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Abstract 

Ireland’s agricultural land area comprises of 91% grassland, which predominantly 

consists of perennial ryegrass (Lolium perenne L.).  Owing to the predicted climate 

change, grasslands in the east of Ireland will be severely affected over the next hundred 

years. Due to this prediction, strategies to circumvent this problem need to be addressed. 

The present study is focused on RNA editing (post-transcriptional nucleotide 

modifications resulting in altered transcripts) within plastidial transcripts of the NDH 

complex (NADH dehydrogenase complex) in relation to the drought response of several 

accessions of perennial ryegrass. Previous studies have shown that the NDH complex is 

involved with countering oxidative stress during environmental stresses like drought. Due 

to the nature of RNA editing within this complex, the RNA editing machinery could 

potentially play a role in regulating the activity of the NDH complex. In this study a 

difference was observed in editing behaviour between accessions of Lolium perenne L., 

however a direct relationship between editing behaviour and drought response could not 

be confirmed. Despite the lack of correlation, a possible role of RNA editing in regulation 

of the NDH complex cannot be completely disregarded. To expand the investigation 

concerning the role of RNA editing, plastid transformation can be utilised. Due to the 

absence of a protocol for plastid transformation of perennial ryegrass, a study was 

dedicated to design such a protocol. However despite extensive evaluation of all the 

involved factors in the transformation process, a working protocol was not established. 

Nevertheless small adjustments to this protocol in the future could potentially lead to an 

extension of the plastid transformation technology to this species. 
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Chapter 1: 
 

General introduction  



1.1 Importance of grasses in Irish agriculture 

The most important crop in Ireland is grass: 91% of the agricultural land area is dedicated 

to grasslands. Grasslands contain a wide range of plants, including productive grasses, 

clovers and also weed species. Perennial ryegrass (Lolium perenne L.) dominated pasture 

is the basis for livestock production in Ireland and perennial ryegrass makes up 95% of 

the grass seed sales in Ireland (DAFF 2010a). Grass is the main feedstock for the 

livestock industry for production of beef, dairy and sheep (Holden and Brereton 2002), In 

2009 it was estimated that the agriculture sector of Ireland exported livestock and 

livestock products worth approximately €7.2 billion (DAFF 2010b).  

 

1.1.1 Impact of climate change on yield and viability of Lolium perenne L. 

As a consequence of estimated climate change over the next hundred years in Europe and 

particularly in Ireland, the production of forage grasses will become a problem due to 

changes in temperature and rainfall (Holden and Brereton 2002). Climate change will 

affect grassland agriculture in a number of ways. Forage and livestock production will be 

influenced by changing seasonal patterns of weather, for example summer drought stress 

would lead to less grass production and a shift towards alternative forage crops will be 

needed. This will result in changes in grazing patterns and rotational management on the 

farm. An extensive study was performed on the effect of climate change on yield of 

forage grasses (Holden and Brereton 2002). These researchers estimated that in the east 

of Ireland, yield would decrease because of summer drought stress, to such an extent that 

grasses may not be viable anymore in this region, unless artificially irrigated. In the west 

of Ireland on the other hand, yield of grasses is estimated to increase. By improving the 
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drought tolerance of cultivars of perennial ryegrass, the impact of climate change can be 

countered. This could be accomplished by several different means, either by traditional 

breeding or genetic engineering. 

 

1.2 Plastids 

Plants are eukaryotes, however a plant cell has distinct differences compared to other 

eukaryotic cells. A higher plant cell lacks centrioles, lysosomes, intermediate filaments, 

cilia, and flagella. On the other hand a plant cell has specialised organelles that are 

lacking in other eukaryotic cells, like a vacuole, plasmodesmata and plastids, including 

chloroplasts (Campbell 1996).  

Chloroplasts are the energy factories of plant cells, where photosynthesis takes place. In 

the thylakoids, the photosynthetic membranes are organised in grana containing an 

internal lumen.  These membranes contain the four main protein complexes involved in 

the light reactions of photosystem I and II, the cytochrome b6/f complex and ATP 

synthase. The thylakoids are surrounded by a liquid matrix, the stroma. This is the site for 

carbon fixation by Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) (Hinshaw 

and Miller 1989). Other functions of plastids include the biosynthesis of starch, fatty 

acids, pigments and amino acids from inorganic nitrogen (Neuhaus and Emes 2000). 

 

There are several distinct plastid types (see Fig. 1.1), each derived, directly or indirectly 

from proplastids in meristematic cells of shoot, root, embryo’s or endosperm. Proplastids 

are undifferentiated plastids that are variable in shape and are colourless. On the basis of 

their structure, pigment composition, metabolism and function, plastids are classified into 
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different groups (Fig. 1.1) (Lopez-Juez and Pyke 2005). Chloroplasts can be found in leaf 

tissue, the outer layers of unripe fruits, cotyledons and embryos. Chloroplasts are green 

and are the site for photosynthesis. Chromoplasts are located in fruits and petals and 

contain relatively high levels of carotenoids, which give rise to the yellow, orange and 

red pigmentation of petals, fruits and senescing leaves. Leucoplast is a general term 

applied to colorless plastids, but unlike proplastids these are not progenitors of other 

plastids. This group of plastids include two types of plastids, the first are amyloplasts, 

which are found in roots and storage tissues like cotyledons and the endosperm. These 

plastids contain large quantities of starch granules. The other type of leucoplast is the 

elaioplast, oil-containing plastids which can be found in the epidermis of some 

monocotyledonous species. The last type of plastid is the etioplast, which can be found in 

dark-grown leaf tissue. These appear yellow due to the presence of protochlorophyll. 

They can develop into chloroplasts upon exposure to light (Neuhaus and Emes 2000). 

 

Fig. 1.1: Diversity of plastid types and their interconversions.  
Source: (Lopez-Juez and Pyke 2005) 
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The genetic information of plants is located in three different compartments of the cell, 

within the nucleus (gDNA), the mitochondria (mtDNA) and the plastid (ptDNA) (Bock 

2001). The plastid genome molecules can be circular or linear, mono- or multimeric, but 

the genome can be represented by a monomeric circular map containing two copies of an 

inverted repeat (IR) region and two singly copy regions, the small single copy (SSC) and 

the large single copy (LSC) region (See Fig. 1.2) (Diekmann et al. 2009). The genome 

size ranges from 120 kb to 160 kb in flowering plants, largely due to variable sizes of the 

inverted repeat regions.  

 

In the case of perennial ryegrass, the plastid genome, which was recently sequenced 

(Diekmann et al. 2009), consists of 110 genes, of which 76 are protein-coding genes, 30 

are tRNA (transfer RNA) genes and four are rRNA (ribosomal RNA) genes (Diekmann 

et al. 2009). Plastid genes with related functions are often transcribed as polycistronic 

clusters within vascular plants, similar to bacterial operons (Stern et al. 1997). This 

clustering allows separate regulations of different functions, as subunits within a complex 

can be transcribed at similar rates. 
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Fig 1.2: Map of the plastid genome of Lolium perenne L.. Annotated genes are colour 
coded according to their function. Source: Diekmann et al. (2009). 
 
The plastid DNA is associated as nucleoids with the inner layer of the double membrane 

of the organelle (Lopez-Juez and Pyke 2005). Plastids contain multiple copies of the 

genome, ranging from twenty copies in proplastids to a hundred copies in chloroplasts 

(10.000 genome copies per cell) (Sugiura 1992).  

 

1.2.1    Evolution of plastids 

It is generally accepted that plastids were derived from an ancestral photosynthetic 

prokaryote related to cyanobacteria. This endosymbiotic theory was first mentioned by 

Mereschkowski in 1905. This was based on information that plastids always arise by 
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division of pre-existing plastids and the ability of plastids to stay alive for a while in the 

absence of the nucleus in the cell. This suggested that plastids had been acquired from the 

outside, through foreign bodies or symbionts (Mereschkowsky 1905). The symbiotic 

theory basically implies that a eukaryotic cell captured a prokaryotic cell, after which the 

prokaryotic cell got integrated functionally within the eukaryotic cell (see Fig 1.3, 

primary endosymbiosis). Confirmation of this theory has been reported in recent decades. 

Molecular analyses of chloroplast 5S rRNA and 16S rRNA genes revealed high 

similarities to those found in the cyanobacterium Anacystis nidulans (Dyer and Bowman 

1979; Tomioka and Sugiura 1983). Comparable similarities for protein-coding genes 

were later found, confirming the link. Nevertheless it long remained a point of discussion 

if all plastids were derived from a single endosymbiotic event, or if more independent 

endosymbiotic events occurred. Some algae contain plastids with three or four 

membranes, this phenomenon could have occurred by the engulfment of algae containing 

plastids by other algae, this is called secondary symbiosis (Fig .1.3) (Gibbs 1981). 

 

Fig. 1.3: Illustration of primary and secondary endosymbiosis.  
Source: (McFadden 2001) 
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Most of the present data suggest a single acquisition event of plastids by a primary host, 

out of which other organisms evolved. There is however a number of species with 

plastids which appear to be different, but little is known about their evolution. An 

example is the amoeba Paulinella chromatophora, which contain plastids that may be 

derived from an independent primary endosymbiosis, however more research may shed a 

light upon the origin of the plastid (McFadden 2001). 

 

The acquisition of plastids is not only restricted to plants, one animal species has been 

identified that has the ability to integrate plastids into their cells. This occurs after feeding 

upon algae. The plastids are able to retain their function for up to nine months within the 

animal cells. This has only been observed in sea-slugs of the taxon Sacoglossa (Handeler 

et al. 2009). 

 

Over the course of time the majority of the genes within the plastid genome have been 

transferred to the nucleus. This is evident after comparison of the ancestral cyanobacterial 

genomes and the current plastid genomes, which indicates a genome reduction to about 

5% to 10% of the original size (Sugiura et al. 1998) 

 

1.2.2    Transcriptional and translational regulation of plastid protein expression 

1.2.2.1 Promoters 

Plastid genes are transcribed by at least two different RNA polymerases, which can bind 

to specific sequence elements within promoters. One of these polymerases is encoded by 

the rpo complex within the plastid genome (Serino and Maliga 1998). This polymerase is 
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therefore called the plastid-encoded RNA polymerase (PEP). This polymerase is related 

to the eubacterial α2 ββ’ RNA polymerases (lgloi and Kössel 1992). PEP promoters are 

similar in structure to the eubacterial σ70-promoters, in such a way that they contain two 

conserved blocks of hexameric sequences, corresponding to the eubacterial -35 and -10 

promoter elements. The accumulation of transcripts depends on the conservation of these 

elements, in conjunction with upstream activators, as is the case with the light-responsive 

promoter of the psbD gene (Shiina et al. 1998). 

 

The other type of RNA polymerase active within plastids, is encoded in the nuclear 

genome and transferred to the plastid compartment, through a translated signal peptide. 

Therefore this polymerase is called nuclear-encoded plastid polymerase (NEP). The 

existence of this polymerase, was first suggested when the plastid genome of Epifagus 

virginia, a non-photosynthetic species, was sequenced. The plastome lacked all but one 

of the PEP genes, however transcription was maintained at a number of plastid genes 

(Morden et al. 1991). There is a consensus motif from different NEP promoters from both 

dicots and monocots that binds the NEP (Hübschmann and Börner 1998). 

Plastid promoters can have PEP binding sites, NEP binding sites or both. NEP promoters 

are usually active within proplastids and meristematic tissue, where housekeeping genes 

are mostly transcribed. PEP promoters generally take over transcription of housekeeping 

genes and initiates transcription of photosynthetic-related genes in developing 

chloroplasts (Toyoshima et al. 2005). 
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Transcription from different promoters is regulated at various levels. For example the 

rbcL gene, encoding the large subunit of ribulose-1,5-bisphosphate carboxylase, which 

has a PEP promoter. This promoter has a 10-fold higher transcription rate in light-grown 

leaves compared to dark-grown leaves. (Shiina et al. 1998). Another example is the 

plastid rRNA operon promoter Prrn, on which the transcription rates vary considerably 

when grown in the light or the dark (DuBell and Mullet 1995). Furthermore the 

transcription rates varied 50-fold in barley in response to developmental and 

environmental cues (Baumgartner et al. 1993). There have been two reports where 

dicotyledonous plastid promoters were successfully applied in monocots. In one they 

showed transient expression of the uidA gene in wheat (Triticum aestivum L.) using the 

PpsbA promoter from spinach. In this case only transient expression was achieved 

(Daniell et al. 1991). In the second paper, plastid transformation was achieved in rice 

(Oryza sativa) with an active Prrn promoter from tobacco (Nicotiana tabacum) (Khan 

and Maliga 1999). The reverse was also successfully demonstrated, where the barley 

promoter from psbD was analysed in tobacco. (Thum et al. 2001). This indicates that the 

transcription systems between the two classes are similar and interchangeable, when 

applied during plastid transformation. 

 

1.2.2.2 Expression signals: 5’ Untranslated region (5’UTR) and 5’ translation coding 

region (5’TCR) 

5’untranslated regions (5’UTR) are regions upstream of the start-codon of the gene. 

These regions are involved in the post-transcriptional control of gene-expression and in 

translation efficiency. Plastid gene expression is mainly regulated at a post-transcriptional 
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level, induced by developmental changes where cis elements within the mRNA, interact 

with nuclear encoded trans-factors (Sugita and Sugiura 1996). Although the transcription 

rate is mainly influenced by the promoter, the 5’UTR influences the mRNA turnover. An 

example is the rbcL 5’UTR that helps maintain a steady-state of rbcL mRNA levels in the 

dark (Shiina et al. 1998). 

 

In prokaryotes, mRNAs usually contain a ribosomal-binding site (SD (Shine-Dalgarno) 

sequence) between four and twelve nucleotides upstream of the initiation codon (Shine 

and Dalgarno 1975). Although 90% of the plastid 5’UTR’s contain SD-like sequences, 

the location of these elements is much more variable. As a result identification of these 

elements has been difficult. Furthermore it was shown that certain regions of the 5’UTR 

of psbA, were the target for the 16S rRNA, while the SD-like element in this 5’UTR was 

dispensable (Hirose and Sugiura 1996). At the 5’UTR of psbA in Chlamydomonas 

reinhardtii a stem-loop formation is the binding site for a protein complex, under light-

regulation, indicating another pathway can be responsible for translation initiation (Katz 

and Danon 2002). Another region responsible for translational regulation, is the region 

directly downstream of the initiation codon, called the 5’ translation coding region 

(5’TCR). A study showed that when point mutations were inserted downstream of the 

AUG start codon in a bacterial antibiotic resistance gene neomycin phosphotransferase II 

(nptII) transcript fused with the N-terminus of rbcL and atpB, protein accumulation was 

reduced significantly in the resulting transplastomic tobacco plants (Kuroda and Maliga 

2001b). Another study showed that complementary sequences to the 16S rRNA, directly 

downstream of the AUG, destabilised transcripts (Kuroda and Maliga 2001c). 
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1.2.2.3  Expression signals:  3’ untranslated region (3’UTR) 

Like their bacterial counterparts, chloroplasts 3’untranslated regions (3’UTR) contain in 

almost all cases inverted repeats (IR). These repeats can form stem-loop structures, where 

mRNA associated proteins can bind. This interaction is involved in RNA processing and 

RNA stability. This is an important feature, as transcription termination is very inefficient 

at the IRs, resulting in extensive read-through (Monde et al. 2000). When the 3’UTR of 

atpB in Chlamydomonas reinhardtii was substituted with the 3’UTR of petD from 

spinach the mRNA processing was not affected, indicating that the IR structure is 

necessary, but not an absolute sequence (Stern et al. 1991). The 3’UTR also seems to be 

involved in translation regulation, by interacting with the 5’UTR. It was shown that 

proteins bound to the 5’UTR of psbA from C. reinhardtii had more affinity, when the 

5’UTR was cis linked with the 3’UTR (Katz and Danon 2002). 

 

1.3   Plastid transformation 

Plastid transformation involves the integration of foreign DNA into a single plastid 

genome copy followed by replication of the transplastome, and the segregation of 

transformed and wild-type gene copies under selective pressure that eventually yields 

homoplasmic lines (Svab et al. 1990). An expression cassette containing plastid signal 

sequences surrounding the transgene are flanked by two targeting sequences that allow 

homologous integration into the plastid genome (Svab and Maliga 1993). The primary 

transformation event only leads to one or a few genome copies in the transformed cell 

alongside the majority of wild-type genome copies. These cells are heteroplasmic and 
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therefore unstable for transgene integration. To obtain stable transformants the remaining 

wild-type genome copies have to be eliminated. This is accomplished by multiple rounds 

of regeneration under the selection pressure. The number of rounds of regeneration 

depends on the species, typically for the model species tobacco this would involve two to 

four rounds of regeneration (Svab and Maliga 1993). 

 

1.3.1   Advantages of plastid transformation  

Plastids harbour a large number of metabolic pathways such as CO2 fixation, starch, fatty 

acids, pigment and hormone synthesis. Furthermore photoreduction of nitrogen and 

sulphur for amino acid production occurs within plastids (Lopez-Juez and Pyke 2005). 

By utilising plastid transformation, genes involved with these pathways can be altered or  

disrupted, allowing investigation of the pathways by reverse genetics (Rochaix 1997; 

Heifetz 2000). Furthermore due to the possibility to express transgenes to a high level, 

the prospect to produce pharmaceuticals within plastids is appealing. There are several 

other advantages of plastid transformation, in comparison to nuclear transformation, 

including gene containment, lack of gene-silencing or positioning effects and the ability 

to have targeted integration. 

 

1.3.1.1    Gene containment 

One of the main concerns about Genetically Modified (GM) crops is the spread of 

transgenes into the environment. During the creation of transgenic plants, along with the 

gene of interest, a resistance gene is necessary to select for transgenic tissue. This can be 

an antibiotic resistance gene or a herbicide resistance gene.  
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This raises the risk that weed species could become tolerant to herbicides with 

consequences for organic crops grown nearby, or wild relatives.  Another implication of 

lack of containment of transgenes is the demand of the public to be able to distinguish 

between GM food and non-GM food. In the European Union (EU) there is a regulation 

that all products that are called non-GM must have less than 0.9% GM content (EU 

Regulation No 1829/2003). When transgenes are transmitted to nearby fields, the ability 

to guarantee non-GM content is nearly impossible. 

 

In the case of the traditional nuclear transformants, the transgenes are inherited 

biparentally according to Mendel’s rules. The advantage of plastid transformation is that 

in most angiosperms, plastids are maternally transmitted to the progeny, pollen therefore 

does not contain plastids. When the plastid genome of a plant is genetically modified, the 

transgene will not be transmitted to the progeny through the pollen (Maliga 2004). 

However several publications show that there is a small fraction of the pollen that do 

contain plastids, this happens at a frequency of about 1.0 10-5 (Ruf et al. 2007; Svab and 

Maliga 2007). This means that plastids can be transmitted through the pollen, but at a 

very low frequency.  

 

1.3.1.2    High accumulation of recombinant protein 

Unlike nuclear transformation, plastid transformation allows accumulation of extremely 

high levels of recombinant protein. This is of particular interest for the production of 

pharmaceutical proteins. In general, levels of recombinant proteins produced in nuclear 

transformants are less then 1% total soluble protein (TSP). For the production of 
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pharmaceutical proteins this is generally less than is required to make the system 

commercially viable, especially in view of losses during subsequent purification steps 

(Rybicki 2009). To achieve higher levels of recombinant proteins, plastid transformation 

can be applied. Due to the high copy number of plastid genomes within each cell, 

accumulation levels up to 70% TSP has been achieved (Oey et al. 2009). Plant-based 

systems are more economical then bioreactor systems. Furthermore the purification steps 

can be minimised if a food crop is used so the processing only needs to provide crude 

extracts. There are even prospects for directly supplying these edible vaccines directly as 

fresh food products (Daniell et al. 2001).  

 

1.3.1.3    Lack of positioning effects 

Plastids have a mechanism for DNA repair, involving a RecA-mediated recombination 

machinery inherited from their prokaryotic ancestors (Cerutti et al. 1992). This 

mechanism prevents the random insertion of transgenes that characterises nuclear 

transformation, and allows targeted integration of expression cassettes within the plastid 

genome. Integration involved homologous recombination and can be directed to any part 

of the plastome, simply by flanking the insert with sequences homologous to the chosen 

site of integration. Generally expression cassettes are targeted to intergenic regions, 

although it is possible to target expression cassettes to an existing operon. Some of the 

favoured sites used to date are located in the LSC region, whereas others are within the 

IR region (See Table 1.1) (Maliga 2004).  

 
Due to the ability for targeted integration associated with plastid transformation, this 

system avoids the positioning effects that are commonly observed within nuclear 
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transformants. In nuclear transformation, random integration of the transgene within the 

nuclear genome can result in gene silencing and undesired gene disruptions (Birch 1997). 

While for plastid transformation targeted integration could be used for desired gene 

disruptions. 

 
Insertion site Species Reference 

trnH/psbA N. tabacum (Carrer and Maliga 1995) 

Ycf3/trnS N. tabacum (Huang et al. 2002) 

trnG/trnfM N. tabacum 

L. esculentum 

(Bock and Maliga 1995; Ruf et al. 2001) 

rbcL/accD N. tabacum (Svab and Maliga 1993) 

petA/psbJ N. tabacum (Bock et al. 1994) 

5’rps12/clpP N. tabacum (Shikanai et al. 2001; Kuroda and Maliga 2003) 

petD/rpoA N. tabacum (Suzuki and Maliga 2000) 

ndhB/rps7 B. napus (Hou et al. 2003) 

3’rps12/trnV N. tabacum 

A. thaliana 

O. sativa 

L. fendleri 

(Staub and Maliga 1992) 

(Sikdar et al. 1998) 

(Khan and Maliga 1999) 

(Skarjinskaia et al. 2003) 

trnV/rrn16 N. tabacum (Staub and Maliga 1993) 

rrn16/trnI N. tabacum (Svab et al. 1990) 

trnI/trnA N. tabacum (Daniell et al. 1998; Muhlbauer et al. 2002) 

trnN/trnR N. tabacum (Zou et al. 2003) 

Rpl32/trnL N. tabacum (Koop et al. 1996; Thum et al. 2001) 

Table 1.1: Regions of the plastid genome (plastome) used for targeted integration of 
expression cassettes. 
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1.3.1.4 Transgene stacking 

Many chloroplast genes are located within clusters on the plastid genome, and are 

transcribed as polycistronic mRNAs. This phenomenon can be mimicked by insertion of 

multiple genes of interest within an expression cassette into the plastome, thereby 

allowing gene-stacking. The advantage of this strategy is the possibility to insert multiple 

genes, with just one transformation event, thereby avoiding the need for multiple 

selectable markers (Bock 2001).  

 

1.3.2 DNA delivery into the plastids 

Plastid transformation requires that foreign DNA is delivered to the plastid compartment 

through the cell wall, the plasma membrane and the plastid double membrane. Three 

different methods have been developed to accomplish this: Biolistics, PEG (polyethylene 

glycol)-mediated transformation and femto-injection. The type of transformation system 

has to be chosen carefully, as they may not work equally well depending upon the species 

to be transformed. For instance, if an efficient regeneration system of intact tissue is 

absent for a specific species, but a functional protoplast regeneration protocol is present, 

then the PEG-mediated transformation system is prefered (Kofer et al. 1998).  

 

1.3.2.1 Biolistics 

Biolistics consists of a process where nano-sized tungsten or gold particles coated with 

DNA are bombarded into tissue. Modern devices use a high pressure helium pulse to 

deliver these particles into plant tissue at a high-velocity in a vacuum chamber (see Fig. 

1.4) (Sanford 1990), after which transgenic shoots can be obtained under selective 
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pressure. The development of biolistics for nuclear transformation was a major 

breakthrough in genetic engineering of plants due to the limitations of plant species that 

were not amendable to Agrobacterium-mediated transformation. Transient expression in 

onion epidermal cells using biolistics was first demonstrated in 1987 (Klein et al. 1987), 

and soon followed by the first plastid transformation event using this technique in 

Chlamydomonas (Boynton et al. 1988). Since then biolistics has been applied to a wide 

range of species including Lolium perenne L. for nuclear transformation, although at 

various efficiencies. The advantage of this approach in plastid transformation is the 

relative high efficiency compared to other methods, and its simplicity, so it is by far the 

most widely used approach (Bock 2001). The main drawback is that it requires special 

instrumentation (Sanford 1990). 

 

Fig 1.4: PDS-1000/He Gun (Biorad) 
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1.3.2.2 PEG mediated transformation 

PEG-mediated transformation in plants involves the delivery of DNA into protoplasts. 

Protoplasts are obtained by enzymatic removal of the cell walls, after which the 

protoplasts are treated with a solution containing polyethylene glycol (PEG), ions and 

DNA. The PEG disrupts the plasma membrane to allow the entry of DNA into the 

cytoplasm. Whether the PEG is also involved with penetrating the chloroplast membranes 

remains however unclear (Kofer et al. 1998). The first successful use of polyethylene 

glycol (PEG) for genetic modification was achieved in yeast (Hinnen et al. 1978). This 

was followed a few years later with genetic modification of tobacco protoplasts (Krens et 

al. 1982). In 1993 this approach was extended to plastid transformation, where a ptDNA 

fragment containing a point mutation for spectinomycin resistance was introduced into 

tobacco plastids (O'Neill et al. 1993). Since then this approach has been successfully 

applied to achieve plastid transformants in lettuce (Lelivelt et al. 2005) and cauliflower 

(Nugent et al. 2006). 

 

1.3.2.3 Femtoinjection 

A third approach to introduce foreign DNA into plastids is called femto-injection, which 

involves the direct injection of DNA into chloroplasts through a glass capillary with a 

0.1μm diameter. The injection is accomplished by expansion of an alloy within the 

capillary due to warming, to drive the DNA into the plastid (Knoblauch et al. 1999). This 

method has been used to transform cyanobacteria, however only transient expression was 

achieved within plastids. Since then, no reports were published using this technique for 

plastid transformation. 
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1.3.3 Selection strategies 

In order to achieve genetic modification in plants, a procedure is necessary to select for 

transgenic tissue. Selection strategies are usually based on inclusion of an antibiotic 

resistance gene which allows proliferation of transformed cells on antibiotic containing 

medium on which wild type cells are unable to grow (Joersbo and Okkels 1996). 

 

1.3.3.1 Heterologous genes 

Selection with heterologous genes is based on a gene insertion approach. This means 

using a plasmid containing an expression cassette with a selectable marker gene, flanked 

by a specific promoter and transcription/translation signals. This expression cassette can 

then be integrated into the respective genome, by various methods. Selection with the 

appropriate antibiotic is then utilized to select for transformed tissue.  

 

Different selection markers can be used for nuclear transformation, in comparison with 

plastid transformation. This is mainly due to the mode of action of the corresponding 

antibiotic and the type of selection that is needed for each type of transformation. (e.g. 

achieving homoplasmy in plastid transformation, as opposed to the relatively quick full 

integration within the nuclear genome). For nuclear transformation several types of 

antibiotics can be used, with the corresponding antibiotic resistance genes. Most of these 

antibiotics are aminoglycosides, of which several subgroups exist. One of the most used 

aminoglycoside in nuclear transformation experiments is the aminocyclitol hygromycin B 

produced by Streptomyces hygroscopicus. This antibiotic inhibits protein synthesis by 

interfering with ribosomal translocation and aminoacyl-tRNA recognition, furthermore it 
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causes misreading of mRNAs (Zheng et al. 1991). This antibiotic has a lethal effect on 

plant tissue at higher concentrations. So far this antibiotic has not been successfully used 

to produce transplastomic plants, possibly due to a mode of action that causes lethality on 

tissue during selection. The detoxifying protein acting on this antibiotic is encoded by the 

hygromycin phosphotransferase gene (hpt) from Escherichia coli.  

 

A second aminoglycoside group contains antibiotics like kanamycin, gentamycin, 

paromomycin and geneticin (G-418). These antibiotics bind to the 16S rRNA and to 

some extent to the 30S subunits of the prokaryotic ribosome, causing inhibition of protein 

synthesis and misreading of initiated translation. Furthermore they stimulate membrane 

leakage. Visually this results in bleaching of plant tissue. All these antibiotics have a 

lethal effect on plant tissue at higher concentrations. However kanamycin has a less 

stringent effect, compared to paromomycin during selection in several plant species 

(Mauro et al. 1995; Wang et al. 2005). Several enzymes can be used to detoxify these 

antibiotics, one of these is encoded by the neomycin phosphotransferase II gene (nptII) 

derived from the transposon Tn5 from Escherichia coli. This gene is widely used, to 

generate nuclear transformed plants. Another protein that can detoxify these antibiotics is 

encoded by the 3'-aminoglycoside phosphotransferase gene (aphA-6) from Acinetobacter 

baumannii (Shaw et al. 1993). This last marker gene, was successfully used to generate 

transplastomic plants in several species, including tobacco (Huang et al. 2002), 

Chlamydomonas  (Bateman and Purton 2000) and cotton (Kumar et al. 2004). 
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A last group of aminoglycosides includes spectinomycin from Streptomyces spectabilis. 

This antibiotic binds to the 30S subunit of ribosomes, causing inhibition of protein 

synthesis, but in contrast to other aminoglycosides, it does not cause mistranslation. As a 

result it inhibits growth and causes bleaching, but is not lethal (Maliga 2004). This 

antibiotic is routinely used to select for transplastomic tissue. The detoxifying protein 

acting against spectinomycin is encoded by the aminoglycoside 3"-adenylyltransferase 

gene (aadA).  

 

Recently the chloramphenicol acetyltranferase (cat) gene was used to generate 

transplastomic tobacco using chloramphenicol selection. The development of this new 

selection system for plastid transformation can potentially lead to an extension of the 

range of species amendable to plastid transformation (Li et al. 2010).   

 

1.3.3.2 “Binding-type” markers 

Several point mutations were identified within the genes 16S rRNA and rps12 

responsible for spectinomycin and streptomycin resistance, while mutations in the 23S 

rRNA gene conferred resistance to lincomycin (Kavanagh et al. 1994). The first report 

where these mutations were utilised to create stable plastid transformants, was with 

Chlamydomonas reinhardtii (Newman et al. 1990). This selection strategy was shortly 

afterwards also applied to tobacco (Svab et al. 1990). These “binding type” markers are 

desirable, as this system does not require dominant bacterial antibiotic resistance genes 

and therefore allays public concerns that the use of the bacterial genes might interfere 

with medical applications of the antibiotics (Conner et al. 2003).  
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1.3.3.3 Limitation of spectinomycin selection 

Due to the presence of point mutations conferring spectinomycin resistance within 

monocotyledonous species (Fromm et al. 1987), including Lolium perenne L., the most 

utilised selection marker aadA can not be used in conjunction with spectinomycin 

selection for plastid transformation of perennial ryegrass. 

 

1.4 Drought stress 

1.4.1 Drought stress response 

‘Drought’ is a general term, as it can have many meanings concerning crop production in 

different kind of aspects like time frame, severity of drought and the effect of drought on 

the crop. The effect of water deficit is looked upon differently depending on the type of 

person that is asked. For farmers the effect of water deficit is secondary to many other 

considerations like weeds, diseases and insects, that may affect yield much more than the 

water supply (Passioura 2006a). Furthermore a farmer takes into account a time frame of 

months to a few years.  Plant physiologists on the other hand usually tend to look at 

drought stress over a relative short period of days up to a few months, while they explore 

the rate of survival of plants under water-deficit, rather then yield. Molecular biologists 

work with a timeframe of hours, where attention is paid to the molecular processes 

involved with water deficit. This includes the production of reactive oxygen species and 

the pathways involved in countering these molecules (Passioura 2006a). 
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1.4.2 Oxidative stress  

Water deficit causes oxidative stress, as a result of a serious imbalance between the 

production of Reactive Oxygen Species (ROS) and the presence of the antioxidant 

defences (Møller 2001). ROS consist of superoxide (•O2
-), hydrogen peroxide (H2O2), 

hydroxyl radicals (•OH), and singlet oxide (1O2
-). Superoxide and hydrogen peroxide are 

produced at high rates within chloroplasts, even under optimal conditions. These 

compounds are produced by several enzyme systems (plasmalemma-bound NADPH 

(nicotinamide adenine dinucleotide phosphate)-dependent superoxide synthase and 

superoxide dismutase (SOD)). Although the toxicity of these compounds is relatively low, 

their detrimental effect resides in the ability to initiate cascade reactions that result in the 

production of hydroxyl radicals and other destructive molecules (Noctor and Foyer 1998). 

However, ROS can also play a role in signalling, for instance during pathogen infection, 

a plasma membrane NADPH oxidase is activated, which initiates the production of 

superoxide radicals, which in turn are converted to H2O2 by SOD. The high levels of 

H2O2 kill both the pathogen and the plant cells surrounding the infection site, thus 

preventing the spread of the pathogen to neighbouring cells (Grant and Loake 2000).  

 

1.4.2.1 Antioxidant system 

To counter the accumulation of these species, several ROS scavenging enzymes are 

produced within different compartments of the cells. These compounds quench ROS 

without undergoing conversion themselves to a destructive radical. The enzymes either 

catalyse reactions or are involved in the direct processing of ROS. Known ROS 

scavenging enzymes are glutathione S-transferase (GST), ascorbate peroxidase (APX), 
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dehydroascorbate reductase (DHAR), glutathione reductase (GR), Catalase (CAT) and 

superoxide dismutase (SOD) (Noctor and Foyer 1998). 

 

1.4.2.2 Chlororespiration 

The discovery of the plastid NDH-complex (NADH dehydrogenase complex) provided 

molecular evidence of the existence in chloroplasts of chlororespiration (Burrows et al. 

1998), which is defined as a respiratory electron transport chain (ETC).  Increased 

activity of the NDH complex has been observed under various stress conditions (Casano 

et al. 2001). This pathway is believed to supply electrons, which can be cycled around 

photosystem I. This is used to drive ATP (adenosine-5'-triphosphate) synthesis, and is 

considered as an important system for extra ATP production when exposed to stress 

conditions which cause photoinhibition (Bendall and Manasse 1995). The second 

function is believed to involve compensating stromal overreduction through mediation of 

cyclic electron transfer, which prevents the formation of ROS (Wang et al. 2006).  

 

1.4.3 Ways to overcome the impact of climate change 

To achieve improved tolerance to drought stress, three approaches can be exploited. 

Firstly, plant physiology has provided new insights and developed new tools to 

understand the complex network of drought-related traits. Secondly molecular genetics 

has revealed many Quantitave trait loci (QTL) affecting yield under drought stress and 

detected expression of drought tolerance-related traits. Finally molecular biology has 

provided genes, useful either as candidate sequences to dissect QTL or for improving 

stress tolerance through a transgenic approach (Cattivelli et al. 2008).  
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Despite the need for studies to counter drought stress in perennial ryegrass, most studies 

regarding drought response are performed on model species, like Arabidopsis and maize. 

This is due to the availability of full genome sequences of these species, which allows the 

use of extensive micro-array data. Unfortunately in perennial ryegrass, public accessible 

micro-array data are not available. Therefore only a few gene-expression studies have 

been performed on this species to identify genes involved with countering water deficit 

(Foito et al. 2009). The molecular analysis results obtained with one species cannot 

always be applied to a different species, so more studies are needed with perennial 

ryegrass (Foito et al. 2009).  

 

1.5 RNA editing 

RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from 

the sequence of its DNA template (Tillich et al. 2006). There are several different types 

of RNA editing, which include insertions, deletions and conversion of nucleotides. RNA 

editing is particularly associated with the organellar genomes and has been observed 

within molecules of messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA 

(rRNA) and spliced leader RNA (slRNA) within all organellar compartments. 

 

The majority of editing events take place within mRNA molecules. These events can 

result in an altered protein product, or the alteration of the start codon or stop codon. 

Nevertheless not all editing sites change the amino acid sequence, as editing events have 

also been observed within both introns and untranslated regions (UTRs). These editing 

sites may be involved in the stabilization of the transcripts (Maier et al. 1996).  
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Editing of tRNA creates essential structural elements at the primary, secondary, and 

tertiary levels. A tRNA molecule transfers a specific amino acid to a growing polypeptide 

chain at the ribosomal site of protein synthesis during translation. One instance of tRNA 

editing has been identified in plastids, namely adenosine (A) to inosine (I) editing within 

the tRNAArg (Pfitzinger et al. 1990; Karcher and Bock 2009).  

 

Editing of rRNA appears to be less frequent than alterations in mRNAs and tRNAs, and 

has not been observed in plastids. Nevertheless rRNA editing was shown to be important 

for maturation of the mitochondrial small subunits of 17S rRNA of Physarum 

polycephalum (Mahendran et al. 1994).  

 

Editing in slRNA was found in Leptomonas collosoma. slRNAs are small RNA 

molecules that are added as leader sequences to all mRNAs by trans-splicing in 

trypanosomes (Ben-Shlomo et al. 1999).  

 

1.5.1 RNA editing in plastids 

RNA editing in plastids consists mostly of  C to U conversions, with the exception of  U 

to C conversions  in the bryophyte Anthoceros formosae (Kugita et al. 2003). So far 21 to 

37 editing sites have been identified in plastid genomes of seed plants depending on the 

species. In closely related taxa, common editing sites can range from 23 sites within the 

Poaceae branch up to 30 sites within the Solanaceae branch. Editing occurs all along the 

plastid genome, however editing sites appear to be clustered mostly within the rpoB, 

ndhB and ndhA transcripts. The hypothesis is that editing occurs mostly in transcripts, 
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where transitory loss of function can be tolerated (Fiebig et al. 2004). The NDH protein 

complex is believed to play a role in cyclic electron flow around photosystem I, a 

function that is compatible with the absence of significant phenotypic effects of ndhB 

gene inactivation under normal growth conditions (Horvath et al. 2000). However under 

various stress conditions this complex did indeed play a role. Under water deficit, which 

causes a limitation of CO2 availability, it was shown that in ndh mutants were 

compromised in its capability to quench fluorescence non-photochemically in an early 

stage of light induction, furthermore it was shown that the NDH complex optimizes the 

induction of photosynthesis under water stress conditions (Burrows et al. 1998; Horvath 

et al. 2000). A second study showed that the NDH complex was involved with reduction 

of the plastoquinone pool (PQ) in the dark in response to heat stress (Sazanov et al. 1998). 

In a third study it was shown that under illumination of strong light, ndh mutants 

exhibited more photodamage, which indicated the importance of the NDH complex in 

countering photodamage resulting from the stromal overreduction. This was thought to be 

accomplished by mediating the cyclic electron transport to supply ATP for the calvin 

cycle (Endo et al. 1999). Similar effects on ndh mutants were observed when cold stress 

was applied (Li et al. 2004)  

  

1.5.2 Evolution of RNA editing in plastids 

RNA editing has been observed in plastid genomes of all lands plants tested, except in the 

liverwort Marchantia polymorpha (Freyer et al. 1997). The frequency of RNA editing 

events differs immensely within the plant kingdom. Within angiosperms, RNA editing 

occurs at about 30 separate sites, whereas within the bryophyte hornwort Anthoceros 
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formosae 941 editing sites have been detected and within the fern Adiantum capillus-

veneris 350 editing sites were detected (Wolf et al. 2004). In comparison with Anthoceros 

formosae and Adiantum capillus-veneris, it was found that, 18 out of 85 editing sites 

found in seed plants, are shared with at least one of these taxa. These editing sites could 

be remnants of the original RNA editing system of land plants (Tillich et al. 2006). On 

the other hand, new editing sites have emerged or disappeared over a relative short time, 

this is evident when editing sites were compared within closely related species (Freyer et 

al. 1997). The reason for the emergence and disappearance of editing sites can be linked 

to the mutation rate on the DNA level. However the efficiency of the RNA editing 

machinery itself, seems to be more of a driving factor for the evolution of editing sites 

(Duff and Moore 2005). 

 

1.5.3 Cis-acting elements 

Cis acting elements are stretches of sequence surrounding editing sites that facilitate 

binding of specific proteins or guide RNAs (gRNAs), also called trans-factors, to induce 

RNA editing. Although a specific sequence consensus has not been found for plastidial 

RNA editing, it has been shown that sequences -20 to -5 upstream of the editing site are 

critical for binding of the trans-factors. Sequences at positions -5 and -1 upstream of the 

editing site are responsible to a lesser degree for interaction with the trans-factor (Hayes 

et al. 2006). 
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1.5.4 trans-factors 

The mechanism of the RNA editing reaction involves trans-factors. These are molecules 

that interact with cis acting elements to induce editing. In mitochondrial RNA editing, it 

was found that small RNA molecules (gRNAs) were acting as trans-factors. For this 

reason, initially it was believed similar gRNA molecules would be responsible for editing 

site recognition within plastids (Gray and Covello 1993). However when a putative 

gRNA stretch was found within the plastid genome (ptDNA) that was complementary to 

the psbL transcript, this hypothesis was tested by altering the 14 nucleotide RNA 

molecule by plastid transformation (Bock and Maliga 1995). Despite this alteration the 

editing efficiency within the psbL transcript was not abolished. Since no other sequences 

were found that were complementary to the psbL editing site, it was hypothesized that 

either the gRNA molecule would have little complementarity to the editing site, or it 

would be encoded in the nuclear genome (Bock and Maliga 1995). 

 

In 2001 a study showed that RNA-binding proteins could be involved in RNA editing, 

instead of gRNAs (Hirose and Sugiura 2001). Recently an increasing number of trans-

factors have been identified. The first protein identified as being involved with RNA 

editing in the plastid genome was the cp31 protein, this chloroplast ribonucleoprotein was 

required for editing of a range of editing sites (Hirose and Sugiura 2001). All the other 

identified proteins involved with RNA editing are pentatricopeptide repeat (PPR) 

containing proteins (Kotera et al. 2005; Okuda et al. 2007; Chateigner-Boutin et al. 2008; 

Cai et al. 2009; Hammani et al. 2009; Okuda et al. 2009; Robbins et al. 2009; Yu et al. 

2009; Zhou et al. 2009). This protein family consists of 400 members in rice and 
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Arabidopsis. Unlike cp31, these proteins are involved with editing at specific sites 

(Robbins et al. 2009). Only one of the identified PPR proteins was involved in more then 

one site, namely the CLB19 protein (Chateigner-Boutin et al. 2008; Kobayashi et al. 

2008).  

 

Robbins et al 2009 utilised a novel approach to identify more PPR proteins involved with 

RNA editing. With the use of bioinformatics, eight orthologs of PPR proteins with 

chloroplast signals were identified that were present in Arabidopsis but absent in rice. It 

was also known, that eight editing sites were present in Arabidopsis, but absent in rice. 

With this knowledge one of the PPR proteins, namely ‘RACE1’ was knocked out in 

Arabidopsis, after which editing malfunction was observed within one of the editing sites 

that was absent in rice. This strategy could be employed on other species, where genome 

resources are available (Robbins et al. 2009). 

 

1.5.5 RNA editing regulation 

RNA editing does not always happen at 100% efficiency. The efficiency of editing is 

determined by the availability of the corresponding trans-factor in conjunction with the 

number of editable transcripts present. When there are insufficient molecules of trans-

factor available for the number of transcripts then the editing will be incomplete, 

resulting in transcripts being partially edited. There are several possible consequences of 

partial editing in coding sequences. Some editing sites create start or stop codons, if 

editing at these sites is absent in some transcripts, then translation will not occur correctly 

(Kudla et al. 1992; Neckermann et al. 1994; Lopez-Serrano et al. 2001). In other cases, 
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editing results in amino acid changes after translation, by translation of unedited coding 

sequences. This could impair the proteins’ function (Zito et al. 1997; Sasaki et al. 2001).  

 

1.5.5.1 Tissue specificity 

RNA editing efficiency can be tissue specific, as was shown in tobacco, spinach and 

Arabidopsis, where editing efficiencies were reduced in root tissue compared to leaf 

tissue for editing sites within the NDH complex  (Chateigner-Boutin and Hanson 2003). 

Furthermore editing efficiency of sites in different transcripts differed between various 

tissues in maize (Peeters and Hanson 2002). 

 

1.5.5.2 Environmental specificity 

RNA editing can be influenced by both endogenous and abiotic stimuli. For example, 

editing of the editing site III within the ndhB gene in Nicotiana tabacum could be 

completely blocked under heat shock conditions and treatment of the plants with 

spectinomycin, which impairs prokaryotic translation within plastids (Karcher and Bock 

1998). It is likely that the production of the corresponding trans-factor is regulated by 

environmental conditions, therefore influencing the editing function (Hirose and Sugiura 

1997). 

 

1.5.6 RNA editing in Lolium perenne L. 

Recently the plastid genome of Lolium perenne L. has been sequenced and during this 

study 31 RNA editing sites were identified (Diekmann et al. 2009). This study revealed 

five RNA editing sites unique to perennial ryegrass and previously not observed among 
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other species. Furthermore partial editing was observed in eight editing sites, although the 

number of unedited transcripts was small, with the exception of the two RNA editing 

sites located within the matK and the psbL transcripts (Diekmann et al. 2009). 

 

1.6 Project aims and objectives 

The aim of this project was to develop a plastid transformation protocol for perennial 

ryegrass (Lolium perenne L.) which could be employed to engineer the plastome to 

improve stress tolerance. 

 

As target for investigation into drought tolerance, the editing machinery was evaluated to 

assess differences in editing behaviour of accessions that had various tolerances to 

drought stress. The information gathered from this investigation, could then be used to 

design a strategy to further assess the role of RNA editing in relationship with drought 

response by plastid engineering, and by investigating genes consisting of the NDH 

complex. This could be accomplished by several different approaches: 1. Over-

expression of these genes; 2. Gene disruptions by replacing the gene-of-interest with the 

selectable marker; 3. Substitution of the endogonous genes with modified versions that 

are uneditable, but result in a dysfunctional protein; 4. Substitution of the endogonous 

genes with modified versions that are uneditable, but would result in a functional protein.  
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2.1 Introduction 

In order to achieve plastid transformation in Lolium perenne L. several aspects have to be 

optimized. Each component is equally important, especially in a species that is 

recalcitrant to transformation procedures (Bock 2007). Despite the increasing range of 

dicotyledonous species where plastid transformation has been applied, it is only routinely 

used in tobacco (De Marchis et al. 2009). Furthermore plastid transformation has only 

been achieved in one monocotyledonous species, rice and even in that case the fertile 

plants remained heteroplasmic (Khan and Maliga 1999; Lee et al. 2006). The lack of 

protocols for plastid transformation within monocotyledonous species indicates that these 

species are highly recalcitrant to plastid transformation.   

 

2.1.1 Regeneration systems 

Tissue culture for transformation experiments is based on the ability of single cells to 

proliferate after gene transfer into fully fertile plants (Birch 1997). 

 

One of the limitations for achieving genetic modification in monocotyledonous species is 

their less than optimal regeneration system. In monocotyledonous species regeneration 

take place through an “indirect organogenesis”, often referred to as embryogenesis. 

During this type of regeneration, explants undergo an extensive proliferation before 

developing shoots or roots, unlike the “direct organogenesis” within dicotyledonous 

species, where explants may undergo minimum proliferation before forming shoots or 

roots (Ovecka et al. 2000). One important difference between monocotyledonous species 

and dicotyledonous species is that the former do not have a comparable wound reaction. 
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Once the cell has stopped dividing and is committed to a particular function in the plant, 

there is no stimulation of cell division following wounding (Dale 1983). In Lolium 

multiflorum the mitotic activity is restricted to tissue close to the apical meristem and the 

mitotic activity decreases rapidly in older leaves. As a consequence, cell division and 

callusing potential is restricted to a small region close to the apical meristem.(Joarder et 

al. 1986). Calli can be induced from leaf-base explants, consisting of either the apical 

meristem or leaf tissue in close proximity to the apical meristem, as has been 

demonstrated in several studies (Dalton et al. 1999; Newell and Gray 2005; Bajaj et al. 

2006). Another source for induction of regenerable callus in monocotyledonous species is 

mature embryos. Induction of calli derived from this source tissue has been utilized in 

order to achieve nuclear transformation in several previous studies (Maas et al. 1994; 

Spangenberg et al. 1995; Altpeter et al. 2000; Wu et al. 2005). In all cases the callus 

induction media consisted of full-strength Murashige and Skoog (MS) medium, with 30 g 

L-1 maltose or sucrose, supplemented with 5 mg L-1 2,4-D (2,4-dichlorophenoxyacetic 

acid), occasionally including 0.1 to 0.2 mg L-1 BAP (6-benzylaminopurine). This 

common callus induction medium across different projects suggests that this medium 

may be optimal for callus induction of Lolium perenne L. Furthermore in all of the 

mentioned studies, the callus induction was conducted in the dark. In contrast to the 

callus induction medium several different culture media were used for shoot regeneration 

in previous studies, as shown in Table 2.1. The major differences in regeneration media 

indicate that an optimal culture medium has not been developed yet for the induction of 

shoots Furthermore the optimal regeneration medium is likely to be cultivar dependent 
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(Altpeter and Posselt 2000). Significant genotypic variation for tissue culture response is 

well documented for cereals (Lazar et al. 1983; Lührs and Lörz 1987).  

In this project, the standard callus induction media was utilized to induce callus (full 

strength MS medium supplemented with 30 g L-1 maltose and 5 mg L-1 2,4-D), while two 

different regeneration protocols were tested for their efficiency for shoot regeneration on 

various cultivars of Lolium perenne L. (Protocol I and II, see Table 2.1.). 

Table 2.1: Different regeneration media used for Lolium perenne L. transformation 
experiments. 
Regeneration media Publications 

MS-medium + 0.2 mg L-1 kinetin (Spangenberg et al. 1995; 
Dalton et al. 1999; Hiroko 
and Tadashi 2006) 

MS medium + 0.1 mg L-1 2,4-D + 0.1 mg L-1 BAP (Altpeter et al. 2000) 

Protocol I: MS medium + 5 mg L-1 2,4-D + 0.1 mg L-1 BAP,  
followed by  
MS medium + 0.1 mg L-1 2,4-D + 0.25  mg L-1 BAP 

(Altpeter and Posselt 2000; 
Newell and Gray 2005) 

Protocol II: MS medium + 1 mg L-1 BAP (Bajaj et al. 2006) 

 

2.1.2 Expression of recombinant genes 

The second limitation to obtain transplastomic tissue in monocots is the low protein 

synthesis rate within the proplastids of non-green tissue. This leads to poor expression of 

the selectable marker from a transgene cassette, needed to detoxify the selectable agent. 

To overcome this problem during plastid transformation experiments, a strong promoter 

and suitable plastid signals have to be used within the expression cassette to ensure 

sufficient expression of the selectable marker gene (Daniell et al. 2002).  

 

 37



During this study, two different plastid transformation vectors were constructed. The 

Lolium perenne L. plastid transformation vectors pIAPRvdB4 and pIAPRvdB5 contain 

the trnI-trnA region of the Lolium perenne L. plastid genome to facilitate targeted 

integration of an expression cassette within the intergenic region between the trnI and 

trnA genes. Both pIAPRvdB4 and pIAPRvdB5 contain a dicistronic cassette containing 

the reporter gene soluble modified green fluorescent protein (smGFP), for visualisation 

of transgenic tissue and the selectable marker aphA-6, which detoxifies kanamycin, 

paromomycin, geneticin and neomycin (Shaw et al. 1993). The difference between these 

two vectors lies in the expression signals within the expression cassette. In the vector 

pIAPRvdB4, these genes are under regulation of the full-length Prrn promoter including 

the binding sites for nuclear-encoded polymerases (NEP) and plastid-encoded 

polymerases (PEP), whereas the mRNA stability and processing are regulated by the 

5’UTR of rbcL and the 3’UTR of rps16 of Nicotiana tabacum, as described by  (Svab 

and Maliga 1993). In pIAPRvdB5 these genes are transcribed by a truncated Prrn 

promoter fused with the gene 10 leader sequence of the T7 phage, which is known to 

facilitate high expression levels (Kuroda and Maliga 2001b). Furthermore the cassette 

contains the 3’UTR of rps16 from Nicotiana tabacum for transcript stabilisation.  

 

2.1.3 Selection regimes 

The third limitation involves the selection regime in the dark. In monocotyledonous 

species, the proliferation of calli is usually restricted under conditions in the dark. 

Although this might be quite manageable for nuclear transformation, this poses a problem 

for plastid transformation, because the aminoglycoside antibiotics, like spectinomycin, 
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streptomycin and kanamycin used for selection of plastid transformation are mostly 

ineffective when selection is performed in the dark (Bock 2007). 

 

2.1.4 Gene delivery 

The last limitation is the delivery of foreign DNA into the double membrane chloroplast.  

DNA delivery to plant cells of monocotyledonous species can be accomplished by 

several different methods; 1. Agrobacterium-mediated transformation (Wu et al. 2005; 

Hiroko and Tadashi 2006); 2. PEG-mediated transformation (Folling et al. 1998); 3. 

Biolistic particle bombardment (Dalton et al. 1999; Altpeter et al. 2000); 4. Silicon 

carbide whisker-mediated transformation (Dalton et al. 1998). However for plastid 

transformation, only two of the above methods have been used successfully. These are 

biolistic particle bombardment (biolistics) and the PEG-mediated transformation. The 

preferred method for plastid transformation is biolistics, mainly for its efficiency in 

comparison with PEG-mediated transformation (Daniell et al. 2002). In conjunction to 

the choice of gene delivery method, the choice of target tissue is equally important. The 

tissue should be able to proliferate readily and selection on the tissue should be possible 

to develop transgenic tissue after transgene delivery.  

 

2.1.5 Aim and objectives 

The aim of this study was to achieve plastid transformation of Lolium perenne L..  

In order to maximize the chances to achieve DNA modification of Lolium perenne L. 

(both plastid transformation and nuclear transformation) all the above mentioned aspects 

had to be optimized, as the transformation efficiency was expected to be very low. This is 
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based on the fact, that only one other monocotyledonous species has ever been 

successfully transformed within the plastid genome (Khan and Maliga 1999; Lee et al. 

2006) and monocot species remain relatively recalcitrant even to nuclear transformation. 

Firstly an efficient transformation vector was constructed based on data obtained from 

previous studies at the time of the start of the project. Secondly an optimal regeneration 

protocol was developed. This step is critical due to the limitations of a regeneration 

system for Lolium perenne L. conducted in the light. Light is essential for an efficient 

selection procedure for plastid transformation. Thirdly, an optimal selection regime was 

assessed and determined. Several antibiotics were analysed for feasibility for both plastid 

and nuclear transformation. Fourthly, gene delivery conditions were tested for their 

efficiency in a transient expression test. The DNA-Gold coating protocol, target distance 

and shooting pressure were assessed for their effect on transient expression. Finally 

transformation experiments were conducted, and putative transformants were 

subsequently characterised. 
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2.2 Materials and methods 

2.2.1 Molecular techniques 

2.2.1.1 Minipreparations of plasmid DNA using alkaline lysis 

2 ml of overnight bacterial cultures containing plasmids were spun down in 1.5ml 

Eppendorf tubes. The pellet was resuspended in 100 μl lysis buffer (50mM Glucose; 

10mM ethylenediaminetetra acetic acid (EDTA); 25mM Tris; 1 μl 100 mg ml-1 RNase) 

with vortexing. After 10 minutes at room temperature, 200 μl of fresh solution 2 (0.2M 

sodium hydroxide (NaOH); 1% sodium dodecyl sulphate (SDS) was added. The 

Eppendorf tubes were placed on ice for 10min, before 200 μl 3M sodium acetate, pH 5.2, 

was added. The Eppendorf tubes were placed on ice for a further 10 minutes, before they 

were spun down at max revolutions per minute (rpm) for 5 minutes. The supernatant was 

transferred to new Eppendorf tubes, and spun down again. 2 volumes of 96% ethanol 

were added to the Eppendorf tubes, which were then placed at -20oC for 30 minutes. The 

samples were spun down at max rpm for 10 minutes, and the DNA pellets were washed 

with 300 μl 70% ethanol. After another 3 minute spin, the ethanol was removed and the 

pellet was air-dried in the laminar flow hood. Finally the DNA was dissolved in 50 μl of 

sterile MilliQ. DNA samples were stored at -20oC.  

 

2.2.1.2 Total genomic DNA (gDNA) isolation of plant tissue 

100 mg of plants tissue was collected into an Eppendorf tube and frozen in liquid 

nitrogen, prior to grinding up the tissue into powder. The plant cells were subsequently 

lysed with 500 µl lysis buffer 1 (20mM Tris pH 8; 20mM EDTA; 2M sodium chloride).  
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Tubes were heated for 5 minutes at 85oC and cooled for 5 minutes on ice. This step was 

repeated twice. The suspension was spun at max rpm for 10 minutes, and the supernatant 

was transferred to a new tube. This was done twice. To each tube 1 µl 100 mg ml-1 

RNase was added, and incubated at 37oC for 30 minutes, after which 1/10 volume of 3M 

sodium acetate pH 5.2 and 1 volume 100% isopropanol was added. Tubes were incubated 

at -20oC for 30 minutes, and the precipitated DNA was spun down at max rpm for 10 

minutes. The DNA-pellet was washed with 500 µl 70% ethanol and spun at max rpm for 

3 minutes. The supernatant was removed, and the pellet was air-dried. Finally the DNA-

pellet was dissolved in 50 µl MilliQ. 

 

2.2.1.3 Polymerase Chain Reaction (PCR) 

All PCR reactions were conducted with REDTaq® Genomic DNA Polymerase (Sigma cat. 

no. D8312). The standard PCR mixture was as shown in Table 2.2 and the PCR cycles 

are given in Table 2.3. 

 

Table 2.2. Standard PCR mixes 
Reaction mix Volume (μl)  

DNA (1μg μl-1)   1.0  

Primer 1 (0.1μM μl-1)   1.0 

Primer 2 (0.1μM μl-1)   1.0  

REDTaq® Genomic DNA Polymerase (1unit μl-1)   2.5 

10x REDTaq buffer   5.0  

dNTP (10mM)   2.0  

MilliQ ddH2O 37.5 

Total reaction mix 50.0  

 

 42



Table 2.3: PCR cycle: 
Steps Temperature Time 

Step1 Denaturation 94oC 5 min 

Step 2 Denaturation 94oC 30 seconds 

Step 3 Annealing 5oC below the lowest melting 

temperature of both primers 

30 seconds 

Step 4 Extension 72oC 1kb per minute 

Step 5 Repeat cycles Repeat step 2-4 30 times 

Step 6 Final extension 72oC 10 min 

Step 7 End of program 4oC Indefinite storage 

 

2.2.1.4 Gel extraction of PCR fragments 

PCR fragments were run on a 0.8% agarose gel, after which the fragment was cut out of 

the gel with a clean scalpel. The fragment was subsequently purified from the gel with 

the “QIAquick® Gel Extraction Kit”, as specified by the manufacturer’s protocol (Qiagen 

cat. No. 28704). 

 

2.2.1.5 Preparation of chemically competent TOP10 Escherichia coli cells. 

Commercial TOP10 heat-shock competent Escherichia coli cells (Invitrogen) were plated 

out on solid Luria broth (LB) plates. The next day a tube containing 5 ml LB was 

inoculated with a colony from the LB plates for overnight growth at 225 rpm and 37oC.  

5ml of the overnight culture was inoculated into 200 ml LB in a 1 litre flask. This culture 

was grown at 37oC at 225 rpm until an OD600 value of 0.3 was reached. The culture was 

spun down inside a pre-cooled sterile centrifuge tube at 5,000 rpm and 4oC for 10min. 

The pellet was resuspended in 100ml ice-cold 100mM calcium chloride (CaCl2) and 

incubated on ice for 20 minutes, after which the cells were spun down at 4,000 rpm and 
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4oC for 10min. The pellet was resuspended in 20ml ice-cold 100mM CaCl2 and the 

culture was incubated for 1 hour on ice. 3.87 ml 100% glycerol was added to the 

centrifuge tube to give a final concentration of 15% glycerol and 100mM CaCl2. The 

culture was mixed gently and 200 μl was aliquoted to cold 0.5 ml Eppendorf tubes. Tubes 

were snap frozen in liquid nitrogen and stored at -80oC for future use. 

 

2.2.1.6 Ligation of PCR fragments into the pCR2.1 topo vector 

PCR fragments were cloned into the TA cloning vector pCR2.1 (Invitrogen, cat. no. 

K2020-20) using the manufacturer’s protocol. The vector with insert was then transfected 

into chemically competent TOP10 cells. 

 

2.2.1.7 Heat-shock of plasmid DNA into chemically competent TOP10 cells 

1 μl of 1μl μl-1 plasmid DNA was added to 50 μl of ice-cold competent cells. The cells 

were then heat-shocked at 42oC for a duration of 45 seconds. Afterwards the tube was 

directly placed on ice for 2 minutes. Subsequently 200 μl LB was added, and the culture 

was incubated for 1 hour at 37oC at 200 rpm. Finally 75 μl and 150μl of cultures were 

plated on solid LB with the appropriate antibiotic. 

 

2.2.1.8 Restriction digests of plasmid DNA 

To facilitate cloning, plasmids were digested with appropriate restriction endonucleases 

ordered from Promega as summarised in Table 2.4. 
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Table 2.4: General restriction digestion overview 
Components Volumes or units 

Plasmid DNA for backbone fragment 5 μg (usually 5 μl) 

Restriction endonuclease I 1 unit if single digest 

2 units if double digest 

Restriction endonuclease II 1 unit if single digest 

2 units if double digest 

Appropriate restriction buffer (10x) 2 μl 

BSA (10x) (if needed) 2 μl if needed 

MilliQ ddH2O Add until final volume is 20 μl 

Total mix 20 μl 

 
Components Volumes or units 

plasmid DNA for creating an insert 10 μg (usually 10 μl) 

Restriction endonuclease I 1 unit if single digest 

2 units if double digest 

Restriction endonuclease II 1 unit if single digest 

2 units if double digest 

Appropriate restriction buffer (10x) 2 μl 

BSA (10x) (if needed) 2 μl if needed 

MilliQ ddH2O Add until final volume is 20 μl 

Total mix 20 μl 

 

2.2.1.9 Ligation of inserts and vectors 

Digested inserts and vectors were ligated together using T4 DNA Ligase (Invitrogen, cat. 

no. 15224-017), according to the manufacturer’s protocol.  

  

2.2.1.10 Southern blot analysis 

Southern blot analysis was performed according to the method of McCabe et al (1997). 

 45



2.2.1.10.1 PCR DIG-probe labelling 

A dNTP labelling mix was used from the digoxigenin (DIG) DNA labelling kit (Roche 

cat. No. 11175033910) in conjunction with GoTaq polymerase (Promega cat. No. 

M8301). The PCR reaction was performed in a 0.2 ml Eppendorf tube, containing 1 μl of 

0.1μg μl-1 template DNA, 0.2 μl GoTaq polymerase, 10 μl 5x buffer, 6 μl 2.5 M CaCl2, 1 

μl 10 mM forward primer, 1 μl 10 mM reverse primer, 5 μl dNTP labelling mix and 25.8 

μl MilliQ. A control reaction with unlabeled PCR reaction was also set up as a reference.  

The PCR cycle consisted of 35 cycles with the annealing temperature five degrees 

Celsius below the Tm of the used primers. 5 μl of the reaction mix was analysed on a 

0.8% agarose gel. The control product would show at the expected size, whereas the 

labelling reaction’s product would migrate slower due to the integrated dUTPs. DIG-

labelled probes were stored at -200C until use. 

 

2.2.1.10.2 Sample digestion and electrophoresis 

For testing plastid putative transformants 1 μg of total DNA was digested with SacII, 

while for nuclear putative transformants 12 μg of total DNA was digested with SacII. As 

control, 0.1 μg plasmid DNA was digested with SacII or KpnI depending on the plasmid. 

Digests were setup containing 1 μl restriction enzyme, 2 μl of appropriate restriction 

enzyme buffer, 2 μl 10x BSA, an x amount of DNA depending on the concentration and 

MilliQ to added to gain a final volume of 20 μl. The reactions were incubated at 370C for 

a minimum of 16 hours. The reaction mixes were ran on a 0.8% agarose gel for five 

hours at 60 volts and visualised using UV. 
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2.2.1.10.3 Southern blotting and hybridisation with probe 

The DNA was blotted onto a Hybond N+ membrane by capillary pull overnight using 

0.4M NaOH as transfer buffer (McCabe et al. 1997). The capillary blot was dismantled 

and the membrane was neutralized by washing in 2x SSC (0.3M sodium chloride, 30 mM 

sodium citrate, pH 7) for 5 minutes. The membrane was subsequently baked for 30 

minutes at 1200C, after which the membrane was transferred into a roller tube containing 

20 ml pre-hybridisation solution (DIG easy hyb solution (Roche cat. No. 11603558001)) 

and incubated for a minimum of 1 hour at 370C. Meanwhile DIG labelled probe was 

denatured for 10min at 950C, of which 25 μl was added to 10 ml of DIG easy hyb 

solution, resulting in the hybridisation solution. The pre-hybridisation solution was 

poured off, and replaced with the hybridisation solution. The roller tube was placed back 

in the hybaid oven at 420C for 16 hours. The pre-hybridisation solution can be stored at -

20oC and be reused three times. The membrane was washed twice in 50ml of wash 

solution A (2x SSC, 0.1% SDS) at 200C for five minutes and twice with 50 ml of wash 

solution B (0.5x SSC, 0.1% SDS) at 680C for 15 minutes. 

 

2.2.1.10.4 Chemiluminescent detection 

The membrane was rinsed briefly in buffer 1A (0.1M Maleic acid, 3M sodium chloride, 

pH 8, autoclaved, 0.3% tween-20). The membrane was blocked by incubation in 50ml of 

0.75% blocking solution (Roche cat No. 11096176001 dissolved in buffer 1A) for one 

hour. The solution was poured in a tube, and anti-DIG-AP antibody was prepared by 

dilution 1:10.000 (v/v) in the blocking solution. The membrane was incubated in this 

solution for 30 minutes. The unbound anti-DIG-AP was removed by washing the 
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membrane five times in buffer 1A for 10 minutes. The blot was incubated in 50 ml buffer 

3 (0.1M Tris/Cl, pH 9.5, 0.1M sodium chloride) for five minutes, after which buffer 3 

was replaced with buffer 3 containing 0.24 mM CDP-star (Roche cat No. 12041677001) 

for five minutes. The blot was drained of excess solution and sealed between two acetate 

sheets, the hybridisation signals were detected by exposing the filter to Kodak X-ray film 

for 1 to 16 minutes. 

 

2.2.2 Vector construction pIAPRvdB4 and pIAPRvdB5 

2.2.2.1 Primers used for construction of pIAPRvdB4 and pIAPRvdB5 

The following primers were used for construction of the Lolium perenne L. plastid 

transformation vectors pIAPRvdB4 and pIAPRvdB5. 

P1trnI: aagctttttagggtgaagtaagacc     

 Underlined sequence is the HindIII restriction site. 

P2trnI: ttaattaaggtacctgcttcttctattcttttcc.   

 Underlined sequences are the PacI and KpnI restriction sites respectively 

P1trnA: ttaattaatctgactctttcatgcatac  

 Underlined sequence is the PacI  restriction site 

P2trnA: ccatgaatgcgaaatcatag.  

P1Prrn: Ggtaccgctcccccgccgtcgttcaa 

 Underlined sequence is the KpnI  restriction site 

P2Prrn-RbcL: gagctcccctccctacaactgtatcca 

 Underlined sequence is the SacI restriction site 

P1smGFP: gagctcatgagtaaaggagaagaact 
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 Underlined sequence is the SacI restriction site 

P2smGFP: Ggccggccccctcccttatttgtatagttcatccatgc  

Underlined sequence is the FseI restriction site, the sequence in red is the 

ribomosal binding site from RbcL gene derived from Nicotiana tabacum 

P1aphA: ggccggccatgaccatggaattaccaaa 

 Underlined sequence is the FseI restriction site 

P2aphA: gcggccgctcaattcaattcatcaagtt  

 Underlined sequence is the NotI restriction site 

P1rps16: gcggccgcaccgaaattcaattaaggaa  

 Underlined sequence is the NotI restriction site 

P2rps16: ctcgagttaattaaagaacacggaattcaatgga  

 Underlined sequences are the XhoI and PacI restriction sites respectively 

P1nheI- smGFP: gctagcagtaaaggagaagaact 

 Underlined sequence is the NheI restriction site 

P2T7g10-ndeI-nheI: gctagccatatgtatatctccttctt 

 Underlined sequences are the NheI and NdeI restriction sites respectively 

 

2.2.2.2 Construction of the Lolium perenne transformation vector pIAP 

The flanking regions trnI and trnA were amplified from total DNA isolated from Lolium 

perenne accession ‘Shandon’ with the primers P1trnI, P2trnI, P1trnA and P2trnA (see 

2.2.2.1). The PCR products were ligated into pCR2.1, and subsequently sequenced at 

John Lester’s DNA sequencing facility at Cambridge using the M13 sequencing primers, 

which bind on the pCR2.1 vector for confirmation. Positive clones of fragments trnI and 
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trnA were ligated together with the use of restriction sites HindIII and PacI. This resulted 

in the transformation vector pIAP with a KpnI-PacI cloning site for integration of an 

expression cassette. The construction of this vector is illustrated in Fig. 2.1 

 

 

 

pCR2.1-trnI

trnI

HindIII KpnI PacI

Digest with HindIII + PacI

pCR2.1-trnA

trnA

HindIII PacI

pCR2.1-trnA

trnA

HindIII PacI

trnI

HindIII KpnI PacI

pIAP

trnAtrnI

HindIII KpnI PacI

Ligation

Expression cassette can be conveniently cloned into pIAP with KpnI and PacI

KpnI PacI

 

 

ig. 2.1: Illustration of construction of the Lolium perenne L. plastid transformation 
vector pIAP. Flanking sequences homologous to the Lolium perenne L. plastid region 
F

trnI (tRNAile) and trnA (tRNAala). 
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2.2.2.3 Construction of expression cassette RvdB4: 

The following fragments for pRvdB4 were amplified: 

Full length Prrn promoter + rbcL  5’UTR from pZS197(Svab et al. 1990), with the 

following primers P1Prrn and P2Prrn-Rbcl (see 2.2.2.1). smGFP (soluble modified Green 

Fluorescent Protein) from the plasmid smGFP (Davis and Vierstra 1998) with the 

following primers, P1smGFP and P2smGFP (see 2.2.2.1). AphA-6 (3'-aminoglycoside 

phosphotransferase) from pSK.KmR (Bateman and Purton 2000), with the following 

primers; P1aphA, and P2aphA (see 2.2.2.1). rps16 3’UTR from total DNA isolated from 

Nicotiana tabacum Cv. ‘Petit Havanna’, with the following primers; P1rps16 and 

P2rps16 (see 2.2.2.1). Amplified fragments were cloned into pCR2.1 and sequenced for 

confirmation using M13 primers which bind to the pCR2.1. Positive clones were selected 

and used to construct the vector pRvdB4. An overview of the steps that were involved in 

this process, are illustrated in Fig. 2.2a and Fig. 2.2b.  

 

pCR2.1-aphA-6 and pCR2.1-Trps16, were digested with NotI and XhoI. The rsp16 

fragment was subsequently cloned downstream of the aphA-6 gene. This resulted in the 

pCR2.1-aphA-6-Trps16 construct. This vector and the pCR2.1-smGFP were digested 

with SacI and FseI. After which the smGFP fragment was cloned upstream of the aphA-6 

gene, resulting in the pCR2.1-smGFP-aphA-6-Trps16, finally this vector and the pCR2.1-

Prrn-Rbcl 5’UTR were digested with KpnI and SacI. The Prrn-Rbcl 5’UTR fragment was 

cloned upstream of the smGFP gene, resulting in the expression vector pRvdB4. 
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pCR2.1-aphA-6

aphA-6

SacI FseI NotI XhoI

pCR2.1-Trps16

rps16 3’UTR

NotI PacI XhoI

pCR2.1-smGFP

smGFP

SacI FseI

rbs

Digest with NotI and XhoI

pCR2.1-aphA-6

aphA-6

SacI FseI NotI XhoI

rps16 3’UTR

NotI PacI XhoI

pCR2.1-aphA-6-Trps16

aphA-6

SacI FseI NotI PacI XhoI

rps16 3’UTR

ligation

Digestion with SacI and FseI

 

smGFP

SacI FseI

rbs pCR2.1-aphA-6-Trsp16

aphA-6

SacI FseI NotI PacI XhoI

rps16 3’UTR

pCR2.1-smGFP-aphA-6-Trps16

aphA-6

SacI FseI NotI PacI XhoI

rps16 3’UTRsmGFP

rbs

Ligation

 

Fig. 2.2a: Part I of stepwise illustration of the construction of expression vector pRvdB4 
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pCR2.1-smGFP-aphA-6-Trps16

KpnI SacI FseI NotI PacI XhoI

pCR2.1-Prrn+Rbcl 5’UTR

KpnI SacI

Digestion with KpnI and SacI

KpnI SacI

pCR2.1-smGFP-aphA-6-Trps16

KpnI SacI FseI NotI PacI XhoI

pRvdB4

KpnI SacI FseI NotI PacI XhoI

Ligation

Prrn + Rbcl 5’UTR

Prrn + Rbcl 5’UTR

 

Fig. 2.2b: Part II of stepwise illustration of the construction of expression vector pRvdB4. 
Prrn: Promoter from the rrn operon in Nicotiana tabacum, rbcL: rubisco large subunit,  
smGFP: soluble modified Green Fluorescent Protein, aphA-6: 3'-aminoglycoside 
phosphotransferase , rps16: ribosomal protein S16. 

 53



2.2.2.4 Construction of expression cassette RvdB5: 

The expression cassette RvdB5 contains the truncated Prrn promoter with the binding 

sites for the PEP (Plastid-Encoded Polymerase), fused with the T7g10 (gene 10 of the T7 

phage) leader for high expression of the transgene. The Prrn-T7g10 fragment was 

amplified from pHK20 (Kuroda and Maliga 2001b) using the following primers; P1Prrn 

and P2T7g10-ndeI-nheI (see 2.2.2.1). The smGFP fragment was amplified from pRvdB4 

using the following primers; P1ndeI- smGFP and P2smGFP (see 2.2.2.1). The cloning 

steps are illustrated in Figs. 2.3 and 2.4. 

pCR2.1-Prrn-T7g10 5’UTR and pRvdB4 were digested with KpnI and SacI. The Prrn 

T7g10 5’UTR fragment was cloned into the excised region from pRvdB4, replacing the 

Prrn Rbcl 5’UTR. The resulting vector was pRvdB4/5 intermediate, as shown in Fig. 2.3. 

The pRvdB4/5 intermediate vector can be used to construct a tricistronic vector. An extra 

gene can be cloned between the T7g10 leader and the smGFP. However if done, an extra 

ribosomal binding site (RBS), has to be amplified between the new gene and the smGFP. 

 

Finally the pRvdB4/5 intermediate and the pCR2.1-nheI-smGFP vectors were digested 

with NheI and FseI. The NheI-smGFP-FseI fragment was cloned into the excised region 

of the pRvdB4/5 intermediate, replacing the smGFP fragment from pRvdB4.  This 

resulted in the pRvdB5 expression vector. The maps of the completed vectors are shown 

in Fig. 2.5. 
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pRvdB4

KpnI SacI         FseI    NotI    PacI   XhoI

pCR2.1-Prrn+T7g10 5’UTR

SacI  NheI NdeI KpnI

Digestion withKpnI and SacI

pRvdB4-5 intermediate, can be used for tricistron constructs 

aphA-6

KpnI NheI   SacI                 FseI        NotI                       PacI   XhoI

rps16 3’UTRsmGFP
rbs

pRvdB4

KpnI SacI         FseI    NotI    PacI   XhoI

Ligation

Prrn (PEP) + T7g10 5’UTR

SacI  NheI NdeI KpnI

Prrn (PEP) + 
T7g10 5’UTR

Prrn (PEP) + 
T7g10 5’UTR

 

Fig. 2.3: Illustration of construction of the intermediate vector pRvdB4/5, Prrn (PEP): 
Prrn(PEP): Truncated promoter of the rrn operon including the PEP binding sites. T7g10 
5’UTR: gene 10 of the T7 phage 5’UTR. smGFP: soluble modified Green Fluorescent 
Protein, aphA-6: 3'-aminoglycoside phosphotransferase , rps16: ribosomal protein S16 
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pRvdB4/5 intermediate

KpnI NheI SacI    FseI    NotI    PacI   XhoI

pCR2.1-nheI-smGFP

smGFP

NheI                       FseI

rb
s

Digestion with NheI and FseI

smGFP

NheI                       FseI

rb
s

pRvdB4/5 intermediate

KpnI NheI        FseI      NotI    PacI   XhoI

pRvdB5

KpnI NheI        FseI    NotI    PacI   XhoI

Ligation

  
Fig. 2.4: Final step of construction of expression vector pRvdB5 
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pRvdB4

aphA-6

KpnI SacI FseI NotI PacI XhoI

rps16 3’UTRsmGFP

rb
s

pRvdB5

KpnI NheI FseI NotI PacI XhoI

Prrn + Rbcl 5’UTR

aphA-6 rps16 3’UTRsmGFPPrrn(PEP) + T7g10 5’UTR

rb
s

 

 

Fig. 2.5: Complete map of pRvdB4 and pRvdB5, (illustrated fragment sizes do not 
represent actual sizes) 
Prrn: Full length promoter from the rrn operon of Nicotiana tabacum, rbcL: rubisco 
large subunit, Prrn(PEP): Truncated promoter of the rrn operon of Nicotiana tabacum 
including the PEP binding sites. T7g10 5’UTR: gene 10 of the T7 phage. smGFP: soluble 
modified Green Fluorescent Protein, aphA-6: 3'-aminoglycoside phosphotransferase , 
rps16: ribosomal protein S16. 
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2.2.2.5 Construction of the transformation vectors pIAPRvdB4 and pIAPRvdB5 

The transformation vector pIAPRvdB4 and pIAPRvdB5 was constructed by digesting 

both the pIAP and pRvdB4/5 with KpnI and PacI. The excised expression cassette was 

ligated into pIAP resulting in respectively pIAPRvdB4 and pIAPRvdB5 as illustrated in 

Fig. 2.6. 
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pRvdB4 or pRvdB5

KpnI SacI         FseI    NotI    PacI   XhoI

pIAP

trnAtrnI

KpnI PacI

Digest with KpnI and PacI

KpnI SacI         FseI    NotI    PacI

pIAP

trnAtrnI

KpnI PacI

Ligation

NheI
or

NheI
or

 

 

  

aphA-6

HindIII       KpnI SacI                         FseI                              NotI                       PacI  SacI        NotI XbaI

rps16 3’UTRsmGFP

rb
s trnAtrnI

pIAPRvdB4, 7.823 kb 

Prrn(PEP/NEP) + 
Rbcl 5’ UTR

aphA-6

HindIII          KpnI NheI                         FseI                              NotI                       PacI  NotI XbaI

rps16 3’UTRsmGFP

rb
s trnAtrnI

pIAPRvdB5, 7.841 kb 

Prrn(PEP) + 
T7g10 5’UTR

 
 

 

 

 

 

 
 
Fig. 2.6: Illustration of introduction of RvdB4 and RvdB5 cassettes into the Lolium 
perenne L. plastid transformation vector pIAP, resulting in plastid transformation vectors 
pIAPRvdB4 and pIAPRvdB5. 
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2.2.2.6 Testing functionality of pIAPRvdB4 and pIAPRvdB5 

2.2.2.6.1 Testing for GFP accumulation in Escherichia coli 

Escherichia coli stain TOP10 was transfected with either plastid transformation vector 

pIAPRvdB4, pIAPRvdB5 or an empty transformation vector pIAP, as described in 

paragraph 2.1.1.7. 

Transfected bacteria, were grown overnight in 3 ml of LB, after which centrifuged 

bacteria could be assessed for GFP accumulation using a tabletop UV-light.  

 

2.2.2.6.2 Testing for functionality of the aphA-6 gene conferring resistance to G-418 

and paromomycin 

To test if the aphA-6 gene was correctly translated, and to test if G-418 and paromomycin 

could be used as antibiotic, the expression cassette was ligated into the pUC19 vector, 

which lacked a backbone containing the nptII gene. This step was necessary, due to the 

nptII gene within the backbone of the transformation vector pIAPRvdB4 and pIAPRvdB5. 

Bacteria containing pUC19-RvdB4, pUC19-RvdB5 or pUC19 were plated on LB + 50 

mg L-1 paromomycin and LB + 50 mg L-1 G-418 and allowed to grow overnight at 370C. 

Growth was assessed by looking at the number of colonies that developed for each 

construct.  

 

 

 

 60



2.2.3 In vitro culture methods 

2.2.3.1 Plant material: 

Seed from six accessions of Lolium perenne L. were provided by Teagasc, Oak Park, 

Carlow. These were ‘Cashel’, ‘Shandon’, ‘Greengold’ (4n), ‘S23’, ‘Cancan’ and ‘Limes’. 

Another two accessions were acquired, namely cultivars ‘Action’ and ‘Telstar’ (kindly 

provided by Dr. Christian Sig Jensen, DLF-Trifolium A/S, Denmark) 

 

2.2.3.2 Aseptic techniques 

All tissue culture experiments were carried out in a laminar flow cabinet using aseptic 

techniques. Equipment was sterilized, by dipping in 70% ethanol, prior to flaming. All 

media were sterilized by autoclaving for 20 minutes at 120o Celsius. Heat labile chemical 

solutions were filter sterilized using Millex GP filter units (pore size 0.22μm) 

 

2.2.3.3 Culture media 

The media used for regeneration studies of Lolium perenne L are described in Table 2.5. 
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Table 2.5. Composition of media used for tissue culture. 
Name of media 

------------------ 

Ingredients 

CIM  

(Callus 

Induction 

Medium) 

CMM  

(Callus 

Maintenance 

Medium) 

RGM1 

(Regeneration 

medium 1) 

RGM2 

(Regeneration 

medium 2) 

GM 

(Germination/

Rooting 

medium) 

MS + vitamins 

(Murashige & 

Skoog, 1962) 

(including 

vitamins) 

4.4 g L-1 4.4 g L-1 4.4 g L-1 4.4 g L-1 2.2 g L-1 

Sucrose     30 g L-1 

Maltose* 30 g L-1 30 g L-1 30 g L-1 30 g L-1 - 

2,4-D* 

 

5 mg L-1 5 mg L-1 - 0.1 mg L-1 - 

BAP* - 0.25 mg L-1 1 mg L-1 0.25 mg L-1 - 

micro agar 7 g L-1 7 g L-1 7 g L-1 7 g L-1 7 g L-1 

pH pH 5.7 pH 5.7 pH 5.7 pH 5.7 pH 5.7 

*: Filter sterilised, and added after autoclaving 

 

2.2.3.4 Surface sterilization of seeds  

Seeds were placed in 1.5ml eppendorf tubes, with 1 ml of 5% sodium hypochlorite 

(undiluted Domestos) solution 1 hour. The seeds were three times rinsed with sterile 

water, after which they were transferred to a new sterile eppendorf tube and kept 

overnight at 4oC. The next day the seeds were treated with 0.5% sodium hypochloride for 

10min, after which they were rinsed three times with sterile water and left to dry on a 

sterile filter paper in the laminar flow unit before use.  
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2.2.3.5 Induction of callus cultures 

2.2.3.5.1 Induction of calli from apical meristem and leaf-base explants 

Sterile seedlings were grown for four weeks on 150 ml of Germination Medium (GM) 

(see Table 2.5.) in polypropylene tubs of 90mm in diameter and 140mm in height. After 

four weeks apical meristems and 2mm sections of leaf-base explants adjacent to the 

apical meristem were removed from the seedlings under a compound microscope 

(Cambridge Instruments, model Z30 E) see Fig. 2.7. The explants were arranged on the 

Petri dishes according to leaf number and distance from the apical meristem. From these 

pieces, calli were induced on CIM (see Table 2.5.) as described by (Newell and Gray 

2005) (see Fig. 2.7). Callus was induced for four weeks in the dark at 22oC.   
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Fig. 2.7: Preparation of source tissue for callus induction;  
A: 4 week old base of a seedling, B: longitudinal section of leaf base, C: excision of 2mm 
leaf-base explants adjacent to the apical meristem. Small squares on roster paper 
represent 2mm by 2mm. 
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2.2.3.5.2 Induction of calli from mature embryos 

Sterilized seed were soaked in sterile water overnight at 4oC to facilitate embryo excision. 

The next day, the embryos were aseptically excised from the seed under a compound 

microscope (Cambridge Instruments, model Z30 E) with the use of a seeker (see Fig. 2.8). 

The embryos were gently squeezed with a seeker to prevent germination before 

placement on CIM (see Table 2.5) in the dark at 22oC for callus induction. 

 

Fig 2.8: Mature embryo excision from sterile seeds 
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2.2.3.6 Shoot regeneration 

2.2.3.6.1 Direct shoot regeneration 

This protocol consisted of direct shoot regeneration, after callus induction (Bajaj et al. 

2006). Four week old calli were placed on Regeneration medium 1 (RGM1) (see Table 

2.5) at 22oC with a 16 hour photoperiod. Calli were transferred to new RGM1 media 

biweekly.  

 

2.2.3.6.2 Delayed shoot regeneration 

This protocol consisted of a callus maintenance phase, which allows the calli to 

differentiate further into the embryogenic stage using a Callus Maintenance Medium 

(CMM, see Table 2.4.) in the dark at 22oC. Calli which produced shoots were transferred 

to Regeneration Medium 2 (RGM2) (see Table 2.5) at 22oC with a 16 hour photoperiod, 

while the remaining calli were sub cultured on CMM at a 22oC with a 16 hour 

photoperiod. Calli were sub cultured biweekly.  The percentage of calli that produced 

shoots was recorded. 

 

2.2.3.7 Root induction from shoots 

Small plantlets were transferred to tubs with 150 ml of Rooting Medium (RM) (Table 2.5) 

for root development. 
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2.2.4 Determination of conditions for antibiotic-resistance selection 

2.2.4.1 Antibiotic stock solutions 

Antibiotics were added to freshly prepared medium from filter-sterilised 50 mg ml-1 stock 

solutions.  

 

2.2.4.2 Testing effect of antibiotics on callus initiation and growth 

To test if leaf-base explants could be used for the transformation experiments, leaf-base 

explants of Cv. ‘Cashel’ were placed on CIM (see Table 2.5) supplemented with various 

antibiotics at various concentrations in the dark at 22oC for four weeks. The percentage of 

explants producing regenerable calli was assessed, for each treatment twenty to thirty 

leaf-base explants were used. 

 

2.2.4.3 Testing effect of antibiotics on callus differentiation and shoot formation 

Four week old calli were placed on CMM (see Table 2.5) in a 16h photoperiod at 220C 

with various concentrations of several antibiotics. The callus morphology and the 

frequency of shoot development were recorded for each treatment. For each treatment 20 

calli were used. 

 

2.2.5 Nuclear and plastid transformation experiments 

2.2.5.1 Vectors used 

For transient expression experiments and nuclear transformation experiments the vectors 

pGUSHYG (Fig. 2.9) (Nugent et al. 2006) and pCambia1305.1 (Fig. 2.10) 

(http://www.cambia.org)  were used. Both contained the uidA gene, for visualisation of 
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cells containing the GUS protein (β-glucoronidase). Furthermore both contained the 

hygromycin phosphotransferase (hpt) gene for hygromycin selection in plants. The 

differences between the vectors were the expression signals and promoters. The pCambia 

1305.1 vector contained introns within the uidA gene.  

  

 

Fig. 2.9: Nuclear transformation vector pGUSHYG. It contains the GUS reporter gene, 
encoding β-glucuronidase under the control of the Cauliflower Mosaic Virus 35S 
promoter (CaMV) and terminator (Term). Furthermore it contains the selectable marker 
gene, hygromycin phosphotransferase (hpt) under regulation of the nopaline synthase 
promoter (Pnos) and termination (Term). 
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Fig. 2.10: Nuclear transformation vector pCambia 1305.1. Containing the hygromycin 
phosphotransferase (hpt) gene under regulation of the Cauliflower Mosaic Virus 
promoter (35S prom) and terminator (35S term). Furthermore it contains a modified GUS 
reporter gene including introns for optimized expression under regulation of the 35S 
promoter and nopaline synthase terminator. This vector also contains left and right border 
regions (LB, RB) for use in conjunction with Agrobacterium-mediated transformation. 
 

For the plastid transformation experiments the vector pIAPRvdB5 was used (Fig. 2.6). 

 

 69



2.2.5.2 Biolistic delivery of DNA 

2.2.5.2.1 Stock solutions for biolistical delivery 

0.1M Spermidine stock solution: 1g ampoule spermidine was heated in a water bath at 

37oC for 5 min until liquid. 750 µl spermidine was transferred to a falcon tube, after 

which 47.5 ml of MilliQ was added. The solution was filter-sterilized and divided into 

200 µl aliquots in 500 µl Eppendorf tubes. 0.1 M spermidine stocks were stored at -80oC. 

 

2.5M Calcium chloride stock solution: 3.86 g CaCl2.2H2O was dissolved in 10 ml MilliQ 

using a vortex. The solution was divided into aliquots of 1 ml in 1.5ml Eppendorf tubes 

and stored at -20oC. 0.6 Micron Gold particle preparation; 36 mg of 0.6 micron Gold 

(Biorad) was transferred into a 1.5 ml Eppendorf tube. 1 ml of 96% ethanol was added to 

the tube and sonicated for 2 minutes, after which the tube was spun at 11,000 rpm for 5 

seconds. The supernatant was removed, and the step was repeated twice. After this the 

pellet was washed with 1 ml of sterile MilliQ, followed by a spin at 13,000 rpm for 5 

seconds. The supernatant was removed, and the step was repeated twice. After the last 

spin, the pellet of gold was resuspended in 600 µl 50% sterile glycerol. Aliquots of 30 µl 

were made from this suspension in 1.5 ml Eppendorf tubes. Each tube contained 1.8 mg 

gold and could be used for 10 biolistical shots. The tubes were stored at -20oC.  
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2.2.5.2.2 Leaf-base explants preparation for biolistics 

2 mm leaf-base explants were excised from four-week old seedlings, and placed on CIM 

+ 64 g L-1 mannitol for pre-osmotic treatment 1 day prior to biolistic delivery, as 

illustrated in Fig. 2.11. 

 

Fig. 2.11: Arrangement of leaf-base explants for biolistic delivery. 
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2.2.5.2.3 Callus preparation for biolistics 

Four week-old calli (both embryogenic and non-embryogenic) were broken up into 0.25 

cm2 pieces and placed in the middle of a Petri dish containing CIM + 64 g L-1 mannitol 

for pre-osmotic treatment 1 day prior to biolistic delivery, as illustrated in Fig. 2.12. 

 

Fig. 2.12: Arrangement of calli for biolistic delivery 

 
2.2.5.2.4 Testing for efficiency of DNA coating on gold particles 
 
1.8 mg of 0.6 micron Gold was sonicated for 2 minutes. 15 µl 1 µg µl-1 plasmid DNA 

was added to the gold and mixed 5 seconds using a vortex at speed setting 3.  Next, 20 µl 

0.1M spermidine and 50 µl 2.5M CaCl2 was added to the lid of the tube and mixed. The 

lid was closed and the whole suspension was vortexed for either 3 minutes (protocol I) or 

15 seconds (protocol II) at speed setting 3, followed by a spin at 5,000 rpm for 15 
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seconds. The supernatant was removed and stored (Solution B) and the pellet was washed 

with 140 µl 96% ethanol. The resulting suspension was spun at 3,000 rpm for 1 min, after 

which the supernatant was removed and stored (Solution C). The pellet consisting of 

DNA-coated gold particles was resuspended in 100 μl 96% ethanol, and spun down at 

5,000 rpm for 15 seconds. The supernatant was removed and stored (Solution D). DNA 

coated to the gold particles was dissolved in 20 µl Milli-Q. (Solution A).  

 

DNA from solutions B, C and D was precipitated, by adding 1/10 volume of 3 M sodium 

acetate pH 5.2 and 1 volume of 96% ethanol. The solutions were incubated at -20oC for 

30 minutes and spun down at max. rpm for 10 minutes. The DNA pellets were washed 

with 300 μl 70% ethanol, followed by another spin at max. rpm for 3 minutes. The pellet 

was resuspended in 20 μl MilliQ. The DNA originated from the gold (A) and precipitated 

DNA from B, C and D were run on a 0.8% agarose gel, for visualisation of DNA retained 

at each step during coating.  

 

2.2.5.2.5 Particle preparation for bombardment 

1.8 mg of 0.6 micron Gold was sonicated for 2 minutes. 15 µl 1 µg µl-1 plasmid DNA 

was added to the gold and mixed for 5 seconds using a vortex at speed setting 3.  Next, 

20 µl 0.1M spermidine and 50 µl 2.5M CaCl2 was added to the lid of the tube and mixed. 

The lid was closed and the whole suspension was vortexed for 15 seconds at speed 

setting 3, followed by a spin at 5,000 rpm for 15 seconds. The supernatant was removed 

and the pellet was washed with 140 µl 96% ethanol. The suspension was spun at 3,000 
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rpm for 1 min, after which the supernatant was replaced with 100 µl 96% ethanol. 10 µl 

of gold-DNA suspension was used per shot. 

 

2.2.5.2.6 Preparation for biolistics 

Transformation experiments were conducted through biolistics. For these experiments the 

“Biolistic® PDS-1000/He Particle Delivery System” from Bio-Rad was used, as 

described by (Svab and Maliga 1993), and (Johnston 1990). 

The assembly for the holder of the macrocarriers, the retaining cap for rupture disks and 

the tray for the Petri dishes were sprayed with 70% ethanol and dried prior to use. The 

macrocarriers were soaked in 96% ethanol and left to dry. The stopping screens were 

submerged in 96% ethanol, flamed and left on a sterile cardboard plate in the laminar 

flow hood. The macrocarrier holder was submerged in 96% ethanol and flamed before 

being placed on a sterile cardboard plate. Dried macrocarriers were inserted into the 

macrocarrier holder. The rupture discs were submerged in 70% isopropanol prior to use.  

 

2.2.5.2.7 Biolistic delivery process 

10 µl of the DNA coated gold particles were pipetted onto the macrocarrier and left to 

dry for 15 minutes. When ready the gene gun was turned on, along with the vacuum 

pump. The helium tank was opened at a pressure of 200 PSI over the shooting pressure. 

The shooting chamber was sprayed with 70% ethanol before use. Rupture disks were 

placed in the retaining cap, and securely fastened in the top of the shooting chamber. The 

macrocarriers containing the microcarriers with the gold, were added to the holder 

assembly device, and placed directly beneath the retaining cap. Lastly the Petri dish with 
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the calli or explants was placed on the Petri dish tray and located at the desired shooting 

distance from the holder assembly device. The chamber was closed, and a vacuum was 

created at 28 in Hg. When the right vacuum pressure was reached, the shots were 

performed by holding down the “fire” button until the rupture disc burst. Lastly the 

vacuum was released by pressing the “vent” button. The Petri dish was removed and 

wrapped with Parafilm. The contents of the chamber were reassembled with a new 

rupture disk and a new macrocarrier. The process was repeated for the remaining shots. 

 

2.2.5.2.8 Treatment of calli and leaf-base explants after biolistics 

Bombarded calli and leaf-base explants remained on CIM + 64 g L-1 mannitol for two 

more days, before transferral to other media. 

 

2.2.5.2.9 Optimization of biolistic delivery regarding shooting parameters 

Several different parameters (shooting distances and shooting pressures) were tested 

(Table 2.6) to find the optimal conditions for biolistics on calli of Lolium perenne L. 

They were evaluated by testing for GUS activity after biolistics with pCambia 1305.1, 

containing the uidA gene.  
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Table 2.6: Parameters tested for biolistical delivery of DNA 
Shooting distance (cm) Shooting pressure (PSI) 

6   900 

6 1100 

6 1350 

9   900 

9 1100 

9 1350 

 

2.2.5.3 Analysis of transient expression of uidA gene by GUS assay 

Calli bombarded with pGUSHYG and pCAMBIA 1305.1 were tested for transient 

expression two days after biolistic delivery of DNA. GUS activity was tested 

histochemically by submerging the explants in the GUS incubation solution (100mM 

sodium phosphate buffer, pH 7; 10mM EDTA; 0.5mM potassium ferricyanide; 0.5mM 

potassium ferrocyanide; 1mM 5-bromo-4-chloro-3-indolyl β-D-glucuronide (X-gluc); 

0.1%(v/v) triton X-100) at 37oC overnight. The number of blue spots, indicating GUS 

activity, was recorded the next day. 

 

2.2.5.4 Fluorescent and confocal microscopy for GFP detection 

Putative transformants could be analysed by checking for GFP presence using a 

fluorescent microscope or confocal microscope. Tissue is illuminated with light of 

specific wavelengths, which can be absorbed by GFP molecules, causing them to emit 

light of longer wavelengths. This light is passed through a specific filter, allowing 

visualisation of GFP within the tissue. As positive control, transplastomic tobacco plants 

expressing GFP within the plastids were used. Initial checks were performed with the 

fluorescent microscope “Olympus BX51” with a mercury lamp “Olympus U-RFL-T”. 
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Confirmation of GFP presence and better resolution could be accomplished by using the 

confocal microscope “Olympus Fluoview 1000”, with which photographs could be taken 

for subsequently analysis using the program “Olympus Fluoview version 1.6b”. 

 

2.2.6 Transformation 

Initially biolistic delivery was performed on leaf-base tissue, but after re-evaluation of the 

strategy, the target tissue was changed to four week calli as described in section 2.2.5.2.3. 

All biolistical experiments were performed on cultivar ‘Cashel’, with the exception of the 

last few plastid transformation experiments, which were performed on Cultivar ‘Action’ 

 

2.2.6.1 Nuclear transformation 

A total of 175 biolistic shots were performed on four week old calli (±20 calli per shot). 

Forty of these shots were performed with the nuclear transformation vector pGUSHYG 

(see map at Fig. 2.9). This vector contained the hpt selectable marker gene for 

hygromycin selection under regulation of the CaMV 35S promoter and the uidA gene as 

visual marker gene under regulation of the nopaline synthase promoter. 

Another 135 shots were performed with the nuclear transformation vector pCAMBIA 

1305.1 (see map at Fig.2.10), containing the hpt selectable marker gene and uidA visual 

marker gene, both under regulation of the CaMV 35S promoter.  

 

2.2.6.2 Selection regime for nuclear transformation 

Calli bombarded with pGUSHYG and pCAMBIA 1305.1 were moved to CIM two days 

after biolistics. After another five days, the calli were transferred to CIM + 75 mg L-1 
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hygromycin B for two weeks, followed by two weeks on CIM + 150 mg L-1 hygromycin 

B. Selection was continued after this on CMM + 150 mg L-1 hygromycin B with 

biweekly sub culturing, until shoot development. Once shoots developed, calli with 

shoots were transferred to RGM2 + 150 mg L-1 hygromycin B. Remaining calli were 

subculture on CMM + 150 mg L-1 hygromycin B.   

 

2.2.6.3 Plastid transformation 

A total of 339 shots were performed on four week old calli (±20 calli per shot). All the 

shots were performed with the Lolium perenne L. plastid transformation vector 

pIAPRvdB5. The first series of shots (102 shots), the calli were exposed to G-418 

selection two days post-biolistics. The second series of shots (162 shots), the calli were 

exposed to paromomycin selection two days post-biolistics. The third series of shots (75 

shots), the calli were exposed to paromomycin selection 14 days post-biolistics. Of which 

27 shots were performed on Cv. ’Action’ instead of Cv. ‘Cashel’. 

 

2.2.6.4 Selection regime for plastid transformation 

2.2.6.4.1 Selection with geneticin (G-418) 

Calli bombarded with pIAPRvdB4 and pIAPRvdB5 were transferred to CIM two days 

after biolistic delivery of DNA.  After another five days the calli were transferred to CIM 

+ 75 mg L-1 G-418 for two weeks, followed by a two week period on CIM + 100 mg L-1 

G418. All calli were sub cultured thereafter biweekly on CMM + 100 mg L-1 G-418 until 

shoot development. Calli with shoots were moved to RGM2 + 100 mg L-1 G-418. When 
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green shoots were over 2 cm in size they were transferred to tubs with RM + 100 mg L-1 

G-418 for rooting. 

2.2.6.4.2 Selection with paromomycin 

Calli bombarded with pIAPRvdB4 and pIAPRvdB5 were transferred to CIM two days 

after biolistics.  After another five days the calli were transferred to CIM + 75 mg L-1 

paromomycin for two weeks, followed by a two week period on CIM + 150 mg L-1 

paromomycin. All calli were sub cultured thereafter biweekly on CMM + 150 mg L-1 

paromomycin until shoot development. Calli with shoots were moved to RGM2 + 150 

mg L-1 paromomycin. When green shoots were over 2 cm in size they were transferred to 

tubs with RM + 150 mg L-1 paromomycin for rooting. 

 

2.2.6.4.3 Delayed selection with paromomycin 

Calli bombarded with pIAPRvdB4 and pIAPRvdB5 were transferred to CIM two days 

after biolistics.  After 14 days the calli were transferred to CIM + 100 mg L-1 

paromomycin for two weeks, followed by a two week period on CIM + 150 mg L-1 

paromomycin. All calli were sub cultured thereafter biweekly on CMM + 150 mg L-1 

paromomycin until shoot development. Calli with shoots were moved to RGM2 + 150 

mg L-1 paromomycin. When green shoots were over 2 cm in size they were transferred to 

tubs with RM + 150 mg L-1 paromomycin for rooting. 

 

2.2.6.5 Characterisation of putative transformants 

Nuclear putative transformed tissue could be analysed using several methods, the easiest 

and fastest method involved a GUS assay, to assess transgene expression of the uidA 
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gene (see section 2.2.5.3). However due to gene-silencing, tissue could show up negative 

with the assay, while the tissue could actually be transformed. Therefore other methods 

were employed to assess transgene integration. These include PCR analysis and southern 

blots 

 

Plastid putative transformed tissue could be analysed using several methods. The fastest 

method would be to use a fluorescent microscope, which can visualise GFP presence in 

transformed tissue (See section 2.2.5.4).  Other methods were utilised to assess transgene 

integration, these include gene specific PCR analysis, long-range PCR analysis and 

southern blots. 

 

2.2.6.5.1 PCR analysis of putative transformants 

2.2.6.5.2 Primers used 

Primers used for the PCR analysis of putative transformants were: 

P1hpt CAMBIA:  cctgcctgaaaccgaactgcccgct  

(primer to assess nuclear transformants) 

P2hpt CAMBIA:   gatgttggcgacctcgtatt  

(primer to assess nuclear transformants) 

P1extern IA:   tggatcacctccttttcagg  

(external primer to assess putative plastid transformants) 

P2 extern IA:       gcaagcctttcctcttttga  

(external primer to assess putative plastid transformants) 

P2T7g10-ndeI-nheI: gctagccatatgtatatctccttctt  
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(Primer to assess putative plastid transformants) Underlined sequences are NheI and NdeI 

P1aphA: ggccggccatgaccatggaattaccaaa 

(Primer to assess putative plastid transformants) Underlined sequence is  FseI  

P2aphA: gcggccgctcaattcaattcatcaagtt  

(Primer to assess putative plastid transformants) Underlined sequence is the NotI 

restriction site 

 

2.2.6.5.3 PCR analysis on putative transformants 

All PCR reactions were carried about with RedAccuTaq® LA DNA Polymerase mix 

(Sigma, cat no. D4937). The PCR mix used is shown in Table 2.7 and the PCR cycle 

regime in Table 2.8. 

 

Table 2.7: general PCR mix 
Reaction mix Volumes (μl) 

gDNA (1μg μl-1)   1.0  

Primer 1 (0.1μM μl-1)   1.0 

Primer 2 (0.1μM μl-1)   1.0  

REDTaq® Genomic DNA Polymerase 

(1unit μl-1) 

  2.5  

10x REDaccuTaq buffer   5.0  

dNTP (10mM)   2.0 

MilliQ ddH2O 37.5  

Total reaction mix 50.0 
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Table 2.8: PCR cycle 
Steps Temperature Time 

Step1 Denaturation 94oC 5 min 

Step 2 Denaturation 94oC 30 seconds 

Step 3 Annealing 5oC below the lowest 

melting temperature of both 

primers 

30 seconds 

Step 4 Extension 68oC 1kb per minute 

Step 5 Repeat cycles Repeat step 2-4 30 times 

Step 6 Final extension 68oC 10 min 

Step 7 End of program 4oC Indefinite storage 

 

2.2.6.5.4  Southern blot analysis of putative transformants 

Southern blotting was performed according to the method of (McCabe et al. 1997) as 

described in section 2.2.1.10. 

. 

2.2.7 Statistical analysis 

For the tissue culture evaluation, replicates represented separate experiments conducted 

on different days. Arcsine transformation and t-tests were conducted in ‘Microsoft Excel’, 

whereas chi square tests and the variance tests were performed in the program ‘Minitab 

Solutions 15’. All data sets were initially tested for sampling distribution using the chi-

square test and analysed for equal variance using the Levene test. Subsequently t-tests 

were performed on arcsine transformed percentage values on the datasets to determine 

statistical differences, the differences were grouped accordingly. 
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2.3 Results 

2.3.1 Construction of plastid transformation vectors pIAPRvdB4 and pIAPRvdB5 

2.3.1.1 pIAPRvdB4 

The vector pIAPRvdB4 has a total size of 7.823 kb (complete sequence in Appendix A). 

To show the vector was correctly assembled as described in section 2.2.2, the vector was 

digested with various restriction enzymes. This resulted in the following restriction 

pattern, which was confirmed as illustrated in Fig. 2.13. 

aphA-6

HindIII       KpnI SacI                         FseI                              NotI                       PacI  SacI        NotI XbaI

rps16 3’UTRsmGFP

rb
s trnAtrnI

pIAPRvdB4, 7.823 kb 

Prrn(PEP/NEP) + 
Rbcl 5’ UTR

1.1 kb

1.258 kb

1.989 kb

2.779 kb

2.951 kb

4.004 kb

1.757 kb

1.207 kb

HindIII  
+

KpnI

SacI

FseI

NotI

PacI

XbaI

1kb Lad.         H + KpnI H + SacI          H + FseI          H + NotI          H + PacI         H + XbaI 1kb  Lad. 

3kb

2kb

1.5kb

1kb

4kb

 

Fig. 2.13: Illustration restriction digest pattern of pIAPRvdB4. The expected restriction 
pattern is shown at the top for HindIII and a second enzyme (KpnI, SacI, FseI, NotI, PacI 
and XbaI). Below are the separate digests on pIAPRvdB4 separated on a 0.8% agarose 
gel. 
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2.3.1.2 pIAPRvdB5 

The vector pIAPRvdB5 had a total size of 7.841 kb (complete sequence in Appendix A). 

To show the vector was correctly assembled as described in section 2.2.2, the vector was 

digested with various restriction enzymes. This resulted in the following restriction 

pattern, which was confirmed as illustrated in Fig. 2.14. 

aphA-6

HindIII          KpnI NheI                         FseI                              NotI                       PacI  NotI XbaI

rps16 3’UTRsmGFP

rbs trnAtrnI

pIAPRvdB5, 7.841 kb 

Prrn(PEP) + T7g10 5’UTR

1.272 kb

2.007 kb

2.797 kb

2.969 kb

4.022 kb

1.207 kb

1.121 kb

HindIII  
+

KpnI

NheI

FseI

NotI

PacI

XbaI

1kb Lad.      H + KpnI H + NheI      H + FseI       H + NotI       H + PacI     H + XbaI 1kb  Lad.     

4kb
3kb

2kb

1.5kb

1kb

 

Fig. 2.14: Illustration restriction digest pattern of pIAPRvdB5. The expected restriction 
pattern is shown at the top for HindIII and a second enzyme (KpnI, NheI, FseI, NotI, PacI 
and XbaI). Below are the separate digests on pIAPRvdB5 separated on a 0.8% agarose 
gel. 
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2.3.1.3 Functionality test for pIAPRvdB4 and pIAPRvdB5 

Because of the prokaryotic nature of plastids, the expression cassette is also expected to 

be active in Escherischia coli. To show that the plasmids pIAPRvdB4 and pIAPRvdB5 

were correctly assembled and functional, the expression cassettes were tested in 

Escherischia coli. 

 

2.3.1.4 GFP accumulation 

Both constructed vectors contain an expression cassette including the smGFP gene. 

Therefore if the bacteria contained these plasmids, they would fluorescence green under 

UV-light. As shown in Fig. 2.15 this was the case for bacteria containing either 

pIAPRvdB4 or pIAPRvdB5. The bacteria containing vector pIAPRvdB5 had a higher 

expression, as was expected due to the nature of the expression cassette. 

 

pIAP                         pIAPRvdB4                          pIAPRvdB5 

Fig. 2.15: Green Fluorescent Protein presence in Escherischia coli containing 
pIAPRvdB4 and pIAPRvdB5 (vector containing smGFP) and pIAP (control without 
smGFP). 
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2.3.1.5 Functionality of the aphA-6 gene conferring resistance to G-418 and 

paromomycin 

Bacteria transfected with pUC19-RvdB4 and pUC19-RvdB5 grew on LB + 50 mg L-1 

paromomycin and LB + 50 mg L-1 G-418, whereas bacteria with an empty pUC19 failed 

to grow on this medium. Moreover pUC19-RvdB4 and pUC19-RvdB5 fluorescent green 

under UV light, indicating the functionality of the smGFP gene within these constructs. 

 

2.3.2 In vitro culture methods 

2.3.2.1 Seed germination 

The seed germination rate influences the amount of starting material which can be used to 

induce callus. In Table 2.9 the germination rates are shown of all the tested cultivars. 

 

Table 2.9: Germination rate of cultivars used 

Cultivars Germination rate in % 

Cv. 'Shandon' 100 

Cv. 'Cashel'   98 

Cv. 'Greengold'   26 

Cv. 'Cancan'   66 

Cv. 'Limes'     7 

Cv. ‘Action’ ~75 

Cv. ‘Telstar’ ~75 
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2.3.2.2 Callus induction 

During this study, four different types of induced calli were observed; of which three 

types were able to induce shoots at a later stage (see Fig. 2.16, B, C and D). The fourth 

type was unable to initiate differentiation (see Fig. 2.16, A). More often then not, 

different types of calli could be observed within 1 cluster. To record the callus induction 

rate for each cultivar, regenerable callus type B, C and D were pooled together. These 

were recorded for their frequency of occurrence during the callus induction phase in 

relationship to the total number of explants used. Most calli were induced from the edges 

of the leaf-base explants, therefore when leaf-base explants were to be used as target 

tissue for transformation experiments, the chances of obtaining transgenic tissue would 

be restricted as the majority of the target cells would not be able to proliferate. 

 

Fig. 2.16.: Types of calli induced from leaf-base explants. A: watery callus, B: Friable 
callus, C: Friable callus with root hairs, D: Embryogenic callus 
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2.3.2.2.1 Callus induction from apical meristems and adjacent leaf-base explants 

In this study calli were induced from apical meristems and leaf-base explants adjacent to 

the apical meristems (see Fig. 2.17) on Callus Induction Media (see Table 2.5). 

 

Fig. 2.17: Illustration of growth of a typical monocot plant. Numbers represent the order 
of leaves according to age, where 1 is the youngest and 8 is the oldest. Generally the 
numbering is reversed, but for the nature of this tissue culture study, the shown order was 
chosen.  
Source: Modified from Colorado State University Extension no. 6.108: Grass Growth and 
Response to Grazing by M.J. Trlica 
 
 

The leaf tissue adjacent to the apical meristems had the highest callus induction response. 

Tissue further away from the meristem had a significant decrease in callus induction rate. 

Furthermore older leaves proved to be less efficient in callus induction (Fig. 2.18 and Fig. 

2.19). Differences in callus induction response between cultivars were observed. They 

were arranged in groups that were significantly different, separated for each origin of 
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explants as shown in Table 2.10 and 2.11. Furthermore in vitro culture in the light had a 

significantly negative effect on callus induction rate in the cultivar ‘Cashel’ (16h 

photoperiod), compared to growth conditions in the dark (see Table 2.10 and Table 2.11). 

All the results were combined to rank the different cultivars for their overall efficiency in 

callus induction, as shown in Table 2.12. Cultivars ‘Cashel’ and ‘Shandon’ were ranked 

as most responsive to callus induction, whereas cultivar ‘Cancan’ was ranked the least 

responsive. 
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Fig. 2.18: The percentage of explants derived from the youngest leaf, producing 
regenerable callus. n = experimental replicates ‘Cashel’ dark n=15, ‘Limes’ n=6, ‘Action’ 
n=4, ‘Telstar’ n=4, ‘Cashel’ light n=2, ‘Shandon’ n=12, ‘Cancan’ n=3, ‘Greengold’ n=10. 
Error bars represent the standard deviation of the mean. 
 
 
Table 2.10: Percentage of leaf explants that induce regenerable callus, separated into 
different cultivars and source tissue. Between brackets are given the standard deviation of 
the means. Means within a column followed by different letters are significantly different 
according to the student t-test (two-tailed distribution, unequal variance done on arcsine 
transformed percentages of combined replicates) with a statistical difference at P<0.05.  
n.a. = not analysed. 
origin of explants meristem Leaf 1, 0-2mm Leaf 1 2-4mm Leaf 1 4-6mm 

Cv 'Cashel' dark 93%   (±1.5) a 88.3%(±  7.4) a 34.1%(±12.0) a 7.8%(±8.3) a 

Cv. 'Limes' 94.4%(±0.0) a 57.5%(±10.0) b     21.9%(±14.6) a,b 9.5%(±8.2) a 

Cv. 'Action' 92.2%(±2.9) a 70.8%(±  0.6) c    17.6%(±  5.6) a,b n.a. 
Cv. 'Telstar' 97.1%(±1.3) a 84.6%(±13.6) a,b      40.6%(±  0.3) b n.a. 
Cv. 'Cashel' light n.a. 62.5%(±  0.0) b    7.5%  (±  7.1) a,b n.a. 
Cv. 'Shandon' n.a. 89.5%(±  8.0) a      40.2%(±14.3) a,b 3.1%(±6.3) a 

Cv. 'Cancan' n.a. 61.7%(±  1.4) b  13.1%(±13.0) a,b n.a. 
Cv. 'Greengold' n.a. 81.5%(±18.7) a,b      20.7%(±23.9) a,b 2.5%(±7.1) a 
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Fig. 2.19: The percentage of explants derived from the second youngest leaf, producing 
regenerable callus. n = number of experimental replicates ‘Cashel’ dark n=15, ‘Limes’ 
n=6, ‘Action’ n=4, ‘Telstar’ n=4, ‘Cashel’ light n=2, ‘Shandon’ n=12, ‘Cancan’ n=3, 
‘Greengold’ n=10. Error bars represent the standard deviation of the mean. 
 
Table 2.11: Percentage of leaf explants inducing regenerable callus. Between brackets 
are given the standard deviation of the means. Means within a column followed by 
different letters are significantly different according to the student t-test (two-tailed 
distribution, unequal variance done on arcsine transformed percentages of combined 
replicates) with a statistical difference at P<0.05. 
1 = replicates were too variable according to a chi-square test to do statistical analysis.  
n.a. = not analysed. 
Origin of explants Leaf 2 0-2mm Leaf 2 2-4mm Leaf 2 4-6mm 

Cv 'Cashel' dark 37.5%(±13.5) b,c,d 4.1%(±  6.5) b 1.3%(±4.3) 1 

Cv. 'Limes' 27.5%(±16.7) b,c,d,e 3.8%(±  8.4) a,b 4.8%(±8.2) 1 

Cv. 'Action' n.a. n.a. n.a. 

Cv. 'Telstar' n.a. n.a. n.a. 

Cv. 'Cashel' light 18.8%(±  1.8) a,c,e 0.0%(±  0.0) b n.a. 

Cv. 'Shandon' 28.4%(±15.6) b,c,e 6.8%(±10.3) a 0.0%(±0.0) 1 

Cv. 'Cancan'   6.7%(±  7.8) a,e n.a. 0.0%(±0.0) 1 

Cv. 'Greengold' 43.2%(±  7.7) b,d 4.1%(±  4.1) a,b 0.0%(±0.0) 1 
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Table 2.12.: Responses regarding callus induction of different cultivars, arranged in 
groups according to statistical differences.  
Average rating: rating after pooling of all separate ratings.   
Ranking: Ranking for best callus induction responses overall. 
explant position / 

Cultivar 

Leaf 1 

0-2mm 

Leaf 1  

2-4mm 

Leaf 1  

4-6mm 

Leaf 2  

0-2mm 

Leaf 2 

2-4mm 

Average 

Rating 

Ranking 

Cv 'Cashel' dark 1 2 1 1 1 1.2 1 

Cv. 'Shandon' 1 1 1 2 1 1.2 1 

Cv. 'Telstar' 2 1 - - - 1.5 2 

Cv. 'Greengold' 2 3 1 1 2 1.8 3 

Cv. 'Limes' 4 4 1 2 2 2.6 4 

Cv. 'Action' 3 3 - - - 3 5 

Cv. 'Cancan' 4 4 - 3 3 3.5 6 

 

2.3.2.2.2 Callus induction from mature embryos 

Callus was induced from excised mature embryos on CIM in the dark at 220C. Results 

show that cultivars ‘Telstar’ had the highest induction rate, whereas cultivars ‘Limes’ and 

‘Action’ had a significantly lower induction rate. Cultivar ‘Shandon’ showed no 

significant difference with the three aforementioned cultivars. Cultivars ‘Cancan’, 

‘Cashel’ and ‘Greengold’ appeared to perform the worst, however no statistical analysis 

could be performed on those cultivars, due to limited replicates (see Table 2.13 and Fig. 

2.20). 
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Fig 2.20: Percentage of mature embryo’s that induced regenerable callus in the tested 
cultivars. Error bars represent the standard deviation of the mean. n = number of 
replicates, ‘Limes’ n=3, ‘Telstar’ n=2, ‘Action’ n=3, ‘Shandon’ n=2, ‘Cancan’ n=1, 
‘Cashel’ n=1, ‘Greengold’ n=1. 
 
 
Table 2.13: Percentage of mature embryo’s inducing regenerable callus. Between 
brackets are given the standard deviation of the means. Means within a column followed 
by different letters are significantly different according to the student t-test (two-tailed 
distribution, equal variance done on arcsine transformed percentages of combined 
replicates) with a statistical difference at P<0.05.  
1 = too few replicates to perform statistical analysis. 
Cultivar Percentage of explants producing regenerable callus

Cv. 'Limes' 52.3(±   7.7) b 

Cv. 'Telstar' 79.1(±   7.1) a 

Cv. 'Action' 36.9(±   3.6) c 

Cv. 'Shandon' 44.7(± 22.8) a,b,c 

Cv. 'Cancan' 15.0(±   0.0) 1 

Cv. 'Cashel' 15.8(±   0.0) 1 

Cv. 'Greengold' 20.0(±   0.0) 1 
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2.3.2.3 Callus differentiation and shoot induction 

Two different protocols were tested for their regeneration efficiency. Protocol I consisted 

of a direct regeneration phase after a four week callus induction period, whereas protocol 

II consisted of a callus differentiation phase, followed by a regeneration period (See 

Table 2.1). Shoots could be induced from friable callus (Fig. 2.21) and embryogenic 

callus (Fig. 2.22). Shoot induction results were scored by taking the percentage of calli 

producing shoots per replicate. The means and standard deviation were calculated based 

on the results obtained in each replicate.  

 

There were no statistical differences between Protocol I (direct regeneration), and 

Protocol II (callus differentiation, followed by shoot induction) in all tested cultivars 

‘Cashel’, ‘Shandon’ and ‘Limes’ (see Table 2.14 and Fig. 2.23). When Protocol II was 

further tested with various cultivars, it showed that there was no statistical difference in 

response between cultivars, except Cv. ‘Greengold’ which had no shoot induction 

whatsoever under these conditions (see Table 2.14 and Fig. 2.23). Induction of calli at a 

16h photoperiod, prior to induction of shoots, seemed to improve the shoot induction 

potential in cultivar ‘Cashel’, however this could not be statistically proven. Moreover, 

the callus induction rate was significantly lower, resulting in a lower amount of starting 

material that could potentially be used for transformation experiments (See Table 2.10 

and Fig. 2.18). 

 
Cv. ‘Action’ and Cv. ‘Telstar’ were acquired at a very late stage of the project. Because 

of the known good regeneration response (Patent WO/2004/035797; Patent 
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WO/2003/076612) and the limited timeframe they were subjected to the transformation 

experiments after callus induction, without having tested the regeneration potential. 

 

Fig. 2.21: Shoot induction from friable callus in Lolium perenne L. Cv. ‘Cashel’ 

 

Fig. 2.22: Shoot induction from embryogenic callus in Lolium perenne L. Cv. ‘Cashel’ 
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Fig. 2.23: Regeneration efficiency of both protocols. n = number of experimental 
replicates. Protocol I ‘Cashel’ dark n=3, ‘Shandon’ n=3, ‘Limes’ n=1, Protocol II 
‘Cashel’ dark n=5, ‘Shandon’ n=2, ‘Limes’ n=3, ‘Cancan’ n=4, ‘Cashel’ light n=1. Error 
bars represent the standard deviation of the mean. 
 
 
Table 2.14: Percentage of calli inducing shoots for both regeneration protocols. Between 
brackets are given the standard deviation of the means. Means within a column followed 
by different letters are significantly different according to a t-test (two-tailed distribution, 
unequal variance) on arcsine transformed percentages of combined replicates with a 
statistical difference at P<0.05.  
1 = too few replicates to perform statistical analysis. 
n.a. = not applicable 
Cultivars Protocol I Protocol II 

Cv 'Cashel' dark 20.7(± 7.8) a 25.9(± 11.3) a 

Cv. 'Shandon' 23.6(± 6.5) a 26.4(±   4.6) a 

Cv. 'Limes' 28.6(± 0.0) 1 28.4(±   8.5) a 

Cv. 'Cancan' n.a. 24.4(± 21.2) a 

Cv. 'Cashel' light n.a. 33.3(±   0.0) 1 

Cv. ‘Greengold’ n.a.   0.0(±   0.0) b 
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2.3.3 Determination of conditions for antibiotic-resistance selection 

2.3.3.1 Effect of antibiotics on callus induction 

The response of callus induction to hygromycin B is shown in Table 2.15, to kanamycin 

in Table 2.16, to geneticin in Table 2.17, to streptomycin in Table 2.18 and to 

paromomycin in Table 2.19 and Fig. 2.24. Callus induction response was scored after 

four weeks on CIM supplemented with antibiotics. 

Table 2.15: Effect of hygromycin B on callus induction. Percentages represent the 
amount of leaf-base explants at specific distances from the apical meristem, producing 
regenerable callus.  
Hygromycin 

concentrations 

in mg L-1 

Percentage of explants 

inducing calli at 0-2mm 

from the meristem 

Percentage of explants 

inducing calli at 2-4mm 

from the meristem 

Percentage of explants 

inducing calli at 4-6mm 

from the meristem 

  0 60 20 n.a. 

10 20   0 n.a. 

20 10   0 n.a. 

30   0   0 n.a. 

50   0   0 n.a. 

 

Table 2.16: Effect of kanamycin on callus induction. Percentages represent the amount of 
leaf-base explants at specific distances from the apical meristem, producing regenerable 
callus. 
Kanamycin 

concentrations 

in mg L-1 

Percentage of explants 

inducing calli at 0-2mm 

from the meristem 

Percentage of explants 

inducing calli at 2-4mm 

from the meristem 

Percentage of explants 

inducing calli at 4-6mm 

from the meristem 

0 67 10 27 

10 50 17   0 

25 60   0   0 

50 50   0   0 

100 20   0   0 
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Table 2.17: Effect of geneticin (G-418) on callus induction. Percentages represent the 
amount of leaf-base explants at specific distances from the apical meristem, producing 
regenerable callus. 
G-418 

concentrations 

in mg L-1 

Percentage of explants 

inducing calli at 0-2mm 

from the meristem 

Percentage of explants 

inducing calli at 2-4mm 

from the meristem 

Percentage of explants 

inducing calli at 4-6mm 

from the meristem 

0 67 10 27 

10 40   0 10 

25   0   0   0 

50   0   0   0 

75   0   0   0 

 

Table 2.18: Effect of streptomycin on callus induction. Percentages represent the amount 
of leaf-base explants at specific distances from the apical meristem, producing 
regenerable callus. 
Streptomycin 

concentrations 

in mg L-1 

Percentage of explants 

inducing calli at 0-2mm 

from the meristem 

Percentage of explants 

inducing calli at 2-4mm 

from the meristem 

Percentage of explants 

inducing calli at 4-6mm 

from the meristem 

0 67 20 n.a. 

1000 62 23 n.a. 

5000 13   8 n.a. 

10000   0   0 n.a. 

 

Table 2.19: Effect of paromomycin on callus induction. Percentages represent the 
amount of leaf-base explants at specific distances from the apical meristem, producing 
regenerable callus. 
Paromomycin 

concentrations 

in mg L-1 

Percentage of explants 

inducing calli at  the 

meristem 

Percentage of explants 

inducing calli at 0-2mm 

from the meristem 

Percentage of explants 

inducing calli at 2-4 mm 

from the meristem 

0 91 75 11 

25   4   0   0 

50   0   0   0 

75   0   0   0 

100   0   0   0 

125   0   0   0 
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Fig. 2.24: Paromomycin selection after four weeks on CIM supplemented with various 
concentrations of paromomycin. Each Petri dish was divided into sections representing 
origin of the explants. 
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Selection on streptomycin was ineffective. Even at antibiotic concentrations of 5000 mg 

L-1 calli were able to develop (See Table 2.18). This is due to the nature of callus 

induction, as this had to be performed in the dark, while streptomycin blocks protein 

synthesis of photosynthetic genes in the light.  

Kanamycin selection was also fairly inefficient. Even at a concentration of 100 mg L-1 

20% of the leaf-base explants were able to induce regenerable callus (see Table 2.16).  

Selection with geneticin (see Table 2.17), paromomycin (Table 2.19 and Fig. 2.24) and 

hygromycin B (See Table 2.15) at 50 mg L-1 was sufficient to prevent callus development 

completely. Furthermore all explants showed necrosis at this concentration with these 

antibiotics. It can be noted that these concentrations may have to be lowered to allow 

transgenic tissue to proliferate, as the selection pressure may be too stringent. The 

downside is the increased possibility of escapes. 

 

2.3.3.2 Effect of antibiotics on callus differentiation and shoot induction 

The shoot induction response and callus growth during the regeneration phase to 

hygromycin B is shown in Table 2.20, to geneticin in Table 2.21, to kanamycin in Table 

2.22, and to paromomycin in Table 2.23 and Fig. 2.25. Callus development and shoot 

induction was scored after six weeks on CIM2 supplemented with antibiotics. 
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Table 2.20: Effect of hygromycin on callus growth and shoot induction 
hygromycin concentrations 

in mg L-1 

Percentage of calli producing 

shoots 

Percentage of calli, where growth 

was inhibited within 6 weeks 

    0 20   0 

  10 20 20 

  25 17 17 

  50 25 17 

  75   0 78 

150   2 95 

 

Table 2.21: Effect of geneticin (G-418) on callus growth and shoot induction 
G-418 concentrations in 

mg L-1 

Percentage of calli producing 

shoots 

Percentage of calli, where growth 

was inhibited within 6 weeks 

    0 47   0 

  25 20 53 

  50 25 73 

  75 48 76 

100 23 92 

125 30 95 

150 23 95 

 

Table 2.22: Effect of kanamycin on callus growth and shoot induction  
Kanamycin concentrations 

in mg L-1 

Percentage of calli producing 

shoots  

Percentage of calli, where growth 

was inhibited within 6 weeks 

    0 20   0 

  10 20 20 

  25 17 17 

  50 25 17 

  75   0 78 

100   0 75 
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Table 2.23: Effect of paromomycin on callus growth and shoot induction 
Paromomycin 

concentrations in mg L-1 

Percentage of 

calli producing 

shoots 

Percentage of calli 

producing white 

shoots 

Percentage of calli, where 

growth was inhibited 

within 6 weeks 

    0 20 0   0 

  50   7 0 80 

  75 13 0 93 

100   0 0 87 

125   0 0 75 

150   5 5 91 
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Fig. 2.25: Paromomycin selection after six weeks on CIM2 supplemented with various 
concentrations of paromomycin. 
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Selection with hygromycin B up to 50 mg L-1 resulted in a low efficiency for growth 

inhibition. At 75 mg L-1 78% of the calli stopped developing, at 150 mg L-1 this was 

95.4%. Shoot induction could not completely be inhibited even at 150 mg L-1. 

 

For geneticin necrosis was evident from concentration of 75 mg L-1 and upwards, but 

even at 150 mg L-1 5% of the calli remained viable. Furthermore shoot induction was not 

inhibited even at 150 mg L-1.  

 

Kanamycin had a mild effect on callus survival, although more than 75% of the calli 

stopped developing at concentrations higher then 75 mg L-1, the callus itself appeared 

healthy. Green healthy shoots stopped developing at concentrations of 75 mg L-1. 

 

Paromomycin selection was quite rigorous, as the percentage of viable callus decreased 

rapidly to about 10% at antibiotic concentrations of 75 mg L-1 upwards. However 

complete callus growth inhibition was not accomplished even at 150 mg L-1. Shoots that 

developed in the first week turned brown/white within a week on concentrations higher 

then 100 mg L-1, this was mainly evident at the meristematic regions of the induced 

shoots (the apical meristem). 

 

2.3.4 Choosing the target tissue for transformation experiments 

The choice of target tissue is of utmost importance to create a successful transformation 

protocol. The tissue should be able to proliferate readily and selection on the tissue 

should be possible to develop transgenic tissue after DNA delivery by biolistics. Based 
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on the regeneration studies and the selection regimes tested, the choice of target tissue is 

therefore restricted to four week old induced calli. This is because initial callus induction 

from leaf-base explants is mostly limited to the wounded edges of the leaf-explants. 

Furthermore selection in the dark will be difficult when attempting to create 

transplastomic tissue, due to the low expression levels in the dark of the selectable 

marker gene. Selection in the light would therefore be favourable, which can be 

accomplished when using four week old induced calli.  

 

2.3.5 Gene delivery 

Biolistical particle bombardment was the method used during this project. In order to use 

biolistics for Lolium perenne L., all the parameters involved with biolistics had to be 

assessed and optimized. To test these parameters, a GUS assay was utilized to test for 

transient expression of the uidA gene. The nuclear transformation vector 

pCAMBIA1305.1 containing the uidA gene, was used for this study. The uidA gene 

produces an enzyme that can convert X-Gluc to a blue dye during a GUS-assay.  The 

efficiency of DNA delivery could be calculated by counting the blue spots (foci of GUS-

stained cells) two days after biolistical delivery of the transgene. 

 

2.3.5.1 Testing for efficiency of DNA coating on gold particles for biolistics 

Two different protocols were tested for their efficiency at coating DNA on gold particles. 

Protocol I consisted of a 3 minute spin to bind the DNA to the gold particles, while 

protocol II consisted of a 15 second spin to bind the DNA to the gold particles (see 

2.2.5.2.4). The waste solutions of each step during the coating procedure were run on an 
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agarose gel to visualise the presence of DNA contained within each waste solution (see 

Fig. 2.26). Solution A (A2 and A15) contained the DNA that was attached to the gold 

particles after the coating procedure, the DNA present in this solution indicates the DNA 

actually delivered to the tissue during biolistics. All the other lanes in Fig. 2.26 show the 

DNA lost in the respective washing solutions. The presence of DNA in solution A 

indicates that protocol II proved to be much more efficient in binding the DNA to gold 

particles then protocol I. 

 

Fig. 2.26: A 0.8% agarose gel visualising the DNA contained within each washing 
solution, and the DNA coated to the gold particles. 
A2: DNA redissolved into water from gold particles prepared with protocol I 
A15: DNA redissolved into water from gold particles prepared with protocol II 
B2: Waste solution B from protocol I 
B15: Waste solution B from protocol II 
C2: Waste solution C from protocol I 
C15: Waste solution C from protocol II 
D2: Waste solution D from protocol I 
D15: Waste solution D from protocol II 
4μg: 4 μg DNA 
1μg: 1μg DNA 
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2.3.5.2 Optimization of biolistic delivery regarding shooting parameters using 

transient expression of the uidA gene in the cytosol. 

The shooting pressure and shooting distance were evaluated for their influence on 

transgene delivery. This was tested by introducing the nuclear transformation vector 

pCAMBIA 1305.1, which contains the uidA gene, into calli of Lolium perenne L. 

Cv. ’Cashel’. After a histochemical GUS assay, the blue spots were counted (see Fig. 

2.27) and compared for each shooting parameter and different DNA coating protocol. 

Initial results obtained with DNA coating protocol I, suggested that a shooting pressure of 

1100 PSI and a shooting distance of six cm was optimal (see Fig. 2.28). Further transient 

expression tests were narrowed down to fewer parameters and were conducted using the 

DNA coating protocol II. The number of expressing foci increased dramatically, 

furthermore there did not seem any clear difference in delivery efficiency between the 

shooting distance parameter (See Fig. 2.28 and Fig. 2.29). However when a shooting 

distance of three centimetre was used, the target area got reduced substantially, therefore 

the use of six to nine centimetre was determined preferential. 

 

Fig 2.27: GUS expression after biolistic delivery of pCAMBIA 1305.1, histochemically 
visualised by a GUS assay, in calli 2 days post-biolistics 
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Fig. 2.28: Number of foci expressing the uidA gene after biolistic delivery using various 
parameters. DNA preparation protocol I: n=3, DNA preparation protocol II: n=1. Error 
bars represent the standard deviation of the mean. 
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Fig. 2.29: Number of foci expressing the uidA gene after biolistic delivery using various 
parameters with DNA preparation protocol II: n=5. Error bars represent the standard 
deviation of the mean. 

 

After assessment of the parameters, it could be concluded that the optimal conditions for 

DNA delivery were the following. 

The utilisation of DNA-Gold coating protocol II. 

For biolistical delivery: 

 Six or nine cm target distance  

 1100 PSI shooting pressure.  

Although the DNA delivery efficiency was relatively low, compared to earlier published 

results, the efficiency was greatly increased when Cv. ‘Action’ was used at a later stage 
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in the project. Nevertheless the optimal conditions obtained with the tests conducted on 

Cv. ’Cashel’ could be applied to other cultivars of Lolium perenne L.. 

 

2.3.5.3 Transient expression assessment in plastids of leaf-tissue bombarded with 

pIAPRvdB5.  

To test if the Lolium perenne L. vector pIAPRvdB5 could be successfully used for plastid 

transformation, transient expression experiments were conducted. Leaf tissue was 

bombarded with a shooting pressure of 1100 PSI and a shooting distance of nine cm or 

six cm. After a two day cultivation, leafs were assessed for green fluorescent protein 

located within the plastids, using a confocal microscope with UV-light. As positive 

control, a Nicotiana tabacum leaf was used with GFP expressed within the chloroplasts 

(kindly provided by Aisling Dunne). As negative control a wild-type Lolium perenne L. 

leaf was used. 

The assessment was complicated by a strong background signal, making it nearly 

impossible to locate the true GFP emissions (See Fig. 2.30 and Fig. 2.31); this is due to 

the low number of GFP emitting plastids that were expected. 

 110



 

Fig. 2.30: Positive control (plastid transformant of tobacco expressing GFP, kindly 
supplied by Aisling Dunne) in a tricome containing chloroplasts, top left GFP filter, top 
right auto-fluorescence, bottom left no filter, bottom right merged. 
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Fig. 2.31: Negative control, leaf tissue of wild-type Lolium perenne L.. Top left: GFP 
filter, top right: auto-fluorescence, bottom left: no filter, bottom right: merged. 

 

Afterwards a DAPI stain on leaf tissue of wild-type Lolium perenne L. was conducted to 

find the location of this background signal, this showed that the signal was outside the 

chloroplasts and in proximity of the nucleus. 
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2.3.6 Analysis of putative transformants 

2.3.6.1 Analysis of putative nuclear transformants 

Three separate calli continued to develop slowly after delivery of pCAMBIA 1305.1, 

nevertheless shoot induction did not occur. These calli were analysed using a GUS-assay, 

PCR analysis and southern blot. 

 

2.3.6.1.1 GUS assay 

None of the three proliferated calli during selection showed GUS expression. 

 

2.3.6.1.2 PCR analysis 

Gene specific PCR was carried out on gDNA isolated from putative plastid transformants 

with an hpt gene specific primer pair. The expected fragment size was 391bp (see Fig. 

2.32 lane 6). A false positive band was amplified from wild-type DNA (see Fig 2.32, lane 

5). Different primer pairs were tested, but all resulted in false positives in the negative 

control. 
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Fig. 2.32: PCR analysis of putative transformants using hpt specific primers.  
Lane 1 + 7: 1kb ladder 
Lane 2-4: Putative transformants 
Lane 5: negative control, wild-type Lolium perenne L. Cv. ‘Cashel’ 
Lane 6: Positive control, pCAMBIA1305.1 
 
 

2.3.6.1.3 Southern blot 

A Probe was designed to hybridise with the hpt gene. During hybridization with SacII 

digested wild-type gDNA, no fragment should be visualised. If the expression cassette of 

vector pCAMBIA 1305.1 got integrated, a fragment of any size should be visualised due 

to random integration, possibly more fragments could be visualised if there were more 

then one integration event.  For all three putative transformants no fragment appeared 

after hybridisation, indicating that in all putative transformants the expression cassette 

was absent (See Fig. 2.33). 
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Fig. 2.33: Southern blot with hpt probe, pCAMBIA 1305.1 plasmid DNA digested with 
EcoRI and SacII. gDNA from putative transformants and wild-type Lolium perenne L. 
digested with SacII. A: Digested DNA ran on a 0.8% agarose gel, B: Southern blot with a 
Three minutes exposure time, C: Southern blot with a seven minutes exposure time 
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2.3.6.2 Analysis of putative plastid transformants 

Nine small shoots developed during delayed paromomycin selection. These shoots were 

green at first, but slowly started to exhibit detrimental effects under paromomycin 

selection, including a lack of root growth. Nevertheless these were analysed with 

fluorescent microscopy to detect GFP accumulation, PCR analysis and southern blots. 

 

2.3.6.2.1 Confocal microscopy 

No GFP was detected in regenerated leaf tissue. 

 

2.3.6.2.2 PCR analysis 

2.3.6.2.2.1 Gene-specific PCR 

Gene specific PCR was carried out on gDNA isolated from putative plastid transformants 

with various primer pairs. However for every primer pair, a false positive band appeared 

at the negative control with similar sizes to the expected band. However with a primer 

pair designed on the aphA-6, a slight difference in size was observed, so that positive 

bands (865 bp) could be distinguished from false positive bands (see Fig. 2.34). All 

putative transformants appeared negative for transgene integration. 
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Fig. 2.34: PCR analysis of putative transformants using aphA-6 specific primers.  
Lane 1 + 13: 1kb ladder 
Lane 14: low mass ladder 
Lane 2-10: Putative transformants 
Lane 11: negative control, wild-type Lolium perenne L. Cv. ‘Cashel’ 
Lane 12: Positive control, pIAPRvdB5 
 

2.3.6.2.2.2 Long-range PCR 

Long-range PCR was carried out on gDNA isolated from putative plastid transformants 

with a primer pair designed on the plastid region external of the homologous integration 

region. A wild-type PCR product of 2.589 kb was expected, with a possible PCR 

fragment of 4.2kb size, indicating transgene integration. All putative transformants only 

contained the wild-type band as shown in Fig. 2.35. 

 

 

Fig. 2.35: PCR analysis of putative transformants using primers external of the 
integration cassette 
Lane 1 + 11: 1kb ladder 
Lane 2-9: Putative transformants 
Lane 10: negative control, wild-type Lolium perenne L. Cv. ‘Cashel’ 
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2.3.6.2.3 Southern blot 

Two probes were designed to hybridise with the trnI and the aphA-6 gene. During 

hybridization with SacII digested wild-type gDNA, a fragment of 5615 bp should be 

visualised with the trnI probe. If the expression cassette RvdB5 is integrated within the 

plastid genome a fragment of 7471bp would be visualised for both probes (See Fig. 2.36). 

For all the putative transformants strictly the wild-type fragment was present, indicating 

that none of the putative transformants were positive for targeted integration (See Fig. 

2.37). Furthermore hybridisation with probe designed on the aphA-6 gene, showed no 

signal in all putative transformants, indicating the absence of the expression cassette (see 

Fig. 2.38). 
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Fig.2.36: Map of the plastid genome region of Lolium perenne L with the insertion site 
for targeted integration of the expression cassette RvdB5. A: Map of plastid genome 
region without integration of the expression cassette (WT), dig labelled probe for the trnI 
gene is shown. The trnI probe hybridises to a fragment of 5615bp  B: Plastid genome 
region with targeted integration with expression cassette RvdB5. Both the trnI and aphA 
probe hybridise to a fragment of 7471bp. 
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A: DNA ran on a 0.8% agarose gel B: One minute exposure

C: Three minutes exposure

Lanes:
L: DNA molecular weight marker III,

digoxigenin-labeled
1-9: Putative transformants 
10: Wild-type Lolium perenne L.
11: pIAPRvdB5

L    1     2     3     4    5     6     7     8     9   10    L 11 L    1     2     3     4    5     6    7     8     9   10   L    11 

L    1     2     3      4    5     6     7     8     9    10 L    11
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Fig. 2.37: Southern blot using trnI probe, all gDNA samples were digested with SacII, 
pIAPRvdB5 was digested with KpnI,  A: Digested DNA ran on a 0.8% agarose gel, B: 
Southern blot with a one minute exposure time, C: Southern blot with a three minutes 
exposure time. 
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B: Three minutes exposure

C: Six minutes exposure

21kb

5.1kb

2kb

21kb

5.1kb

2kb

L      1     2     3     4     5      6    7     8     9    10      L    11 

L      1     2     3     4     5      6    7     8     9    10     L    11 

Lanes:
L: DNA molecular weight marker III,

digoxigenin-labeled
1-9: Putative transformants 
10: Wild-type Lolium perenne L.
11: pIAPRvdB5

A: DNA ran on a 0.8% agarose gel

L    1   2    3   4    5   6    7   8   9  10  L  11 

 

Fig. 2.38: Southern blot using aphA probe, all gDNA samples were digested with SacII, 
pIAPRvdB5 was digested with KpnI,  A: Digested DNA ran on a 0.8% agarose gel, B: 
Southern blot with a three minutes exposure time, C: Southern blot with a Six minutes 
exposure time. 
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2.4 Discussion 

During this study, all the known factors involved with plastid and nuclear transformation 

through biolistics were assessed and accordingly optimized. 

 

The Lolium perenne L. plastid transformation vectors pIAPRvdB4 and pIAPRvdB5 were 

correctly assembled; both could be used for plastid transformation experiments.  Vector 

pIAPRvdB5 was designed to achieve a higher protein accumulation, which could be 

beneficial due to lower expected gene-expression within callus tissue. Vector 

pIAPRvdB4 contained the full-length Prrn promoter with both the NEP and PEP binding 

sites, which is active in both light and dark growth conditions albeit at lower levels, 

facilitating selection regimes in the dark. 

 

A suitable tissue culture regime was established. As source tissue for callus induction, 

two types were assessed for efficiency in callus induction. Both leaf-base explants and 

mature embryos successfully induced regenerable callus for all cultivars tested. However 

there were differences in response between cultivars. When leaf-base explants were used 

as source tissue, cultivars ‘Cashel’ and ‘Shandon’ had the highest induction rates, while 

cultivar ‘Telstar’ had the highest induction rate when mature embryos were used. The 

advantage of using mature embryos as source tissue is the time-frame at which the callus 

can be obtained. Unlike leaf-base explants as source tissue, this protocol does not require 

a four-week tissue culture period prior to callus induction. However for plastid 

transformation, to obtain homoplasmic tissue, the tissue has to go through several rounds 

of regeneration. To achieve this, leaf-base explants are the obvious choice for callus 
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induction, as this will be readily available after obtaining the primary transformants. 

There are two problems with combining the two aforementioned techniques. A specific 

genotype (seed) might be efficient in regenerable callus induction from mature embryos, 

but might not be efficient for callus induction from leaf-base explants. This could prove 

to be a bottleneck to obtain homoplasmy during plastid transformation. On balance it was 

felt that leaf-base explants were the preferred choice as source tissue for transformation 

experiments. 

 

An overview about the order of responses for callus induction from leaf-base explants 

and shoot induction is given in Table 2.24., with an overall score of both combined in 

column 4 of Table 2.24. The cultivars ‘Cashel’ and ‘Shandon’ responded overall the best, 

for both callus induction and shoot regeneration. As a consequence these two cultivars 

were prime candidates to continue the transformation experiments with.  However due to 

a sister project where the plastid genome of Lolium perenne L. Cv. ‘Cashel’ was 

sequenced (Diekmann et al. 2009), this cultivar was ultimately chosen to continue with. 

It should be noted that when calli were transferred in 16h light conditions, the first shoots 

appeared within a week. This could pose a problem during selection, where callus 

selection would be preferential, due to the unwanted possibility of obtaining chimeric 

shoots. 
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Table 2.24: The overall response for callus induction and regeneration and the combined 
ranking of cultivars by taking both responses into consideration. 
Cultivar Callus induction 

ranking 

shoot induction 

ranking 

Combined response 

ranking 

Cv 'Cashel' dark 1 1 1 

Cv. 'Shandon' 1 1 1 

Cv. 'Limes' 4 1 2 

Cv. 'Cancan' 6 1 3 

Cv. 'Greengold' 3 2 (no shoot induction) 4 

Cv. 'Telstar' 2 n.a. * 

Cv. 'Action' 5 n.a. * 

 

 

A selection regime was developed for both nuclear transformation and plastid 

transformation. For nuclear transformation experiments selection at 75 mg L-1 

hygromycin B should be sufficient to select primary transformants, although a fair 

number of initial escapes are to be expected. For plastid transformation, paromomycin 

seems to be the best choice, with selection pressures between 100 to 150 mg L-1 

paromomycin. Several options as to when selection should be initiated to obtain 

transplastomic tissue remains a question that has yet to be answered. 

 
Lastly, the gene-delivery protocol was optimized for the use on calli from Lolium 

perenne L. Cv. ‘Cashel’. Although the DNA delivery efficiency was relatively low, the 

efficiency was greatly increased when Cv. ‘Action’ was used at a later stage in the project. 

Despite this, the ratio obtained with the tests conducted on Cv. ’Cashel’ could be applied 

to other cultivars of Lolium perenne L.. 
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Despite the thorough assessment and optimisation of cultivars, explant source, tissue 

culture parameters, biolistic delivery parameters, and selection protocol, transgenic tissue 

was not recovered. The reason for the failure to achieve genetic modification can be due 

to several independent aspects. The most likely bottle neck to acquire any nuclear or 

plastid transformants, could be due to the choice of cultivar. Despite the fact that Cv. 

‘Cashel’ proved to be the best candidate based on the tissue culture conditions, this does 

not exclude the possibility that another untested cultivar would perform better. 

Furthermore gene-delivery proved to be more efficient when the Cv. ‘Action’ was used. 

Unfortunately this cultivar was obtained at a late stage of the project, therefore limited 

number of transformation experiments were conducted on this cultivar.  

 

There are several other likely problems in acquiring plastid transformants. For instance, 

in deciding what kind of vector would be most suitable for plastid transformation of 

Lolium perenne L., you are restrained by the available data. To test the efficiency of an 

expression cassette in Lolium perenne L., a working plastid transformation protocol has 

to be developed first. So basically you end up in a vicious circle. To determine “A” you 

need to have done “B” and vice versa. 

 

Theoretically the expression cassette used within pIAPRvdB5 should express sufficient 

APHA-6 to inactivate the antibiotic paromomycin. The functionality was tested and 

confirmed in Escherichia coli, by introducing the expression cassette into the pUC19 

vector, which lacked the nptII gene within the backbone. Bacteria containing the 

expression cassette were resistant to paromomycin and G-418. Furthermore high 
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expression levels with similar constructs were recorded in previous studies (Kuroda and 

Maliga 2001b). Moreover similar expression signals were used to achieve plastid 

transformants in the monocot Oryza sativa (Khan and Maliga 1999). Nevertheless there 

is no guarantee the expression cassette would be as efficient in Lolium perenne L. as it 

was in other systems. Every species and every tissue has a different expression profile, 

this was demonstrated by comparing expression profiles within chromoplast and 

chloroplasts in tomato (Kahlau and Bock 2008). Therefore it is quite possible that this 

expression cassette would not be active enough in callus tissue within Lolium perenne L., 

to provide enough APHA-6 to inactivate the selectable agent.  

 

Another likely barrier to obtain transgenic tissue is the selection regime. After biolistical 

delivery, the expression cassette has to be integrated within the plastid genome. 

Furthermore sufficient accumulation of the detoxifying protein has to be present for 

transgenic cells to proliferate, this can pose a problem as it was shown that the Prrn PEP 

promoter activity in rice proplastids was seven fold lower compared to the activity in 

chloroplasts (Silhavy and Maliga 1998).  As a result, when selection is commenced too 

early, the transgenic cells may not be able to proliferate. If selection is commenced too 

late, the transgene might have looped out already.  The timing to induce selection could 

therefore be of vital importance to obtain transplastomic tissue.   

 

Taking all this into account, it is possible that a working protocol for plastid 

transformation in this species will be difficult to obtain, as has proven the case with 
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monocots in general. On the other hand, a small alteration to this protocol could well 

prove to be sufficient to achieve plastid transformation within Lolium perenne L.. 
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Chapter 3: 
 

RNA-Editing 
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3.1 Introduction 

In this study, the editing efficiencies of various plastid editing sites were evaluated under 

drought stress in various genotypes of perennial ryegrass. The hypothesis was that it may 

be that drought tolerance could in part be regulated directly or indirectly by editing events 

within the plastid genome, in particular within the NDH complex (NADH dehydrogenase 

complex). Previous reports indicate that the NDH complex optimizes the induction of 

photosynthesis under conditions of water stress in the light (Burrows et al. 1998) and that 

the plastidial NDH complex activity increases under stressed conditions (Ibanez et al. 

2010). More specifically when the ndhB gene was inactivated in transplastomic plants, 

the dark reduction in the plastoquinone pool was impaired and an enhanced growth 

retardation was observed under humidity stress conditions (Horvath et al. 2000). 

Potentially the functionality of the NDH complex could be impaired by the lack of RNA 

editing, therefore decreasing the tolerance to oxidative stress caused by water deficit. 

 

RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from 

the sequence of its DNA template (Tillich et al. 2006). Different RNA editing systems 

exist and each is thought to have evolved independently (Brennicke et al. 1999).  RNA 

editing in chloroplasts belongs to the conversion system, where exclusively C to U 

substitutions occur, with the exception of U to C substitutions in the bryophyte 

Anthoceros formosae (Kugita et al. 2003). mRNA editing usually results in the 

restoration of codons for conserved amino acids (Bock et al. 1994).  
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3.1.1 Assessment of RNA editing efficiency 

RNA editing efficiency can be investigated by several different methods. The most 

trustworthy method is a colony screen (Roberson and Rosenthal 2006). This involves the 

amplification of a fragment derived from complementary DNA (cDNA) within a 

transcript where editing occurs. The fragment is introduced into a sequencing vector, 

after which the vector is transfected into Escherichia coli. Subsequently the editing 

efficiency can be determined, by screening separate colonies of bacteria for editing sites 

within the fragment in the vector. By screening a large number of clones, the editing 

efficiency can be calculated. Although this method is very accurate, it is a labour 

intensive method, furthermore it is a costly endeavour, due to the large number of 

sequencing reactions involved. A second method to analyse the RNA editing efficiency is 

the poison primer extension (PPE) technique (Peeters and Hanson 2002). This assay is 

based on using a polymerase to extend a 32P end-labeled primer through the editing site in 

the presence of three deoxynucleotide triphosphates and one dideoxynucleotide 

triphosphate. The dideoxynucleotide, or chain terminator, normally contains the same 

base as the edited nucleotide. Therefore, if a transcript is edited, the extension stops at the 

editing site. If not, it extends to the next instance of the edited nucleotide in the chain. To 

estimate editing efficiency, reactions can be separated on an acrylamide gel and the 

relative proportions of the two extension products are quantified. The run through can be 

as low as 5%, although in some cases it was 70%, depending on the polymerase and 

terminators used (Peeters and Hanson 2002; Roberson and Rosenthal 2006). This method 

is quite accurate, although the optimization can be major drawback to get it to work 

efficiently. However once optimized it is cost- and labour effective. The last method 
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available is the trace-file method (Nakae et al. 2008). This technique involves direct 

sequencing of specific PCR products containing editing sites, amplified from cDNA. The 

trace files from the sequencing results can be analysed by comparing peaks representing 

edited and unedited editing sites. The ratio determines the editing efficiency. The 

accuracy of this method was found to be 5%, although in general a lower accuracy in the 

range of 20% is mentioned (Nakae et al. 2008). This method is labor efficient and fairly 

cost effective (Nakae et al. 2008). 

 

3.1.2 Systems for mimicking drought stress conditions for plants 

Several systems for assessing drought susceptibility or tolerance have been employed in 

previous studies. However none of the systems is considered optimal, for various reasons, 

which are discussed below (Munns et al. 2010). The system mostly used, is plants grown 

in pots under controlled conditions. If the plants are grown in soil, the induction of 

drought can be accomplished by withholding water for a specific duration of time. 

Uniformity of soil is however difficult to maintain, resulting in a variable water potential 

throughout the soil profile, this can result in a mixed nutrient transmission (Nye and 

Tinker 1977). Furthermore soil saturation at the bottom can happen easily when pots are 

not sufficiently deep, resulting in ‘control’ plants not growing as well as moderately 

stressed plants (Passioura 2006b). To avoid saturation, inorganic ‘soils’, like calcined 

clay can be used. However artificial material with large particles may have little root 

contact, resulting in decreased growth. For example, vermiculite caused a greater 

reduction in root growth at low water potential than did liquid medium at the same water 

potential at least up to –1.6 MPa (Verslues et al. 1998). 
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Alternatively hydroponics can be used to circumvent the problems with heterogeneity, 

drainage and variable water potential. Several non-ionic osmotica have been used to 

decrease the media water potential. Examples are mannitol, melibiose and sorbitol. 

Despite the osmotic properties of these chemicals, these components are not suitable for 

the induction of drought stress, because the cell membranes are permeable to these small 

molecules. Therefore entry of these chemicals within the roots occurs, resulting in their 

movement within the xylem towards the shoots. In the case of mannitol it was shown that 

cell elongation occurs, causing a problem for interpretation of growth differences 

between stressed and control conditions (Hohl and Schopfer 1991). Besides these low-

molecular-weight molecules, high-molecular-weight polyethylene glycol (PEG) was used 

to mimic drought stress. The advantage of this chemical is the inability to penetrate the 

cell membrane; so it does not cause any unintended adverse effects on growth. However 

due to the viscous nature of a PEG solution, the poor supply of oxygen to the roots can 

pose a problem (Mexal et al. 1975). To overcome this problem, aerating of the roots is 

necessary. However too rigorous bubbling can cause damage to roots through shear stress, 

so a gentle aeration is desirable (Mexal et al. 1975) . To improve oxygen supply, it was 

shown that bubbling with oxygen instead of air increased root growth (Verslues et al. 

1998). Despite the inability of PEG to penetrate the cell membrane, the change of 

solutions during experiments can lead to entry of PEG into the roots, by lateral breaks of 

the roots. This was shown to cause necrosis, by blocking pathways used for transpiration 

(Lawlor 1970).  
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Besides hydroponics and soil based systems, another system to mimic drought stress was 

developed by Van Der Weele et al. (2000) using a nutrient-agar medium supplemented 

with PEG-8000. This system is called the “PEG-infused in vitro system” It involved 

dissolving PEG in a nutrient medium, after which the PEG medium was allowed to 

diffuse into an agar medium. Arabidopsis seedlings were subsequently placed on top of 

the PEG-agar medium. By placing the Petri dishes vertically, the supply of oxygen to the 

roots was guaranteed (van der Weele et al. 2000).  

 

3.1.3 Assessment of drought stress response of plants 

To test for drought tolerance, several different tests can be performed. Firstly the Relative 

water content (RWC) can be assessed. This is a method for determining the water content 

within tissue under different environmental conditions. It was first described by (Barrs 

and Weatherley 1962). Under optimal conditions leaf tissue has a RWC of 85-95%, 

however when exposed to drought conditions this value decreases. The extent of this 

reduction is an indication how well it copes with its ability to retain water by limiting 

transpiration and maintaining water uptake (Volaire and Lelièvre 2001). Another 

indicator of drought tolerance is root growth. In previous studies it was shown that 

drought tolerant plants had an increase in root development under moderate stress 

conditions. Most likely, this reflects an adaptive response involving an increase in root 

length to reach water deeper in the soil (van den Berg and Zeng 2006). Other strategies 

for determining drought tolerance are analyses of stomatal conductance by imaging 

analyses (Grant et al. 2006; Leinonen et al. 2006) or determination of the photosynthesis 

rate (Hu et al. 2010). A relationship between the RWC and photosynthesis has been 
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demonstrated in previous studies (Lawlor and Cornic 2002). A decreased RWC slowed 

down the CO2 assimilation rate and at RWC values lower then 75%, metabolic inhibition 

occurred.  

 

3.1.4 Aim and objectives 

Previous studies have shown that the RNA editing pattern is developmentally influenced 

(Peeters and Hanson 2002; Chateigner-Boutin and Hanson 2003), furthermore 

environmental control was also shown to influence the editing pattern as temperatures of 

370C was shown to inhibit editing of specific editing sites within tobacco (Karcher and 

Bock 2002). The aim of this study was to determine if RNA editing was directly or 

indirectly involved with drought response. In order to investigate this, the RNA editing 

efficiencies of various editing sites were analysed in accessions of Lolium perenne L. that 

had different responses to drought stress. In a previous study only two cultivars were 

characterized for drought response (Foito et al. 2009), these cultivars were initially 

assessed for RNA editing patterns (see section 3.3.1). After which the study was 

expanded to a range of other accessions, which had to be characterized first for their 

drought response. 

 

Initially the “In vitro PEG-induced system” was used to detect differences in drought 

response between accessions of Lolium perenne L. obtained from the GRIN database 

(Germplasm Resources Information Network in the United States of America). The 

choice of this system relied on the ability of this protocol to assess a large number of 

accessions simultaneously. The results obtained with this system are described in section 
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3.3.2. To confirm the drought response of these accessions, another drought test was 

performed to verify the findings and to obtain sufficient amount of tissue for RNA editing 

analyses. For this a hydroponics system with PEG (In vivo PEG-induced system) was 

utilized. The results are described in section 3.3.3. 

Once the drought response of the tested accessions was determined, the RNA editing 

behaviour of these genotypes was assessed; these results are described in section 3.3.4 

After analyses of the data, the relationship between drought response and RNA editing 

could be evaluated, this is shown in section 3.3.5.  

 

Finally another feature in plastid DNA was analysed, namely single nucleotide 

polymorphisms (SNPs). These are single nucleotide polymorphisms that can in some 

cases change the amino-acid sequence of a transcript. There are two different types of 

SNPs, either transition or transversion mutations. Transition mutations are C – T and A – 

G combinations, whereas transversion are C – G and A – T combinations. These 

combinations co-exist within the same plant, making up different haplo-types. These 

SNP’s can be used to design markers to assess population genetics and phylogenetic 

studies (Diekmann et al. 2009). Despite the identification of SNP’s within the plastid 

genome, it has not been tested whether these SNP’s could potentially be converted by the 

RNA editing machinery. This is shown in chapter 3.3.6 
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3.2 Materials and methods 

3.2.1 Plant material 

Lolium perenne L. cultivar ‘Cashel’ was obtained Teagasc, Oak Park, Carlow.  

Other accessions of Lolium perenne L. were acquired from the Germplasm Resources 

Information Network (GRIN) in the United States of America as shown in Table 3.1.  

Table 3.1: Accessions ordered from GRIN database. 
Accessions - Origin 

PI462336 New Zealand PI 418717 Italy PI 577270 Norway  

PI 598433 Italy  PI 610803 Norway  PI 440475 Russia 

PI 610806 Romania  PI 418723 Luxembourg  PI 598434 Italy 

PI 502412 Russia  PI 418701 Former Yugoslavia PI 610802 Norway 

PI 610820 Romania  PI 201187 Netherlands  PI 610825 Switzerland 

PI 577266 Romania  PI 512321 Spain  PI 632538 Italy  

PI 628717 Bulgaria  PI 619554 Wales  PI 632553 Italy  

PI 611044 Russia  PI 223178 Greece  PI 632575 Italy  

PI 598453 Romania  W6 11256 Turkey  PI 632590 Morocco  

NK 200 USA PI 229476 Iran  PI 634278 USA 

PI 231565 Libya  PI 577270 Norway   

 

These accessions had been tested for their winter hardiness (Hulke et al. 2007; Hulke et al. 

2008), and accessions used in this study were chosen over a scale of good to bad response 

to low temperatures.  
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3.2.2 cDNA synthesis from total RNA 

A drought stress experimental series has been carried out at Oak Park by Dr. Stephen 

Byrne. For this experiment clones were vegetatively propagated from single tillers from 

two different cultivars, Cv. ‘Cashel’ (drought susceptible) and Cv. ‘New Zealand’ 

PI462336 (drought tolerant). 

Total RNA was extracted from leafs at different time points during the stress test, both 

from control conditions and stressed conditions, a total of 28 samples were prepared. 

This RNA was used to synthesize cDNA, using Superscript III Reverse transcriptase 

following the manufacturer’s instructions (Invitrogen cat. No. 18080-400).  

 

3.2.3 Primers used for RNA-editing 

All the primers used for RNA editing are listed in Table 3.2. 
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Table 3.2: Primers designed to amplify regions containing known RNA-editing sites. 

Fragments Editing site / SNP 
location within the 
plastid genome 

Primer 
pair  

Primer 1 Primer 2 

psbJ 61111 66 ctggtccctccgatt gataaaatgtggaggaaagt 

petB 72259 7 ggttctaatgatgatcctg aattctttatgatatgcctt 

ndhB-1 85696 8 gaaagaaatagacctagcag ccttttcatcaatggact 

 86347 8   

 86341 8   

ndhB-2 87155 9 tccttcgtagacgtcag ttggatgcagttactaattc 

 87188 9   

 87281 9   

 87306 9   

 87425 9   

 87743 9   

ndhD 107165 17 cattaatagaccggactggt ggaagcgcattatagtacatg 

rps8 76422 31 gaattcgggtactatagccacagc gaaaaatttggaggaacctagaatt
aga 

rpoC2 28731 34 gcagctaaaccttatttggccac tcctttatgtatccttaactcgtataaa
tgg 

atpA 35112 89 taccaatagttgagactcaat aacaagaaagagtagacgtg 

ndhA 111250 23 agaagaaattagaaaaaccagaaa gggaagttgatcgttgaaa 

 112355 23   

 112778 23   

ndhG 109624 12 tttgcaattcttataatttttactcttt tgccttttcgttgggattag 

rpl2 82031 (133217) 11 tgctgctctagctaattgc ctattccacttctagatagagaaaa 

rpl20 66009 29 gggaattcggtttttattat attagttattcattaaggttaatttg 

ndhF 103515 88 ggagctagtaaccaatccca agtaaaaattgcaatttcttttc 

 103675 88   

ndhK 49245 86 tgaacattccccctgtaata atggcgaaaaggagcctt 

 49367 86   

rpoB 19737 13 taagattaagatgctccgg caagattaagcctccga 

 19815 13   

 19830 13   

 19560 13   

ycf 42700 30 ttatgaaaaagaaggagcgtggtc   ggttgggaattatgcctagatcc 

 43599 30   

psbL 61339 44 tccctccgattactatagagatgaa ccaacgataaacaaaattccaac 

psaB 37506 psaB tcaaagatcttttagaagcgca 
 

gccaataaaaagtaacccat 
 

rps18 65631 
 

rps18 ctaaacaaccttttcttaaa 
 

aacttaagttccgattgttg 
 

Red annotated genome locations are known SNPs. 
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3.2.4 PCR to amplify fragments from cDNA containing the editing-sites 

Fragments were amplified using Taq polymerase (New England Biolabs, Inc., Ipswich, 

MA, USA). The reaction mixture is shown in Table 3.3 and the PCR cycles are given in 

Table 3.4. 

Table 3.3: Standard PCR mix 
Reaction mix Volume (μl)  

cDNA (1μg μl-1)   1.0  

Primer 1 (0.1μM μl-1)   1.0  

Primer 2 (0.1μM μl-1)   1.0  

Taq Polymerase (1unit μl-1)    1.0 

10x Thermo buffer   2.0  

dNTP (10mM)   1.0  

ddH2O 13.0 

Total reaction mix 20.0  

 

Table 3.4: PCR cycle: 
Steps Temperature Time 

Step1 Denaturation 95oC 5 min 

Step 2 Denaturation 95oC 1 min 

Step 3 Annealing 50oC 1 min 

Step 4 Extension 72oC 1 min 

Step 5 Repeat cycles Repeat step 2-4 35 times 

Step 6 Final extension 72oC 10 min 

Step 7 End of program 4oC Indefinite storage 
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3.2.5 Analyses of RNA editing patterns using the trace-file method 

All PCR products were sent to AGOWA (Germany) for PCR purification and sequencing. 

The returned trace files were analysed with the program ‘Chromas Lite’ for RNA-editing 

sites and the corresponding efficiency. To analyse the efficiency of editing, the height of 

the peaks at an editing location within the trace files were measured, and compared to 

each other as illustrated in Fig. 3.1. The editing efficiency was calculated with the 

following formula; 

%100
peak uneditedHeight  peak  editedHeight 

peak editedHeight 
x


 

4cm  4.8cm
Calculation: (4.8 / (4+4.8)) *100 = 54.5%

 

Fig. 3.1: Calculation of editing efficiency using the trace-file method. The circle around 
the nucleotide represents the editing site. 
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3.2.6 Verification of the trace-file method, using colony screens 

To determine if the trace-file method can be used confidently, a colony screen was 

performed. This involved setting up PCR reactions of randomly selected samples (see 

Table 3.5.) using primers designed for the ndhB and ndhF fragments (see Table 3.2, 

primer-sets 9 and 88).  

Table 3.5: Samples used for colony screen experiment 

PCR-product Samples RNA editing sites at genome position within 

the plastid genome of Lolium perenne L.   

ndhB 17 (Cashel) 87188, 87281, 87306, 87425, 87743 

ndhB 23 (New Zealand) 87188, 87281, 87306, 87425, 87743 

ndhF 23 (Cashel) 103675 

 

These PCR-products were sent off for sequencing at John Lester’s, sequencing facility at 

the department of biochemistry, University of Cambridge, United Kingdom. Peaks in the 

resulting trace files were analysed using the formula stated in section 3.2.5. The same 

PCR-products were cloned into the cloning-vector pCR2.1-TOPO, and subsequently 

introduced into E.coli strain TOP10 as described in paragraph 2.2.1. 

 

Agar stab-cultures were made in 96-well plates, each well containing a separate clone, 

derived from the E.coli with pCR2.1-ndhB and E.coli with pCR2.1-ndhF. The clones 

containing the ndhB fragment were sequenced in both directions, whereas the clones 

containing the ndhF fragment was only sequenced in one direction. The sequencing was 

done at GATC Biotech AG, Konstanz, Germany.  
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The editing efficiency was calculated as the percentage of clones containing the edited 

site, in comparison to the total number of clones. If the colony screen gave similar results, 

compared to the trace-file method, then it could be assumed the trace-file method was 

trustworthy. 

 

3.2.7 Evaluation of accessions of Lolium perenne L. on drought stress susceptibility 

using an in vitro PEG-induced system 

3.2.7.1 Plant material preparation 

Surface sterilised seeds of all accessions were germinated on germination medium (see 

Table 2.4). When the hypocotyls of the seedlings reached a length of 1 cm, the drought 

stress experiment was initiated. 

 

3.2.7.2 Preparation of PEG-infused plates 

Polyethylene glycol (PEG)-infused plates were made as described by (van der Weele et al. 

2000; Verslues et al. 2006). The water potential of plates was lowered by addition of 

various amounts of PEG-8000 (Sigma) to the culture medium (see Table 3.6). Culture 

medium (half-strength MS, 1.2 g L-1 MES, pH 5.7) was prepared. For base medium, 15 g 

L-1 agar was added and autoclaved at 120oC for 20 minutes. For the overlay solution, no 

agar was added, prior to autoclaving. Desired amounts of PEG-8000 were dissolved in 

the medium after autoclaving, without filter sterilisation. To set up the PEG-infused 

plates, 20 ml of base media was poured into 9 cm Petri dishes. When solidified, 30 ml of 

overlay solution was added on top. The PEG in the overlay solution was allowed to 

diffuse into the agar overnight. After which the remaining liquid on top, was gently 
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removed by decanting. Plates were used immediately, or stored while wrapped in cling-

film until use. 

 
Table 3.6: Final water potential of the medium, when using specific amounts of PEG in 
overlay solution. 
Final water potential of the PEG-infused 

plate (MPa) 

PEG added per litre of medium to make the 

overlay solution (g) 

- 0.25     0 

- 0.5 250 

- 0.7 400 

- 1.2 550 

- 1.7 700 

Source: (Verslues et al. 2006). 

 

3.2.7.3 Drought stress experiment 

Five to seven seedlings, 1 cm in length were placed on the surface of each Petri dish, both 

the PEG-infused and the control plates. The plates were then placed vertically in a growth 

chamber at 22oC with a 16 hour photoperiod. The seedlings were exposed to the stress 

treatment for 13 days, prior to assessment.  

 

3.2.7.4 Analyses of seedlings exposed to drought stress 

Photographs were taken before and after the drought treatment of each Petri dish on top 

of a 1 mm roster paper; these images were used to measure the shoot lengths of each 

seedling. In addition the total dry biomass and the Relative Water Content (RWC) were 

measured as described by (Barrs and Weatherley 1962). The Fresh weight (FW) was 

measured by weighing whole seedlings on a fine scale (Ohaus, PA-114). The seedlings 

were submerged in distilled water for 3 hours, after which the seedlings were blotted dry 
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and the Turgor Weight (TW) was measured of these seedlings on a fine scale. 

Subsequently, the seedlings were placed in a tube to dry in an oven at 70oC, after which 

the Dry Weight (DW) was measured. 

 

The following formula was used to calculate the RWC; 

 RWC  100%x 
 DW) -(TW

 DW) -(FW
  

FW: Fresh weight, DW: Dry weight, TW: Turgor weight, RWC: Relative Water Content 

 

3.2.8 Evaluation of accessions of Lolium perenne L. for drought stress susceptibility 

using an in vivo PEG-induced system 

3.2.8.1 Plant material 

Accessions were chosen based on the results from the in vitro PEG induced system. 

Seeds of each accession were germinated, after which at least ten clones from a single 

seedling per accession were propagated vegetative, by continuous tillering. All clones 

were genotypically identical unlike the seedlings in the in vitro experiment. 

 

3.2.8.2 Experimental setup 

 Plants were allowed to establish in a hydroponics system, supplemented with 4.4 g L-1 

Gamborg + vitamins B5 (Gamborg et al. 1968). The system was aerated by an aquatic 

pump, to supply oxygen in the solution as illustrated in Fig. 3.2. Two separate systems 

were setup. After one week the solution was refreshed, to prevent depletion of nutrients. 

The second week after experimental setup, the drought stress experiment was initiated by 

replacing the solutions in both systems, in the first system the solution was replaced with 
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4.4 g L-1 MS, this system acted as the control. In the second system the solution was 

replaced with a solution comprising of 4.4 g L-1
 MS supplemented with 20% PEG-6000 

(Duchefa cat. No. P0805) for the induction of drought stress. This concentration of PEG 

results in a water potential of about -0.45 MPa (Michel and Kaufmann 1973). The 

experiment was performed in a controlled glass house at Teagasc, Oak Park, Carlow with 

a mean daily temperature of 22oC and supplemented with lighting (PAR = 650 

microeinsteins m-2s-1) for 16hrs. After two weeks in these conditions, samples were taken 

for analysis. 

 

 

Fig. 3.2: Experimental set-up of the hydroponics system for assessing drought stress. 
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3.2.9 Analyses of plants exposed to drought stress 

Three different methods were used, to determine the response to drought stress. 

 

3.2.9.1 Pixel detection to record growth differences  

Photographs were taken of the plants after the completion of the experiment and analysed 

using Adobe Photoshop 5.5. Pixel detection of leaf tissue and root tissue was performed 

(See Fig. 3.3), revealing the number of pixels in each photo consisting of either leaf (Fig. 

3.3 C) or root tissue (Fig. 3.3 D), thereby indicated the amount of tissue present after each 

treatment.  

Because the photos were not all taken from the same distance, the number of pixels could 

not be compared directly. To circumvent this problem the data had to be converted, this 

was achieved by using a reference area in each photograph to detect the number of pixels 

therein (See Fig. 3.3B), the ratio of pixels between each photo for this reference area 

represented the difference in photograph size. Although these data cannot be converted to 

biomass, the ratio of pixels between treatments/accessions could be analysed and provide 

a reliable measure of relative growth. Pixel detection of leaf tissue within individual 

plants could not be performed, due to overlapping tissue of separate clones. Therefore the 

number of pixels within leaf tissue of individual plants was predicted by taking the total 

number of pixels consisting of leaf tissue, divided by the number of plants in the 

photograph. For pixel detection of root tissue, individual plants could be assessed, due to 

the fact that roots tissue did not overlap between separate clones. 
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Fig. 3.3: Analyses of amounts of different tissues using pixel detection.  
A: Complete photograph 
B: Pixels consisting of background 
C: Pixels consisting of leaf tissue 
D: Pixels consisting of root tissue 
 

3.2.9.2 Relative water content analyses  

The RWC was calculated for each plant, by taking a two cm leaf piece from the middle of 

the plant and weighing the Fresh Weight (FW), Turgor Weight (TW) and the Dry weight 

(DW) of these leaf tissues as described in paragraph 3.2.7.4.  

 

3.2.9.3 Total dry root biomass analyses  

The total roots from each plant were harvested, wrapped in tin foil and dried in an oven at 

700C for three days. The total root dry weight was afterwards recorded for each separate 
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plant. The leaf dry weight could not be recorded, as the total leaf tissue was required to 

extract total RNA for RNA editing analyses. 

 

3.2.10 Molecular analyses 

3.2.10.1 Total RNA isolation from leaf tissue  

Total RNA from three plants per treatment, per accession was extracted using the 

RNeasy® Plant Mini Kit from Qiagen Cat. No.74903. mRNA extraction was performed 

using the manufacturer’s instructions. 

 

3.2.10.2 cDNA synthesis 

cDNA was synthesized using Superscript III Reverse transcriptase following the 

manufacturer’s instructions (Invitrogen cat. No. 18080-400).  

 

3.2.10.3 PCR to amplify ndhB and ndhF fragments from cDNA and gDNA 

For the ndhB fragment primerset 9 was used, while for the ndhF fragment primerset 88 

was used (see Table 3.2). Fragments were amplified using GoTaq polymerase (Promega 

cat. No. M8301). The reaction mixture was as shown in Table 3.7, and the PCR cycles 

were as shown in Table 3.8. 

 

 147



Table 3.7. PCR reaction mix 
Reaction mix Volume (μl)  

cDNA / gDNA (1μg μl-1)   1.0  

Primer 1 (0.1μM μl-1)   1.0  

Primer 2 (0.1μM μl-1)   1.0  

GoTaq polymerase (5unit μl-1)   0.2 

5x GoTaq flexi buffer   6.0  

dNTP (10mM)   2.0  

MgCl2 (25 mM)   3.6 

ddH2O 15.2 

Total reaction mix  30.0  

 

Table 3.8: PCR cycle: 
Steps Temperature Time 

Step1 Denaturation 95oC 5 min 

Step 2 Denaturation 95oC 1 min 

Step 3 Annealing 45oC 1 min 

Step 4 Extension 72oC 1 min 

Step 5 Repeat cycles Repeat step 2-4 35 times 

Step 6 Final extension 72oC 10 min 

Step 7 End of program 4oC Indefinite storage 

 

3.2.11 Statistical analyses 

The arcsine transformation and t-tests were conducted in ‘Microsoft Excel’, whereas the 

variance tests were performed in the program ‘Minitab Solutions 15’.All data sets were 

analysed for equal variance using the Levene test, results obtained determined if t-tests 

were performed with equal variance or unequal variance. 
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For the RWC analyses, arcsine transformation of the values was necessary to obtain a 

normal distribution to do statistical analyses, as percentages cannot be used directly for 

comparison studies. These values were subsequently tested for statistical differences 

using the t-test with a one-tailed distribution and equal variance. A one-tailed distribution 

was chosen, as the hypothesis was that stressed plants would exhibit lower values 

compared to the plants in control conditions. 

 

For the total dry weight analyses, the results were tested for a normal distribution and 

subsequently tested for statistical differences using the t-test with a two-tailed distribution 

and unequal variance. A two-tailed distribution was chosen on the hypothesis that the 

root biomass could be either higher or lower for the stressed conditions compared to the 

control conditions. 

 

For the editing efficiency, the values were transformed into Arcsine values. These values 

were subsequently tested for statistical differences using the t-test with a two-tailed 

distribution and unequal variance. A two-tailed distribution was chosen, based on the 

hypothesis that efficiency could be either lower or higher for plants in stressed conditions 

compared to plants in control conditions. 
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3.3 Results 

3.3.1 Editing analyses 

3.3.1.1 Assessment of the Trace-file method to detect RNA editing efficiency in 

comparison with the conventional colony screen method. 

cDNA samples were randomly selected for analyses of RNA editing. A colony screen 

was performed as described in section 3.2.6. Results obtained from the colony screen 

were compared to results obtained from the trace-file method (described in section 3.2.5) 

as shown in Table 3.9. The highest difference observed between methods, was a 10.8% 

difference in editing, whereas the lowest difference observed was 0.8%. The 

corresponding trace-files can be found in appendix B.  

 

The editing efficiencies themselves have no relevance, as this was just to test the 

methodology. 
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Table 3.9: The difference in editing efficiencies obtained by the Colony-screen method 
and the Trace-file method derived from specific samples for several different editing sites 
within the ndhB and ndhF transcript. 
Editing site – cDNA sample Colony screen 

derived editing 

efficiency in 

percentage 

Trace-file method 

derived editing 

efficiency in 

percentage 

Difference 

observed between 

methods in 

percentage 

ndhB 87188 – sample 17 93.6% 88.2%   5.4% 

ndhB 87188 – sample 23 18.1% 16.1%   2.0% 

ndhB 87281 – sample 17 92.2% 87.5%   4.7% 

ndhB 87281 – sample 23 85.7% 74.9% 10.8% 

ndhB 87306 – sample 17 94.4% 84.3% 10.1% 

ndhB 87306 – sample 23 83.7% 73.4% 10.3% 

ndhB 87425 – sample 17 96.6% 91.8%   4.8% 

ndhB 87425 – sample 23 83.9% 83.1%   0.8% 

ndhB 87743 – sample 17 92.1% 89.3%   2.8% 

ndhB 87743 – sample 23 81.3% 75.6%   5.7% 

ndhF 103675 – sample 23 21.5% 27.3% 5.8% 

 

3.3.1.2 The editing efficiency within various transcripts in cultivars ‘Cashel’ and 

‘New Zealand’ 

Initially the RNA editing events were examined in two genotypes of Lolium perenne L. 

that were known to differ in their response to drought. The drought responses of Cv. 

‘Cashel’ and Cv. ‘New Zealand’ were previously determined using the in vivo PEG-

induced drought stress system (Foito et al. 2009). This study showed that these specific 

genotypes showed a clear difference in response, namely Cv. ‘Cashel’ was classified as 

drought susceptible and Cv. ‘New Zealand’ as drought tolerant. 
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Leaf samples of these plants were taken at 0 hours, 4 hours, 24 hours and 168 hours after 

initiation of drought stress, after which mRNAs were extracted, for subsequent use in this 

study. A range of 28 editing sites were analysed, however only 16 editing sites exhibited 

partial editing. The editing sites shown in Table 3.10 showed 100% editing in all samples 

tested. These sites were not used for any further analysis. 

Table 3.10: Editing sites that showed complete editing in all samples tested. 
Editing site:  transcript – genome position 

petB – 72259 rps8 – 76422  ndhA – 112355 ycf - 43599 

ndhB – 85696 rpoC2 – 28731 ndhA – 112778  

ndhB – 86347 atpA – 35112 rpl2 – 82031 (133217)  

ndhB – 86341 ndhA – 111250 ycf – 42700  

 

3.3.1.3 Editing pattern differences between drought stressed and non-stressed plants 

The efficiency of partially edited editing sites were analysed for difference between 

drought stress treated genotypes and non-stressed treated genotypes using the trace-file 

method. A representative example of editing over time is shown in Fig. 3.4, there were no 

obvious differences observed over time for RNA editing efficiency. There were some 

fluctuations, but they appeared to be random. Furthermore no difference was observed 

overall between treatments for all editing sites for either cultivar tested, except for the 

RNA editing site at genome position 49245 within the ndhK transcript in cultivar 

‘Cashel’ (see Fig. 3.5). There was a statistical difference observed, however this seems to 

be attributed to coincidental low standard deviation (Cv. ‘Cashel’ see Fig. 3.5 and Table 

3.11, Cv. ‘New Zealand’ see Fig. 3.6 and Table 3.12). 
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Fig. 3.4: Editing efficiency over time after stress induction for editing site 87281 within 
the ndhB transcript. 
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Fig. 3.5: Editing efficiency of sites in different transcripts in cultivar ‘Cashel’ for drought 
stressed and non-stressed plants. Error bars represent the standard deviation of the mean. 
Statistical differences in editing efficiency between stressed versus non-stressed plants 
calculated with a t-test (two-tailed distribution, equal variance, on arcsine transformed 
values). **: Editing sites with a statistical difference at P<0.05.  
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Table 3.11: Editing efficiency of sites in different transcripts in cultivar ‘Cashel’ for 
drought stressed and non-stressed plants. The standard deviation is shown between 
brackets. P-values are based on a t-test (two-tailed distribution, equal variance) on arcsine 
transformed editing percentages. 
** = statistically difference at P<0.05 
Editing site (gene and genome position) Non-stressed plants Drought stressed plants P-values 

ndhB       87188 97.3 (±  3.2) 100   (±  0.0) 0.15 

ndhB       87281 90.1 (±  7.6) 95.7 (±  5.2) 0.13 

ndhB       87306 86.9 (±  4.3) 86.9 (±  3.6) 1.00 

ndhB       87425 91.5 (±  8.2) 97.2 (±  3.9) 0.17 

ndhB       87743 89.8 (±  6.9) 97.3 (±  3.4) 0.05 

psbJ        61111 99.3 (±  1.4) 99.1 (±  1.8) 0.93 

ndhF      103675 74.7 (±12.9) 71.1 (±12.8) 0.61 

NdhK       49245 89.4 (±  2.8) 92.8 (±  1.6) 0.01** 

rpl20        66009 76.5 (±12.4) 72.4 (±12.4) 0.67 

ndhD      107165 84.0 (±  7.0) 83.2 (±  1.0) 0.78 

rpoB         19737 74.8 (±12.4) 84.0 (±  7.9) 0.27 

rpoB         19815 64.5 (±15.3) 69.4 (±11.5) 0.68 

rpoB         19830 60.1 (±18.2) 67.6 (±15.0) 0.59 

matK          1993 24.4 (±  5.3) 29.9 (±  5.7) 0.20 

ndhG      109624 86.3 (±  6.6) 89.1 (±  1.8) 0.48 

psbL         61339 68.4 (±  4.8) 67.9 (±  9.3) 0.95 
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Fig. 3.6: Editing efficiency of sites in different transcripts in cultivar ‘New Zealand’ for 
drought stressed and non-stressed plants. Error bars represent the standard deviation of 
the mean. Statistical differences in editing efficiency between stressed versus non-
stressed plants calculated with a t-test (two-tailed distribution, equal variance, on arcsine 
transformed values).  
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Table 3.12: Editing efficiency of sites in different transcripts in cultivar ‘New Zealand’ 
for drought stressed and non-stressed plants. The standard deviation is shown between 
brackets. P-values are based on a t-test (two-tailed distribution, equal variance) on arcsine 
transformed editing percentages. 
Editing site (gene and genome position) Non-stressed plants Drought stressed plants P-values 

ndhB       87188 45.1 (±  4.7) 46.0 (±19.6) 0.70 

ndhB       87281 81.0 (±10.1) 81.5 (±  2.9) 0.89 

ndhB       87306 72.9 (±10.0) 80.4 (±  3.9) 0.43 

ndhB       87425 91.1 (±10.7) 91.8 (±  6.0) 0.81 

ndhB       87743 91.6 (±10.0) 91.9 (±  5.3) 0.81 

psbJ        61111 95.9 (±  3.5) 94.7 (±  5.5) 0.85 

ndhF      103675 50.1 (±14.1) 46.4 (±  8.8) 0.61 

NdhK       49245 88.8 (±  4.9) 86.6 (±  6.8) 0.48 

rpl20        66009 84.6 (±  6.3) 76.6 (±  9.2) 0.20 

ndhD      107165 84.6 (±16.1) 82.5 (±18.8) 0.89 

rpoB         19737 76.4 (±  9.0) 73.8 (±12.0) 0.81 

rpoB         19815 77.5 (±  9.9) 75.8 (±  7.8) 0.76 

rpoB         19830 79.5 (±  9.2) 81.4 (±  4.4) 0.78 

matK          1993 29.5 (±  7.0) 27.3 (±  3.9) 0.60 

ndhG      109624 87.8 (±  8.4) 83.9 (±  8.9) 0.50 

psbL         61339 67.3 (±  6.3) 65.9 (±10.3) 0.84 

 

3.3.1.4 Editing pattern differences between cultivars ‘Cashel’ and ‘New Zealand’ 

Editing sites were analysed using the trace-file method, to determine differences in 

editing between the drought tolerant cultivar ‘New Zealand’ and drought susceptible 

cultivar ‘Cashel’ as shown in Fig. 3.7 and Table 3.13. The RNA editing efficiency for 

four different editing sites was significantly different between the two cultivars at P<0.01. 

All of these editing sites were within genes, which are part of the NDH complex. These 

were the editing sites on genome positions 87188, 87281 and 87306 within the ndhB 

transcript, and genome position 103675 within the ndhF transcript. Another two RNA 

editing sites were statistically different but to a lesser extent (P<0.05), these are the sites 
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at genome position 49245 within the ndhK transcript, and position 19830 within the rpoB 

transcript. 

 

Partial editing of these particular sites was observed before in root and callus tissue in  

Zea mays, however not in leaf tissue (Peeters and Hanson 2002). The occurrence of 

partial editing in the transcripts, which encode part of the NDH complex is interesting, 

because of the involvement of the NDH complex in response to stress (Burrows et al. 

1998; Ibanez et al. 2010).  
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Fig. 3.7:  Editing efficiency of sites in different transcripts in cultivars ‘New Zealand’ 
and ‘Cashel’. Statistical differences in editing efficiency between cultivars ‘Cashel’ and 
‘New Zealand’ were calculated with a t-test (two-tailed distribution, unequal variance, on 
arcsine values) Error bars represent the standard deviation of the mean. 
*  : Editing sites with a statistical difference at P<0.05 
**: Editing sites with a statistical difference at P<0.01 
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Table 3.13: Editing efficiencies for editing sites within various genes for cultivar 
‘Cashel’ and cultivar ‘New Zealand’. The standard deviation is shown between brackets. 
P-values are based on a t-test (two-tailed distribution, unequal variance, on arcsine 
transformed values). 
*:  Editing site with a statistical difference at P<0.05 
**: Editing sites with a statistical difference at P<0.01 
Editing sites (gene, genome position) Cv. 'Cashel' Cv. 'New Zealand' P-values 

ndhB       87188 98.6 (±  4.8) 45.2 (±12.4) <0.01** 

ndhB       87281 92.2 (±  8.3) 80.7 (±  9.1) <0.01** 

ndhB       87306 91.8 (±  9.4) 69.9 (±  9.5) <0.01** 

ndhB       87425 93.8 (±  8.4) 90.7 (±12.2)   0.51 

ndhB       87743 93.1 (±  7.7) 90.3 (±11.8)   0.57 

psbJ        61111 99.0 (±  3.6) 94.1 (±12.4)   0.05 

ndhF      103675 73.8 (±15.6) 49.2 (±18.3) <0.01** 

NdhK       49245 91.1 (±  3.2) 86.5 (±  8.1)   0.01* 

rpl20        66009 78.6 (±21.1) 80.9 (±22.0)   0.63 

ndhD      107165 81.6 (±  5.3) 82.6 (±16.3)   0.55 

rpoB         19737 73.3 (±12.6) 82.3 (±  6.9)   0.68 

rpoB         19815 68.7 (±14.4) 73.3 (±10.9)   0.68 

rpoB         19830 65.3 (±16.8) 80.3 (±  7.9)   0.02* 

matK          1993 27.2 (±  6.1) 28.3 (±  7.9)   0.45 

ndhG      109624 86.8 (±  5.1) 84.5 (±13.8)   0.9 

psbL         61339 66.4 (±  7.7) 64.9 (±  8.8)   0.67 

 

3.3.2 In vitro PEG-induced system to evaluate drought tolerance 

29 accessions of Lolium perenne L. were ordered from the GRIN database, based on 

differences in their winter hardiness response (Hulke et al. 2007; Hulke et al. 2008). Five 

to seven separate seedlings (each a distinct genotype) of each accession were exposed to 

stressed conditions (both -0.75 MPa and -0.9 MPa) and non stressed conditions (-0.25 

MPa) as described in section 3.2.7.  
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3.3.2.1 Evaluation of accessions of Lolium perenne L. on drought tolerance using an 

in vitro PEG-induced system. 

 After 13 days of treatment, the RWC (Fig. 3.8, Table 3.14 and Fig. 3.9, Table 3.15) and 

total dry weights (Fig. 3.10, Table 3.16 and Fig. 3.11, Table 3.17) were determined for 

each seedling, these results were pooled together to obtain a ranking in response to 

drought stress. The results obtained reflected the population of the accession, rather then 

a single genotype within a cultivar. 

 

3.3.2.2 Relative water content 

The RWC values under control conditions were in the range of 73% to 99%, whereas 

under stressed conditions these values dropped as was expected under drought stress (Fig. 

3.8, Table 3.14 and Fig. 3.9, Table 3.15). The extent of reduction reflected how well the 

plants coped with water deficit. The lowest RWC value, which was observed under 

stressed conditions, was 45.7% in accession PI223565 at a -0.75 MPa water potential of 

the medium (Fig. 3.8, Table 3.14). Unexpectedly the RWC values under stressed 

conditions at -0.9 MPa water potential of the medium, was less dramatic (Fig. 3.9, Table 

3.15). If an accession has no significant reduction in relative water content (RWC) under 

stressed conditions compared to control conditions, this accession can be considered 

drought tolerant. On the other hand, if there was a significant reduction in RWC then the 

accession can be considered drought susceptible.  
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Table 3.14: Relative water content of seedlings subjected to control conditions (-0.25 
MPa) and stressed conditions (-0.75MPa). Between brackets are given the standard 
deviations. P-values are given based on a t-test (one-tailed distribution, equal variance) 
on arcsine transformed values. 
1: Too few samples to perform a t-test. 
**: RWC in stressed conditions was significantly lower then RWC in control conditions at 
P<0.05.  
Accession Control (-0.25MPa) Stress (-0.75MPa) P-value 

PI598433 85.7(±  8.3) 52.7(±12.2) <0.01** 

PI610806 80.8(±  6.7) 57.4(±10.4) <0.01** 

PI502412 90.7(±  6.3) 55.9(±13.1) <0.01** 

PI577266 86.4(±  6.1) 86.6(±14.2)   0.34 

PI628717 88.0(±  8.8) 69.0(±  6.1)   0.01** 

PI611044 91.8(±  8.7) 90.1(±  9.0)   0.40 

PI231565 88.6(±  8.6) 43.5(±11.0) <0.01** 

PI418717 82.9(±  5.7) 57.4(±10.4) <0.01** 

PI610803 82.7(±  4.1) 49.0(±  9.5) <0.01** 

PI418723 81.0(±  6.2) 36.8(±  4.4) <0.01** 

PI512321 90.8(±  5.5) 64.5(±  7.6) <0.01** 

PI619554 84.6(±  8.2) 60.6(±  6.7)   0.01** 

PI223178 73.2(±  4.2) 45.7(±17.4)   0.01** 

w611256 82.1(±  5.3) 63.2(±10.8) <0.01** 

PI577270 88.2(±  5.0) 64.5(±  8.7) <0.01** 

PI598434 89.7(±  8.6) 90.7(± 1    ) 1 

PI610802 92.9(±  5.7) 78.5(±14.9)   0.05 

PI610825 88.5(±  5.9) 55.4(±  6.6) <0.01** 

PI632538 82.2(±  3.8) 72.7(±19.7)   0.28 

PI632553 77.8(±11.8) 82.9(±16.1)   0.18 

PI632575 80.6(±10.0) 64.5(±  3.2)   0.01** 

PI632590 84.9(±  3.5) 54.5(±  5.2) <0.01** 

PI634278 80.1(±  3.0) 57.1(±12.9)   0.01** 

Cv. 'Cashel' 99.2(±  1.8) 64.0(±22.0) <0.01** 

PI610820 90.4(±  5.5) 82.5(±12.0)   0.13 

PI201187 87.7(±12.7) 60.3(±13.7)   0.01** 

PI403883 93.8(±  6.1) 70.5(±  4.8)   0.02** 

PI418701 93.4(±  2.7) 56.9(±22.0)   0.01** 

PI440475 89.8(±  2.2) 68.7(±16.3)   0.02** 
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Table 3.15: Relative water content of seedlings subjected to control conditions (-0.25 
MPa) and stressed conditions (-0.9 MPa). Between brackets are given the standard 
deviations. P-values are given based on a t-test (one-tailed distribution, equal variance) 
on arcsine values. 
1: Too few samples to perform a t-test. 
**: RWC in stressed conditions was significantly lower then RWC in control conditions at 
P<0.05.  
Accessions Control (-0.25MPa) Stress (-0.9MPa) P-value 

PI598433 85.7(±  8.3) 95.4(±  4.1)   0.04** 

PI610806 80.8(±  6.7) 73.9(± 1      )   1 

PI502412 90.7(±  6.3) 79.3(±10.1)   0.05 

PI577266 86.4(±  6.1) 97.2(±  4.7)   0.01** 

PI628717 88.0(±  8.8) 86.4(±  8.5)   0.46 

PI611044 91.8(±  8.7) 70.6(±  7.6)   0.01** 

PI231565 88.6(±  8.6) 68.4(±12.9)   0.01** 

PI418717 82.9(±  5.7) 83.7(±  7.5)   0.42 

PI610803 82.7(±  4.1) 93.9(±  7.1)   0.01** 

PI418723 81.0(±  6.2) 71.0(±  9.7)   0.05 

PI512321 90.8(±  5.5) 74.7(±13.6)   0.02** 

PI619554 84.6(±  8.2) 83.6(±  2.3)   0.34 

PI223178 73.2(±  4.2) 78.5(±  6.9)   0.10 

w611256 82.1(±  5.3) 73.5(±  6.3)   0.01** 

PI577270 88.2(±  5.0) 63.7(±  4.4) <0.01** 

PI598434 89.7(±  8.6) 64.9(±  7.5) <0.01** 

PI610802 92.9(±  5.7) 76.4(±13.4)   0.03** 

PI610825 88.5(±  5.9) 60.6(±  5.6) <0.01** 

PI632538 82.2(±  3.8) 69.9(±17.7)   0.14 

PI632553 77.8(±11.8) 83.7(±11.9)   0.19 

PI632575 80.6(±10.0) 48.7(±  7.5) <0.01** 

PI632590 84.9(±  3.5) 85.1(±  5.3)   0.45 

PI634278 80.1(±  3.0) 75.1(±13.2)   0.31 

Cv. 'Cashel' 99.2(±  1.8) 65.5(±10.2) <0.01** 

PI610820 90.4(±  5.5) 70.4(±20.8)   0.03** 

PI201187 87.7(±12.7) 76.6(±  8.5)   0.08 

PI418701 93.4(±  2.7) 74.5(±24.5)   0.07 
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3.3.2.3 Total dry biomass 

The effect of water deficit was overall reflected by a reduction of total dry biomass under 

stressed conditions. Differences in the reduction of dry biomass were observed between 

accessions, some had a significant reduction illustrating drought susceptibility, whereas 

other accessions had no clear reduction in dry biomass, indicating drought tolerance (see 

Fig. 3.10 and Table 3.16, Fig. 3.11 and Table 3.17).  
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Table 3.16: Total Dry biomass of different accessions, subjected to control conditions (-
0.25 MPa) and stressed conditions (-0.75 MPa). Between brackets are given the standard 
deviations. P-values are given base on a t-test (two-tailed distribution, unequal variance). 
** = Total dry biomass in stressed conditions was significantly lower then in control 
conditions at P<0.05. 
Accession / Cultivar Dry biomass of plants after 

control conditions  

(-0.25MPa) (g) 

Dry biomass of plants  

after stress conditions  

(-0.9MPa) (g) 

P values 

PI598433 0.00264(±0.0012) 0.00148(±0.0006) 0.10 

PI610806 0.00268(±0.0006) 0.00156(±0.0005) 0.01** 

PI502412 0.00120(±0.0005) 0.00074(±0.0002) 0.09 

PI577266 0.00120(±0.0005) 0.00060(±0.0002) 0.07 

PI628717 0.00150(±0.0004) 0.00126(±0.0003) 0.34 

PI611044 0.00104(±0.0003) 0.00052(±0.0001) 0.02** 

PI231565 0.00290(±0.0005) 0.00176(±0.0007) 0.02** 

PI418717 0.00212(±0.0004) 0.00158(±0.0003) 0.05 

PI610803 0.00260(±0.0007) 0.00302(±0.0005) 0.31 

PI418723 0.00318(±0.0007) 0.00168(±0.0009) 0.02** 

PI512321 0.00214(±0.0011) 0.00166(±0.0008) 0.44 

PI619554 0.00192(±0.0007) 0.00106(±0.0008) 0.12 

PI223178 0.00152(±0.0006) 0.00078(±0.0004) 0.06 

w6 11256 0.00118(±0.0002) 0.00176(±0.0006) 0.11 

PI577270 0.00188(±0.0004) 0.00200(±0.0005) 0.70 

PI598434 0.00118(±0.0006) 0.00098(±0.0005) 0.60 

PI610802 0.00214(±0.0007) 0.00136(±0.0005) 0.09 

PI610825 0.00204(±0.0007) 0.00168(±0.0003) 0.35 

PI632538 0.00158(±0.0008) 0.00186(±0.0004) 0.51 

PI632553 0.00244(±0.0006) 0.00174(±0.0008) 0.16 

PI632575 0.00162(±0.0004) 0.00084(±0.0006) 0.04** 

PI632590 0.00222(±0.0007) 0.00172(±0.0004) 0.23 

PI634278 0.00231(±0.0005) 0.00204(±0.0010) 0.59 

Cv. 'Cashel' 0.00200(±0.0006) 0.00224(±0.0007) 0.63 

PI610820 0.00132(±0.0004) 0.00054(±0.0004) 0.02** 

PI201187 0.00100(±0.0004) 0.00098(±0.0004) 0.94 

PI403883 0.00176(±0.0006) 0.00126(±0.0004) 0.21 

PI418701 0.00153(±0.0003) 0.00095(±0.0003) 0.03** 

PI440475 0.00135(±0.0004) 0.00058(±0.0003) 0.02** 
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Table 3.17: Total Dry biomass (in g) of different accessions, subjected to control 
conditions (-0.25 MPa) and stressed conditions (-0.9 MPa). Between brackets are given 
the standard deviations. P-values are given base on a t-test (two-tailed distribution, 
unequal variance). 
** = Total dry biomass after stressed conditions was significantly lower then after control 
conditions at P<0.05. 
Accession / Cultivar Dry biomass of plants during 

control conditions (-0.25MPa) 

(g). 

Dry biomass of plants during 

stress conditions (-0.9MPa) 

(g) 

P 

values 

PI598433 0.00264(±0.0012) 0.00066(±0.0003)   0.02** 

PI610806 0.00268(±0.0006) 0.00076(±0.0003) <0.01** 

PI502412 0.00120(±0.0005) 0.00104(±0.0002)   0.51 

PI577266 0.00120(±0.0005) 0.00056(±0.0002)   0.05 

PI628717 0.00150(±0.0004) 0.00114(±0.0004)   0.20 

PI611044 0.00104(±0.0003) 0.00104(±0.0004)   1.00 

PI231565 0.00290(±0.0005) 0.00132(±0.0006) <0.01** 

PI418717 0.00212(±0.0004) 0.00100(±0.0006)   0.01** 

PI610803 0.00260(±0.0007) 0.00080(±0.0002) <0.01** 

PI418723 0.00318(±0.0007) 0.00144(±0.0004) <0.01** 

PI512321 0.00214(±0.0011) 0.00086(±0.0003)   0.05 

PI619554 0.00192(±0.0007) 0.00066(±0.0003)   0.01** 

PI223178 0.00152(±0.0006) 0.00106(±0.0006)   0.26 

w6 11256 0.00118(±0.0002) 0.00096(±0.0005)   0.35 

PI577270 0.00188(±0.0004) 0.00098(±0.0003)   0.01** 

PI598434 0.00118(±0.0006) 0.00092(±0.0003)   0.44 

PI610802 0.00214(±0.0007) 0.00114(±0.0006)   0.04** 

PI610825 0.00204(±0.0007) 0.00126(±0.0002)   0.08 

PI632538 0.00158(±0.0008) 0.00142(±0.0002)   0.69 

PI632553 0.00244(±0.0006) 0.00128(±0.0009)   0.04** 

PI632575 0.00162(±0.0004) 0.00102(±0.0004)   0.04** 

PI632590 0.00222(±0.0007) 0.00098(±0.0003)   0.02** 

PI634278 0.00231(±0.0005) 0.00098(±0.0002) <0.01** 

Cv. 'Cashel' 0.00200(±0.0006) 0.00124(±0.0002)   0.15 

PI610820 0.00132(±0.0004) 0.00094(±0.0005)   0.22 

PI201187 0.00100(±0.0004) 0.00040(±0.0002)   0.04** 

PI418701 0.00153(±0.0003) 0.00117(±0.0004)   0.27 
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3.3.2.4 Overview of results for drought response, based on both RWC and total dry 

biomass evaluation 

In table 3.18, an overview of the results is given, separated by accession and test. Based 

on the results obtained with the PEG-infused in vitro system, accessions were selected 

that were drought susceptible, drought tolerant or intermediate in response (see Table 

3.18, red annotated accessions). These cultivars were subsequently assessed with an in 

vivo drought stress experiment to confirm these findings. 

Table 3.18: Overview of accessions and their response to drought stress, based on RWC 
and total dry biomass.  
+ = result indicating drought tolerance, - = result indicating drought susceptibility 
Red annotated accessions were chosen for an in vivo drought stress experiment. 
Cultivar RWC 

-0.75 

MPa 

Dry weight 

-0.75 MPa 

RWC  

-0.9  

MPa 

Dry weight  

-0.9 MPa 

Overall response 

PI 577266 + + + + Drought tolerant 

PI 632538 + + + + Drought tolerant 

PI 502412 - + + + Moderately drought tolerant 

PI 628717 - + + + Moderately drought tolerant 

PI 223178 - + + + Moderately drought tolerant 

PI 598434  + + - + Moderately drought tolerant 

PI 632553  + + + - Moderately drought tolerant 

PI 632590  - + + - Intermediate 

PI 634278 - + + - Intermediate 

Cv. ‘Cashel’ - + - + Intermediate 

PI 598433 - + + - Intermediate 

PI 610820 + - - + Intermediate 

PI 611044 + - - + Intermediate 

PI 418717 - + + - Intermediate 

PI 610803  - + + - Intermediate 

PI 418701 - - + + Intermediate 

PI 201187 - + + - Intermediate 

 170



Table 3.18 continued.. 
Cultivar RWC 

-0.75 

MPa 

Dry weight 

-0.75 MPa 

RWC 

-0.9  

MPa 

Dry weight  

-0.9 MPa 

Overall response 

PI 512321  - + - + Intermediate 

PI 619554  - + + - Intermediate 

W6 11256 - + - + Intermediate 

PI 610825 - + - + Intermediate 

PI 610802  - + - - Moderately drought 

susceptible 

PI 577270 - + - - Moderately drought 

susceptible 

PI 440475 - - n.a. n.a. Drought susceptible 

PI 610806 - - - - Drought susceptible 

PI 231565 - - - - Drought susceptible 

PI 418723 - - - - Drought susceptible 

PI 632575 - - - - Drought susceptible 

n.a.: not analysed 
 

3.3.3 In vivo PEG-induced system to evaluate drought tolerance 

3.3.3.1 Evaluation of accessions of Lolium perenne L. on drought stress response 

using an in vivo PEG-induced system. 

Eleven accessions were selected based on initial results from the in vitro PEG-infused 

system (see Table 3.18, red annotated accessions), another cultivar ‘New Zealand’ was 

added to this experiment as this was described as a drought tolerant accession (Foito et al. 

2009). Unfortunately not all accessions managed to propagate enough tillers, to 

accumulate a sufficient number of clones, therefore in the end nine accessions were 

assessed with this system as described in section 3.8.2. These accessions and cultivars 
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were Cv. ‘New Zealand’, Cv. ‘Cashel’, PI231565, PI610825, PI201187, PI418701, 

PI611044, PI632553 and PI223178.  

 

After the exposure to the stress treatment, three factors were assessed to determine 

drought response. Firstly the growth was recorded using pixel detection (see 3.3.3.2), 

secondly the relative water content (RWC) was recorded (see 3.3.3.3) and thirdly the root 

dry weights were analysed (3.3.3.4). The results were subsequently analysed for 

statistical differences. 

 
3.3.3.2 Pixel detection to record growth differences between plants exposed to 

different treatments  

 
After two weeks in stressed or non-stressed conditions, plants were removed and assessed 

for their phenotypical differences. Photographs were taken (see Fig. 3.12 – 3.14), and 

subsequently analysed for root and shoot development using the pixel detection method 

with the help of Adobe Photoshop 5.5 (see section 3.2.9.1).  Differences in shoot and root 

development were documented and shown in sections 3.3.3.2.1 and 3.3.3.2.2 
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Fig. 3.12: Photographs taken of accession PI 610825 after different treatments (left: 
hydroponics without addition of PEG to mimic optimal conditions, right: hydrophonics 
with additions of PEG to mimic drought stress conditions) 
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3.3.3.2.1 Root development differences after exposure to drought stress and control 

conditions 

Photographs were analysed using pixel detection. The increase in root biomass under 

drought stress reflects an adaptive response involving an increase in root length to reach 

water deeper in the soil (van den Berg and Zeng 2006). Accessions PI611044, PI632553, 

PI223178, PI201187 and PI231565 showed a significant decrease in root development 

after exposure to drought stress compared to control conditions, indicating that these 

accessions are drought susceptible. Accession PI418701 seemed to have a slight increase 

in root growth during drought stress, compared to control conditions, suggesting a 

drought tolerance response. However this could not be proven statistically. Accession 

PI610825 and cultivars ‘Cashel’ and ‘New Zealand’ showed an apparent reduction in root 

development during stress, but this was not statistically significant (See Fig. 3.15 and 

Table 3.19).  
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Fig. 3.15: Mean root biomass per plant based on pixel detection separated per accession. 
Statistical differences in number of pixels between stressed and unstressed treatments 
were calculated according to a t-test (two-tailed distribution, unequal variance) Error bars 
represent the standard deviation of the mean. 
**: statistical differences at P<0.01, 
*: statistical difference at P<0.05.  
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Table 3.19: The mean root biomass per plant based on pixel detection; between brackets 
the standard deviations are presented. The pixel number has been converted to 
circumvent photo size differences. P-values are given for the t-test (two-tailed 
distribution, unequal variance). 
**: Statistical difference between control and stressed conditions at P<0.01 
*  : Statistical difference between control and stressed conditions at P<0.05.  
Accession/Cultivar Mean root biomass based on 

pixel values under control 

condition (pixels) 

Mean root biomass based on 

pixel values under stress 

conditions (pixels) 

P value 

Cv. 'Cashel' 11769(± 2450) 9281(± 2392)   0.07 

Cv. 'New Zealand'   8879(± 2776) 6440(± 1758)   0.15 

PI611044 12988(± 3343) 6107(± 3688) <0.01 ** 

PI418701   3880(± 1343) 4810(± 1268)   0.40 

PI231565   7068(± 3042) 3621(± 1997)   0.02 * 

PI632553   8526(± 1997) 1508(± 1343) <0.01 ** 

PI223178 10366(± 2122) 5047(± 2246) <0.01 ** 

PI201187   6676(± 1794) 3005(± 1758) <0.01 ** 

PI610825   4616(± 1285) 2608(± 1872)   0.09 
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3.3.3.2.2 Shoot development differences after exposure to drought stress and control 

conditions 

The pixel detection method was used to determine the leaf biomass difference between 

accessions. However this could not be applied to separate clones within accessions, as the 

leaf material overlapped with each other. The average leaf biomass based on pixels per 

plant was calculated by taking the total number of pixels divided by the number of plants. 

For this reason no statistical analyses could be performed. Results show that accession 

PI418701 and cultivar ‘New Zealand’ had a slight decrease in leaf development under 

stress conditions, indicating a drought tolerant response for this specific clone within this 

accession or cultivar. All the other accessions and cultivars had a clear decrease in 

biomass production during stress conditions (see Fig. 3.16 and Table 3.20), conferring a 

drought susceptible response. This type of response was previously observed to correlate 

with drought response (Foito et al. 2009). 
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Fig. 3.16: Average leaf biomass per plant, derived from total leaf biomass, based on pixel 
detection per cultivar/accession. No statistical analyses could be performed. 
 
 
Table 3.20: Average leaf biomass per plant, based on pixel detection. The pixel number 
has been converted to circumvent photo size differences.  
Accession/Cultivar Mean leaf biomass based on pixel 

values under control conditions 

Mean leaf biomass based on pixel 

values under stress conditions 

Cv. 'Cashel' 25076 14433 

Cv. 'New Zealand' 16029 12015 

PI611044 19708 11086 

PI418701 15123 12915 

PI231565 21273   9925 

PI632553 18820   4275 

PI223178 24541 13374 

PI201187 19025   8883 

PI610825 16440   7556 
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3.3.3.3 Results of drought response using the RWC and Root dry biomass. 
 
3.3.3.3.1 Relative water content 
 
There was a statistical difference in relative water content between stressed and non-

stressed plants for Cv. ’Cashel, Cv. ‘New Zealand’, accession PI231565 and accession 

PI632553 (see Fig. 3.17 and Table 3.21).  This indicates that these particular clones of 

these accessions were susceptible to drought stress. 
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Fig. 3.17: Relative water content after two weeks exposure to drought stress compared to 
control conditions. Error bars represent the standard deviation of the mean. 
**: statistical difference between stressed and unstressed treatments according to a t-test 
(one-tailed distribution, equal variance on arcsine transformed values) at P<0.05.  
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Table 3.21: Relative water content (RWC) values derived from plants subjected to 
control and stressed conditions. P values are based on a t-test (one-tail distribution, equal 
variance) on arcsine transformed values. 
**: statistical difference between control and stressed plants at P<0.05.  
 
Cultivar / Accession RWC Control treatment RWC stress treatment P values 

Cv. 'Cashel' 90.3(±0.4) 70.8(±6.7) <0.01** 

Cv. 'New Zealand' 90.0(±3.0) 81.5(±3.3)   0.04** 

PI611044 82.1(±1.9) 76.7(±4.2)   0.14 

PI418701 77.8(±4.6) 75.7(±7.8)   0.41 

PI231565 88.4(±2.1) 82.0(±2.2)   0.02** 

PI632553 90.1(±1.3) 73.4(±5.6) <0.01** 

PI223178 87.9(±1.5) 80.7(±5.0)   0.08 

PI201187 85.6(±1.7) 73.7(±6.8)   0.05 

PI610825 82.1(±4.2) 73.1(±4.5)   0.09 
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3.3.3.3.2 Root dry biomass 

There was a statistical difference in root dry biomass between treatments for accession 

PI632553 and accession PI223178 (See Fig. 3.18 and Table 3.22). This indicates that 

clones of these accessions were more susceptible to drought then the other accessions. 

Accession PI418701 had a slight increase in root dry biomass however this could not be 

statistically proven. 
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Fig. 3.18: The mean root dry biomass per accession. Error bars represent the standard 
deviation of the mean. 
**:  Accessions, which had a statistical difference in dry root biomass (t-test, two tailed 
distribution, unequal variance P<0.05) between stressed and non-stressed conditions. 
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Table 3.22: Root dry biomass (in g) for both treatments for different accessions / 
cultivars. P values are based on a t-test (two-tailed distribution, unequal variance) 
between treatments.  
**: Statistical difference between control conditions and stresses conditions at P<0.05. 
Cultivars / 

Accessions 

Root dry biomass under 

after control conditions 

(g) 

Root dry biomass under 

after stress conditions 

(g) 

P values 

Cv. 'Cashel' 0.24(±0.14) 0.24(±0.20)   1.00 

Cv. 'New Zealand' 0.25(±0.32) 0.21(±0.23)   0.84 

PI611044 0.55(±0.48) 0.27(±0.17)   0.19 

PI418701 0.06(±0.04) 0.12(±0.11)   0.47 

PI231565 0.19(±0.18) 0.08(±0.04)   0.22 

PI632553 0.21(±0.13) 0.03(±0.02)   0.02** 

PI223178 0.91(±0.43) 0.19(±0.14) <0.01** 

PI201187 0.19(±0.20) 0.17(±0.21)   0.86 

PI610825 0.06(±0.03) 0.05(±0.04)   0.79 
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The reduction or increase in root dry biomass under stress conditions could also be 

visualized differently, Fig.3.19 and Table 3.23 show that accession PI418701 had an 

almost 100% increase in root biomass compared to control conditions, whereas accession 

PI632553 had the most dramatic reduction in root biomass. 

-100

-80

-60

-40

-20

0

20

40

60

80

100

Cv.
'Cashel'

Cv. 'New
Zealand'

PI611044 PI418701 PI231565 PI632553 PI223178 PI201187 PI610825

%
 r

e
d

u
c

ti
o

n
/in

c
re

a
s

e
 in

 r
o

o
t 

b
io

m
a

s
s

 a
ft

e
r 

s
tr

e
s

s

 
Fig. 3.19: Reduction/Increase of root dry biomass after stress, compared to the control. 
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Table 3.23: Reduction/increase of root dry biomass after stress, in comparison to control 
conditions in percentage. 
Cultivars / Accessions Reduction/increase of root dry biomass 

after stress, in comparison to control 

conditions in percentage. 

Cv. 'Cashel'    0 

Cv. 'New Zealand' -  14 

PI611044 -  51 

PI418701 + 98 

PI231565 -  55 

PI632553 -  86 

PI223178 -  79 

PI201187 -  11 

PI610825 -  11 

 

 3.3.3.4 Overview of results after analyses of plants exposed to drought stress with 

the in vivo PEG induced system. 

The results obtained from the phenotypical analyses and the analytical analyses were 

combined to determine how each accession was affected by drought stress. The responses 

are ranked in Table 3.24.  

 

Accession PI418701 was not subject to negative effects under drought stress, so the 

clones of this accession could be considered drought tolerant. Cultivar ‘New Zealand’ 

was only mildly affected by drought. Accession PI610825 had an intermediate negative 

response under drought stress. The following cultivars and accessions had an increasing 

drought susceptible response, Cv. ‘Cashel’, PI231565, PI201187, PI611044, PI223178 

and PI632553. 
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Table 3.24: Overall review of the results for the in vivo drought stress experiment.  
+ = No difference in response between stressed and non-stressed conditions 
I = Moderate difference in response between stressed and non-stressed conditions 
- = Distinct difference in response between stressed and non-stressed conditions 
Overall response was scored by taking the average of +’s, I’s and –‘s. 
Accession/Cultivar Phenotypical 

assessment of 

shoot 

development 

Phenotypical 

assessment of 

root 

development 

Relative 

water 

content 

Root dry 

biomass 

Overall 

Accession PI418701 + + I + + 3 

Cv. ‘New Zealand’ + + - I + 1 

Accession PI610825 - + I I    0 

Cv. ‘Cashel’ - + - I -  1 

Accession PI231565 - I - I -  2 

Accession PI201187 - - I I -  2 

Accession PI611044 - - I I -  2 

Accession PI223178 - - I - -  3 

Accession PI632553 - - - - -  4 

 

3.3.4 Assessment of RNA editing efficiency within the ndhB and ndhF transcripts of 

accessions with various drought tolerance responses. 

Tissue derived from the in vivo PEG induced system were analysed for RNA editing 

events using the trace-file method. 

 

3.3.4.1  RNA editing efficiency in the ndhB trancript of accessions of Lolium perenne 

L. tested in the in vivo PEG-induced drought stress experiment 

There were no statistical significant differences in RNA editing within accessions 

between stressed and non-stressed clones for any of the analysed editing sites. However 

there were differences between accessions for editing efficiencies. For the editing sites 
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within the ndhB transcript the editing efficiencies of Cv. ‘Cashel’, Cv. ‘New Zealand’, 

accessions PI611044, PI223178, PI201187 and PI610825 were statistically different 

(P<0.05) in comparison with the editing efficiencies of accessions PI418701, PI231565 

and PI632553. (See Fig. 3.20 and Table 3.25). The observed differences were dramatic. 

Some accessions showed almost complete editing, while other accessions almost 

completely lacked editing at these sites. 
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Fig 3.20: RNA-editing efficiency within the ndhB transcript of editing sites located on 
plastid genome positions 87188, 87281, 87306, 87425 and 87743. Error bars represent 
the standard deviation of the mean. 
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Table 3.25:  Editing efficiency in percentage of editing sites within the ndhB transcript, 
including grouping for statistical differences based on a t-test (two-tailed distribution, 
equal variance, on arcsine transformed values at P<0.05). 
 1 = not enough replicates to do statistical analyses. 
Cultivar - Editing site Editing efficiency at 

site: 87188 in % 

Editing efficiency at 

site: 87281 in % 

Editing efficiency at 

site: 87306 in % 

Cv. ‘Cashel’   86.8(±20.5) a,b   83.4(±19.0) a   89.0(±17.7) a 

Cv. ‘New Zealand’ 100.0(±  0.0) a   92.7(±  3.2) a 100.0(±  0.0) a 

Accession PI611044 100.0(±  0.0) 1 100.0(±  0.0) 1 100.0(±  0.0) 1 

Accession PI418701   18.6(±  8.2) c   11.2(±  1.5) b   17.5(±  6.1) b,c 

Accession PI231565     5.0(±12.2) d     5.3(±13.0) b,c     5.9(±14.4) c 

Accession PI632553     5.5(±  7.6) d     2.0(±  4.4) c     3.5(±  7.8) c,d 

Accession PI223178   80.1(±19.5) b   77.5(±16.6) a   87.3(±22.9) a,b 

Accession PI201187   93.9(±  7.0) a,b   89.3(±  9.2) a   92.7(±11.3) a 

Accession PI610825   82.7(±10.0) b   89.8(±  9.7) a   98.3(±  2.9) a 

 
Cultivar - Editing site Editing efficiency at  

site: 87425 in % 

Editing efficiency at site: 

87743 in % 

Cv. ‘Cashel’   89.4(±17.0) a   83.0(±14.9) a 

Cv. ‘New Zealand’ 100.0(±  0.0) a   96.2(±  5.4) a 

Accession PI611044 100.0(±  0.0) 1 100.0(±  0.0) 1 

Accession PI418701    9.7(±   9.7) b    8.5(±   9.8) b 

Accession PI231565     6.9(± 11.4) b    5.4(± 13.2) b 

Accession PI632553    4.9(±   5.9) b    0.0(±   0.0) b 

Accession PI223178  87.5(± 18.3) a  87.7(± 17.3) a 

Accession PI201187  79.4(±   5.1) a  86.5(±   7.1) a 

accession PI610825   88.3(±   9.0) a  87.8(±   6.3) a 
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3.3.4.2  RNA editing efficiency in the ndhF transcript of accessions of Lolium 

perenne L. tested in the in vivo PEG-induced drought stress experiment 

The known editing site at genome position 103675 within the ndhF transcript showed a 

similar difference between accessions as was evident for the ndhB editing sites, however 

the editing efficiency of accessions PI223178 and PI610825 were not statistically 

different (P<0.05) from the efficiency of accession PI418701 (See Fig. 3.21 and Table 

3.26).  

 

 
Fig. 3.21: RNA-editing efficiency of the editing site within the ndhF transcript located on 
plastid genome position 103675. Error bars represent the standard deviation of the mean. 
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Table 3.26:  Editing efficiency in percentages of editing site 103675 within the ndhF 
transcript, including grouping for statistical differences based on a t-test (two-tailed 
distribution, equal variance, on arcsine transformed values at P<0.05). 
Cultivar - Editing site Editing efficiency at site 103675 in % 

Cv. ‘Cashel’ 35.3(±21.6) a 

Cv. ‘New Zealand’ 48.5(±21.7) a 

Accession PI611044 41.8(±16.1) a 

Accession PI418701 10.1(±  6.3) b,c 

Accession PI231565   0.0(±  0.0) d 

Accession PI632553   2.8(±  6.8) c,d 

Accession PI223178 25.1(±19.2) a,b 

Accession PI201187 30.9(±13.6) a 

Accession PI610825 23.9(±11.1) a,b 
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3.3.5 Assessment of relationship between drought stress response and RNA editing 

efficiency within the ndhB and ndhF transcripts 

There was no correlation between drought tolerance and editing efficiencies for editing 

sites within the ndhB and the ndhF genes (See Table 3.27). For example, accessions 

PI418701 and PI632553 had similar editing patterns, while their drought response was 

distinctly different. The opposite was shown for two different clones (genotypes) of 

cultivar ‘New Zealand’, these showed a distinctly different editing pattern, while the 

drought stress response was similar (See Table 3.27). 
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Table 3.27: Editing efficiency in relationship to drought tolerance for the tested clones of 
different accessions. 
Accessions / Cultivars 

(specific genotypes) 

Editing efficiency of 

editing sites within 

the ndhB gene 

Editing efficiency of 

editing sites within 

the ndhF gene 

Drought 

stress 

response 

Accession PI418701 Low Moderately low Tolerant 

 

Cv. ‘New Zealand’ 

(Foito et al. 2009) 

Moderately high High Tolerant 

Cv. ‘New Zealand’  

 

High High Tolerant 

Accession PI610825 High Moderately high Moderately 

tolerant 

Cv. ‘Cashel’ 

 

High High Intermediate 

Accession PI231565 Low Low Intermediate 

 

Accession PI201187 High High Intermediate 

 

Accession PI611044 High High Intermediate 

 

Accession PI223178 High Moderately high Moderately 

susceptible 

Accession PI632553 Low Low Susceptible 

 

Cv. ‘Cashel’ (Foito et al. 

2009) 

 

High High Susceptible 
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3.3.6 RNA editing of Lolium perenne L. accession-specific Single nucleotide 

polymorphism (SNP) 

During analyses of the trace-files for the ndhF fragment a transition single nucleotide 

polymorphism (SNP) appeared for some accessions at genome position 103515. The 

conserved gDNA nucleotide was a thymine (T) in Cv. ‘Cashel’ and accessions PI418701, 

PI231565 and PI610825. However in Cv. ‘New Zealand’ and accessions PI611044, 

PI632553, PI223178 and PI201187 the thymine nucleotide at genome position 103515 

was present in conjunction with a cytosine (C) (See Table 3.28 and Fig. 3.22). The SNP 

results in an amino-acid change from Serine to Proline. However at the mRNA level, this 

nucleotide was converted back to the Uracil (U), reconstituting the amino-acid Serine.  
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Table 3.28: The ratio of the Single nucleotide polymorphism on position 103515 within 
the plastid genome, for different accessions/cultivars of Lolium perenne L. 
Accession / 

Cultivar 

Origin Nucleotide 

1 

Nucleotide 

2 

Percentage 

nucleotide 1 

at the  gDNA 

level 

Percentage 

nucleotide 1 at 

the cDNA level 

Cv. ‘Cashel’ 

 

Ireland T C 100% 100% 

Cv. ‘New  

Zealand’ 

New 

Zealand 

T C 31% 100% 

Accession 

PI611044 

Russia T C 21% 100% 

Accession 

PI418701 

Former 

Yugoslavia 

T C 100% 100% 

Accession 

PI231565 

Libya T C 100% 100% 

Accession 

PI632553 

Italy T C 20% 100% 

Accession 

PI223178 

Greece T C 15% 100% 

Accession 

PI201187 

Netherlands T C 15% 100% 

Accession 

PI610825 

Switzerland T C 100% 100% 
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Cv. ‘New Zealand gDNA             Cv. ‘New Zealand cDNA

Accession 611044 gDNA               Accession 611044 cDNA

Accession 418701 gDNA               Accession 418701 cDNA

Accession 231565 gDNA               Accession 231565 cDNA

 

Accession 632553 gDNA               Accession 632553 cDNA

Accession 223178 gDNA               Accession 223178 cDNA

Accession 201187 gDNA               Accession 201187 cDNA

Accession 610825 gDNA               Accession 610825 cDNA

 
Fig. 3.22: Trace-files of gDNA and cDNA of tested accessions, showing the single 
nucleotide polymorphism (SNP) on genome position 103515 marked by a box, which is 
subsequently edited back. 
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Diekmann et al. (2009) found seven other SNP’s within the plastid genome of Lolium 

perenne L. that could potentially be editing sites. Three of these were located within 

coding sequences, these were the SNP at genome position 65631 within the rps18 

transcript, the SNP at genome position 37506 within the psaB transcript and the SNP at 

genome position 19560 within the rpoB transcript. All three sites were assessed for SNP 

presence within each accession / cultivar. Only for the SNP within the psaB transcript a 

difference in composition within and between accessions was observed. Cultivar ‘New 

Zealand’ only contained the Thymine nucleotide, whereas accession PI223178 contained 

both the nucleotides thymine and cytosine at this genome position, all remaining 

accessions exclusively showed the cytosine nucleotide (See Table 3.29). However when 

RNA editing was assessed on any of these sites, only the conserved nucleotide observed 

within the gDNA was present, indicating the absence of RNA editing at any of these 

SNP’s.  
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Table 3.29: Reported SNP’s and their presence within different accessions / cultivars 

Cultivars / 

accessions 

SNP at 19560 within 

rpoB 

SNP at 65631 within 

rps18 

SNP at 37506 within 

psaB 

 T C T C T C 

Cv. ‘Cashel’ 100% 0% 0% 100% 0% 100% 

 

Cv. ‘New  

Zealand’ 

100% 0% 0% 100% 100% 0% 

Accession 

PI611044 

100% 0% 0% 100% 0% 100% 

Accession 

PI418701 

100% 0% 0% 100% 0% 100% 

Accession 

PI231565 

100% 0% 0% 100% 0% 100% 

Accession 

PI632553 

100% 0% 0% 100% 0% 100% 

Accession 

PI223178 

100% 0% 0% 100% 58% 42% 

Accession 

PI201187 

100% 0% 0% 100% 0% 100% 

Accession 

PI610825 

100% 0% 0% 100% 0% 100% 
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3.4 Discussion 

To test the accuracy of the trace-file method for determining the editing efficiency, the 

results obtained from the trace-file method were compared to the results obtained from 

the established colony-screen method. The difference in observed editing between these 

methods was in the range of 0.8% to 10.8%, while the average difference between 

methods was 5.7%. These results indicate that the trace-file method can be used 

confidently to distinguish differences in editing efficiencies between samples. 

 

Editing efficiency experiments conducted on specific clones from cultivars ‘Cashel’ and 

‘New Zealand’ showed there was no significant difference in editing efficiency in respect 

to treatment within each cultivar. However editing efficiency comparisons conducted on 

specific clones from cultivars ‘Cashel’ and ‘New Zealand’, showed a clear difference 

among both genotypes in editing efficiency at editing sites within the ndhB gene at 

genome positions 87188, 87281 and 87306. Another editing site within the ndhF gene 

showed a clear difference in editing efficiency at genome position 103675, between 

cultivars ‘New Zealand’ and ‘Cashel’. These results are based on clones of a single seed, 

which were either drought tolerant (Cv. ‘New Zealand’), or drought susceptible (Cv. 

‘Cashel’). Perennial ryegrass is an outbreeding species leading to high heterogeneity and 

heterozygosity within populations. Therefore these results may not represent the editing 

efficiency for the entire range of genotypes within each cultivar. 

 

To verify if the editing efficiency was related to the drought tolerance, two different 

drought stress experiments were conducted on a number of accessions of Lolium perenne 

 200



L. obtained from the GRIN database. The initial drought stress experiment (in vitro PEG 

induced system), showed clear differences in drought response between accessions, and 

based on these results a range of accessions were selected to verify these findings. To 

confirm the drought response of these accessions, clones were propagated and tested 

under drought stress using the in vivo PEG induced system. The results obtained from the 

second test (in vivo PEG induced system) differed from those of the first test (in vitro 

PEG induced system), this could be explained by genotypic variation, due to the use of 

clones in the in vivo experiment compared to a range of seedlings within each accession 

used in the in vitro experiment. Nevertheless to explore the relationship between RNA 

editing behaviour and drought tolerance, the results obtained from the in vivo PEG 

induced system could be used, by using these specific clones for RNA editing analyses. 

 

The editing efficiency for the editing sites within the ndhB and ndhF were evaluated 

within the accessions tested for drought tolerance, and subsequently compared to the 

respective drought tolerance of these clones. These results indicate there is no correlation 

between drought tolerance and editing efficiency within the ndh genes. The findings of 

this study are in contrast to another study (Casano et al. 2000) where the NDH complex 

was involved in drought stress resistance. Casano et al. (2000) demonstrated that 

expression levels of plastid NDH complex genes were up regulated during drought stress 

(a situation which causes photo oxidative stress) and play a role in reducing 

plastoquinone (PQ) in conjunction with superoxide dismutase (SOD) and hydroquinone 

peroxidise (Casano et al. 2000; Abdeen et al. 2010). This information, in concurrence 

with this new data, suggests that although the NDH complex is involved in circumventing 
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oxidative stress, the RNA editing alone of the involved transcripts is not the determining 

factor for regulation of this complex. Nevertheless very low editing efficiencies were 

observed within certain accessions, the lowest editing efficiency was a mere 5%. This 

may indicate that these genes are upregulated, in such a way that the editing trans-factors 

are not able to edit the majority of the transcripts. Despite this, there are apparent 

sufficient functional transcripts available for correct assembly of the complex to counter 

oxidative stress.  

 

Another explanation could be that another pathway is more prominently involved with 

countering oxidative stress. This pathway could be the PGR5/PGRL1-dependent route, 

also known as the non-NDH pathway (Rumeau et al. 2007; Suorsa et al. 2009). The 

involvement of this pathway with cyclic electron transfer was shown to be important 

under near optimal conditions in Arabidopsis (Munekage et al. 2004). A recent 

publication showed that components of the PGR5/PGRL1 route were upregulated during 

drought stress, whereas a component of the NDH complex ndhH was not affected during 

drought stress in Arabidopsis, indicating the importance of the PGR5/PGRL1 pathway 

(Lehtimäki et al. 2010). 

 

The observed differences in RNA editing efficiencies are most likely due to different 

expression levels of the proteins involved in the editing of these specific editing sites. 

These could potentially be genotype specific and unrelated to environmental stimuli. 

Another possibility could be the difference in amount of transcripts of ndhB and ndhF 
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available for editing. If there are fewer transcripts available, then the editing efficiency 

might increase. Both these explanations could contribute to the observed effects. 

 

Other studies have identified certain trans-factors that are essential for editing of certain 

sites, however this does not exclude the possibility that other proteins may be involved in 

the editing machinery, as is implied by Chateigner-Boutin et al. (2008). The editing 

machinery can be limited by the least available protein within that editing complex. This 

was demonstrated when chimeric RNA was expressed containing the editing site of psbL 

in tobacco chloroplasts, this led to a significant decrease in the editing efficiency of the 

endogenous psbL RNA. This competitive effect of the transgene was specific to the psbL 

gene, with other editing sites being properly edited, indicating depletion of the psbL-

specific transacting factor (Chaudhuri et al. 1995).  

 

Some proteins which bind to specific cis-factors surrounding the editing sites have been 

identified. These belong to the pentatricopeptide repeat protein (PPR) family. This large 

family of proteins is believed to be involved in RNA maturation in plastids and 

mitochondria (Shikanai 2006). Other unknown proteins within the editing complex could 

have a general function, and if knocked-out, could potentially impair the whole editing 

machinery. An example is the CP31 protein in tobacco, when this protein was knocked 

out, editing within the psbL transcript was completely absent, while editing in the ndhB 

gene was partially impaired. Unfortunately other proteins comprising of the editing 

complex acting on plastid transcripts have yet to be identified. Due to the lack of 

information regarding all the trans-factors involved within the ndhB and ndhF genes and 
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the lack of sequence data to find homologs within perennial ryegrass of known trans-

factors, the regulation and accumulation of these proteins could not be tested during this 

project. 

  

Lastly a novel single nucleotide polymorphism was found at plastid genome position 

103515 within the ndhF gene in certain accessions, which was post-transcriptionally 

edited back to the conserved nucleotide. To our knowledge this phenomenon has not been 

observed previously, although these editing events could easily have been missed, due to 

the low percentage of secondary nucleotides in these specific genome locations at the 

DNA level. Within the Lolium perenne L. plastid genome, seven other SNP’s were 

identified before, which could potentially be editing sites as well, three of these sites 

reside within coding regions, namely at genome position 19560 within the rpoB transcript, 

position 37506 within the psaB transcript, and position 65631 within the rps18 transcript. 

(Diekmann et al. 2009). After analyses of nine accessions and cultivars for these SNPs, 

no subsequent RNA editing was observed. Therefore it indicates that within the perennial 

ryegrass plastid genome only the SNP within the ndhF coding region was edited, 

although the possibility exists that other not tested accessions could exhibit editing in the 

three other analysed sites. The occurrence of this phenomenon could be an evolutionary 

intermediate, where the loss of an editing site is in progress due to a reversion of a point 

mutation. However due to the polyploidy of the plastid genome in each cell, the chances 

of getting a complete reversion of the point mutation are small, and might take numerous 

generations to achieve, similar to population curves. Once achieved, the RNA editing 

 204



mechanism for this site is not required anymore, resulting in a gradual loss of editing 

capacity.  
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Chapter 4: 
 

General discussion 
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Due to the predicted climate change, the production of forage grasses may become a 

problem in Europe. Specifically in the east of Ireland the yield will decrease due to 

summer drought, unless artificial irrigation is implemented (Holden and Brereton 2002). 

To counter the detrimental effects of drought stress, it is paramount that studies are 

performed to improve in the long term drought tolerance in grasses. 

 

One of the complexes that is known to be involved with drought response is the plastidial 

NDH complex (Casano et al. 2000; Quiles 2006; Ibanez et al. 2010). The NDH complex 

is one of the components of the chlororespiration pathway that interacts with the 

photosynthetic electron transport, involving the non-photochemical reduction and 

oxidation of the plastoquinone pool (Bennoun 1982). This complex consists of eleven 

subunits that are encoded by the plastome (ndhA-ndhK) and three putative nuclear-

encoded subunits (Casano et al. 2004). Two of the plastid-encoded subunits, ndhB and 

ndhF harbour several RNA editing sites. In this study it was shown that the editing 

efficiencies of some of these sites vary greatly within accessions of the species Lolium 

perenne L.. As a consequence in some accessions this would lead to an accumulation of 

dysfunctional subunits of the NDH complex. Several previous studies showed that 

inactivation of one of the subunits would result in the disappearance of the entire NDH 

complex (Burrows et al. 1998; Horvath et al. 2000). A similar effect could be expected 

when unedited transcripts are translated. Therefore a low efficiency of RNA editing in a 

NDH subunit would suggest a reduced NDH activity. However a direct relationship 

between RNA editing within the ndhB and ndhF transcripts and drought response was not 

observed.  
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The interpretation of these results can be multifaceted concerning the involvement of 

RNA editing in drought tolerance. Some accessions of perennial ryegrass with a drought 

tolerant response could have an overall elevated transcript accumulation for this complex, 

resulting in a larger number of transcripts targeted by the corresponding RNA editing 

trans-factor, which could potentially result in a lower efficiency in RNA editing. Other 

accessions with a similar drought response, could have less transcript accumulation, 

resulting in a higher editing efficiency. These alternatives can lead to an equal amount of 

edited transcripts used for translation. Essentially RNA editing can have a regulatory 

function in respect to accumulation of functional transcripts. For instance if the 

accumulation of transcripts involved with the NDH complex is too high, RNA editing 

efficiency could be lowered to reduce the number of edited transcripts, hence affecting 

the accumulation of correct subunits of the NDH complex. Alternatively, the effect could 

be in the opposite direction: stimulating the production of functional NDH complex, by 

increasing the RNA editing efficiency. The observed differences of RNA editing 

efficiencies in this study could also be explained by different expression levels of the 

trans-factors. The expression levels of these trans-factors could essentially be caused by 

growth conditions or different parameters like endogenous genetic differences between 

accessions. Despite the increasing number of trans-factors being identified, many trans-

factors are still unknown (Hammani et al. 2009). Furthermore the mechanism of targeting 

of these trans-factors to specific editing sites is not entirely clear, although a limited 

range of sequences surrounding the editing sites play an important role in targeting 

(Hayes et al. 2006). The possibility of RNA editing being an important factor in drought 
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tolerance can therefore not be excluded. Because of the many parameters involved with 

the RNA editing machinery, more studies need to be performed to assess these 

possibilities.  

 

It is also possible that any effect of the efficiency of RNA editing in the NDH transcripts 

on drought response is masked by other factors which have a more pronounced role in the 

defence against drought stress. These factors could include scavenging enzymes that 

counter oxidative stress (Mittler et al. 2004), or a NDH independent pathway, like the 

PGR5/PGRL1-dependent route (Rumeau et al. 2007; Suorsa et al. 2009). Under near 

optimal growth conditions this pathway was shown to be important for cyclic electron 

transfer in Arabidopsis (Munekage et al. 2004). Lehtimäki et al. (2010) found in 

Arabidopsis, components of the PGR5/PGRL1 route that were upregulated during 

drought stress, whereas a component of the NDH-complex ndhH was not influenced by 

the same stress, indicating the importance of the PGR5/PGRL1 pathway under certain 

conditions (Lehtimäki et al. 2010). 

 

During this study one other feature was observed, namely a SNP that was edited. Both 

SNPs and RNA editing are common in plastids, however the occurrence of both 

mechanisms at the same position was a novel discovery. The occurrence of this 

combination could be an evolutionary intermediate, where the loss of an editing site is in 

progress due to a reversion of a point mutation. However due to the polyploidy of the 

plastid genome in each cell, the chances of getting a complete reversion of the point 

mutation are small, and might take numerous generations to achieve. Once this is 
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achieved, the RNA editing mechanism for this site is not required anymore, which could 

result in a gradual loss of editing capacity for this site.  

 

During this project an attempt was made to develop a protocol for plastid transformation 

of Lolium perenne L.. However no transformants were recovered despite extensive 

evaluation of all the involved parameters. There can be several causes that prevented the 

recovery of transplastomic plantlets. These include the possible low expression of the 

selectable marker gene aphA-6 in conjunction with a less then optimal selection regime. 

Furthermore the choice of genotype could have a large impact on the efficiency of the 

transformation process. Nevertheless further adjustments to the presented protocol could 

provide the means to achieve plastid transformation in this species. Graminaceous species 

remain particularly recalcitrant to plastid transformation, and at least two other teams 

experienced in plastid transformation have invested effort in the development of a 

procedure for Lolium species without success (Gray, personal communication, Altpeter, 

personal communication) 

 

Further investigations by means of plastid transformation regarding the involvement of 

RNA editing on drought stress could not be performed in Lolium perenne L.. However in 

future projects it would be intriguing to test the relevance of RNA editing in relationship 

with drought by plastid transformation; this could be performed in other species where 

readily available plastid transformation protocols exist, like tobacco (Svab and Maliga 

1993). Arabidopsis would also be an interesting target species, because of the available 

genome data present for this species in conjunction with known trans-factors; however 
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the plastid transformation efficiency for this species was reported to be very low (Sikdar 

et al. 1998).  

 

Plastid transformation could be used to elucidate the involvement of RNA editing in the 

functionality of the NDH complex. This can be tested with a gene-replacement approach 

as illustrated in Fig. 4.1. Transcripts derived from unedited mRNA would result in a 

dysfunctional protein (Fig. 4.1A), while transcripts derived from edited mRNA would 

result in functional protein (Fig. 4.1B). Both situations can be mimicked in such a way, 

without the interference of RNA editing. For instance, the endogenous ndhB gene can be 

substituted by a modified version containing specific point mutations, the resulting 

transcripts would be rendered uneditable, while being translated into dysfunctional 

protein (see Fig 4.1C). On the other hand a modified version of this gene can be used, 

which would contain point mutations resulting in a protein structure similar to an edited 

protein (See Fig 4.1D). The absence of one functional component of the NDH complex 

tends to result in the absence of the entire complex (Horvath et al. 2000). If this 

“unedited” version would result in absence of the complex, it would show the importance 

of editing and its possible regulatory function. 
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Unedited mRNA resulting in dysfunctional protein

ACU UCA AAA GUA GCU GCU UCA G CA GCCU U C ACG CGA AUU CUC GAU 

Thr Ser  Lys Val  Ala  Ala Ala   Ala  Thr Arg Ile Leu Asp

ACU UCA AAA GUA GCU GCU U CU U C ACG CGA AUU CUC GAU 

Edited mRNA resulting in function protein

Ser Ser

UA G UA GC

Thr Ser  Lys Val  Ala  Ala Ala   Ala  Thr Arg Ile Leu AspLeu Leu

ACC UCG AAG GUU GCC GCC U C GCC U C ACG CGA AUU CUC GAU C CA GC
Modified uneditable mRNA resulting in dysfunctional protein 

Thr Ser  Lys Val  Ala  Ala Ala   Ala  Thr Arg Ile Leu AspSer Ser

Modified uneditable mRNA resulting in functional protein

ACU UCA AAA GUA GCU GCU U CU U C ACG CGA AUU CUC GAU 

A

B

C

D UA G UA GC

Thr Ser  Lys Val  Ala  Ala Ala   Ala  Thr Arg Ile Leu AspLeu Leu

Fig. 4.1: An overview of four possible transcripts parts within the ndhB gene A: Unedited 
form of mRNA, translatable into dysfunctional protein B: Edited form of mRNA, 
translatable into functional protein C: mRNA from an uneditable modified ndhB gene, 
resulting in a dysfunctional protein, D: mRNA from an uneditable modified ndhB gene, 
resulting in a functional protein. Red annotated nucleotides are RNA editing sites, green 
annotated nucleotides are modifications to prevent editing in that transcript. 
 

Having a working protocol for plastid transformation for perennial ryegrass would also 

open up a powerful avenue for improving environmental stress tolerance, by 

overexpressing ROS scavenging enzymes within the plastid compartment. The 

effectiveness of this approach was recently demonstrated in our laboratory with the 

model species tobacco (Le Martret et al. submitted). This study demonstrated that 

overexpression of the ROS scavenging enzymes GR, DHAR and GST provided cold and 

salt tolerance, while co-expression of DHAR:GR or GST:GR conferred paraquat 

tolerance.  
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Beside the possibility to counter environmental stresses by plastid engineering, this 

technology also offers the possibility to improve other traits. For instance perennial 

ryegrass can be a prime candidate in Ireland as crop for biofuel production (Smyth et al. 

2009). At the moment most biofuels are produced in maize and sugarcane, however 

biofuels have had bad press coverage in recent years. This is mainly due to habitat 

destruction in tropical countries and the negative effect on food production. In Ireland 

beef and sheep production is highly self sufficient, therefore the effect on food production 

is not a direct concern if grasses were to be used for biofuel production. Furthermore 

habitat destruction is not an issue in this case (Smyth et al. 2009).  Perennial ryegrass has 

a significant yield and biomethanol has a very good energy balance, however 

improvements in this would benefit the biofuel industry.  To accomplish this, genetic 

engineering can be used, for instance by increasing the polysaccharide content or  by 

increasing the overall biomass production (Sticklen 2008). These properties might be 

elevated by means of plastid transformation. 

 

Development of a plastid transformation protocol for perennial ryegrass could have a 

large impact on the improvement of this crop, whether in stress tolerance or for other 

applications. The prime advantage of gene containment in this outbreeding crop, 

alongside the possibility to engineer pathways by gene-stacking and over expression of 

transgenes, would make it an invaluable new technology to assist in breeding programs 

for improvements in this crop. 
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Appendix A: Complete sequences of Lolium perenne L. plastid transformation 
vectors pIAPRvdB4 and pIAPRvdB5 
  
pIAPRvdB4 complete sequence 
     1  AGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC 
    61  ACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGC 
   121  TCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAA 
   181  TTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTTT 
   241  TTAGGGTGAAGTAAGACCAAGCTCATGAGCTTATTATCCTAGGTCGGAACAAATTAGTTG 
   301  ATAGTGATAGGATCCCTTTTTTGACGTCCCCATGTCCCCCCCCCTGTGGTGTGGCGGCAT 
   361  GGGGATGTCAAAAGGAAAGGGATGGAGTTTTTCTCGCTTTTGGCGTAGCAGGCCTCCCTT 
   421  TCTTTGGGAGGCCCGCGCGACGGGCTATTAGCTCAGTGGTAGAGCGCGCCCCTGATAATT 
   481  GCGTCGTTGTGCCTGGGCTGTGAGGGCTCTCAGCCACATGGATAGTTCAATGTGCTCATC 
   541  AGCGCCTGACCCGAAGATGTGGATCATCCAAGGCACATTAGCATGGCGTACTCCTCCTAT 
   601  TTGAATCGGAGTTTGAAACCAAACAAACTTCTCCTCAGGAGGATAGATGGGGCGATTCAG 
   661  GTGAGATCCCATGTAGATCTAACTTTCTATTCACTCGTGGGATCCGGGCGGTCCGGGGAG 
   721  GGTCCACCACGGCTCCTCTCTTCTCGAGAATCCATACATCCCTTATCAGTGTATGGAGAG 
   781  CTATCTCTCGAGCACAGGTTGAGGTTCGTCCTCAATGGGAAAATGGAGCACCTAACAACG 
   841  CATCTTCACAGACCAAGAACTACGAGATCACCCCTTTCATTCTGGGGTGACGGAGGGATC 
   901  GTACCATTCGAGCCTTTTTTTTCATGCTTTTCCCGGCGGTCTGGAGAAAGCAGCAATCAA 
   961  TAGGACTTTCCTAATCCTCCCTTACTTTCAGGAAGAACGTGAAATTCTTTTTCCTTAAAT 
  1021  GGGAGCAGAGCAGGTTTGAAAAAGGATCTTAGAGTGTCTAGGGTTGGGCCAGGAGGGTCT 
  1081  CTTAACGCCTTCCTTTTTCTGCCCATCGGAGTTATTTCCCAAGGACTTGCCATGGTAAGA 
  1141  GGGAGAAGGGGGAAAAAGCACACTTGAAGAGCGCAGTACAACGGGGAGTTGTATGCTGCG 
  1201  TTCGGGAAGGATGAATCGCTCCCGAAAAGGAGTCTATTGATTCTCTTCCAATTGGTTGGA 
  1261  TCGTAGGGGCGATGATTTACTTCACGGGCGAGGTCTCTGGTTCAAGTCCAGGATGGCCCA 
  1321  GCTGCGCCAGGGAAAAGAATAGAAGAAGCAGGTACCGCTCCCCCGCCGTCGTTCAATGAG 
  1381  AATGGATAAGAGGCTCGTGGGATTGACGTGAGGGGGCAGGGATGGCTATATTTCTGGGAG 
  1441  CGAACTCCGGGCGAATACGAAGCGCTTGGATACAGTTGTAGGGAGGGGAGCTCATGAGTA 
  1501  AAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTA 
  1561  ATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATACGGAAAACTTA 
  1621  CCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTA 
  1681  CTTTCTCTTATGGTGTTCAATGCTTTTCAAGATACCCAGATCATATGAAGCGGCACGACT 
  1741  TCTTCAAGAGCGCCATGCCTGAGGGATACGTGCAGGAGAGGACCATCTCTTTCAAGGACG 
  1801  ACGGGAACTACAAGACACGTGCTGAAGTCAAGTTTGAGGGAGACACCCTCGTCAACAGGA 
  1861  TCGAGCTTAAGGGAATCGATTTCAAGGAGGACGGAAACATCCTCGGCCACAAGTTGGAAT 
  1921  ACAACTACAACTCCCACAACGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAG 
  1981  CTAACTTCAAAATTAGACACAACATTGAAGATGGAAGCGTTCAACTAGCAGACCATTATC 
  2041  AACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCCA 
  2101  CACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACCACATGGTCCTTCTTGAGT 
  2161  TTGTAACAGCTGCTGGGATTACACATGGCATGGATGAACTATACAAATAAGGGAGGGGGC 
  2221  CGGCCATGACCATGGAATTACCAAATATTATTCAACAATTTATCGGAAACAGCGTTTTAG 
  2281  AGCCAAATAAAATTGGTCAGTCGCCATCGGATGTTTATTCTTTTAATCGAAATAATGAAA 
  2341  CTTTTTTTCTTAAGCGATCTAGCACTTTATATACAGAGACCACATACAGTGTCTCTCGTG 
  2401  AAGCGAAAATGTTGAGTTGGCTCTCTGAGAAATTAAAGGTGCCTGAACTCATCATGACTT 
  2461  TTCAGGATGAGCAGTTTGAATTCATGATCACTAAAGCGATCAATGCAAAACCAATTTCAG 
  2521  CGCTTTTTTTAACAGACCAAGAATTGCTTGCTATCTATAAGGAGGCACTCAATCTGTTAA 
  2581  ATTCAATTGCTATTATTGATTGTCCATTTATTTCAAACATTGATCATCGGTTAAAAGAGT 
  2641  CAAAATTTTTTATTGATAACCAACTCCTTGACGATATAGATCAAGATGATTTTGACACTG 
  2701  AATTATGGGGAGACCATAAAACTTACCTAAGTCTATGGAATGAGTTAACCGAGACTCGTG 
  2761  TTGAAGAAAGATTGGTTTTTTCTCATGGCGATATCACGGATAGTAATATTTTTATAGATA 
  2821  AATTCAATGAAATTTATTTTTTAGATCTTGGTCGTGCTGGGTTAGCAGATGAATTTGTAG 
  2881  ATATATCCTTTGTTGAACGTTGCCTAAGAGAGGATGCATCGGAGGAAACTGCGAAAATAT 
  2941  TTTTAAAGCATTTAAAAAATGATAGACCTGACAAAAGGAATTATTTTTTAAAACTTGATG 
  3001  AATTGAATTGAGCGGCCGCACCGAAATTCAATTAAGGAAATAAATTAAGGAAATACAAAA 
  3061  AGGGGGGTAGTCATTTGTATATAACTTTGTATGACTTTTCTCTTCTATTTTTTTGTATTT 
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  3121  CCTCCCTTTCCTTTTCTATTTGTATTTTTTTATCATTGCTTCCATTGAATTCCGTGTTCT 
  3181  TTAATTAATCTGACTCTTTCATGCATACTCCACTTGGCTCGGGGGGGATATAGCTCAGTT 
  3241  GGTAGAGCTCCGCTCTTGCAATTGGGTCGTTGCGATTACGGGTTGGCTGTCTAATTGTCC 
  3301  AGGCGGTAATGATAGTATCTTGTACCTGAACCGGTGGCTCACTTTTTCTAAGTAATGGGG 
  3361  AAGAGGACTGAAACATGCCACTGAAAGACTCTACTGAGACAAAAAGATGGGCTGTCAAAA 
  3421  AGGTAGAGGAGGTAGGATGGGCAGTTGGTCAGATCTAGTATGGATCGTACATGGACGATA 
  3481  GTTGGAGTCGGCGGCTCTCCTAGGCTTCCCTCATCTGGGATCCCTGGGGAAGAGGATCAA 
  3541  GTTGGCCCTTGCGAATAACTTGATGCACTATCTCCCTTCAACCCTTTGAGCGAAATGTAG 
  3601  CAAAAGGAAGGAAAATCCATGGACCGACCCCATTGTCTCCACCCCGTAGGAACTACGAGA 
  3661  TCACCCCAAGGACGCCTTCGGCGTCCAGGGGTCACGGACCGACCATAGACCCTGTTCAAT 
  3721  AAGTGGAACACATTAGCCGTCCGCTCTCTGGTTGGGCAGTAAGGGTCGGAGAAGGGCAAT 
  3781  CACTCGTTCTTAAAACCAGCATTCTTAAGTTTAAGATCAAAGAGTCGGGCGGAAAAAGGG 
  3841  GAGATCTCCCCGTTCCTGGTTCTCCTGTAGCTGGATTCCCCGGAACCACAAGAATCCTTA 
  3901  GAATGGGATTCCAACTCAGCACCTTTTGTTTTGAGATTTTGAGAAGAGTTGCTCTTTGGA 
  3961  GAGCACAGTACGATGAAAGTTGTAAGCTGTGTTCGGGGGGGAGTTATTGTCTATCGTTGG 
  4021  CCTCTATGGTAGAACCCGTCGGGGAGGCCTGAGAGGCGGTGGTTTACCCTGTGGCGGATG 
  4081  TCAGCGGTTCGAGTCCGCTTATCTCCAGCCCGTGAACTTAGCGGATACTATGATAGCACC 
  4141  GAATTTTGCCAATTCAGCAGTTCGATCTATGATTTCGCATTCATGGAAGGGCGAATTCTG 
  4201  CAGATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTA 
  4261  TAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCC 
  4321  TGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAG 
  4381  CGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGAC 
  4441  GCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCT 
  4501  ACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACG 
  4561  TTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGT 
  4621  GCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCA 
  4681  TCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGA 
  4741  CTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAA 
  4801  GGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAAC 
  4861  GCGAATTTTAACAAAATTCAGGGCGCAAGGGCTGCTAAAGGAAGCGGAACACGTAGAAAG 
  4921  CCAGTCCGCAGAAACGGTGCTGACCCCGGATGAATGTCAGCTACTGGGCTATCTGGACAA 
  4981  GGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTGGGCTTACATGGCGATAGC 
  5041  TAGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGGCGCCCTCTG 
  5101  GTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCTTGCCGCCAAGGATCTGAT 
  5161  GGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAAC 
  5221  AAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACT 
  5281  GGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGC 
  5341  GCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGG 
  5401  CAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTG 
  5461  TCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGT 
  5521  CATCCCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGC 
  5581  ATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAG 
  5641  CACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGG 
  5701  GGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATC 
  5761  TCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTT 
  5821  CTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGG 
  5881  CTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTT 
  5941  ACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCT 
  6001  TCTGAATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTT 
  6061  TTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGA 
  6121  TGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAA 
  6181  GATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCT 
  6241  GCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCAT 
  6301  ACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGA 
  6361  TGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGC 
  6421  CAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACAT 
  6481  GGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAA 
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  6541  CGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAAC 
  6601  TGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAA 
  6661  AGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATC 
  6721  TGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCC 
  6781  CTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAG 
  6841  ACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTA 
  6901  CTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAA 
  6961  GATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGC 
  7021  GTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAAT 
  7081  CTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGA 
  7141  GCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGT 
  7201  TCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATA 
  7261  CCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTAC 
  7321  CGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGG 
  7381  TTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCG 
  7441  TGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAG 
  7501  CGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCT 
  7561  TTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTC 
  7621  AGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTT 
  7681  TTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCG 
  7741  TATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGA 
  7801  GTCAGTGAGCGAGGAAGCGGAAG 
 
Red annotated: trnI homologous region of the Lolium perenne L. plastid genome. 

Dark blue annotated: full length 16S Prrn promoter from Nicotiana tabacum with the 

5’UTR of rbcL of Nicotiana tabacum   

Green annotated: smGFP – gene 

Purple annotated: Ribosomal binding site from the rbcL gene of Nicotiana tabacum 

Orange annotated: aphA-6 – gene  

Light blue annotated: 3’UTR of the rps16 gene of Nicotiana tabacum 

Brown annotated: trnA homologous region of the Lolium perenne L. plastid genome 

Black annotated: pCR2.1 backbone vector 
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pIAPRvdB5 complete sequence 
     1  AGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC 
    61  ACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGC 
   121  TCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAA 
   181  TTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTTT 
   241  TTAGGGTGAAGTAAGACCAAGCTCATGAGCTTATTATCCTAGGTCGGAACAAATTAGTTG 
   301  ATAGTGATAGGATCCCTTTTTTGACGTCCCCATGTCCCCCCCCCTGTGGTGTGGCGGCAT 
   361  GGGGATGTCAAAAGGAAAGGGATGGAGTTTTTCTCGCTTTTGGCGTAGCAGGCCTCCCTT 
   421  TCTTTGGGAGGCCCGCGCGACGGGCTATTAGCTCAGTGGTAGAGCGCGCCCCTGATAATT 
   481  GCGTCGTTGTGCCTGGGCTGTGAGGGCTCTCAGCCACATGGATAGTTCAATGTGCTCATC 
   541  AGCGCCTGACCCGAAGATGTGGATCATCCAAGGCACATTAGCATGGCGTACTCCTCCTAT 
   601  TTGAATCGGAGTTTGAAACCAAACAAACTTCTCCTCAGGAGGATAGATGGGGCGATTCAG 
   661  GTGAGATCCCATGTAGATCTAACTTTCTATTCACTCGTGGGATCCGGGCGGTCCGGGGAG 
   721  GGTCCACCACGGCTCCTCTCTTCTCGAGAATCCATACATCCCTTATCAGTGTATGGAGAG 
   781  CTATCTCTCGAGCACAGGTTGAGGTTCGTCCTCAATGGGAAAATGGAGCACCTAACAACG 
   841  CATCTTCACAGACCAAGAACTACGAGATCACCCCTTTCATTCTGGGGTGACGGAGGGATC 
   901  GTACCATTCGAGCCTTTTTTTTCATGCTTTTCCCGGCGGTCTGGAGAAAGCAGCAATCAA 
   961  TAGGACTTTCCTAATCCTCCCTTACTTTCAGGAAGAACGTGAAATTCTTTTTCCTTAAAT 
  1021  GGGAGCAGAGCAGGTTTGAAAAAGGATCTTAGAGTGTCTAGGGTTGGGCCAGGAGGGTCT 
  1081  CTTAACGCCTTCCTTTTTCTGCCCATCGGAGTTATTTCCCAAGGACTTGCCATGGTAAGA 
  1141  GGGAGAAGGGGGAAAAAGCACACTTGAAGAGCGCAGTACAACGGGGAGTTGTATGCTGCG 
  1201  TTCGGGAAGGATGAATCGCTCCCGAAAAGGAGTCTATTGATTCTCTTCCAATTGGTTGGA 
  1261  TCGTAGGGGCGATGATTTACTTCACGGGCGAGGTCTCTGGTTCAAGTCCAGGATGGCCCA 
  1321  GCTGCGCCAGGGAAAAGAATAGAAGAAGCAGGTACCGCTCCCCCGCCGTCGTTCAATGAG 
  1381  AATGGATAAGAGGCTCGTGGGATTGACGTGAGGGGGCAGGGATGGCTATATTTCTGGGAG 
  1441  GGAGACCACAACGGTTTCCCACTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAC 
  1501  ATATGGCTAGCATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTG 
  1561  AATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATG 
  1621  CAACATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCAT 
  1681  GGCCAACACTTGTCACTACTTTCTCTTATGGTGTTCAATGCTTTTCAAGATACCCAGATC 
  1741  ATATGAAGCGGCACGACTTCTTCAAGAGCGCCATGCCTGAGGGATACGTGCAGGAGAGGA 
  1801  CCATCTCTTTCAAGGACGACGGGAACTACAAGACACGTGCTGAAGTCAAGTTTGAGGGAG 
  1861  ACACCCTCGTCAACAGGATCGAGCTTAAGGGAATCGATTTCAAGGAGGACGGAAACATCC 
  1921  TCGGCCACAAGTTGGAATACAACTACAACTCCCACAACGTATACATCACGGCAGACAAAC 
  1981  AAAAGAATGGAATCAAAGCTAACTTCAAAATTAGACACAACATTGAAGATGGAAGCGTTC 
  2041  AACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAG 
  2101  ACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACC 
  2161  ACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGATGAACTAT 
  2221  ACAAATAAGGGAGGGGGCCGGCCATGACCATGGAATTACCAAATATTATTCAACAATTTA 
  2281  TCGGAAACAGCGTTTTAGAGCCAAATAAAATTGGTCAGTCGCCATCGGATGTTTATTCTT 
  2341  TTAATCGAAATAATGAAACTTTTTTTCTTAAGCGATCTAGCACTTTATATACAGAGACCA 
  2401  CATACAGTGTCTCTCGTGAAGCGAAAATGTTGAGTTGGCTCTCTGAGAAATTAAAGGTGC 
  2461  CTGAACTCATCATGACTTTTCAGGATGAGCAGTTTGAATTCATGATCACTAAAGCGATCA 
  2521  ATGCAAAACCAATTTCAGCGCTTTTTTTAACAGACCAAGAATTGCTTGCTATCTATAAGG 
  2581  AGGCACTCAATCTGTTAAATTCAATTGCTATTATTGATTGTCCATTTATTTCAAACATTG 
  2641  ATCATCGGTTAAAAGAGTCAAAATTTTTTATTGATAACCAACTCCTTGACGATATAGATC 
  2701  AAGATGATTTTGACACTGAATTATGGGGAGACCATAAAACTTACCTAAGTCTATGGAATG 
  2761  AGTTAACCGAGACTCGTGTTGAAGAAAGATTGGTTTTTTCTCATGGCGATATCACGGATA 
  2821  GTAATATTTTTATAGATAAATTCAATGAAATTTATTTTTTAGATCTTGGTCGTGCTGGGT 
  2881  TAGCAGATGAATTTGTAGATATATCCTTTGTTGAACGTTGCCTAAGAGAGGATGCATCGG 
  2941  AGGAAACTGCGAAAATATTTTTAAAGCATTTAAAAAATGATAGACCTGACAAAAGGAATT 
  3001  ATTTTTTAAAACTTGATGAATTGAATTGAGCGGCCGCACCGAAATTCAATTAAGGAAATA 
  3061  AATTAAGGAAATACAAAAAGGGGGGTAGTCATTTGTATATAACTTTGTATGACTTTTCTC 
  3121  TTCTATTTTTTTGTATTTCCTCCCTTTCCTTTTCTATTTGTATTTTTTTATCATTGCTTC 
  3181  CATTGAATTCCGTGTTCTTTAATTAATCTGACTCTTTCATGCATACTCCACTTGGCTCGG 
  3241  GGGGGATATAGCTCAGTTGGTAGAGCTCCGCTCTTGCAATTGGGTCGTTGCGATTACGGG 
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  3301  TTGGCTGTCTAATTGTCCAGGCGGTAATGATAGTATCTTGTACCTGAACCGGTGGCTCAC 
  3361  TTTTTCTAAGTAATGGGGAAGAGGACTGAAACATGCCACTGAAAGACTCTACTGAGACAA 
  3421  AAAGATGGGCTGTCAAAAAGGTAGAGGAGGTAGGATGGGCAGTTGGTCAGATCTAGTATG 
  3481  GATCGTACATGGACGATAGTTGGAGTCGGCGGCTCTCCTAGGCTTCCCTCATCTGGGATC 
  3541  CCTGGGGAAGAGGATCAAGTTGGCCCTTGCGAATAACTTGATGCACTATCTCCCTTCAAC 
  3601  CCTTTGAGCGAAATGTAGCAAAAGGAAGGAAAATCCATGGACCGACCCCATTGTCTCCAC 
  3661  CCCGTAGGAACTACGAGATCACCCCAAGGACGCCTTCGGCGTCCAGGGGTCACGGACCGA 
  3721  CCATAGACCCTGTTCAATAAGTGGAACACATTAGCCGTCCGCTCTCTGGTTGGGCAGTAA 
  3781  GGGTCGGAGAAGGGCAATCACTCGTTCTTAAAACCAGCATTCTTAAGTTTAAGATCAAAG 
  3841  AGTCGGGCGGAAAAAGGGGAGATCTCCCCGTTCCTGGTTCTCCTGTAGCTGGATTCCCCG 
  3901  GAACCACAAGAATCCTTAGAATGGGATTCCAACTCAGCACCTTTTGTTTTGAGATTTTGA 
  3961  GAAGAGTTGCTCTTTGGAGAGCACAGTACGATGAAAGTTGTAAGCTGTGTTCGGGGGGGA 
  4021  GTTATTGTCTATCGTTGGCCTCTATGGTAGAACCCGTCGGGGAGGCCTGAGAGGCGGTGG 
  4081  TTTACCCTGTGGCGGATGTCAGCGGTTCGAGTCCGCTTATCTCCAGCCCGTGAACTTAGC 
  4141  GGATACTATGATAGCACCGAATTTTGCCAATTCAGCAGTTCGATCTATGATTTCGCATTC 
  4201  ATGGAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAG 
  4261  AGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACG 
  4321  TCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTT 
  4381  CGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAG 
  4441  CCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTT 
  4501  ACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTC 
  4561  CCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCT 
  4621  TTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGAT 
  4681  GGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCC 
  4741  ACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTC 
  4801  TATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTG 
  4861  ATTTAACAAAAATTTAACGCGAATTTTAACAAAATTCAGGGCGCAAGGGCTGCTAAAGGA 
  4921  AGCGGAACACGTAGAAAGCCAGTCCGCAGAAACGGTGCTGACCCCGGATGAATGTCAGCT 
  4981  ACTGGGCTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTG 
  5041  GGCTTACATGGCGATAGCTAGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGC 
  5101  CAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCT 
  5161  TGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGAT 
  5221  CGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGA 
  5281  GGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCC 
  5341  GGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGA 
  5401  ATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCG 
  5461  CAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGC 
  5521  CGGGGCAGGATCTCCTGTCATCCCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTG 
  5581  ATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGA 
  5641  AACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATC 
  5701  TGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCA 
  5761  TGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGG 
  5821  TGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCT 
  5881  ATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTG 
  5941  ACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATC 
  6001  GCCTTCTTGACGAGTTCTTCTGAATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG 
  6061  TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC 
  6121  GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT 
  6181  GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT 
  6241  GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA 
  6301  GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC 
  6361  AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT 
  6421  GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC 
  6481  CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT 
  6541  GAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC 
  6601  GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA 
  6661  CTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTG 
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  6721  GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT 
  6781  GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC 
  6841  TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA 
  6901  ACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATT 
  6961  TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA 
  7021  GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC 
  7081  TTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT 
  7141  TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC 
  7201  GCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC 
  7261  TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG 
  7321  CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG 
  7381  GTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA 
  7441  ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC 
  7501  GGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGG 
  7561  GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG 
  7621  ATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTT 
  7681  TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC 
  7741  TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG 
  7801  AACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAG 
 
 
Red annotated: trnI homologous region of the Lolium perenne L. plastid genome. 

Dark blue annotated: Truncated 16S Prrn promoter from Nicotiana tabacum with the 

5’TCR of gene 10 of the T7 phage  

Green annotated: smGFP – gene 

Purple annotated: Ribosomal binding site from the rbcL gene of Nicotiana tabacum 

Orange annotated: aphA-6 – gene  

Light blue annotated: 3’UTR of the rps16 gene of Nicotiana tabacum 

Brown annotated: trnA homologous region of the Lolium perenne L. plastid genome 

Black annotated: pCR2.1 backbone vector 
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Appendix B: Trace files for comparison with the colony screen  

sample 17 forward primer

sample 17 reverse primer

 
Fig. 1: Trace files of editing sites 87306 and 87281 in sample no. 17 
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sample 23 forward primer

sample 23 reverse primer

 
Fig. 2: Trace files of editing sites 87306 and 87281 in a sample no. 23 
 

 238



Sample 17: forward primer                           Sample 23 forward primer 

 
Fig. 3: Trace-files of editing site 87188 in samples no. 17 and 23 
 

sample 17: reverse primer                               Sample 23: Reverse primer

 
Fig. 4: Trace-files of editing site 87425 in samples no. 17 and 23 
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sample 17: Forward primer                               Sample 23: Forward primer

 
Fig. 5: Trace-files of editing site 87743 in samples no. 17 and 23. 
 

Sample 23: Reverse primer

 
Fig. 6: Trace-file of editing site 103675 in sample no. 17 
 
 
  

 

 

 240


	Fig. 2.28: Number of foci expressing the uidA gene after biolistic delivery using various parameters. DNA preparation protocol I: n=3, DNA preparation protocol II: n=1. Error bars represent the standard deviation of the mean.
	Fig. 2.29: Number of foci expressing the uidA gene after biolistic delivery using various parameters with DNA preparation protocol II: n=5. Error bars represent the standard deviation of the mean.
	To test if the Lolium perenne L. vector pIAPRvdB5 could be successfully used for plastid transformation, transient expression experiments were conducted. Leaf tissue was bombarded with a shooting pressure of 1100 PSI and a shooting distance of nine cm or six cm. After a two day cultivation, leafs were assessed for green fluorescent protein located within the plastids, using a confocal microscope with UV-light. As positive control, a Nicotiana tabacum leaf was used with GFP expressed within the chloroplasts (kindly provided by Aisling Dunne). As negative control a wild-type Lolium perenne L. leaf was used.
	The assessment was complicated by a strong background signal, making it nearly impossible to locate the true GFP emissions (See Fig. 2.30 and Fig. 2.31); this is due to the low number of GFP emitting plastids that were expected.
	Fig. 2.30: Positive control (plastid transformant of tobacco expressing GFP, kindly supplied by Aisling Dunne) in a tricome containing chloroplasts, top left GFP filter, top right auto-fluorescence, bottom left no filter, bottom right merged.
	Fig. 2.31: Negative control, leaf tissue of wild-type Lolium perenne L.. Top left: GFP filter, top right: auto-fluorescence, bottom left: no filter, bottom right: merged.
	Afterwards a DAPI stain on leaf tissue of wild-type Lolium perenne L. was conducted to find the location of this background signal, this showed that the signal was outside the chloroplasts and in proximity of the nucleus.

