remote host, which is finally reconstructed at the rate

of Ru,remote. The reduced information rate indicates a corresponding reduction in

network traffic and inconsistency of the reconstructed remote model. In this way, the

information model treats the “Consistency-Throughput trade-off ” as a lossy video

compression problem.

4.4 Measuring Cross-Entity Dependence using the Infor-

mation Metrics

In the previous chapters and sections, the information model for PCMs is proposed

and implemented as a novel framework for measuring the utilization of the pre-

dictability in contextual dynamics of an entity to model the future entity state

with reduced network traffic. This approach focuses on the philosophy that drives

content-based predictive models where the past behavior of an individual object is

an indicator of its future actions (see Section 2.4.4).

Aside from the individual contextual information, the interactions among two or

more entities can also be explored to estimate user behavior. If several entities

are engaging with each other closely, the actions they take are highly coupled, or

dependent, to the behaviors of the others. Therefore, the state of one entity can

also be modeled from other entities’ behavior using collaborative approaches (Section

2.4.4). In this section, this cross-entity dependence is investigated and measured

using the information metric. Such an analysis has important potential implications

for research into entity state update (ESU) mechanisms within DIAs. Firstly, it

potentially allows for predictive models of human-user behavior to be developed and

used for remote entity extrapolation in the absence of transmitted ESU packets,

reducing network bandwidth usage and improving the consistency of a DIA. For

example, the state of a remote entity, once identified as closely interacting with
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the local object in a particular pattern, could be estimated from the local object

with high certainty without the state updates. Unlike the temporal dependence

measured in previous sections, such an approach can be seen as the intra-frame

prediction technique in video compression, where the value of a pixel is estimated

from neighboring pixels by exploring the spatial redundancy of the raw video (see

Section 2.5.1). Secondly, the information analysis of the cross-entity dependence

also expands the scale for the general use of artificial intelligence (AI) in DIAs,

particularly in networked multiplayer computer games [Laird 2002].

4.4.1 A Simple Taxonomy for Cross-Entity Behavior

The DIA scenario where the experiment is conducted is the same FPS game ap-

plication developed under TGE, only with some modification of the rules. Here, a

special “tag” item is located in the center of the map when the games starts, and it

remains in this location until picked up by one of the players. The goal of the game

for each player is to search for the tag and hold it for as long as possible, during

which time he/she is not able to fire his weapon. The other player could achieve the

possession of the tag by disabling the tag owner by firing weapon on him/her.

Based on research in related fields such as robotics and the multi-agent system

(MAS) domain [Balch 2000; Lungarella and Pfeifer 2001; Cohen et al. 2002], three

high-level categories of behavior with respect to the particular FPS application do-

main for the experiment, are defined: [McCoy et al. 2004; McCoy 2007]

• Attack/Pursuit: The goal of a player in this behavioral pattern is typically to

“disable” the opponent, as quickly as possible, in order to gain possession of

the “tag”. Players in such a state will most typically exhibit aggressive actions,

such as active chasing of the opponent coupled with a high degree of weapon

firing.

• Defend/Evade: The goal of a player in this behavioral state is to remain alive

for as long as possible in order to prevent the opponent from gaining possession

138



CHAPTER 4. INFORMATION MODEL IMPLEMENTATION

of the “tag” from him/her. Players in such a state will usually present passive

strategies, such as attempting to escape from an on-coming opponent or hiding

behind an available obstacle for an extended period of time.

• Wander/Search: The goal of a player in this behavioral state is exploration

of the environment, either searching for an item of interest (typically another

player or the “tag”) or to simply get familiar with layout of the virtual envi-

ronment.

4.4.2 Windowed Cross-Mutual-Information

The intensity of interaction between two players in the FPS game scenario is mea-

sured using mutual information between the state dynamics of the two entities.

Again, the information metric is implemented based on one dimensional motions,

namely the x-coordinates of the two entity dynamics, x(k) = {x(1), x(2), . . . , x(N)}

and y(k) = {y(1), y(2), . . . , y(N)}.

Due to the nature of the FPS application domain, the association between the two

variables over time is unlikely to be stationary. In other words, a set of variant

statistical properties could be expected during the dynamic interaction among two

human-users. It is then necessary to use a “windowed cross-mutual-information”

for the analysis of two time-dependent variables. The proposed algorithm is based

on the mutual information defined in (3.7), and uses a sliding window to extract

samples from the two time-series datasets. Delayed mutual information values are

then calculated between the two windows of samples over a range of lags. The

windowed cross-mutual-information produces a matrix of information values that

can then be used to examine temporal evolution of dependence among the two data

series, and allows for a greater and more intuitive insight into the interaction between

the variables.

The operation of the windowed cross-mutual-information is shown in Figure 4.23.

For the two single-dimensional motions x(k) and y(k) with the same length of N

samples, consider a window size W , a time lag l on the integer interval lmin ≤
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Figure 4.23 Selecting pairs of windows Wx and Wy from two
time-series for W = 5, i = 3 and (a) l = −1, (b) l = 0, and (d) l = 1.
(d) The results of the mutual information between each pair of
windows are stored into the results matrix, whose columns represent
the relative lag of the two windows and whose rows represent the
starting time of the window selected from x(k).

l ≤ lmax and an elapsed time index i from the beginning of the dataset. For each

i = lmax + 1, lmax + 2, . . . , N − lmax − W + 1, a pair of windows Wx and Wy can be

extracted from the original motions x and y respectively:

Wx = {x(i), x(i + 1), . . . , x(i + W − 1)} (4.7)

Wy = {y(i + l), y(i + l + i), . . . , y(i + W + l − 1)}

The windowed cross-mutual-information I(Wx;Wy)l,i between the two windows Wx

and Wy can then be calculated using (3.7).

As shown in Figure 4.23(d), the results of the mutual information between each pair

of windows are stored into a matrix, whose columns represent the relative lag of

the two windows and whose rows represent the starting time of the window selected

from x(k). Each element in the matrix stands for the measured dependence between

the two entities around the particular starting time i for the given lag l. The result

matrix represents the time evolution of the interaction between the two users. The

symmetry of mutual information in (3.8) guarantees that the result matrix of cross-

mutual-information will contain the same values, only in reverse order, when the

140



CHAPTER 4. INFORMATION MODEL IMPLEMENTATION

variables x and y are swapped.

4.4.3 Results and Analysis

Figure 4.24 and 4.25 present the results of a windowed cross-mutual-information

analysis conducted on two representative periods during the game play involving two

interacting players, numerically labeled as “X” and “Y”. Parts (a) within each figure

graph the two horizontal components of the spatial state for both users (graphed

as solid for player X, dashed for player Y). Solid and dashed vertical lines are su-

perimposed for player X and Y respectively to denote the instances of time when

the corresponding user is “disabled” due to exhausted health meter from damage

through weapons firings, which are graphed in parts (b) within the two figures. The

vertical lines in the weapon firings graphs show instances of time when the players

fired their weapons. Player X’s weapon firings are indicated by vertical lines graphed

above the origin of the graph while the vertical lines graphed below represent the

firings of player Y. The total number of their firing events is indicated by the vertical

height of the lines — for example, in Figure 4.24(b), player A fired his weapon for

31 times in total, while player Y fired 210 times.

Parts (c) and (d) within each figure present the results of the windowed cross-mutual-

information between the motions for both users along the horizontal components of

the spatial state. In each case, the ordinate axis stands for the relative lag in sec-

onds between the pairs of windows extracted from motions of player X and Y. The

abscissa axis represents the starting time in seconds of the current window Wx. To

assist visual inspection, the value of the measured cross-mutual-information between

the two extracted windows for the particular point in simulation time and the par-

ticular relative lag is toned by a color scheme shown by the side of each graph (dark

red for a high information result and dark blue for a low mutual information value).

Therefore, the colored density plot is a graphical representation for the results ma-

trices for windowed cross-mutual-information. These density plots characterize the

time-evolution of dependence between the two users’ behavior. The operation of

the windowed cross-mutual-information procedure is conducted using the window
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Figure 4.24 Windowed cross-mutual-information analysis per-
formed over a period of 160 seconds of a game involving two op-
posing players. (a) The two interacting entity motions with death
events. (b) Weapon firing events. Cross-mutual-information with
window sizes (c) W=10s and (d) W=20s.
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Figure 4.25 Windowed cross-mutual-information analysis per-
formed over a period of 160 seconds of a game involving two op-
posing players. (a) The two interacting entity motions with death
events. (b) Weapon firing events. Cross-mutual-information with
window sizes (c) W=10s and (d) W=20s.
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size W=10s in parts (c) and 20s in parts (d). Such window sizes give very small

sample sizes (about hundreds of data points) for information estimation. There-

fore the KDE algorithm is employed to generate sufficiently accurate results. The

maximum lag lmax is set at 4s throughout the experiment. In order to enable the

calculation of a cross-mutual-information value at every sample-index in the data,

the two time-series are padded with zeros at both the beginning and the end. Such

an action may reduce the absolute value of the mutual information due to the static

element introduced. It should be noted that the variation of the motions is preserved,

and the zero-padding does not impose much significant impact upon the purpose of

a qualitative investigation of cross-entity interaction of the work presented in this

section.

Visual inspection of the state and events data graphed in the figures reveals a large

number of intensely engaged sections of behavior between the two players. In par-

ticular, pronounced chase/evade patterns can be noticed in the following period:

• between frame 680s and 780s in Figure 4.24(a)

• between frame 820s and 840s in Figure 4.25(a)

• between frame 880s and 900s in Figure 4.25(a)

• between frame 940s and 980s in Figure 4.25(a)

Here, a player in possession of the tag is being actively pursued by the opponent.

Such interactions are usually coupled with intense weapon firings from the chasing

player. In general, the attack (pursuit) and the defend (evade) behaviors are seen to

occur in a coupled fashion. Such an observation is partly due to the “death match”

scenario governed by the rule of the FPS game, where the player in possession of the

tag cannot fire his weapon and typically takes a defensive strategy when engaged

with the opponent. Such an observation implies that the actions of the chasing

player is highly predictable from the evading trajectory of the player being pursued.

Sections of convergent behavior, possibly coupled with co-occurring weapon firing

events, can be found in time between frame 660s and 680s in Figure 4.24(a) and
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frame 850s and 870s in Figure 4.25(a). In such situations, both players are attempt-

ing to gain the possession of the tag item.

The windowed cross-mutual-information analysis provides easy-to-understand visual

information on the evolution of the dependence between the interacting players.

From an initial inspection of these density plots, as shown in parts (c) and (d) of

Figure 4.24 and Figure 4.25, abrupt changes occur among successive vertical sections

or slices of mutual information values (i.e. across the temporal dimension). The

mutual information in these areas varies over time, but remains relatively stable

over the set of relative lags. Such an observation indicates a notable change in the

intensity of the dependence calculated between the two players as time progresses,

implying that the interactions between them are clearly non-stationary because the

behavior of the players is highly coupled. Such vertical slices are pronounced at

times between frames 740s and 820s in Figure 4.24(c) and frames 820s and 880s

in Figure 4.25(c). It should be noted that the vertical slices pattern of the cross-

mutual-information, identified as blocks of constant color-zone, coincides with the

interaction section changes captured by visual examination discussed above (for

example, chasing/evading, approaching the tag, or exploring the space after rebirth).

Many of such sections denote time intervals that imply strong and stable dependence

between the two players that continues for an extended period of time. indicating the

information metric is capable of measuring cross-entity dependence and reflecting

the time-evolution of user interactions in real-time.

Variations of the cross-mutual-information along varying relative lags could also

be observed during many of the density plots. At the frames around 750s in

Figure 4.24(c), the mutual information between the two extracted windows of mo-

tions changes from blue (indicating a low mutual information less than 2 bits) at

the minimum lag −lmax to red (indicating a high information about 6 bits) at the

maximum lag lmax. While at the frames around 860s and 900s in Figure 4.25(c),

higher mutual information is identified around the zero-lag area (indicated by the

red color). Such pattern suggests that if the relative lag that produces the strongest

dependence between the players could be discerned, one may model the coupled be-

havior of one player in a predictive manner by using the value of the other. Parts (c)
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and (d) of each figure does not appear to identify any significant difference, imply-

ing that the dependence evolution between the two players remains largely invariant

over a temporal-interval of length 10s – 20s. However, it is also apparent that the

colored density plots generated under the longer window size are smoothed versions

of those generated for the shorter window size.

On a final remark, the work presented in this section provides preliminary results in

demonstrating the concept of employing the information measurements to investi-

gate cross-entity predictability. Such an idea is not a core contribution of the thesis

and shall be extended in future work.

4.5 Concluding Remarks

In this chapter, the information model for PCMs proposed in Chapter 3 is imple-

mented for various entity motions one may expect in DIAs. The philosophy un-

derlying this analysis is that predictability within contextual entity dynamics forms

the foundation for the estimation of a remote entity state using predictive schemes.

The importance of a quantified measure of such predictability and how this pre-

dictability could be transmitted and utilized by PCMs for both understanding and

improving PCMs cannot be overestimated. The investigation of PCMs using the

information model and metrics bring novel insights about consistency maintenance

and the trade-off between throughput and consistency.

In the first part of this chapter, the information characteristics of various entity mo-

tions, including synthetic motion models and collected datasets, are examined by the

information metrics. The analysis of these entity motions reveals that contextual en-

tity dynamics contain predictability about user behavior. Parameters describing the

entity motion status (for example, the estimated state derivatives) could be used for

extrapolating future entity states. Generally more parameters could embrace more

predictability and make the future entity motion more predictable. For deterministic

motions, a sufficient amount of contextual information could determine the entity

state in the future with complete certainty, while for non-deterministic motions only
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part of the uncertainty can be removed by exploring the temporal dependence. The

time-decaying feature of non-deterministic motions indicates the necessity of em-

ploying state update schemes to maintain consistency among dispersed participants

in DIAs.

In the second part of this chapter, the operation of PCMs is reorganized based on

an information analysis of the ESUs that synchronize the local and remote views of

a virtual world in which users interact. PCMs are considered a form of lossy video

compression under this perspective. Consequently, the information rate provided by

the ESUs is reduced during the local modeling, network transmission, and remote

extrapolation. The inconsistency arising in the process is due to the information

loss. A comparison among three PCMs suggests that NR outperforms standard DR

in that it takes the advantages of a large amount of historical data and the learning

ability of neural networks to produce an NR velocity that preserves high volume of

information for long-term prediction. In the meantime, the information analysis also

indicates that given the available information in the ESUs, there is a need for some

better extrapolation method that could utilize the information more efficiently and

further improve perceptual consistency without additional state update information.

Finally, the information metrics are used to measure cross-entity dependence dur-

ing user interactions in DIAs. Results from the windowed cross-mutual-information

analysis of entity motions from two interacting players demonstrate that the infor-

mation measurements is capable of reflecting the time-evolution of the dependence

between two entities due to changes of interaction patterns during the application.

Such quantified measure of cross-entity dependence validates the employment of col-

laborative user behavior modeling techniques that estimated entity state model in a

predictive manner based on the actions of other entities that are closely interacting.

Such approaches can be seen as exploring spatial inter-entity redundancy in video

compression.

In the next chapter, the concept is applied to a novel dynamic extrapolation model.

In this extrapolation framework, different extrapolation schemes are assessed using

the information model and the one that can deliver the highest information rate
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to the remote host under changing network conditions is dynamically selected as

the active model under use. The simulation results presented verify the utility of

such a dynamic framework for the further reduction of remote inconsistency when

compared to the use of a fixed DR approach.
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Chapter 5

An Information-Based Dynamic

Extrapolation Model for DIAs

5.1 Introduction

Chapter 4 presented the reinterpretation and evaluation of the operation of Pre-

dictive Contract Mechanisms using the information model. Concepts derived from

information theory are demonstrated to capture the general predictability exhibited

by the entity behavior and measure the efficiency of the extrapolation model to

deliver and utilize this predictability to build the remote entity state model. In-

consistency arising during the execution of a PCM is caused by information loss

introduced by the reduced number of ESUs, imperfect prediction, and limited net-

work resources. From such a perspective, PCMs are regarded as performing lossy

video compression. The chapter concludes with a discussion regarding the suitability

of the extrapolation model. It is shown that an extrapolation model is considered

better if it can utilize more of the information encapsulated by the received ESUs

and hence further reduce the uncertainty of future entity states.

Motivated by this analysis, a novel approach to manage data transmission for rate-

based PCMs, known as the Information-Based Dynamic Extrapolation Model, is
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proposed in this chapter. This approach presents the design of a conceptual frame-

work that minimizes inconsistency by optimizing the usage of the available network

bandwidth. The proposed model manages the data transmission to deliver to the

remote host as much information about the true entity state as possible. The in-

formation model is employed to measure the information utilization efficiency of a

set of extrapolation models. The proposed framework then dynamically switches

the extrapolation model and the packet rate to make the most information-efficient

usage of the available bandwidth. By doing this, the dynamic extrapolation frame-

work allows consistency control mechanisms to be network-aware, and thus combines

both the application and network layer factors in a joint optimization of consistency

maintenance for DIAs using PCMs.

Finally, the dynamic extrapolation model is implemented on two representative DIA

scenarios within simulated network conditions. The results show that this approach

can help optimize consistency under constrained and time-varying network condi-

tions.

5.2 Overview of the Information-Based Dynamic Extra-

polation Model

The proposed framework is designed for an optimized management of rate-based

PCMs, where ESUs are sent by the local host at a constant update frequency.

Such PCMs have direct control over the data transmission rate arising from state

changes communication. The information model and analysis (previously developed

for threshold-based systems) can be adapted to rate-based PCMs through the obser-

vation that the functioning period of an ESU is now the constant interval between

two update packets.
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5.2.1 Design Rationale

As described in Section 2.4.4, PCMs must be carefully adapted to the participating

user’s behavior and the underlying network conditions. Otherwise they could have a

negative impact on consistency maintenance for DIAs. Many existing works employ

an adaptive approach to manage PCMs. However, this “tuning” is typically based

on a single factor involving either the entity behavior in the application layer or

data transmission in the network layer. In the former case, the existing adaptive

extrapolation models dynamically choose an active extrapolation equation that best

suits the specific user behavior from a pool of candidates [Lee et al. 2000; Delaney

et al. 2003; McCoy et al. 2005]. The extrapolation model selection is solely based on

some application layer criteria that evaluate the candidates’ performance (such as

the average local prediction error over a period of time in the past). Such applica-

tion level parameters that control these adaptive approaches are independent of the

network in which they operate. From the information perspective, an extrapolation

model producing more accurate prediction makes better use of the predictability

of the entity behavior and hence utilizes more information in the ESUs. Typically,

different extrapolations require various amounts of data (such as entity position and

velocity) to be included and transmitted in the ESUs. But the impact of this varying

packet size and, in turn, the network traffic on the overall inconsistency is not clear,

as the performance of the network connecting the local and remote hosts involved

in the DIA is not considered. So, for example, an extrapolation model with higher

local prediction accuracy may cause heavier network traffic, causing the network

connection to become overloaded. The ESUs are then queued or even dropped,

causing the remote host to rely on severely outdated information to estimate the

entity state model. In this case, the extrapolation model causes more inconsistency

than it solves.

In the latter case, in order to optimize consistency, Marshall et al. [2008] manages

the update rate of a PCM such that the overall data transmission rate matches the

available bandwidth of the underlying network. In this way, the bandwidth usage

is maximized to control the inconsistency introduced by insufficient updates, and
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in the meantime the inconsistency caused by increased latency and packet loss on

overloaded network hardware is avoided. However, the maximized data throughput

alone cannot guarantee an optimized consistency without considering the suitability

of the prediction model for extrapolating the specific user behavior. If a poor ex-

trapolation model is used, the network bandwidth, even though in maximal usage,

may be wasted transferring meaningless data with little useful information that can

be extrapolated to estimate the true entity behavior.

In light of this analysis, there is clearly a need for a scheme that takes into considera-

tion both the application layer and network layer factors in optimizing inconsistency

arising from a DIA. The information model, as demonstrated in the previous chap-

ters, enables a quantified examination of the data transmitted with the ESUs with

respect to their capacity of delivering predictability about the user behavior to be

explored by a particular extrapolation model. The information metrics combine user

behavioral characteristics in the application layer and data transmission over real

networks. Such a measure provides the foundation for a joint optimization of the

application and network layer performance of PCM operation.

From the information perspective, the full information rate of the true entity motion

is reduced to the extrapolated information rate on the remote host by PCMs. The

extrapolated information is influenced by features of the extrapolation model and

limited network resources that introduce information loss and cause inconsistency:

the imperfect extrapolation model only utilizes a part of the predictability in the user

motion; non-zero network latency makes the information in the messages outdated

by the time they arrive on the remote host; limited network bandwidth constrains

the packet generation rate, and a low update rate implies that a message suffers

from more information decay before the next message arrives. In Figure 3.9, the

extrapolated information rate is the average information within the area constrained

by the information utilization I(x̃τ ;xτ ) and the remote functioning period TRf of

the ESUs. This graphical illustration of the information model perfectly shows how

the overall performance of a PCM is jointly subject to characteristics in both the

application and network levels.
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It has been demonstrated that for any single extrapolation model, the optimal up-

date packet rate can be determined such that the overall data transmission rate

matches the available network bandwidth [Marshall et al. 2008]. Transmitting ESUs

above or below this optimal rate will introduce extra unnecessary inconsistency due

to over or under utilization of the available network bandwidth. Such a maximized

bandwidth usage also leads to a higher information rate as extra information loss

due to an extended function period is avoided. However, an issue arises when the

adaptive approach can choose from several prediction methods to optimize the de-

livered information rate. For a simple example, consider two popular polynomial

extrapolation models, namely first and second-order dead reckoning. For many DIA

scenarios examined in Section 4.2.3, the second-order extrapolation model produces

higher information utilization than the first-order extrapolation. Generally, such an

information advantage for an extrapolation model comes at the price of a larger

volume of motion parameters in the resultant ESUs.

For a given available network bandwidth, the update rate of the second-order ex-

trapolation must be reduced accordingly to maintain the optimal data rate under the

increased packet size. Also, the larger packet size leads to higher delay in transmit-

ting the ESUs through the network connection. Figure 5.1 illustrates the situation

by comparing the functioning periods of the two extrapolation models. Although

second-order DR extrapolates more information than the first-order equation, the

extra functioning period and the higher latency make it suffer more from out-of-date

and lost information while the first-order extrapolation has received a new packet

with updated and higher information rate. Whether or not the faster update rate of

the first-order extrapolation can compensate for the lack of the acceleration infor-

mation in its ESUs depends on the information decay of the two extrapolations and

their functioning periods. In changing network conditions, both the packet rate and

the extrapolation model must be adapted in order to deliver the highest information

rate to the remote entity state model.

In the next section, an information-based extrapolation scheme that dynamically

adjusts both the extrapolation model and update packet rate to optimize the remote

information rate is proposed.
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Figure 5.1 Illustration of the information trade-off between
packet size and update rate. The larger packet of the second-
order extrapolation model (due to the acceleration data) suffers
from higher latency and a longer functioning period, which lead
to further information loss that could offset the extra information
brought by the additional parameter.

5.2.2 Information-Based Dynamic Extrapolation Model

The Information-Based Dynamic Extrapolation Model is designed to minimize the

level of inconsistency that can arise in a peer-to-peer or client-server DIA using rate-

based PCMs. In such scenarios, the last mile link of the user’s internet connection

is typically the bottleneck link that constrains the consistency maintenance the

most [Jehaes et al. 2003; Dube et al. 2005]. The diagram in Figure 5.2 presents

the operation of the proposed model. The model is a closed-loop consistency control

technique that works in an Observation-Feedback-Adjustment manner. It operates by

inferring the information utilization of the extrapolation models and the state of the

bottleneck connection. Such information is then used in two ways. First, it is used

to determine an optimal update packet rate for each extrapolation model in order to

maximize the usage of the resources available on the underlying network connecting

hosts. Second, it is used to select the extrapolation model that produces the highest

information rate for the remote entity model, so that the data transmission between

participants is more information-efficient.

The model consists of five major components:

(1) A pool of i candidate extrapolation models given by M = {m1,m2, . . . ,mi},
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Figure 5.2 Illustration of the Information-Based Dynamic Ex-
trapolation Model.

and update parameters (such as state derivatives) in their ESUs U =

{u1,u2, . . . ,ui} used for these prediction models, respectively. The set of ex-

trapolation models also define the update packet sizes PS = {ps1, ps2, . . . , psi}

for the candidate models. A default active extrapolation model m0 is chosen

from M for the application to start with.

(2) A run-time estimation scheme that monitors network conditions on the appli-

cation layer’s “logical connection” for each user. The logical connection is an

application layer connection that is maintained between the server and each

client in a client-server architecture, or between each pair of peers involved

in a peer-to-peer architecture. This is a common construct in DIAs that em-

ploy UDP as a transport protocol. Each logical connection represents one flow

of data for one host and multiple logical connections may be aggregated to

transmit data over the same physical link.

The network condition estimator is responsible for producing estimation of the

available bandwidth AB of the logical connection on the bottleneck link and

the one-way network latency La from the local host to the remote host. The

network conditions estimator works as an interface for the dynamic extrap-

olation framework to the underlying network and is a relatively independent

component in the proposed approach. Any estimation algorithm that gives

the two indicative characteristics of the state of the network resources can be

incorporated in the Information-Based Dynamic Extrapolation Model. The

design of such an estimation scheme is beyond the scope of this chapter and is
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not discussed in detail. A method of estimating the available network band-

width using latency trends can be found in [Marshall et al. 2008]. It should

also be noted that since the network conditions are estimated for each logical

connection separately, the dynamic extrapolation model operates on a per-user

basis. It allows for multiple hosts under the heterogeneous Internet to take

different strategies to optimize consistency according to their own situations.

(3) An update rate control scheme based on the available bandwidth. The optimal

update rate PRi for each candidate is determined so that the bandwidth usage

is maximized and in the meantime the available resources on the bottleneck

link is not overloaded. Such an optimal update rate is determined by (5.1):

PRi =
AB

psi
. (5.1)

(4) An information model that characterizes the information utilization of each

candidate extrapolation model. The information model is key to the operation

of the dynamic extrapolation model, as it examines the capability of each pre-

diction model to extrapolate information about the true entity motion to build

the remote entity state model, and how this extrapolated information decays

with time. The information model measures the suitability of using the ex-

trapolation models for the specific user behavior, and combines the application

layer and the network layer factors by measuring the amount of information

about the true entity motion that is extrapolated from the transmitted data.

Along with the estimation of the current network condition and the optimal

update rate, the remote information rate R
(i)
u,remote that each extrapolation

model mi can produce is estimated by (3.25), in which the functioning period

T
(i)
Rf of mi is now the constant update interval determined by (5.2):

T
(i)
Rf =

1

PRi
. (5.2)

The information model is trained in an off-line manner from pre-recorded tra-

jectory on the local host and is transparent to the remote host. Thus the

framework is easily integrated with current PCMs. The active extrapolation

model choices made on the local host must be notified to the remote host.
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However, such switching decision communication is negligible compared to the

normal state updates in the sense of network traffic caused, and is therefore

not considered in the following discussion.

(5) An extrapolation selection, based on the estimated information rate, chooses

whichever extrapolation model that produces the highest information rate un-

der the current network conditions as the current active extrapolation m∗:

m∗ = arg max
mi

R
(i)
u,remote. (5.3)

Ideally, in the face of network condition changes, a switch of the active model

will always occur when one of the inactive models is seen to be outperforming

the rest. However, there are two concerns that have to be considered for

smooth user perception in practice. Firstly, the extrapolation model change

is deactivated within a time-out TO after the previous model switch. Such

an “inhibited” phase is designed to avoid excessive switchings in response to

transient network condition fluctuations. This can also be done by applying

a smoothing operator to the network condition measurement. Secondly, to

avoid a sudden change in consistency level at the moment k0 of extrapolation

model switch, a gradual convergence algorithm described in (5.4) is defined

for a smooth conversion to the new active model:

x̂(k0 + k) = (1 −
k

TC
) · m−(u−) +

k

TC
· m+(u+) for k ≤ TC , (5.4)

where TC is the convergence period in simulation steps, m−(u−) is the state

predicted for the current step k0 + k by the previous model using the last

received message before the switch, and m+(u+) is the prediction made by the

new active model using the most recently arrived message.

In the next section, for the purpose of illustrating the framework, the performance

of the Information-Based Dynamic Extrapolation Model is evaluated through ex-

periments run on two different user motions. The data used are representative of

those entity motions for which higher-order extrapolations extrapolate more infor-

mation, and there exists a trade-off between “small-packet-fast-update” and “large-

packet-slow-update” schemes, as illustrated in Figure 5.1. The results presented
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demonstrate that the proposed technique can accurately choose the extrapolation

model that gives the best information rate and consistency under changing network

conditions.

5.3 Model Implementation

For illustration purposes, the network conditions estimation is implemented merely

as two control parameters, namely bandwidth and latency. In realist network en-

vironments, an actual estimator would be necessary, but the simple approach used

here does not affect the applicability of the Information-Based Dynamic Extrapo-

lation Model to the real Internet environment. The information model just needs

the available bandwidth and latency to measure the information loss in transmit-

ting data over a constrained network connection. Any specific estimation algorithm,

however, is independent of the operation of the dynamic extrapolation model and is

therefore not discussed in detail.

5.3.1 Experiment Set Up

The two entity motion datasets to evaluate the proposed framework are generated by

a First-Person Shooter (FPS) game [McCoy et al. 2007] and a racing game [Marshall

et al. 2006] developed using the same Torque Game Engine as in Section 4.3, but

with different scenarios and rules. The plan views of the two game environments

are shown in Figure 5.3. In the FPS game, the goal of the players is now to disable

the opponent (a programmed robot) by firing their weapons. The disabled object

(the player or robot) is reborn at a random location and resumes the game. The

programmed robot is constrained to, and moves constantly along, the defined path

shown in Figure 5.3(a). The reactive robot is provided with a “sensor field” with a

pre-defined radius. If an approaching human player enters this field, then the robot

will “attack” the player. The entity state is recorded at 10Hz for 1600s, and the

motion is re-sampled at 50Hz by interpolating the recorded data using cubical spline

interpolation. This higher sample rate is necessary for the experimental studies to
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(a)

F i n i s h
(b)

Figure 5.3 Plan views of part of the environments for (a) the

FPS experiment and (b) the racing experiment.

consider a wide range of update packet rates that are commonly seen in DIAs.

This dataset is considered representative of those application scenarios in which

the simulation of realistic physics plays a key role, since cubic interpolation provides

natural continuity. In the racing game scenario, an entity’s movement is constrained

as a consequence of the defined racing course in the environment. The goal of the

players is to be the first to past the finishing line. The racing motion is recorded

in repeated game sessions at 50 samples per second for a total period of 1600s. As

throughout this thesis, the results presented are based on the x-coordinate x(k) of

the motions.

The first half of each dataset is used to build an information model for each of the

candidate extrapolation models using (3.24) to measure the amount of information

about the user behavior that can be used by the extrapolation models. The second

half of the datasets are used as test data to evaluate the dynamic extrapolation

model.

The network conditions in the experiment are set up for a simplified but represen-

tative network environment for DIAs transporting synchronization messages using

UDP. Figure 5.4 shows an overview of the architecture of a current day WiMax access

network, as a representative wireless network environment which covers a wide rage

of area and allows for a fairly large number of participants (namely human-users).
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Figure 5.4 An overview of the network topology emulated in the
experiment.

A DIA host represents a separate host machine through which a DIA participant

interact in the virtual environment. Each DIA host maintains a separate logical con-

nection to another. Typically, each logical connection from a DIA host connected

trough an Access Point (AP) and is then multiplexed to a base station over a single

broadband connection, also known as the last mile link. The base station is then,

through the ISP network, connected to the core of the Internet, which has a much

higher bandwidth. Therefore the upstream link of the broadband connection, with

the typical bandwidth value around 200kbps [Imagine 2010], is the bottleneck link

of the network. Considering the possible multiple participants behind a last mile

link, due to the large number of users involved in a DIA, and cross traffic from other

applications such as Internet video, the available bandwidth AB for a single logical

connection for a DIA host is set to be no more than 20kbps. The maximum update

packet rate of the applications is 30 Packet Per Second (PPS). These settings are in

line with general DIA traffic [Färber 2002; Feng et al. 2005; Zander and Armitage

2005; Harcsik et al. 2007].

As the dynamic extrapolation model operates by controlling the overall data rate to

match the available bandwidth, there should be no queuing on the logical connection

for the DIA instance on the bottleneck link. As shown in (5.5), the one-way network

latency La from the local host to the remote host is modeled as the sum of packet

transmission delay LT on the bottleneck link and a delay Lf in passing the packets
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Table 5.1 Network condition settings

Time (s) 800 880 960 1040 1120 1200 1280 1360 1440 1520

AB (kbps) 15 8 2 1 7 8 10 12 10 10

Lf (ms) 20 100 200 400 500 800 800 600 120 100

through the network nodes outside the last mile link. Lf refers to all other factors

in the overall latency, which are independent of the bottleneck bandwidth changes.

Although these elements are not constant values, they are collectively modeled as a

fixed delay in the experiment.

La = LT + Lf =
psi

AB
+ Lf . (5.5)

Table 5.1 shows the changing network conditions given by the two control parameters

AB and Lf in the test path simulation, reflecting wide variation of the realistic

network [Pantel and Wolf 2002a; Armitage 2003; Claypool 2005].

The rest of the experiment is set up as follows. The set of candidate extrapolation

models consists of the two most widely employed PCMs: first and second-order DR.

The state motion status parameters are entity position x, velocity v for the first-order

extrapolation and an additional acceleration a for the second-order extrapolation,

each recorded in a data unit of 8 bytes. Considering the overhead to these values in

a UDP packet, the packet sizes for the two extrapolation models are 44 bytes and 52

bytes respectively and are representative of typical state updates in DIAs [Färber

2002; Feng et al. 2005; Harcsik et al. 2007]. For this particular one-dimensional

example, the effect of the packet overhead is large. In a real world application with

many more parameters (e.g., motion status from other dimensions), packet overhead

would be a smaller fraction of total bandwidth usage and the change from the first-

order to the second-order parameter would likely have a larger effect. The candidate
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Figure 5.5 Packet structure for the two extrapolation models.

set is summarized in (5.6) and the packet structure is shown in Figure 5.5.

M = {m1 = 1st-order DR,m2 = 2nd-order DR},

m0 = m2,

U = {u1 = [x, v], u2 = [x, v, a]}, (5.6)

PS = {ps1 = 44 bytes, ps2 = 52 bytes}.

The determination of the model switching time-out TO mostly relies on the specific

connection. In typical residence broadband connections, a short change that lasts

for only seconds is regarded as transient [Marshall et al. 2008]. Therefore TO is set

to be 5 seconds in the experiment. The convergence period TC is arbitrarily set to

be 2 seconds in this conceptual experiment, since there is no well-accepted threshold

for user perception of model convergence.

5.3.2 Extrapolation Selection Based on the Information Model

The key factor of the dynamic extrapolation model is the information model that

serves as a performance measurement to select one of the candidate prediction mod-

els delivering the highest information rate to the remote host under changing network

conditions. The information model characterizes how much of the predictability of

the true motion is extrapolated from state derivatives by an extrapolation model. In

the experiments, the training and test data each have a sample size of N = 40000.

From the experimental studies in Section 4.3, such a sample size is unlikely to pro-

duce accurate information estimation using the simple algorithm. Therefore the

162



CHAPTER 5. AN INFORMATION-BASED DYNAMIC EXTRAPOLATION MODEL FOR DIAs

KDE algorithm is employed in this section to evaluate the information characteris-

tics of the candidate extrapolation models.

Using (3.24), the extrapolated information by each of the two candidate models

for increasing prediction spans is compared in Figure 5.6. For typical user motion

from the FPS game (Figure 5.6(a)), an average amount of 8.8 bits data is needed

to fully determine an entity state, of which about 7 bits can be extracted from the

current second-order packet using standard second-order DR to estimate a future

state at 200ms later. The future state can never be determined completely by the

extrapolation equation because of the information that is missing. Consequently,

inconsistency arises from uncertainty. As expected, including the additional accel-

eration does give the second-order extrapolation some advantage over the first-order

equation. The second-order extrapolation utilizes more information in most of the

prediction spans presented, indicating that the higher-order derivative provides a

notable amount of knowledge about the entity states over short time periods. How-

ever, the information extrapolated by the second-order equation decays faster due

to the sensitivity of the higher-order derivative to changes in motion status, so the

first-order extrapolation is generally expected to be preferred for predicting future

states on longer time scales. It is worth noting that the second-order extrapola-

tion utilizes more information than the first-order method over an extended range

of prediction spans, thus demonstrating that the interpolation (Section 5.3.1) has

little effect on the overall motion since it only impacts the data in time scales under

100ms. The information metric results reflect the characteristics of human actions

in the game.

From the measured extrapolated information in Figure 5.6(b), the motion in the

racing game is generally smooth and stable since it requires only less than 7 bits

data per simulation step to fully describe the entity state. In this scenario, players

only move within the designed course and thus their motions are largely predictable.

This feature is reflected by the information metric that first-order DR exhibits nearly

equal predictability as second-order DR for short prediction spans. In contrast to

the FPS motion, second-order DR exhibits information advantage over longer time

scales. In the racing scenario, with a static finishing point and the constrained path,
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Figure 5.6 Extrapolated information by the two candidate mod-
els for (a) the FPS motion and (b) the racing motion.

the entity motion would typically involve steady accelerations over extended periods.

In spite of the disadvantage in utilizing information at specific time instances, the

first-order extrapolation model may compensate for the average information rate
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by faster update generation. The overall information rate provided by the synchro-

nization messages and the corresponding extrapolation model also depends on the

network conditions. For a given available bandwidth and fixed latency, the over-all

information rate can be estimated from the information model, and the dynamic

model switches the active extrapolation model to that which produces the higher

information rate. Figure 5.7 shows the selected active models for varying bandwidth

and latency settings based on the trained information models for the two motions.

To put the data rate setting in some perspective, bandwidth is presented by packet

rate (in PPS) instead of absolute bandwidth value.

For the FPS motion, the second-order extrapolation model is generally preferred

in high bandwidth and low latency situations. The information advantage of the

second-order update message, which diminishes with increasing prediction spans,

comes with the cost of a larger packet size. Unless the packets are transmitted to

the remote host in time, the additional information and traffic load will be wasted. In

low bandwidth and high latency scenarios, the first-order extrapolation is preferred

because it provides simple but stable motion trends that outperform the sensitive

higher-order derivative information in longer term prediction. For the racing mo-

tion, on the other hand, second-order DR is generally the favorable model due to its

extended information advantage over first-order DR. However a few exceptions can

be found in situations with high bandwidth and low latency, where the functioning

periods of the update messages reside in small prediction spans and the difference

in information extrapolation between the two models is negligible. First-order DR

is preferred for higher update rates. The contrast between the two game scenarios

demonstrates that the information measurement is capable of capturing different

types of user behavior and combining this factor with network conditions in making

the decision on selecting the best extrapolation model. In the following experi-

ments on the test motions, Figure 5.7 is used as look-up tables for selecting the best

extrapolation model under different network conditions.

To evaluate the information model, the Information-Based Dynamic Extrapolation

Model is carried out on the test datasets using the changing network settings listed

in Table 5.1. The varying available bandwidth and latency reflect variations in
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Figure 5.7 Extrapolation choices based on information rate un-
der varying network conditions for (a) the FPS motion and (b) the
racing motion.

network conditions due to players that share the same last mile link joining in and

leaving, and/or cross-traffic from other applications. Figure 5.8 shows the impact

on network conditions of transmitting either of the two types of ESUs over the

bottleneck connection. For any given bandwidth, the overall data rates of the two
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extrapolations are tuned at the same level as the available bandwidth to send as

much data as possible and in the meantime avoid queuing delay. Therefore, it is

obvious from Figure 5.8(b) that the second-order extrapolation always sends update

packets at a rate about 20% lower than the first-order extrapolation because of its

larger packet size, except in the cases where the bandwidths are high enough to allow

both extrapolations to update at the highest rate of 30 PPS. Figure 5.8(c) shows

the overall latency modeled in (5.5). The second-order extrapolation suffers from

higher latencies than the linear extrapolation since it takes more time to transmit the

larger packets through the bottleneck connection. The impact of including more data

in one packet is thus clear from Figure 5.8. The second-order extrapolation faces

negative impact on both update rate and latency as a result of the larger packet size.

The overall performance of the two extrapolations under limited network resources

depends on the trade-off between packet size and update rate.

The impact of varying the active extrapolation model and packet rate on the remote

information rate and inconsistency is shown in Figure 5.9 and Figure 5.10. First,

for each of the 10 sections with different network settings, an active extrapolation

model is selected, based on the trained information model, to deliver the higher

information rate (Figure 5.7). The selected model is shown in parts (a) of Figure 5.9

and Figure 5.10 with numbered notations ( 1© for first-order DR and 2© for second-

order DR). Along with the average information rates rebuilt on the remote host by

constantly using either of the two candidate models, the information rate of the

dynamic model is also highlighted. The extrapolation model selection based on the

trained information model (the numbered notations) is consistent with the actual

information characteristics of the test data, and the dynamic model can accurately

select the extrapolation model with the higher information rate under changing

network conditions.

Parts (b) of Figure 5.9 and Figure 5.10 compare the remote inconsistency arising

from using the two fixed extrapolation models and the dynamic model. Remote

inconsistency (drift distance defined in (4.6)) is measured by simulation units, and

averaged over every second. The interaction of the inconsistency that arises from

employing either of the two fixed extrapolation models justifies the motivation of
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Figure 5.8 (a) Available bandwidth, (b) packet rate in PPS, and
(c) overall latency as experienced by the test path simulation with-
out the dynamic extrapolation model.

the dynamic extrapolation model because neither of the two fixed models minimizes

remote inconsistency for all the network condition changes. Under changing network

conditions, the 20% higher update rate of the first-order extrapolation could lead to

contrary results in information rate and inconsistency compared to the second-order

extrapolation. This also depends on the user behavior (evidence of such contrast
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Figure 5.9 Comparisons of (a) average information rate, and (b)
remote inconsistency among the two fixed extrapolation models and
the dynamic extrapolation model for the FPS motion. A high-
lighted section of (b) is shown in (c).

can be found between frames 1040s and 1120s in Figure 5.9(b)). It is thus evident

that by dynamically switching to the extrapolation model that produces the higher

remote information rate, the proposed technique minimizes remote inconsistency for

varying network conditions. The dynamic extrapolation model accurately chooses

the extrapolation model that produces lower inconsistency and thus outperforms

statically employing either of the two fixed extrapolation schemes. For the purpose of

clarity, model switchings over highlighted periods are shown in parts (c) of Figure 5.9

and Figure 5.10.
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Figure 5.10 Comparisons of (a) average information rate, and
(b) remote inconsistency among the two fixed extrapolation models
and the dynamic extrapolation model for the racing motion. A
highlighted section of (b) is shown in (c).

It is worth noting that in Figure 5.9(c), although the first-order extrapolation is

selected to be the active model for the period starting from 1200 second, the second-

order extrapolation gives lower inconsistency for a short period around 1210 second.

The dynamic extrapolation model fails to pick this transient exception because the

information-based model selection is the optimum in a statistical sense. It does

not guarantee the best consistency at every time instance, but provides the most

probable best model for long time implementation. Similar situations can also be

found in Figure 5.10(b).

The core of the proposed Information-Based Dynamic Extrapolation Model is using
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an information model to measure the remote information rate as a performance

metric and to dynamically select the optimal extrapolation model for the underlying

network conditions. The proposed information-based hybrid framework uses the

information model to relate predictability in the user behavior and transmitted data,

and hence combines both the application and network layer elements in adjusting

system parameters. Such an approach guarantees that the usage of the available

network bandwidth is maximized and the highest information rate about the true

entity motion is reconstructed by the selected extrapolation method that best suits

the user behavior.

Aside from minimizing the remote inconsistency, the Information-Based Dynamic

Extrapolation Model also helps DIA designers to attain novel insights in examin-

ing and improving consistency maintenance. The information metric of the syn-

chronization messages takes into consideration both factors that affect consistency

maintenance, namely the suitability of the extrapolation model and network con-

ditions. If an extrapolation model gives poor remote consistency, the information

measurements can help identify whether the problem is the extrapolation equation

failing to utilize the predictability in the entity motion (a fast information decay)

or a poor network connection that cannot support the necessary data transmission.

In the former case, improving the underlying network connection alone would be

of little help. One could either replace the derivatives in the messages with some

parameters containing more information about the entity state without changing

the extrapolation algorithm (such as in the case of Neuro-reckoning [McCoy et al.

2007]), or switch to a better algorithm that extrapolates the predictability into the

remote state model.

The dynamic extrapolation framework proposed in this chapter focuses on DIAs

where the avatar motion plays a central role and the periodical state updates con-

stitutes the major part of the overall game traffic. The entity state that evolves

continuously with the passage of time is predictable from contextual dynamics. The

impact of a lower update rate (i.e. delaying an update) could be compensated for by

including more information in the packet to, possibly, reduce prediction error. On

the other hand, a higher update rate could also make up for a reduced amount of
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information per packet. It should be noted that critical events such as a car crashing

or explosions are, in real systems, updated by non-periodical event updates. These

are relatively rare in terms of network traffic caused and are thus not considered in

this chapter.

In the experiments presented, the second-order extrapolation exhibits advantages

over the first-order extrapolation in information utilization, and the active extrapo-

lation model changes with network conditions. For the first-order extrapolation, the

disadvantage of less information per packet can be compensated for by a faster up-

date under some network conditions. However, the different results in active model

selection for the two game motions (Figure 5.7) indicate that the overall outcome

of the trade-off between packet size and packet rate depends on the information

characteristics of the particular user motion, and is application-dependent. The re-

sults presented here are representative of applications where more accurate physics

are integrated for higher fidelity simulation (such as aircraft simulations and games

that incorporates real world physics). These applications would thus have similar

second-order dynamics on the interpolation scales of interest to human perception,

and the effects of the player manipulations probably only manifest themselves on

longer time scales. For these applications, the second-order extrapolation model

would have an information advantage, as shown in the experiment.

However it should be mentioned that including more data in the update packets does

not always guarantee better consistency [McCoy et al. 2007], because whether or not

a higher-order extrapolation can utilize the additional information in the messages

depends on how well the model fits the entity motion. It is then possible that for

some application types a simple prediction method, such as the linear model, would

utilize more information and therefore be always selected as the active model since

it provides the higher information rate without causing heavier traffic load. In such

cases employing the proposed dynamic framework, which would make a correct but

static choice of the active model, seems unnecessary.

In the experimental results presented, the information model built from the training

data exhibits a good generalization on the test data. Using the information model
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built from the training motions, the dynamic extrapolation model can precisely pick

the active extrapolation model that gives higher information rate on the test mo-

tion data. This provides a good indication that the information model successfully

captures the dependence or predictability of the entity motion. Generally speaking,

in order for the trained information model to be used in the dynamic extrapolation

model, the application state dynamic is required to be stationary so that the train-

ing and test data may be considered statistically homogeneous. This is unlikely to

be problematic for most DIAs, because the intensive user movement over long time

periods means that the limited spatial environment is well explored and therefore

sufficient data can be collected for accurate information calculation.

5.4 Concluding Remarks

The first part of this chapter presents the design of a novel mechanism for control-

ling PCM operation, referred to as the Information-Based Dynamic Extrapolation

Model. The model is designed to minimize inconsistency, which is one of the key per-

formance requirements of a DIA, through maximizing the efficiency of information

communication of the data transmission. It operates by evaluating the suitability

of a set of candidate extrapolation models using the information model, and ad-

justing the active extrapolation model and its data transmission rate to match the

inferred network conditions. Such an approach guarantees the highest information

rate about the true entity motion is delivered to the remote host for producing the

entity state model.

The most critical component of the proposed framework is the information metric

that measures the information utility of the candidate extrapolation models. The

information model of PCMs quantifies the amount of information that is extrapo-

lated by a predictive scheme from the synchronization messages transmitted. Such

information provides predictability for the future states of the entity. The infor-

mation model provides an analytical measurement of whether the data included in

a message is worthy of the network traffic load it causes. Therefore it combines
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characteristics of the user behavior and networked data transmission, and allows for

a joint optimization of PCM operation.

In the second part of this chapter, the performance of the Information-Based Dy-

namic Extrapolation Model is analyzed through experimental studies on two DIA

scenarios under simulated network conditions. Results show that by maximizing

the information efficiency of the data transmission on the bottleneck link, the Infor-

mation-Based Dynamic Extrapolation Model can minimize the level of inconsistency

arising in the application. The active extrapolation model selected under a specific

network condition also varies among entity motions that exhibit different information

characteristics. Although only two polynomial extrapolation models are examined,

the proposed dynamic extrapolation model is a general framework that can include

any form of extrapolation algorithm.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, a novel information model that employs an information theoretic

approach has been introduced for the analysis of Predictive Contract Mechanisms

— a group of widely deployed techniques designed to reduce network traffic in a

DIA based on the remote extrapolation of entity states. In this chapter the most

important issues and the primary contributions that are presented in this thesis are

reviewed. Some future directions for research based on the results are also discussed.

6.1.1 The Information Model for PCMs

This thesis has proposed the novel concept of using information theory to evaluate

the operation of PCMs. A theoretic examination of such techniques is introduced

with respect to their efficiency in communicating reduced state information in return

for perceptually tolerable inconsistency across a DIA. In particular, the information

model introduces the use of concepts derived from information theory to quantify

the information generated by the user behavior and transmitted by PCMs to the

remote host. This information measures the amount of predictability that can be

used to estimate the remote entity state model from infrequent ESUs through the
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use of predictive schemes. The proposed information model provides a theoretical

foundation for a reinterpretation of PCMs as a form of lossy video compression

and further optimization of PCMs in resolving the trade-off between consistency

and throughput. Simulations were performed to validate the proposed approach in

realistic DIAs.

In developing and subsequently implementing the information model, a number of

observations have been made from which a number of conclusions can be drawn:

1. The entropy of an entity motion trajectory provides a quantified measure of

the minimal amount of data required to eliminate the uncertainty of the entity

state and fully determine its value, given no prior knowledge about the motion

(such as historical trajectory or user behavior patterns).

2. The mutual information measurement I(u;xτ ) between the instantaneous mo-

tion status (e.g. entity position, velocity, etc.) in an ESU and the entity state at

varying future time instances enables a quantified evaluation of the predictabil-

ity of the user behavior. This predictability, as defined in (4.1), indicates the

extent to which the uncertainty of the entity state at a future time could be

reduced through efficient exploration of the knowledge encapsulated in the

current motion status. Generally, including more motion status in an ESU

improves the predictability. However, the predictability decays with increas-

ing prediction spans, which is why the remote host needs continuous ESUs to

maintain consistency.

3. The mutual information I(x̃τ ;xτ ) between the true entity state and the mod-

eled state measures the amount of predictability that is actually utilized by

an extrapolation model to build the remote entity model. This predictability

provides a quantified evaluation of the reduction in data transmission due to

the use of statistical temporal dependence within the user behavior. Unlike the

encapsulated predictability, a larger ESU with more state derivative informa-

tion does not guarantee higher extrapolated predictability. The extrapolation

model under use must properly capture the user behavior patterns to utilize

the delivered information efficiently.
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4. The concept of the functioning period of an ESU enables a life-cycle analysis

of the transmitted data and incorporates network latency, the key inhibiting

factor that DIAs must combat, into the information model. Network latency

imposes negative impact on consistency maintenance by making the informa-

tion in an ESU outdated by the time the update arrives on the remote host,

and thus causing information loss.

5. The information model is based on the statistical dependence between the

content of the ESUs and the true or modeled entity state, and is independent

of the details of operation of the extrapolation model. Therefore the informa-

tion model is applicable to any form of PCMs including standard and novel

techniques, i.e. it is model agnostic.

6. The mutual information measurement of motion trajectories of different enti-

ties quantifies the intensity of cross-entity interactions from the information

theory perspective. This information reveals the predictability between closely

interacting entities and provides a foundation for using such statistical rela-

tions to further reduce data transmission in a DIA, by predicting the state of

an entity from the state of another object identified as closely coupled with

the former.

The primary conclusion reached during the design and development of the informa-

tion model can be summarized as an analogy between PCMs and video compression.

Namely, from the point of view of exploiting predictability in the user behavior, the

operation of PCMs can be seen as a form of information reduction and compression:

by allowing for local modeling error within the threshold, the original information

rate H(x) of the entity dynamic is reduced to the local storing rate Rs,local; the

network latency endured by the transmission adds further information loss and only

an information rate of Rs,remote arrives on the remote host, which is finally recon-

structed at a lower rate of Ru,remote by the imperfect extrapolation model. This

analysis enables separate investigations of each factor that contributes to inconsis-

tency arising from the execution of a PCM. Similar to the situation in video com-

pression, the reduction in data transmission using PCMs comes from a mixture of
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lossless compression (the utilized predictability) and lossy compression (irreversible

information loss induced by the local error threshold, network latency and imper-

fect extrapolation). The information loss is reflected in inconsistency arising across

the DIA. Such an information perspective facilitates DIA designers in attaining a

deeper understanding of PCM operation in terms of an efficient exploitation of the

predictability in the user behavior. It also aids them in developing future improve-

ments of PCMs for better consistency maintenance in a DIA.

6.1.2 The Information-Based Dynamic Extrapolation Model

This thesis has also proposed the concept of a novel adaptive multiple-model ap-

proach for minimizing inconsistency across a DIA using rate-based PCMs. In par-

ticular, the Information-Based Dynamic Extrapolation Model introduces a general

framework for selecting an appropriate remote extrapolation model and an opti-

mal update rate based on performance evaluation using the information model and

inferred network conditions. Simulations were performed to validate the proposed

approach.

In developing and subsequently implementing the Information-Based Dynamic Ex-

trapolation Model, a number of observations have been made from which a number

of conclusions can be drawn:

1. It is demonstrated that adjusting PCM configurations solely based on factors

at either the application layer (e.g. local prediction error) or the network layer

(i.e. the available bandwidth) does not guarantee the optimization of consis-

tency because the efficiency of the transmitted data in providing information

to model the entity state is not considered.

2. In many cases, increased information utilization for an extrapolation model

comes at the price of a larger volume of state derivatives in the transmitted

ESUs. The suitability of employing such an extrapolation model depends on

whether the data included in a message is worthy of the increased network
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traffic load it causes. Based on the experimental studies on first and second-

order DR, the lower information utilization of first-order DR could, in some

cases, be compensated for by a faster update rate. This also depends on the

user behavior and the underlying network conditions.

3. It was observed that by dynamically switching extrapolation formulas and

the update rate in response to changing network conditions, the Information-

Based Dynamic Extrapolation Model can minimize remote inconsistency when

compared to static extrapolation schemes. Based on the information model

trained to capture the information characteristics of the user behavior, the

proposed dynamic extrapolation framework accurately selected an appropriate

extrapolation model that produced the highest information rate about the true

entity motion under specific network conditions.

The primary conclusion reached during the development of the Information-Based

Dynamic Extrapolation Model can be summarized as follows: by measuring the

predictability provided by the transmitted data, the information model enables the

proposed dynamic extrapolation framework to combine both the application layer

and the network layer factors to realize a joint optimization of PCMs to minimize re-

mote inconsistency arising from rate-based PCM operation. This is achieved through

the optimized usage of the available bandwidth on the bottleneck link of a DIA. Such

an approach is in contrast to the existing adaptive schemes that either ignore the

impact of network performance on inconsistency or only employ a single extrapo-

lation model. Consequently, the Information-Based Dynamic Extrapolation Model

achieves the best consistency that could be achieved by the set of candidate extrap-

olation models under constrained and varying network conditions.

6.2 Future Work

The information model and dynamic extrapolation framework presented in this the-

sis have been demonstrated to be effective tools for examining and improving consis-

tency maintenance in DIAs. This section presents some suggestions for future work
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to expand on the work presented in this thesis.

6.2.1 Extended Study of the Information Model

The information model proposed in this work provides a theoretical perspective

towards operation of PCMs, in terms of measuring how much predictability in user

behaviors is drawn, transmitted and then exploited. Such work could be extended

to gain more insights about the information flow in consistency maintenance. In

particular, further analysis and improvement can be considered in the following four

respects:

• In Figure 5.7, the favorable choices of extrapolation model under varying net-

work conditions are presented. It seems, especially in Figure 5.7(a), that there

is a fine boundary curve that separates the two “choice zones”. This boundary

certainly depends on numerous factors such as user behavior, extrapolation

model, and packet structure. If a closed form description of such a bound-

ary could be drawn, it will bring profound understanding of the predictabil-

ity within entity motions and also improvement of the dynamic extrapola-

tion framework in that the extrapolation model selection could be based on a

function describing the boundary, instead of a pre-trained look-up table as in

Figure 5.7.

• By comparing Figure 4.18 and Figure 4.20, it is identified that large amount

of information available in the NR packets is not properly used because of

the simple linear extrapolation model currently used. It is then necessary to

improve the extrapolation for an even better consistency maintenance. To

improve the usage of the available information in the NR packets, an extrapo-

lation function could be trained so that each NR velocity value is mapped to a

segment of trajectory. In doing so, the remote entity state model is formed as

a combination of “prototype motions” or “base functions” that more precisely

reflect the original entity state than the simple linear extrapolation. Of course,
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such an approach would compromise the transparency of NR to the remote

host and increase implementation overhead.

• In Section 4.4, it has been demonstrated that information measurement can

reflect the evolution of the interaction between entities. Only observations of

such interaction measurement is provided in this work. However, such an ap-

proach could be employed to improve the regulation of the update packets. For

example, based on the information measurement of the intensity of user inter-

action, interest management techniques could distinguish inter-user relations

and only send frequent updates between those who are closely interacting.

Such an approach improves the efficiency of the bandwidth usage.

• Currently, all information concerning entity state is treated with equal im-

portance. However, it is well understood that human perception imposes

different importance to features in entity motion. Therefore, the informa-

tion model could be extended by considering such bias of human perception.

Based on some human vision analysis and psychological study, different impor-

tance could be assigned to the raw information content and form a weighted

information measurement.

6.2.2 Effect of Realistic Network Environments

For the convenience of illustrating the concept of using the information measure-

ments to examine and improving PCM operation, simplified yet realistic network

environments have been employed throughout this thesis. This work could be ex-

panded by considering the effect of even more realistic network environments on

the information-based approaches. In particular, realistic network conditions can be

considered in the following two respects:

• In Chapters 3 and 4, the information measurement of the remote extrapola-

tion is modeled under fixed latency, assuming that all the ESUs experience

the same network delay and, thus, the same information loss caused by net-

work latency. However, as discussed in Chapter 1, packet transmission in the
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realistic Internet endures unpredictable variation in latency, also referred to

as jitter. Jitter results in a variable functioning period for each transmitted

ESU and consequently a variable amount of information carried by each ESU.

Incorporation of jitter will expand the information model in two ways. First,

the evaluation of PCMs can be more accurate compared to the average as-

sessment in the work presented in this thesis. Second, the negative impact of

jitter on consistency maintenance (Section 1.1.4) can be examined from the

information theory perspective.

• In Chapter 5, the network condition estimator in the Information-Based Dy-

namic Extrapolation Model is implemented simply as two control parameters

AB and La. An interesting extension to this work is to implement the dynamic

extrapolation framework in a realistic network environment, which would fa-

cilitate further examination of its performance in the face of issues such as

jitter and packet loss. Also, some network condition estimator algorithm must

be implemented as a part of the framework. Such estimation algorithms gen-

erally introduce additional information to be transmitted over the network. A

thorough study of the impact of such algorithms on the dynamic extrapolation

framework would extend this work in implementing the framework in realistic

network environments.

6.2.3 On-Line Information Estimation

Throughout this thesis, the information model for a specific user behavior is obtained

through an off-line training process that is generally computationally intensive. The

development of a fast information estimation algorithm that enables on-line infor-

mation estimation would expand the work presented in this thesis in three respects:

• In the Information-Based Dynamic Extrapolation Model, the current off-line

information model reflects the information characteristics of the user behavior

as a whole. In other words, it measures the average predictability of the
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entity motion. An adaptive information model that can be trained in real-

time using historical motion data within a sliding-window can account for

possible changes of user behavior during DIA deployment, and thus allows for

a detailed evaluation of the trade-off between packet rate and packet size, and

enables more accurate active model selections.

• An on-line information estimation would allow the usage of the information

measurements to act as a local consistency metric that governs the ESU gener-

ation. In particular, an information-based PCM could be developed, in which

the local host only generates and sends an ESU to the remote host when

the estimated information quality of the local entity model decays below a

pre-determined threshold. Such an approach could guarantee the level of in-

formation rate provided for the remote host to reconstruct its entity state

model.

• An on-line information estimation would enable considerable extensions to

the investigation of cross-entity predictability presented in Section 4.4. For

example, it would be possible to evaluate inter-entity dependence using mutual

information at run-time to detect a group of entities whose states are closely

coupled with each other. If the interaction among the entities is identified

as one of the typical types (Section 4.4.1), the action and state of one entity

can then be modeled based on the behavior of the other entities in the group.

Such an information measurement facilitates the investigation of user behavior

and interaction from a theoretic perspective. It also allows the development of

collaborative predictive approaches that would further reduce the requirement

of data transmission to maintain consistency in a DIA.

The on-line information estimation algorithm must be able to operate on small

datasets and be computationally efficient. However, neither of the two algorithms

used in this thesis satisfies such requirements, since the simple algorithm of occur-

rence counting demands large amounts of data and the KDE algorithm is computa-

tionally complex. A plausible solution is to employ Fast Gaussian Transformation to

improve the computational efficiency of the KDE algorithm [Elgammal et al. 2003;
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Yang et al. 2003] so that a real-time information estimation with a short period of

historical motion data can be achieved.

6.2.4 Improving the Dynamic Extrapolation Framework

In Chapter 5, only two extrapolation models are considered in the candidate set.

Although first and second-order DR have gained popularity in most DIA systems,

including more extrapolation models would strengthen the work presented in this

thesis by allowing for a better performance of the dynamic extrapolation framework.

The Information-Based Dynamic Extrapolation Model can be improved in three

respects:

• As a straightforward extension, other extrapolation models could be included

in the candidate set for the investigation of their performance from the in-

formation theory perspective. Given wider options, the Information-Based

Dynamic Extrapolation Model could further reduce the inconsistency arising

across a DIA. Examples of extrapolation models that could be included in

the candidate set include, but are not limited to, Neuro-reckoning [McCoy

et al. 2007], Dynamic Target-Interception Models [Stolzenburg et al. 2002;

Belkhouche et al. 2007; McCoy 2007], and other predictive statistical user

models [Zukerman and Albrecht 2001]. It should be noted that these advanced

predictive schemes generally require a training process to capture patterns in

a particular user behavior and are thus application-dependent. However, the

statistical behavior models are usually trained in an off-line manner. Therefore

including complicated extrapolation models does not affect the operation of

the dynamic extrapolation model.

• In the proposed dynamic extrapolation framework, at any time instance (ex-

cept for the conversion period TC) the active model is executed independently

(without any mutual interaction with the other models). In contrast, Interact-

ing Multiple-Model (IMM) algorithms combine the outputs from multiple ex-

trapolation models based on a probabilistic measure of their performance [Rago
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and Mehra 2000; Cooperman 2002; Farmer et al. 2002; Burkert et al. 2004].

Such an approach has shown excellent potential for estimating an accurate

motion model for the current user behavior and could provide a means for se-

lecting extrapolation models in an adaptive extrapolation scheme. A thorough

analysis of such techniques therefore appears warranted in order to investigate

the possibility of incorporating IMM algorithms in the proposed dynamic ex-

trapolation framework.

• The proposed dynamic extrapolation model is currently focused on rate-based

PCMs, which have direct control over the data transmission rate through the

constant update packet rate. It would be an interesting extension to this

work to incorporate threshold-based PCMs in the proposed framework. In

order to control the data transmission rate through the local error threshold,

there would need to be a form of mapping to explicitly reflect the relationship

between a local error threshold and the resultant data rate.

In video compression, the encoder faces the same problem. By adjusting the

quantization scale (Figure 2.10), it attempts to allocate the same number of

bits to encode each frame (or a group of frames) so that the encoded video is

transmitted at a constant data rate. This is achieved by a “Rate-Distortion”

analysis of the raw video, where the relationship between the quantization

scale and the resultant data rate is established either by formal analysis or

experiment [Lin and Ortega 1998; Cook et al. 2006; Cover and Thomas 2006].

In light of the analogy between video compression and PCMs (Section ??),

a similar approach can be introduced. A “Threshold-Rate” analysis can be

drawn from experimental studies on a specific entity motion. Pairs of threshold

and the resultant data transmission rate can be tabulated to describe the

relationship between the two, so that a proper threshold value can be found to

produce the desired data rate that matches the available bandwidth. A typical

Threshold-Rate relationship is expected to take the form shown in Figure 6.1,

where a lower threshold value generally causes heavier network traffic.
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D a t a r a t e
Figure 6.1 A simple illustration of the “Threshold-Rate” rela-
tionship in a PCM for a particular user motion.

6.3 Concluding Remarks

In this thesis the use of concepts and techniques derived from information theory

have been used to examine and improve the efficacy of PCMs in DIAs. It has

been shown that by employing information metrics as a quantified measure of the

efficiency of PCMs in communicating reduced state updates in return for controlled

inconsistency, the operation of PCMs can been regarded as a form of information

reduction and compression.

It is hoped that such an information theory perspective may help designers to attain

a deeper understanding of PCM operation, and the techniques proposed may be used

as the basis for optimizing PCMs and developing improved techniques to support

future generations of large-scale DIAs.
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Appendices

A. Matlab Code for Dead Reckoning

%%%%%%%%%%%%%%%%%%%%%%%%

% Extrapolation models %

%%%%%%%%%%%%%%%%%%%%%%%%

function p_state = extrapol(cur_time,ESU,range,mode)

% Extrapolate current state values to predict the next state.

% Inputs:

% cur_time - the current simulation time instance.

% ESU - The ESU to be extrapolated. ESU is a 1 by 10 vector which

% contains the releasing time of the ESU, and positions,

% velocities and accelerations in three dimensions.

% range - the range of the state space. Set to empty for an infinite

% space.

% mode - indication of extrapolation method order.

% Outputs:

% p_state --- predicted state value.

switch mode

case 0

p_state=ESU(2:4);
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case 1

p_state=ESU(2:4)+(cur_time-ESU(1))*ESU(5:7);

case 2

p_state=ESU(2:4)+(cur_time-ESU(1))*ESU(5:7)+0.5*ESU(8:10)

*((cur_time-ESU(1)))^2;

otherwise

disp(’No such extrapolation mode!’)

end if isempty(range)

return;

else

p_state(p_state>range(2,:))=range(2,p_state>range(2,:));

p_state(p_state<range(1,:))=range(1,p_state<range(1,:));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Dead reckoning on local hosts %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [LocalApprox,ESU,Errors]=DR_Local(d,h,range,mode)

% Simulation of local executions of Dead Reckoning.

% Inputs:

% d - true entity trajectory, N by 10 vector in which each row

% description of the entity state at a single moment.

% h - local threshold value.

% range - the range of the state space. Set to empty for an infinite

% space.

% mode - indication of extrapolation method order.

% Outputs:

% LocalApprox - the local entity state model.

% ESU - vectors of ESUs generated.
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% Errors - local prediction errors.

N=size(d,1);

LocalApprox=zeros(size(d));

ESU=d(1,:);

Errors=zeros(N,1);

LocalApprox(1,:)=d(1,:); LocalApprox(:,1)=d(:,1);

for i=2:N

% Estimating a future state

tempstate=extrapol(d(i,1),ESU(end,:),range,mode);

e=d(i,2:4)-tempstate;

% Prediction error in Euclid Distance

Errors(i)=sqrt(sum(e.^2));

if Errors(i)-h>eps

% An threshold violation

LocalApprox(i,:)=d(i,:);

ESU=[ESU;d(i,:)];

else

LocalApprox(i,2:4)=tempstate; %accept prediction

LocalApprox(i,5:end)=ESU(end,5:end);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Add latency to each ESU %

%%%%%%%%%%%%%%%%%%%%%%%%%%%

ESUrecv=[ESUsend(:,1)+[0;Latency*ones(size(ESUsend,1)-1,1)],ESUsend];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Dead reckoning on remote hosts %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [RemoteApprox]=DR_Remote(T,ESU,range,mode)

% Simulation of remote executions of Dead Reckoning.

% Inputs:

% T - simulation time instances.

% ESU - received ESUs.

% range - the range of the state space. Set to empty for an infinite

% space.

% mode - indication of extrapolation method order.

% Outputs:

% RemoteApprox - remote entity state model.

RemoteApprox=zeros(length(T),size(ESU,2)-1);

for i=1:length(T)

RemoteApprox(i,1)=T(i);

% Finding the most recent ESU

ESUindex=find(ESU(:,1)<=T(i), 1, ’last’ );

RemoteApprox(i,2:4)=extrapol(T(i),ESU(ESUindex,2:end),

range,mode);

RemoteApprox(i,5:end)=ESU(ESUindex,6:end);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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B. Matlab Code for Information Estimation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Joint probability by the simple algorithm %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [P,xrange,yrange]=JointPro(x,y)

% Joint probability matrix of two time series.

% The probability is calculated as the occurrence frequency.

% Inputs:

% x,y - two time series.

% Outputs:

% P - probability matrix, P(i,j) is the probability that

% x is ith value in xrange and y is the jth value in yrange.

% xrange,yrange - unique values of x and y, respectively.

N=length(x);

xrange=unique(x);

yrange=unique(y);

P=zeros(length(xrange),length(yrange));

% Counting occurrence

for i=1:N

I=find(xrange==x(i));

J=find(yrange==y(i));

P(I,J)=P(I,J)+1;

end

P=P./N;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Mutual information by the simple algorithm %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [MI,err]=MuInfo(x,y,mode)

% Cross mutual information of two time series.

% Inputs:

% x,y - time series.

% mode - correction for finite size effect. 0 for no correction,

% 1 for simple correction.

% Outputs:

% MI - mutual information.

% err - estimated bias.

N=length(x);

[Pxy,xrange,yrange]=JointPro(x,y);

% Marginal probabilities

Px=sum(Pxy,2);

Py=sum(Pxy,1);

MI=0;

for i=1:length(xrange)

for j=1:length(yrange)

if Pxy(i,j)==0

continue;

else

MI=MI+Pxy(i,j)*log2(Pxy(i,j)/(Px(i)*Py(j)));

end

end

end

if mode

r=find(Pxy);

mxy=length(r);
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mx=length(xrange);

my=length(yrange);

err=(mxy-mx-my+1)/(2*N);

MI=MI-err;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Joint probability by KDE algorithm %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function P=KDE2(x)

% KDE estimation of joint probability.

% Inputs:

% x - combined vector [x1,x2] for two variables x1 and x2.

% Outputs:

% P - joint probability matrix p(x1,x2).

[N,M]=size(x);

dimcell=cell(1,M);

dims=zeros(1,M);

S=cov(x);

ddet=det(S^(1/2));

% An singular covariance

if ddet==0

P=NaN; % Full information

return;

end

h=(4/(M+2))^(1/(M+4))*(N^(-1/(M+4)));

for i=1:M

dimcell{i}=unique(x(:,i));
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dims(i)=length(dimcell{i});

end

P=zeros(dims);

if M==1

P=zeros(dims,1);

end

% For all possible state values

for i=1:prod(dims)

sub=index2sub(i,dims);

xx=x(1,:);

for j=1:M

xx(j)=dimcell{j}(sub(j));

end

% Distance between the state to be estimated and all sampled data

temp=ones(N,1)*xx-x;

u=zeros(1,N);

% Summation of the kernel functions

for j=1:N

u(j)=(temp(j,:)*inv(S)*temp(j,:)’)/(h^2);

end

K=1/((2*pi)^(M/2)*h^M*ddet)*exp(u*(-1/2));

P(i)=sum(K)/N;

end

P=P/sum(P(1:end));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Mutual information by KDE algorithm %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function MI=KDEMuInfo(P,xdim,ydim)
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% Estimation of mutual information by KDE algorithm.

% Inputs:

% P - Joint probability marix of x and y.

% xdim - columns that describe the first variable x.

% ydim - columns that describe the second variable y.

% Outputs:

% MI - Mutual information.

if isnan(P)

MI=NaN;

return;

end

N=size(P);

p=P;

% Marginal probability

for i=ydim

px=sum(p,i);

p=px;

end

px=reshape(px,[prod(N(xdim)),1]);

% Individual entropy

Ex=px.*log2(px);

Ex(isnan(Ex))=0;

Ex=-sum(Ex);

p=P;

for i=xdim

py=sum(p,i);

p=py;

end

py=reshape(py,[prod(N(ydim)),1]);

Ey=py.*log2(py);

Ey(isnan(Ey))=0;
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Ey=-sum(Ey);

P=reshape(P,[prod(N),1]);

% Joint entropy

Exy=P.*log2(P);

Exy(isnan(Exy))=0;

Exy=-sum(Exy);

MI=Ex+Ey-Exy;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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C. Table of Mathematical Symbols

Ω time-space inconsistency

θ(k) entity orientation

δ simulation time-step

τ prediction span

a(k) entity acceleration

d maximum prediction time-delay in Neuro-reckoning

h local threshold

k simulation step index

q maximum prediction horizon Neuro-reckoning

ri, rij sample occurrence

u(k) ESU

x(k), y(k) entity state

x(k + τ) = xτ (k) entity state at τ steps after k

x̂(k) remote entity state model

x̃(k + τ) = x̃τ (k) state speculation sequence at τ steps after k

v(k) entity velocity

AB available bandwidth

H(X) entropy

H(x) information generation rate

H(X,Y ) joint entropy

H(X|Y ) conditional entropy

I(X;Y ) mutual information

I(u;xτ ) available information

I(x̃τ ;xτ ) extrapolated information

L network latency

La overall latency

LT transmission delay through bottleneck link

Lf other factors in latency except LT
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MIs locally stored mutual information

N sample size

OCC 95% sample occurrence statistics

Rs,local locally stored information rate

Rs,remote remotely stored information rate

Ru,remote utilized information rate

S = {si} entity state space

Tf functioning period

TLf/TRf local/remote functioning period
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action, see event

agent, 24

available information, 77

available predictability, 92

avatar, 24

B-frame, 57

codec, 54

complex motion, 96

consistency, 29

deadline, 30

logical-clock, 29

ultimate, 30

wall-clock, 29

consistency maintenance mechanisms, 34

Consistency-Responsiveness Trade-off,

29

Consistency-Throughput Trade-off, 16

convergence, 39

dead reckoning, 37

deterministic motions, 93

bounce motion, 94

jolt motion, 95

smooth motion, 93

DIAs, 22

DIM, 52

DIS, 3

DR, see dead reckoning

drift distance, 100

entity, 22

Bot, 23

entropy, 62

conditional entropy, 64

joint entropy, 64

ESUs, 14

event, 24

extrapolated information, 85

extrapolated predictability, 92

extrapolation, 39

functioning period, 80

local functioning period, 80

remote functioning period, 83

heartbeat, 39

HLA, 4

host, 25

local host, 25

remote host, 25

I-frame, 57

information generation rate, 75

Information-Based Dynamic Extrapola-

tion Model, 149
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jitter, 10

KDE, 69

keep alive, see heartbeat

local model, 38

locally stored information rate, 81

locally stored mutual information, 80

lossy compression, 53

video compression, 53

lossless compression, 53

motion compensation, 55

MPEG, 55

mutual information, 65

naive algorithm, 67

navigation motion, 98

network bandwidth, 9

network latency, 9

neuro-reckoning, 48

node, 25

NPSNET, 5

NR, see neuro-reckoning

NR velocity, 49

object, see entity

OCC 95%, 100

P-frame, 57

participant, 24

PCMs, 36

rate-based, 37

threshold-based, 37

Players and Ghosts, 36

Pong game motion, 96

remote inconsistency, 38

remote model, 38

remotely stored information rate, 83

SIMNET, 2

state, 24

dynamic shared state, 24

state speculation series, 85

TCP, 12

TGE, see Torque Game Engine

Torque Game Engine, 119

UDP, 12

utilized information rate, 86

virtual environment, 24

virtual world, see virtual environment

windowed cross-mutual-information, 139
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