
Movements in Binaural Space: Issues in HRTF

Interpolation and Reverberation, with applications to

Computer Music

Volume 1 of 2

BRIAN CARTY

PhD Dissertation

NUI Maynooth

Music Department

August 2010

Head of Department: Professor Fiona Palmer

Supervisor: Dr Victor Lazzarini

 1

Table of Contents

Table of Contents ...1

Table of Figures ...4

Acknowledgements ..6

Relevant Publications by the Author..8

Book Chapters..8

Conference Papers..8

Journals ..8

Software Development...8

Abstract ..10

Chapter 1. Introduction ..12

1.1 Context ...12

1.2. Background ...14

1.2.1 Sound Waves...14

1.2.2 Sound Perception ..14

1.2.3 Sound in Space..16

1.2.3.1 Spatial Hearing...16

1.2.3.2 Spatialisation ..18

1.2.3.3 Head Related Impulse Responses and Transfer Functions18

1.2.3.4 Environmental Acoustics ...19

1.2.4 Digital Audio...19

1.2.4.1 The DFT and the STFT..20

1.2.4.2 Digital Filters ...21

1.2.4.3 Convolution and HRTFs ..24

1.3 Thesis Contribution..25

1.4 Conclusion..26

Chapter 2. Binaural Audio: Literature Review ..28

2.1 Introduction ..28

2.2 Literature Review...29

2.2.1 Acquiring HRTFs..29

2.2.2 Individualised Datasets ...33

2.2.3 HRTF Data ..35

2.2.3.1 Analysis and Representation ..36

2.2.3.2 HRTF Interpolation..38

2.2.4 Dynamic Source Processing..45

2.2.5 HRTF Processing using FIR Filters ..46

2.2.6 HRTF Processing using IIR Filters ...46

2.2.7 Discussion ...49

2.3 Minimum-phase ...50

2.3.1 Minimum-phase and HRTFs...52

2.3.2 ITD Extraction ..59

2.3.3 Implementing Variable Delays ...61

2.4 Conclusion..62

Chapter 3. New Methods for Artificial Spatialisation ...65

3.1 Introduction ..65

3.2 Current Computer Music Tools ...65

3.2.1 hrtfer for Csound...65

 2

3.2.2 earplug~ for PD ..66

3.2.3 Virtual Loudspeakers: iem_bin_ambi ...67

3.2.4 More Recent Approaches..67

3.3 Novel Algorithms: Theoretical Discussion..69

3.3.1 Motivation ...69

3.3.2 Phase Truncation...71

3.3.3 Augmented Spherical Head Model ...73

3.3.4 Non-linear ITD..80

3.3.5 Implementing a Working Spatialisation Tool using the Non-linear ITD

Curve ..86

3.3.5.1 Applying Phase ..86

3.3.5.2 Impulse Shifting ...88

3.3.5.3 A Step towards Individualisation ...91

3.4 Phase Unwrapping Issues...91

3.4.1 Phase Unwrapping Algorithms ...93

3.4.2 Phase Unwrapping and the MIT Dataset ..94

3.4.3 Problems with Phase Unwrapping ..97

3.4.4 Phase Unwrapping Experimental Insights ..99

3.5 Conclusion..100

Chapter 4. Algorithm Implementation and Validation ..103

4.1. Introduction ...103

4.2. Command-line Implementation ..103

4.2.1 Data Preparation..104

4.2.2 Main Program..112

4.2.3 Real-time Implementation...129

4.2.3.1 hrtfmove...130

4.2.3.2 hrtfstat...138

4.2.3.3 hrtfmove2 ..141

4.2.3.4 Opcode Optimisation ...144

4.3. Algorithm Testing ...146

4.3.1 Objective Testing ..147

4.3.1.1 Results ..153

4.3.2 Subjective Tests ..155

4.3.2.1 Results ..161

4.4 Conclusions ..164

Chapter 5. Binaural Reverberation...166

5.1 Introduction ..166

5.2 Literature Review...167

5.2.1 Historical Perspective..168

5.2.2 A Focused Approach...174

5.3 Algorithm Design and Implementation..176

5.3.1 Early Reflections...176

5.3.2 Later Diffuse Field ..179

5.3.3 hrtfearly: Early Reflections Implementation...................................181

5.3.4 hrtfreverb: Diffuse Field Implementation200

5.4 Conclusion..215

Chapter 6. Applications..218

6.1 Introduction ..218

6.2 Historical Context of Multi-channel Audio ...218

6.3 Stereo..219

 3

6.4 Vector Base Amplitude Panning (VBAP)..219

6.5 5.1...220

6.6 Ambisonics...220

6.7 Wave Field Synthesis (WFS) ...222

6.8 The Multi-channel Binaural Paradigm...225

6.9 MultiBin ...227

6.9.1 Implementation ...228

6.9.2 MultiBin Instructions ..247

6.9.3 Creative Use ..251

6.10 Conclusion..252

Chapter 7. Conclusions ..255

7.1 Possibilities for Further Development ...257

Bibliography...259

 4

Table of Figures

Figure 1.1: Ear schematic...16

Figure 1.2: Cochlea (straightened)...16

Figure 1.3: The z plane...23

Table 2.1: Various approaches to HRTF data analysis ..36

Table 2.2: HRTF interpolation summary ...39

Figure 2.1: Three plots illustrating an extreme example of the problems with time-

domain interpolation; a HRIR for 0 degree elevation, 0 degree angle (top)

mixed with that at 0 degree elevation, 45 degree angle (middle). The result

(bottom) illustrates pressure peak and trough cancellation and time smearing. 40

Figure 2.2: Phase interpolation ..42

Figure 2.3: Three plots illustrating the HRTF for 0 degree elevation, 0 degree angle

(top), its minimum-phase representation (middle) and their common magnitude

spectrum (bottom); the solid line indicates original and dots indicate minimum-

phase magnitude spectra. ...54

Table 3.1: Summary of established Computer Music binaural spatialisation tools...65

Figure 3.1: Phase truncation: source at 3 points in a trajectory from left to right. At

point 1, bottom left phase is used. At point 2, a crossfade occurs. At point 3,

bottom right phase is used..73

Figure 3.2: ITD calculation ..75

Figure 3.3: More accurate ITD calculation ..76

Figure 3.4: ITD uncertainty; a low frequency source (above) affords unambiguous

IPD cues, whereas a high frequency source implies ambiguity due to any

number of inherent multiples of 2 . Overall direction of arrival is assumed to be

known here (i.e. onset is heard). ..79

Figure 3.5: Non-linear scaling factors for ITD ..85

Figure 3.6, IPD orientation...87

Figure 3.7: A non-shifted (above) and shifted (below) Functional Phase based Stereo

HRIR, for a source at 0 degree elevation, 90 degree angle................................89

Figure 3.8: Phase unwrapping: the apparent jump in phase is corrected by adding 2

..92

Figure 3.9: Phase unwrapping output file sample entry...97

Figure 3.10: Example 1 of phase unwrapping issues...98

Figure 3.11: Example 2 of phase unwrapping issues...98

Figure 4.1: An overview of the main HRTF processing involved in the algorithms

discussed; reading a source location and processing using HRTFs accordingly.

..113

Table 4.1: Comparison of average time taken by various algorithms to process 2

seconds of dynamic trajectories. ..145

Figure 4.2: Low-pass filter used in objective test response152

Figure 4.3: Overall high-resolution objective test results: the low frequency ITD

extracted from the minimum phase model deviates further from the empirical

data than that of the functional model..154

Figure 4.4: Horizontal plane high-resolution objective test results154

Figure 4.5: Subjective testing interface..157

Table 4.2: Subjective testing descriptive statistics...162

Table 4.3: Subjective testing ranks ..162

Figure 4.6: Overall preference test means..163

 5

Figure 4.7: Preference test means: noise source ..163

Table 5.1: Historical summary of artificial reverberation..168

Figure 5.1: The Image Model...170

Figure 5.2: Overall early reflection process...182

Figure 5.3: Low-pass response...184

Figure 5.4: Schematic of overall binaural reverberation process: the input is sent to

the FDN as well as the early model; the FDN input gets split and sent to each

delay line, which also contains a low-pass filter. Uncorrelated outputs are then

tone corrected and processed with coherence and binaural filters, delayed and

scaled..212

Figure 6.1: MultiBin...230

Figure 6.2: MultiBin usage ..247

 6

Acknowledgements

Writing these acknowledgements in the depths of my final submission preparations, I

naturally feel some relief to reach this stage in the PhD process. However, it is with a

sense of poignancy that I will submit this thesis, as it marks the official end of my

student-mentor relationship with my supervisor. I feel genuinely privileged to have

worked with Victor for the last number of years. I am constantly awed by his level of

commitment and generosity. I am also becoming increasingly aware of the influence

his professionalism, methodology and enthusiasm has had upon me. In spite of the

deep and satisfying understanding of my topic my thesis work has afforded me, I

consider the professional, formative, educational and personal relationship I have

developed with Victor as by far the most beneficial aspect of the program.

Martha has been a constant source of joy throughout. The PhD process has

brought with it moments (often elongated!) of self doubt, isolation and equally

elation. These moments were shared patiently and lovingly.

My family home provides an unfaltering refuge of support and

encouragement. I am, as always, extremely grateful and forever indebted to my

parents and brother.

I also firmly believe in the importance of time away from the

books/computer/compiler. Thanks to all who have shared interesting discussions,

runs and pints over the last few years.

On a more practical note, I would also like to acknowledge and sincerely

thank IRCSET and NUIM for scholarship support. Their financial assistance allowed

me to focus completely on my studies. The opportunity to travel to several

international conferences and share work with my peers was extremely beneficial. I

 7

would also like to commend IRCSET on what I believe to be a courageous and

crucial program.

The music department in Maynooth has been extremely supportive. Staff

members have consistently impressed and inspired me as both educators and

colleagues. Having studied at both undergraduate and postgraduate level, and

worked extensively in the department, I would like to commend Professors Gillen

and Palmer and all staff on such an exemplary organisation.

Computer Science staff provided generous, enthusiastic and patient DSP

support throughout. Thanks also to all who helped me get over the finish line (Mark,

Martha, Matthieu, and Sul).

 8

Relevant Publications by the Author

Book Chapters

Carty, B. Binaural Processing: A Sample Application, Boulanger, R. (ed.), The

Audio Programming Book, MIT Press, to appear

Conference Papers

* Carty, B. and Lazzarini, V. Multibin: A Binaural Audition Tool, DAFx, 2010

* Carty, B. and Lazzarini, V. HRTFearly & HRTFreverb: Flexible Binaural

Reverberation Processing, ICMC, 2010

Carty, B. Design of a Binaural Reverberator, Music & Audio Signal Processing:

First Irish Workshop, 2010

* Carty, B. and Lazzarini, V. Binaural HRTF Based Spatialisation: New Approaches

and Implementation, DAFx, 2009

* Carty, B. and Lazzarini, V. Frequency-Domain Interpolation of Empirical HRTF

Data, AES, 126th Convention, 2009

* Lazzarini, V. and Carty, B. New Csound Opcodes for Binaural Processing, LAC,

2008

Carty, B. New Csound Opcodes for Binaural Processing, Sounds Electric, 2007

Journals

Carty, B. Multi-channel and Binaural Spatial Audio: An overview and Possibilities

of a Unified System, Maynooth Musicology, 2, 2009

Carty, B. HRTFmove, HRTFstat, HRTFmove2: Using the new HRTF Opcodes, The

Csound Journal, 2008

Carty, B. Artificial Simulation of Audio Spatialisation: Developing a Binaural

System, Maynooth Musicology, 1, 2008

Software Development

HRTF Opcodes for Csound:

http://www.csounds.com/manual/html/hrtfmove.html

http://www.csounds.com/manual/html/hrtfmove2.html

http://www.csounds.com/manual/html/hrtfstat.html

 9

Binaural Reverberation Opcodes to be submitted to Csound.

Python MultiBin Application to be made available online.

A number of other publications are being considered.

* included in Volume 2

 10

Abstract

This thesis deals broadly with the topic of Binaural Audio. After reviewing the

literature, a reappraisal of the minimum-phase plus linear delay model for HRTF

representation and interpolation is offered. A rigorous analysis of threshold based

phase unwrapping is also performed. The results and conclusions drawn from these

analyses motivate the development of two novel methods for HRTF representation

and interpolation. Empirical data is used directly in a Phase Truncation method. A

Functional Model for phase is used in the second method based on the

psychoacoustical nature of Interaural Time Differences. Both methods are validated;

most significantly, both perform better than a minimum-phase method in subjective

testing.

The accurate, artefact-free dynamic source processing afforded by the above

methods is harnessed in a binaural reverberation model, based on an early reflection

image model and Feedback Delay Network diffuse field, with accurate interaural

coherence. In turn, these flexible environmental processing algorithms are used in

the development of a multi-channel binaural application, which allows the audition

of multi-channel setups in headphones. Both source and listener are dynamic in this

paradigm. A GUI is offered for intuitive use of the application.

HRTF processing is thus re-evaluated and updated after a review of accepted

practice. Novel solutions are presented and validated. Binaural reverberation is

recognised as a crucial tool for convincing artificial spatialisation, and is developed

on similar principles. Emphasis is placed on transparency of development practices,

with the aim of wider dissemination and uptake of binaural technology.

 11

 12

Chapter 1. Introduction

1.1 Context

Audio spatialisation is a multi-faceted, swiftly-developing and high-potential

research field. Essentially the discipline aspires to recreate accurate spatial listening

environments, ideally with a fine degree of control. Even a brief review of the vast

literature offers an insight into the numerous relevant aspects of the topic. When

attempting to artificially recreate spatial environments, several approaches can be

taken. A pragmatic, psychophysical approach may focus on subjective listening tests

to examine the capabilities of the human auditory system. The discipline of Signal

Processing is perhaps more concerned with the implementation of optimal processes

for creation and delivery of spatial audio. Computer Science researchers may focus

more on system and algorithm implementation. The hardware used for signal capture

and reproduction also constitutes another potentially self-contained research field.

All of the above topics offer challenges and open research questions which

merit abundant independent research. The approach taken here is more holistic,

intending to proffer more universal solutions. The control offered by headphone-

based audio and potential of binaural processing focuses the work, however,

loudspeaker approaches are also considered in a more integrated approach than the

literature generally offers. The specific challenges of headphone based artificial

spatialisation thus swiftly come to the fore. Typically, headphone systems use

binaural technology: exploiting Head Related Transfer Functions (HRTFs), which

describe how the auditory system processes sound from particular locations.

Imposing HRTFs on a non-spatialised source adds the spatial properties of the

HRTF.

 13

The intricacies and development challenges of binaural processing constitute

the majority of this thesis. A wide-reaching literature review, considering the cross-

disciplinary potential approaches above informs the process. Particular rigour is

applied to areas of the literature that rely on assumptions and potentially fallible, but

generally employed processes. Specifically, the assumption that the HRTF can be

represented as a minimum-phase system and a linear delay, and threshold based

phase unwrapping are reconsidered.

This reappraisal of the topic informs the development of a comprehensive

suite of spatialisation software. Although mathematics, physics and signal processing

inherently monopolise this process by necessity, the goal of harvesting the creative

potential of binaural processing is constantly considered. Indeed, it is the creative use

of HRTF processing that inspires the development of binaural reverberation tools;

HRTF processed audio appears internalised and somewhat unnatural if not

augmented by environmental processing.

This thesis thus attempts to offer a comprehensive account of binaural audio,

readdressing several core attributes of the discipline. Specifically, novel approaches

to HRTF representation and interpolation are offered. This work then informs the

development of HRTF based environmental processing, which, in turn, is used in an

application that unifies headphone and loudspeaker spatialisation. The challenge of

artificial audio spatialisation is thus addressed in a complete manner, placing the

specifics of HRTF processing in the context of the broader, cross-disciplinary

literature.

This introductory chapter will briefly discuss the wider fields of relevance to

the work. Significant (mainly didactic) references will be offered; more detailed

 14

references will be cited where more appropriate in later chapters. The chapter

concludes with a discussion of the contribution of the thesis.

1.2. Background

1.2.1 Sound Waves

Sound is essentially a mechanical disturbance transferred through a medium. It

travels as a longitudinal wave, transferring energy from molecule to molecule. It can

thus be quantified in terms of velocity. In a typical scenario, the medium in question

is air, but this is by no means exclusive. As energy is required to disturb the

medium’s molecules, the intensity of the disturbance is reduced with distance. The

disturbance will generally emanate three-dimensionally, thus the energy dissipates.

This reduction is a frequency dependent process (high frequency will inherently

loose energy more quickly).

An understanding of sound is often presented from a cumulative point of

view. A repeating pattern of molecular disturbance will imply a periodic wavefront

and lead to a pitched sound. The simplest form of periodic sound source is generated

by a sinusoidal oscillation. More complex, ‘real world’ sounds can be thought of as

sums of various sinusoids, at different frequencies and amplitudes and with different

temporal evolutions. For more details, see [80 and 59].

1.2.2 Sound Perception

Psychoacoustics can be defined as the study of sound perception. As discussed,

sound is an intrinsically physical phenomenon. The molecular displacements

involved arrive at the eardrum, after being ‘processed’ (in the natural sense of the

word) by the external ear. The various reflections occurring due to the complex

 15

shape of the pinna (see stylised schematic, figure 1.1) and enclosed nature of the

auditory canal affect the incoming sound in a frequency dependent way. The

eardrum transfers the air displacement to a mechanical vibration of the small bones

in the middle ear, which amplify the vibrations. This energy creates waves in the

incompressible fluid contained in the Cochlea (in the inner ear). The Basilar

Membrane is displaced by these waves and reacts at different locations to different

frequencies (see the straightened Cochlea in figure 1.2). Hair cells on the membrane

trigger nerve firings in the Organ of Corti, which sends the signal to the brain for

higher processing. The Basilar Membrane thus acts as a (logarithmic) frequency

analyser. The resolution of this analysis is dictated by Critical Bands, which define

the difference in frequency required for sinusoidal sources/components to be

perceived as separate. Critical Bandwidth (which is again frequency dependent) can

be modelled using Equivalent Rectangular Bandwidth (ERB) filters (ERB essentially

relates filter centre frequency with effective critical bandwidth).

One of the most pertinent points of note with regard to psychoacoustics is the

subjectivity of the area. Indeed, research in the field typically involves subjective

testing to arrive at statistical norms. Further detail on psychoacoustics can be found

in [80, 182, 40 (some interesting discussions of the topic), 143 (more experimental

details) and 27 (details on perception of complex auditory scenes)]. Of particular

interest in terms of this work is the perception of spatial audio, which will be

discussed in the next section.

 16

Figure 1.1: Ear schematic

Figure 1.2: Cochlea (straightened)

1.2.3 Sound in Space

In order to recreate spatial auditory scenes, an understanding of the spatial hearing

system is crucial. Environmental processing is also typical of common listening

scenarios, so should also be addressed. This section discusses these topics, as well as

offering an introduction to artificial spatialisation.

1.2.3.1 Spatial Hearing

Sound localisation refers to the ability of a subject to establish the position of a

sound event in their sonic environment. The binaural nature of the auditory system

 17

provides the primary cues used to localise a source. If a sound source is located to

the right of a listener, the right ear will receive the source signal slightly before, and

at a slightly higher level than the left ear. These signal discrepancies are used to

locate the source and are labelled Interaural Time and Intensity Difference

respectively (ITD and IID). The auditory system performs extremely accurately in

optimal conditions, with localisation blur of 1 degree reported [93] (more real world

scenarios perform less accurately).

Generally, ITD provides salient localisation cues at lower frequencies and

IID at high. As time differences are eventually understood as phase differences

(IPDs), which are ambiguous at higher frequencies due to the periodic nature of

phase, ITD breaks down above 1500 Hz. Intensity based differences are prone to

diffraction effects, which are more notable at lower frequencies; IID is therefore a

more reliable cue at higher frequencies.

Monaural information can also provide (secondary) localisation cues. Pinna

filtering can aid in localisation in the median plane (where interaural cues will be

minimal). Sources at the same angle from the subject’s median plane originating

from the front and back will imply very similar interaural differences. Extrapolating

to three dimensions (considering elevation), several source locations will imply the

same interaural cues in the so called ‘cone of confusion’. Spectral differences can be

helpful in this scenario.

In reverberant environments, the Precedence Effect, or more self-

descriptively the Law of the First Arriving Wavefront states that the auditory system

will localise according the first arriving wavefront in a reflective environment (or a

scenario involving any swiftly successive correlated sounds). This spatial integration

occurs up to 30 msecs. Early reflections in reverberant environments will thus not

 18

excessively degrade localisation ability. Sound localisation abilities and restrictions

have consistently inspired and informed this work. More detail on the topic can be

found in [80, 21 and 101].

1.2.3.2 Spatialisation

Sound spatialisation refers to the artificial placement of a sound source at a particular

location within a subject’s spatial environment. Solutions to and applications of

sound spatialisation constitute the body of this work, and will thus be discussed in

detail in later chapters.

Several approaches can be taken to sound spatialisation. Broadly, two general

techniques can be identified: loudspeaker and headphone methods. Both are

discussed in this work, although focus is placed on headphone based binaural

algorithms. An introduction to binaural spatialisation is available in [14] where the

headphone approach is advocated for control reasons.

1.2.3.3 Head Related Impulse Responses and Transfer Functions

Head Related Impulse Responses (HRIRs) describe how sound from a specific

location is altered from source to tympanic membrane. When represented in the

frequency domain (discussed below), HRIRs are known as HRTFs (and will be

hereafter referred to as HRTFs unless specifically in reference to the time domain).

Each point in a subject’s spatial environment will be represented by a unique pair of

HRTFs (1 each for the left and right ear). All localisation cues mentioned above will

be encompassed in these HRTF pairs.

Generality of the HRTF is achieved as it is a response to a frequency

rich/impulsive signal, so detail is available for frequencies of interest. The HRIR is

obtained using binaural recording techniques to capture how the ear responds to this

 19

impulsive signal (the impulse response of the ear). A comprehensive review of

binaural, HRTF-based spatialisation is given in chapter 2; for an introduction, see

[14].

1.2.3.4 Environmental Acoustics

Of particular interest in the context of this work is how sound behaves in an enclosed

space (for example a concert hall). A sound source in such an environment will

arrive at listeners not only directly from the source, but also after reflecting off the

various boundaries in the environment. This phenomenon is known as reverberation

and remains a topic that merits vast amounts of research. These reflections will tend

to be specular when the wavelength of the source sound is smaller than the

boundary. In the opposing case, larger wavelengths will behave in a more diffuse

manner. Typical sound sources of interest may have components which behave in a

partly specular, partly diffuse manner.

Reflective surfaces will also absorb some of the source sound’s energy, once

again, in a frequency-dependent manner. Inherently, this reverb can be categorised in

terms of the time it takes to dissipate: the reverb time, or T60; the 60 here referring to

a reduction in 60 dB. Reflections can trace recursive paths, leading to emphasis

being afforded to particular frequencies. This modal response can characterise a

listening space and can dominate at low frequencies.

1.2.4 Digital Audio

Digital encoding offers a flexible, efficient and accurate means of storing and

processing audio. In this work, audio will be manipulated as Pulse-Code Modulated

(PCM) digital signals. In PCM form, audio is stored as samples representing the

amplitude of a signal at given points in time. Samples are taken at regularly-spaced

 20

intervals, defined by the sampling period, which is the inverse of the sampling rate.

The sampling rate of a signal dictates its frequency resolution. Specifically,

frequencies up to half the sampling rate (also called the Nyquist Frequency) can be

represented accurately. The popularised sampling rate of 44.1 kHz thus fits well with

the human optimal hearing range of 20 Hz – 20 kHz.

Audio or indeed any type of signal can be represented in several ways.

Traditionally, audio is viewed, edited, processed and auditioned in the time domain

(which represents how audio energy causes pressure changes in the medium over

time, as above). However, the frequency domain can provide more useful insights

into the properties of the signal in certain scenarios.

1.2.4.1 The DFT and the STFT

Frequency domain signals are sampled in frequency as opposed to time. The

significance of this representation is highlighted by the frequency analysis basis of

the auditory system. Individual sinusoidal components of a signal can be examined,

and their magnitude and phase can be extracted in the frequency domain. The former

quantifies the relative strength of the signal at each frequency in the analysis, the

latter, the phase/starting point of the component relative to a full cycle.

The Fourier Transform and its inverse allow transparent transfer from one

domain to another. When considering discretised digital audio, the Discrete Fourier

Transform (DFT) is appropriate. The spectral representation offered by the DFT is

inherently time invariant. The number of samples analysed in each transform is

defined by the analysis window. Magnitude and phase values (derivable from the

rectangular form output: the complex sinusoid at each bin frequency) essentially

represent the parameters of the sinusoids required to recreate the analysed signal.

The inverse transform combines these component frequencies to transparently return

 21

to the time domain. The interaction of the various relative frequencies, magnitude

and phase of the components reintroduce temporal information. A large analysis

window will lead to higher spectral resolution, but, by design, more temporal

averaging.

The DFT outputs spectral details from –Nyquist Frequency to Nyquist

Frequency. Therefore, an analysis of 128 samples will yield 128 complex numbers

(essentially 256 values). As audio is a real signal, negative frequencies are complex

conjugates of their positive counterparts. Optimisation can thus be achieved by only

storing the positive values; an output of half the number of complex numbers, plus 1,

as both 0 Hz and the Nyquist Frequency are required. However, both of these

frequencies will be represented by purely real numbers. Therefore, they can both be

stored in the memory required for one complex number. Thus the input and output

buffers used in the transform can be the same size. The Fast Fourier Transform

(FFT) further optimises the DFT.

The Short-Time Fourier Transform (STFT) offers additional development of

Fourier theory. Dynamic signals are dealt with by windowing the input and output

signal and processing the input in overlapping sections. The STFT can follow

dynamic spectra and reduce smearing caused by rectangular windowing (essentially

by employing non-rectangular windows such as inverted-raised cosine windows).

1.2.4.2 Digital Filters

HRTF processing can be seen as a filtering operation in binaural spatialisation. In

Digital Signal Processing (DSP), filters are used to process signals, and are

characterised by their respective filter equations. A generalised filter equation is

offered in equation 1.1.

 22

,

 (1.1)

where represents output (and its N delays, where N is finite) and input

(and its M delays, where M is finite). A filter’s transfer function describes its output,

in terms of its input.

 , (1.2)

where represents filter output, input and transfer function. can

also be shown as a ratio of polynomials. The numerator relates to input delays

(feedforward); the coefficients and denominator, output delays (z is a complex

variable).

 (1.3)

Filters thus combine delayed versions of signals. Finite Impulse Response (FIR)

filters delay copies of the input to the system. Infinite Impulse Response (IIR) filters

have feedback elements, using delayed copies of the output of the system. Filters are

elegantly described on the unit circle in the complex z plane. Here, z refers to a

complex variable, which maps frequency onto the unit circle (the transfer function’s

domain is the z plane:). The top half of the unit circle represents frequencies

 from 0 Hz to the Nyquist Frequency, where and sr is the

sampling rate (in Hz). The z plane is illustrated in figure 1.3, below.

 23

Figure 1.3: The z plane

As shown in equation 1.3, the transfer function of a filter can be put in terms of a

ratio of two complex polynomials. Zeros of the numerator correspond to the transfer

functions zeros and the zeros of the denominator correspond to the transfer function

poles. These can be plotted as specific locations in the z plane. The magnitude

response of a filter at a particular frequency can thus be inferred by the location of

poles and zeros on the unit circle representation. Essentially, zeros are locations in

the z plane which reduce the output magnitude of adjacent input frequencies (if a

zero is on the unit circle, output will theoretically be 0), measured on the unit circle,

. Poles, conversely, result in a boost to adjacent frequency inputs (and a

theoretically infinite output to poles on the unit circle). Mathematically, zeros can be

thought of as the roots of the numerator, and poles the roots of the denominator of

the transfer function. Locations on the plane near to a zero will result in lower

magnitude response than those further away. Conversely, magnitude response at

locations near to a pole will be greater than those further away.

 24

This raises an important concern. If poles lie outside the unit circle, the

magnitude of the pole is greater than one, which can lead to stability issues with the

system. A system must therefore have all poles within the unit circle to be stable. A

number of comprehensive texts on the topic of digital audio signal processing are

available, including [194, 144, 159 and 203].

1.2.4.3 Convolution and HRTFs

Convolution can be used to impose the characteristics of one signal upon another.

Perhaps the most intuitive example of this lies in the domain of artificial

reverberation; a room’s impulse response can be imposed on an arbitrary signal

using convolution. Similarly, a HRTF can be imposed upon an arbitrary signal.

Convolution can be a costly process when performed in the time domain. The

convolution of the signal with the impulse can be defined as:

 (1.4)

Thus time domain convolution is essentially a translate and scale operation, which

can become extremely computationally expensive for longer impulses [195 (further

insight is offered in chapter 3 with respect to implementation)].

Time-domain convolution is equivalent to frequency-domain multiplication

and vice versa [159]. Therefore, the convolution operation can take advantage of the

FFT. A much more efficient process is thus implied, particularly as impulse lengths

get longer. HRTF spatialisation can thus be understood as a spectral process; analyse

the source signal and the HRIR, and alter the source in the same way the external

auditory system does. The magnitudes and phases of the input signal are

boosted/attenuated and delayed in accordance with the HRTF. Typically, an overlap-

add convolution technique is used to segment the signal into appropriate buffers. The

 25

output of the convolution will be longer than the input signal (its length will be that

of the input + that of the impulse - 1). Overlapping sections will be added to the next

buffer output. If dynamic HRTF processing is desirable, the STFT may be required

to remove any discontinuities as HRTF filters change from process to process.

1.3 Thesis Contribution

A comprehensive review of binaural spatialisation is offered in chapter 2, which

concludes with a detailed critique of the assumption that HRTFs can be modelled as

minimum-phase plus linear delay systems. Conclusions motivate a re-evaluation of

traditional approaches to binaural spatialisation.

 Chapter 3 introduces two novel approaches to dynamic HRTF spatialisation.

Again, some commonly held assumptions in the literature are challenged in a

detailed study of phase unwrapping. The conclusions drawn serve to formalise the

suggested novel algorithms.

 Implementation of these algorithms is discussed in chapter 4. A significant

portion of this thesis is dedicated to the discussion and dissemination of the many

nuances involved in efficient implementation of often complex signal processing

techniques. Objective and subjective validation of the theory and implementation of

the novel algorithms is also offered.

 The potential of the novel algorithms is explored in chapter 5. Firstly, a

review is offered of artificial reverberation, from a binaural perspective. A

reverberation framework is then developed. A re-appraisal and update of classic and

more modern techniques is offered as a flexible, efficient solution.

 Application of the developed techniques is discussed in chapter 6, as

development culminates in a software application which aims to integrate the

(generally mutually exclusive) loudspeaker and headphone based approaches to

 26

sound spatialisation. The developed tool allows for the versatile and dynamic

audition of any multichannel loudspeaker/multiple sound source setup in

headphones.

 Concluding comments and possibilities for further work are offered in

chapter 7. A hard copy of more relevant publications and code is offered in a

separate volume of appendices. Additional material is available on the

accompanying CD-ROM.

1.4 Conclusion

This chapter introduced the context of the novel aspects of this thesis. Essentially, a

reappraisal of HRTF based spatialisation will be offered, including a rigorous review

of generally accepted practices. New methods for HRTF interpolation will be

suggested and validated. Binaural environmental processing will also be considered.

An integration of headphone and loudspeaker techniques will essentially practically

apply the techniques developed.

A background to the most significant disciplines relevant to the thesis is also

offered. Finally, contributions of the various sections of the thesis are listed.

 27

 28

Chapter 2. Binaural Audio: Literature Review

2.1 Introduction

HRTF based research has essentially mirrored the relatively recent growth in DSP

development and research, spurred on by ever faster processing power and the

burgeoning field. Physical investigations of the effects of outer ear anatomy drove

initial HRTF insights [for example, 135], which were followed by early attempts to

utilise the HRIR as a spatialisation tool [for example, 102]. The interpolation of

HRTFs thus swiftly became a pertinent research topic.

Several different approaches to binaural research result in developments in

the area, with two forerunners. The first involves studies in acoustics and

psychoacoustics, which require accurate models of binaural hearing, and, in turn,

provide the raw material necessary for binaural system development. The second is

the more computational discipline of binaural system development, with various

motivational applications, including aeronautics simulation systems, virtual reality,

teleconferencing and gaming. Since the initial realisation of the potential of binaural

systems, research has tended to trend towards ever more efficient ways of

representing the HRTF, minimising processing and storage. Here, a more empirical

approach is suggested after considering the literature. Results (see section 4.3)

indicate the success of this approach.

A review of the vast literature on the topic follows, which aims to discuss in

some detail the more prevalent approaches to HRTF processing and interpolation.

 29

2.2 Literature Review

Perhaps an appropriate place to start in any literature review on the topic of binaural

system development, is Begault’s ‘3d Sound for Virtual Reality and Multimedia’

[14]. This publication puts the problem into perspective, providing an eminently

readable account of the challenges involved in the area. Begault raises an apt point at

the offset, highlighting the often confusing or even apparently contradictory

terminology used in this relatively young field of research (for example ‘virtual

reality’, would perhaps be better served by the term ‘virtual environment’).

Another insightful point made here is that although vision is unquestionably

dominant over hearing from a sensory point of view (a point often mentioned in the

literature), audio possesses a unique ability to inspire imagination and enhance

sensory experiences. It is the relative lack of sensory data that an audio-only

presentation constitutes that allows it to engage higher-level cognitive processing.

Audio is therefore deemed essential in multi-modal virtual environment processing.

The book discusses the many design issues, and candidly describes the challenge for

the system designer as a ‘juggling act’, referring to the desired balance between

accuracy and processing costs.

2.2.1 Acquiring HRTFs

Using HRTFs in a binaural processing system assumes availability of an accurate

HRTF dataset. Measuring the HRTFs of a human subject can be time consuming and

difficult, with a high degree of accuracy required. Typically, a subject sits still in an

anechoic environment. A signal is then played from a specific angle and the response

captured by microphones close to the eardrum/at the entrance of the ear canal [7].

 30

The signal used can be an impulse, or for better signal to noise ratio (SNR), a

longer signal such as a maximum length sequence/Golay sequence or swept sine.

The impulse response in these cases can be derived using de-convolution. The

necessity for precise equipment, a patient, static subject and expensive anechoic

environment highlight the impracticalities involved. Equalisation of all equipment

must also be considered, adding another step in the process, increasing potential for

impulse response contamination. This applies to both HRTF acquisition and

reproduction in a potential spatialisation system (specifically headphone response).

In a related matter, acoustic coupling with various headphone styles for reproduction

are discussed in [191]. Cavities created by circumaural headphones, for example, can

alter the frequency response at the eardrum.

In [105], the authors state that dataset measurements typically take 1.5 hours.

Recently, in [18], an automated HRTF measurement system is suggested. A user

moves his/her head in line with an LED lighting system. Golay codes are used as

source signals, and the resulting impulses are stored as minimum-phase signals

(interaural delay is calculated using energy onset detection). Again, the authors

highlight the many issues involved with regard to apparatus interference. This

measurement technique is used in the SLAB application [224].

Conveniently, a number of databases of pre-measured HRTFs have been

made available by the various research teams involved. The MIT dataset is used here

[142]. Measurements were made in an anechoic chamber in 1994, using maximum

length techniques. The KEMAR (Knowles Electronics Mannequin for Acoustics

Research) dummy was used [31]: a manikin designed using averaged human

measurements (the principal source used was 4852 subject measurements). In [31],

details are given on the care taken in design of such an instrument and the subtleties

 31

involved that can alter the ear response. The symmetry of the manikin allows for two

different datasets to be captured in one measurement process by using different

pinnae. Only one half of the dataset is required, as, for example, the response for the

left ear at 90 degrees is equal to that of the right ear at 270 degrees. To remove the

response of the measurement system and the ear canal, free field (with respect to a

particular location) or diffuse field (with respect to an average over all directions)

equalisation can be applied [93]. A diffuse field equalised dataset is made available

(thus non-directional data is removed), truncated to 128 samples (removing the delay

caused by the distance from the speaker and system latency).

The CIPIC database is also freely available [4]. In contrast, this database

consists of measurements from individual subjects. 1250 measurements were made

for each ear, with 27 anthropomorphic measurements for each subject. Attempts to

correlate anthropomorphic measurements had mixed success. For example, very

little correlation was found between head height and pinna height. From the point of

view of HRTFs, ITD and head width correlate strongly. The LISTEN database also

offers individual HRTF sets [124].

Another approach to HRTF representation is the more functional spherical

head model. In [3], the authors set out to derive the most accurate radius for a

spherical head model. The literature suggests 8.75 cm, but is variable. They use

Kuhn’s findings [108] that a Woodworth Model (a spherical-head geometric model)

[228] fits empirical high frequency ITD well, and that low frequency can be

relatively increased. Their study is motivated by the fact that a spherical head is

often used in binaural research as a simple model, so accuracy of head radius

theoretically improves results.

 32

In [5], the authors elaborate on the difficulty in empirically measuring

HRTFs, pointing out that low-frequency response is difficult to capture, due to the

windowing of the response and the physical size of the loudspeaker. Rectangular

windowing of the response is a common practice, to remove reflections (even good

anechoic rooms exhibit some low-frequency reflection, also there may be reflections

from the apparatus) and reduce the length of the impulse response. Accurate low-

frequency output requires a relatively large speaker, which can be awkward in a

situation where a movable, flexible emitter is needed. In these scenarios, HRTF

processing can sound unnaturally thin. The spherical-head model can provide good

low-frequency response, but suffers from the omission of torso reflections (as well as

the pinna, as discussed in [37]). Torso reflections are considered in the model

presented in [5]; they cause a combing effect, which begins as low as 600 Hz for

elevated sources. The authors do concede that the resulting HRTF can only be

described as ‘primitive’, as it does not consider non-linearities in the head shape, and

more significantly, omits the pinnae. Therefore high frequency detail is not

addressed. An interesting solution is suggested, whereby a HAT (head and torso)

model’s magnitude spectrum is used at low frequencies, and empirical HRTF

magnitude for higher frequencies. The HAT phase spectrum is used throughout, as

high frequency phase information is less significant.

A spherical head model is used in [55] to investigate range dependence of the

HRTF, concluding that ITD does not change strongly over distance, but IID does.

These changes in IID become significant for ranges less than 5 times the head radius.

In [7], the authors again use a spherical head model in an investigation of the

contralateral (further from source) HRTF (as opposed to the ipsilateral, which is

nearer to the source). Interestingly, in analysing the contralateral HRTF, the authors

 33

conclude that it is a complex function which ‘frequently exhibits non minimum-

phase’ traits (the significance of minimum-phase will be discussed later in this

chapter). Ultimately, the study models the contralateral HRTF as the appropriate

ipsilateral HRTF low-pass filtered and delayed by the appropriate amount (in

accordance with ITD). A 5 degree error result (relatively good) is reported.

Difficulties caused by the contralateral HRTF are also discussed in [37]: it has

potential for low SNR due to lower signal level and possible measurement noise.

Although there clearly are difficulties involved in acquiring HRTFs, the

empirical approach is generally favoured. The time, expense and potential pitfalls

involved in making HRTF measurements imply the desirability of a generalised

HRTF dataset. The MIT dataset, discussed above, is an attempt to provide such a

solution.

2.2.2 Individualised Datasets

In [221], the use of non-individualised HRTFs was investigated. In reviewing the

literature, the authors discuss studies which illustrate that sources spatialised with

individualised HRTFs (in headphones) perform comparably to free-field sources

(e.g. loudspeakers), with some minor degradation: a small increase in front/back

reversals and a decrease in elevation accuracy. The subjective tests performed use

the HRTFs of a ‘good’ listener/localiser (which raises an interesting paradigm: can

listening through the ears of a good localiser teach and improve the localisation

capabilities of a bad localiser? This is not as relevant an issue in the KEMAR,

averaged set). Noise bursts are spatialised and responses are analysed. This often-

cited study concludes that the more subtle elements of spatial hearing are more

greatly affected by using non-individualised HRTFs, i.e. the finer spectral details

which provide front/back and elevation cues.

 34

Analysing this study a little more deeply helps to place auditory localisation

in perspective. Elevation judgements caused particular difficulties. Four subjects (of

the total 16) had difficulties with HRTF elevation judgements, but two of these also

had difficulties with free-field elevation judgements. As well as highlighting the

individual nature of localisation ability, this result also exposes the relative weakness

of vertical-plane localisation.

Reversals were also discussed in detail in this study. Due to the cone of

confusion, sources that are spatialised to the front of the listener are often perceived

from the back (a common occurrence, partially due to the fact that the listener

expects to see a source in front of them). Typically, reversals from front to back

occur, but the opposite were occasionally observed in this study. Also, the previously

neglected up/down reversals were also encountered here. When these reversals were

accounted for, it was concluded that non-individualised HRTFs provide a useful tool

for binaural processing. The study recognises that training, as well as further

interaction, such as a multi-modal system, may improve results. Using a more

generalised HRTF dataset, such as that derived from KEMAR may also help. As

mentioned in [14], reversals are corrected for in most studies. The lack of a visual

stimulus as the cause of reversals is also postulated in [221]. Also, the use of head

movements to reduce reversals is highlighted.

A more recent study [19] which looked at the 3 main suggested

improvements to binaural HRTF systems: head tracking, individualised HRTFs and

reverberation processing found no significant difference between using

individualised HRTFs and those of a dummy head. It is, however, important to

highlight that this study used only speech as a test source (a wider band source may

reveal difficulties with the non-individualised data; equally, depending on the

 35

desired application, speech sources may be the primary audio source, so non-

individualised HRTFs may be ideal).

In [214], the authors conclude that using individualised HRTFs offers

improved presence over non-individualised results. Presence is an important factor in

virtual environments, providing a more convincing spatial scene. Efforts to provide

individualised HRTFs without the need for measurements have also been

documented. In the approach presented in [235], a photo of a subject’s external ear is

analysed. An attempt is then made to match this data to the closest dataset available

in the CIPIC database [4], which, as discussed above, includes anthropomorphic

data. The user marks features on the photo (as well as providing a reference length)

and a best fit approach is taken. Interestingly, due to potential (/common) lack of

symmetry, each ear is processed separately. In this study, a HAT model is used for

low frequencies, as above. The authors report that the HAT model works well, but

individualisation is less successful.

In another approach [176], a 3D mesh of the subject’s ear is used. A ray-

tracing algorithm is then employed to model HRTFs. This work, although

preliminary, is promising for HRTF individualisation.

2.2.3 HRTF Data

Once acquired, HRTF datasets typically constitute the primary component of a

binaural artificial spatialisation system. A large portion of HRTF based research,

particularly in the DSP domain, has focused on analysing the data in order to reduce

it from a perceptual, processing and storage point of view. The majority of

implementations use a minimum-phase plus delay approach to HRTF representation.

That is, the HRTF is broken into a minimum-phase system and an all-pass system.

The all-pass system is assumed to have a linear phase response, and is thus

 36

interpreted as a pure (frequency independent) delay. Briefly, the main benefits of this

decomposition are: phase spectra can be derived from magnitude spectra in

minimum-phase systems; also, minimum-phase systems imply a compact filter. This

assumption is discussed in detail later in this chapter, where a critique is also offered.

The interpolation of HRTF data is a topic that has motivated an even greater body of

research. Essentially, the main aim here is to accurately portray non-measured points

(the dummy head/subject measurements mentioned above are discrete; all locations

cannot be considered). The minimum-phase plus delay approach is prevalent in both

HRTF data analysis and interpolation, to the point that studies that do not use the

approach are highlighted, where significant, below.

2.2.3.1 Analysis and Representation

Approach Data Pre-processing

Requirements

Relative Storage

Requirements

PCA [105] Minimum-phase

transform, analysis to find

basis functions

Low

Spherical Harmonics [57] Spherical harmonic

decomposition, ITD

processing

Low

SFRS [38] Minimum-phase

transform, representation

preparation

Standard

Psychoacoustic

Smoothing [29]

Complex filter derivation Low

Current Work None (discussed below) Standard

Table 2.1: Various approaches to HRTF data analysis

In [105], a Principal Component Analysis (PCA) approach is taken. In the analysis,

the authors found 5 basis functions which can account for 90% of the magnitude

spectra (remembering the minimum-phase approach, as above) of the HRTFs of 10

measured subjects. The work draws an analogy to Fourier analysis when describing

the method: PCA analyses the HRTF magnitude functions in the same way as the

 37

Fourier Transform analyses a signal; PCA outputs a set of basis functions, the FT

outputs a set of sinusoidal components. Each magnitude spectrum is theoretically

reconstituted by combining the resulting basis functions with appropriate weights.

The study also subjectively evaluated the approach. PCA-based HRTFs performed

well when compared with empirical HRTFs, providing a reported ‘adequate’

approximation. Interestingly, the first basis function appeared to deal with elevation,

while the other 4 higher frequency ones deal with front-back and horizontal-plane

localisation, broadly.

A continuous, functional representation of HRTFs as spherical harmonics up

to degree 17 is presented in [57]. The spherical-harmonic paradigm is also used to

decompose the soundfield in ambisonics: the multichannel analysis, storage and

reproduction solution. The goal here is a continuous measurement to avoid

discretisation. Again, the process is analogous to the sinusoidal FT; in this case, the

analysis produces harmonics on a sphere. The study reports good results, particularly

when the analysis is performed in the frequency domain.

These decompositions of HRTFs into functional representations are reviewed

and discussed in [120]. The advantages of decomposition to a functional

representation are stated explicitly: compact HRTF representation and ease of

interpolation of HRTFs. PCA, Independent Component Analysis (ICA) and spherical

harmonics are discussed. Another benefit of the functional approach is that every

source in a multiple source scenario can be processed with the same filters, with

different gain factors, so computation costs are reduced.

A more representation-focused approach is offered in [38], from the larger

scale [36]. The concept of Spatial Frequency Response Surfaces (SFSRs) is

introduced. Essentially, this involves a colour plot for each frequency bin in the

 38

HRTF analyses. Each plot uses colour height to illustrate the energy at different

azimuths (x axis) and elevations (y axis). Various frequency ‘hotspots’ are discussed

and explained physiologically.

In [30], HRTFs are reduced to critical-band filters, each defining a left and

right magnitude and an interaural phase. In a similar study [29] successful smoothing

of HRTFs to the resolution of a gammatone filter (which models the cochlea) is

reported. Three subjects were asked to listen for differences in musical samples

processed with empirical and smoothed HRTFs of varying filter order (further

smoothing was implied by reducing the order of the band-pass filters used to emulate

the cochlea). This reduction in filter complexity will be further discussed below, in

the context of deriving appropriate directional filters for HRTF processing.

2.2.3.2 HRTF Interpolation

Although some studies focus solely on the representation of HRTF data, data

analysis is often performed with HRTF interpolation in mind. Therefore HRTF data

analysis, representation and interpolation are often intrinsically linked. Interpolation

is required in two scenarios: the first involves statically spatialising virtual sources at

non measured locations; the second involves moving sources through dynamic

trajectories. In the first case, interpolation essentially constitutes improving the

spatial resolution of the dataset. Consequences of omitting interpolation may not be

severe in this application of HRTF processing. Provided the dataset is relatively

dense with respect to the Minimum Audible Angle (discussed in more detail below),

simply using the nearest measured HRTF may be sufficient.

The second scenario: dynamic sources moving around a listener’s (virtual)

spatial environment requires interpolation more urgently. Simply switching the

HRTFs being used from one to another as a nearer measured location becomes

 39

available may cause an audible discontinuity. This is discussed in [107], which

suggests various crossfade methods to avoid this perceptual discontinuity.

Objectively, a windowed overlap-add process performed best (compared to square

root, cosine and Fourier based fade in/out envelope shapes).

Reference Method Comments

Convolvotron: Early

Approach [222]

HRIR mixing, time

domain

Combing Effects

Convolvotron: updated

[14]

Minimum-phase HRIR

mixing, time domain

Improvement on above

 [233] Spherical head model,

magnitude interpolation,

frequency domain

n/a

SFSRs [38] Inherent to representation n/a

[231] Emphasise spectral

differences

Reduces reversals,

improves source

movement

IPTFs [65] Ipsilateral and

contralateral difference

used

n/a

[1] Invert source-listener:

emit source from eardrum

n/a

[211] Phase Vocoder based Non-minimum-phase

[76] Filter root alignment n/a

Table 2.2: HRTF interpolation summary

Perhaps a natural initial attempt at HRTF interpolation is to simply mix adjacent

HRIRs, an approach initially taken in the ‘Convolvotron’ [222], an early hardware

implementation of HRIR based artificial spatialisation (for more detail, see [14]).

However, the authors report unnatural combing effects for dynamic sources. Time-

domain interpolation of this nature (using empirical HRIRs) is problematic, as

adjacent HRIRs may have different inherent delays. Therefore, interpolation of an

impulse with a pre-impulse delay (leading to smearing of the two impulses), or

cancellation (a pressure trough corresponding with a pressure peak) may occur

(illustrated in figure 2.1, below; also discussed and illustrated in [14]).

 40

Figure 2.1: Three plots illustrating an extreme example of the problems with time-

domain interpolation; a HRIR for 0 degree elevation, 0 degree angle (top) mixed

with that at 0 degree elevation, 45 degree angle (middle). The result (bottom)

illustrates pressure peak and trough cancellation and time smearing.

 41

This difficulty was observed in the study, and a minimum-phase plus delay approach

was suggested to avoid differences in arrival time (see also [14]). This minimum-

phase based approach was then implemented in the next generation Convolvotron.

Interestingly, in this study, a high perceptual tolerance to interpolation was reported.

Interpolating by combining adjacent impulses can be performed in the time

or frequency domain. The frequency domain is more suitable, as it allows

representation of data as magnitude and phase values, which correlate to intensity

and time differences when considered binaurally. The frequency domain therefore

represents a higher level of binaural processing than the pressure fluctuations of the

time domain. This is confirmed in [77], which concludes that frequency-domain

interpolation is superior. Objectively, if intermediate measurements in a HRTF

dataset are removed and replaced with interpolated versions, success of the

interpolation algorithm can be inferred by comparing the interpolated and empirical

HRTFs. This study ([77]) did not use minimum-phase HRTFs, but did remove the

initial inherent delay to avoid the time domain problems discussed above.

Interpolation methods used were spherically-weighted four-point interpolation and

spherical-spline interpolation. Polynomial-spline interpolation considers the whole

dataset, as opposed to just the nearest measured values, so has the potential to be a

more comprehensive and accurate approach. However, it is considerably more

computationally costly. Spherical-spline interpolation gave best results. In [153],

however, linear interpolation performed better than spline interpolation in a

minimum-phase-based frequency-domain process when a relatively small number of

HRTFs were used in the interpolation procedure.

In implementing frequency domain interpolation, phase values need

particular attention. As phase is a periodic quantity, direct interpolation may result in

 42

error. This is illustrated in the figure 2.2, below; 2 phase values are shown, 10

degrees and 50 degrees. A phase value for a HRTF half way between these measured

values will be assumed to be 30 degrees in a linear interpolation scenario. However,

the 50 degree phase value may actually imply 410 degrees, i.e. 50 degrees plus 1 full

cycle. It is not clear how this phase interpolation issue is dealt with in the above

study [77].

Figure 2.2: Phase interpolation

This flawed nature of phase interpolation is discussed in [233], which notes that a

highly populated dataset can minimise this problem for low frequencies, in

accordance with a Nyquist criterion (the same authors describe the HRTF

interpolation problem as an ‘open research question’ in [234]). The more complete

solution suggested in forthcoming chapters is motivated by a desire for accuracy

across all frequencies. The apparently appropriate solution of phase unwrapping is

also discussed in forthcoming implementation chapters, which conclude that phase

unwrapping cannot be deemed an infallible approach.

Considering the arrival time in empirical HRIRs and interpolating in the time

domain is examined in [130]. Interestingly, in this scenario, a linear interpolation

 43

algorithm performed better than spline and DFT-based (essentially over sampling

using vectors of every ith HRIR sample) algorithms.

In a study of the often neglected median plane [154], objective tests (on

minimum-phase, magnitude-spectrum interpolation) suggest spline interpolation is

best for sparse datasets and linear for more densely sampled data.

Required spatial resolution of the empirical dataset is also an important

consideration. In [140], linear, time domain minimum-phase interpolation suggests

that the number of empirical measurements can be greatly reduced, thus reducing

storage requirements. Different regions also appear to require different resolutions.

Audible differences in the magnitude spectra of HRTF filters were

investigated in [78] (differences in ITDs were not included). Overall, a poor ability

to recognise differences of 1 degree was reported, rising swiftly to excellent ability at

16 degree differences. Elevation differences were more sensitive. The smallest

audible change in location is known as the Minimum Audible Angle (MAA) [143].

Also particularly relevant in the context of development of an artificial

spatialisation system is ability to perceive changes in directional location of moving

sources. In [74], the author concludes that ‘the auditory system is relatively

insensitive to motion’. Experiments also illustrate high individual differences. The

amount of source movement for a moving, as opposed to static, source to be

perceived is known as the Minimum Audible Movement Angle (MAMA). Figures of

8.3 degrees at 90 degrees/sec and 21.2 degrees at 360 degrees/sec are given in [161]

(suggesting that extremely fast motion can be afforded low priority in artificial-

spatialisation tasks). Interestingly, this work [161] also highlights the apparent lack

of studies on moving sources (albeit in 1977), perhaps due to practical limitations

(literature on static localisation is described as ‘enormous’). The study also states

 44

that extrapolation of dynamic localisation from static results may not be valid. The

area is further reviewed in [143].

Several other approaches to interpolation of HRTFs exist, for example, the

SFSRs discussed above [38] inherently incorporate interpolation, as part of the

process of deriving the spatial plots. In an interesting approach [231], front/back

reversals are reduced and moving source perception improved by emphasising

spectral differences (essentially suppressing less prominent spectral components). In

[65] the authors build on the idea of processing the mono input to their spatialisation

application with the ipsilateral HRTF for the ipsilateral output, then this result with

the contralateral HRTF divided by the ipsilateral to arrive at the contralateral output.

The Inter-Positional Transfer Function (IPTF) is developed from this technique. It

essentially represents the ratio of a HRTF with its neighbour. When performing

HRTF interpolation, these IPTFs are used in place of empirical measurements for

nearest neighbouring HRTFs. The benefit of the method is the ability to represent the

IPTF as a lower order function.

The typical source-receiver model is inverted in [1]. The analysis source is

emitted from the eardrum, and recorded using a circular array. The resulting spatial

frequency implies 5-degree resolution is necessary for derivation of a complete

dataset. Possible aliasing at higher frequencies is implied by the Nyquist Theorem,

solutions for which are suggested in the elaboration in [2]. A similar inversion is

performed in [56], which looks at interpolation as a scattering process. Interpolated

HRTFs (uniquely, in both angle and distance) can be derived by considering an

appropriately spatially sampled scattering solution.

In an interesting non-minimum-phase approach [211], an overlap-add

solution is suggested. Phase Vocoder processing is used for smooth movement

 45

(which conveniently allows for Doppler-Effect pitch processing). MAMA criteria are

suggested, with no interpolation in between points (with 5 degree resolution).

Objectively, analysis appears to show smooth spectral evolution in moving sources.

It is this author’s opinion that subjective tests could verify the method, from the

point of view of omitting interpolation, particularly for slow moving sources at

points in HRTF space where there are relatively large differences between adjacent

measurements.

In [233], magnitude interpolation and a spherical head model for phase are

used. The necessity of frequency domain processing is highlighted, from an ITD

point of view, due to the sensitivity of the auditory system. Finally, in [76] an

interpolation method based on the alignment of the filter roots is presented. Here, the

roots of minimum-phase FIRs are aligned and interpolated in a process that

guarantees a minimum-phase output.

2.2.4 Dynamic Source Processing

Practical considerations when implementing a functioning artificial spatialisation

system include update rates and filter design. In [223], the authors state that a 60 Hz

update rate is required with a maximum of 100 ms latency for smooth motion. Two

possible approaches to dynamic-source behaviour are discussed: output cross fading

and parameter cross fading (essentially updating/interpolating spatialisation

parameters). Conversely, the DIVA system [187] reports that a 20 Hz update rate is

sufficient (with sample by sample processing of delays and gains). The system

discussed in [184], when performing at capacity has a 60 Hz refresh rate, 29 ms

latency and accuracy of 1 degree resolution. The author reports a slight degradation

from actual sources in this scenario (time-aligned time-domain linear interpolation

was used). Further reduction in fidelity leads to further degradation (as expected). In

 46

an interesting, if apparently anomalous observation, ‘clearly audible’ discontinuities

when lower update rates were used appeared to be ignored by participants. In [93],

the update rate is divided into an interpolation period and a commutation period. The

interpolation period may be dictated by hardware constraints, and is listed as

typically 10ms to 40 ms. The commutation period used in the FIR implementation

discussed is the length of a time-domain filter. Essentially, the commutation period

updates spatialisation parameters, in a process that does not necessarily have to

provide accurate static filters

When used in spatialisation tools, HRTFs are implemented as filters. Again,

this section is intrinsically linked to preceding discussions on HRTF analysis,

representation and interpolation. HRTF directional filters can be designed to be FIR

or IIR. A discussion of each implementation is now presented.

2.2.5 HRTF Processing using FIR Filters

Essentially, an empirically measured HRIR can be thought of as an FIR filter. As

discussed above, these HRIRs are typically truncated using a rectangular window,

which may affect the impulse response. Implementation of FIR filters is thus

relatively straightforward as convolution. As discussed, a minimum-phase

transformation is often imposed on these FIR filters, allowing further order

reduction. Interpolation of FIR filters can be performed in the time or frequency

domain, using several algorithms of varying complexity, as above.

2.2.6 HRTF Processing using IIR Filters

IIR models of HRTFs essentially aim to model the HRTF as a recursive process. In

so doing, theoretically significant aspects of the frequency response can be

 47

maintained, while processing costs can be reduced. Therefore, IIR implementations

involve data analysis, representation and interpolation issues.

In [172], IIRs are highlighted as beneficial when low-order processing is

required. The authors concede that optimised IIRs are simply not able to capture all

detail of HRTFs. The difficulty with dynamic processing with IIRs is highlighted. As

the filters have feedback terms, updating coefficients may cause discontinuities

(there are also stability issues). This difficulty is also stated and discussed in [213].

Therefore, coefficients are updated at the sampling rate. Bearing this in mind,

interpolation of IIRs is discussed in detail (in [172]). Filter coefficient interpolation

is compared to pole/zero interpolation. The difficulty in the latter is the matching of

poles/zeros: i.e. which pole from filter A corresponds to which pole from filter B

(assuming they are of the same order)? A structured approach is suggested, whereby

the z plane is divided into bands, each of which contain one pole and one zero, thus

resolving this issue. The difficulty posed by the possibly non-matching number of

real poles and zeros in IIR models to be interpolated is also discussed. Relatively low

objective error measurements were achieved by the structured IIR model (20

poles/zeros), from both a model (14%) and interpolation (19%) point of view.

In [109], the authors address the challenge of finding a recursive filter of a

desired order which best matches the frequency response of the empirical HRTF. An

all-pole model (which lacks anti-resonances/zeros) based on linear prediction and a

least-square (minimises errors between empirical and derived on a dB scale) model

are suggested. Good results are achieved with low order IIRs (six poles and six

zeros). No audible difference was reported for most locations.

In another IIR based study [183], the authors discuss Active Sensory Tuning

(AST) as a potential tool for HRTF interpolation. Essentially, perceptual tests inform

 48

a gradient-search method for pole location between neighbouring HRTFs (basically

following the slope of poles based on least-square error). A genetic algorithm (i.e.

based on previous choices) aids the AST.

In [93], the authors provide a brief historical overview to IIR approximation

of HRTFs, and use a least-square approximation. The difficulty with interpolation of

recursive systems by coefficient update is again mentioned. The authors again

suggest sample by sample processing, or a dual-filter solution, allowing recently

replaced filter coefficients to decay properly. The possibility of a transient response

at the output dictates this requirement, due to the previously mentioned difficulties of

recursion with updated parameters. A frequency-warping technique is suggested to

improve low-frequency resolution (essentially spectrally focusing on lower

frequencies; the topic of warping is elaborated upon in [81]). In this comprehensive

study, the interpolation of IIRs and FIRs is also discussed. Fourier Series/Spherical

Harmonic decomposition is mentioned as an ‘ideal interpolation’, with a linear

model suggested for real-time implementations. Highlighting the

interpolation/commutation paradigm, in a sufficiently dense dataset, only

commutation is needed. The substantial work concludes that IIR and FIR models

have independent benefits, with FIR judged better for dynamic processing. This

conclusion is echoed in [187], which deals with the overall topic of interactive

virtual environments.

In another review of filter design [82], filter order required for adequate

transparency is discussed. In a literature review, order 6 IIRs to order 512 FIRs are

referenced. The differences in order are explained by non-uniformity in the

experiments referenced (it is apparent from this author’s work that this is somewhat

of an issue in the field). Windowing is again discussed, with a rectangular window

 49

proving more transparent than a Hamming window, despite spectral leakage caused

by potential discontinuities arising from any truncation. The benefit of warping the

frequency response in IIR design is also discussed here, specifically fitting the filter

response to a psychoacoustic (as opposed to linear) scale (for example, using ERB).

For 75% of subjects to notice no difference to a reference filter, order 40 FIR, 25 IIR

and 20 warped IIR were deemed sufficient. The study agrees that an FIR approach is

more suitable for dynamic sources. In [83], a further objective analysis by the

research team suggests warped IIRs can be further reduced to order 16.

2.2.7 Discussion

Having considered the literature, it appears that some contrasting information exists

regarding the finer detail of artificial binaural spatialisation. For example, the ideal

filter order, refresh rates, most successful interpolation methods, necessity for

individualisation and other considerations all appear to result in differing

requirements in different scenarios. Definitive conclusions are difficult to make, due

to the varying parameters involved in experiments, as commented in the literature.

Some studies focus more on dynamic processing, others on accurate low-order static

filters. In some cases, audio is combined with virtual visual displays, and some

degree of error is acceptable in return for reduced processing demands. In others,

high-fidelity audio is crucial. A strikingly common theme in many of the studies

quoted is the relatively small subjective groups (for example, the subjective tests

performed in the often cited [111] use only four subjects). It is the opinion of this

author that larger subject groups would provide more reliable data (as is the case in

other, more established statistically-based disciplines). It is with all of this in mind

that a more generic approach is taken to implementation here, discussed in detail in

the next chapter.

 50

It is clear from the literature that many studies have focused on data

reduction, the majority of which use the minimum-phase assumption. The current

work reconsiders the minimum-phase assumption, motivated by initial preliminary

listening tests which suggested an audible difference between minimum-phase and

non-minimum-phase HRTFs. Another aim of this work is to investigate the

possibility of more direct use of HRTF datasets, avoiding the (often complex) data

preparation necessary in many of the above methods, thus rendering HRTF

processing more accessible. A more detailed discussion and critique of the prevalent

minimum-phase assumption follows.

2.3 Minimum-phase

Typically, a frequency domain signal exhibits unrelated magnitude and phase spectra

[159]. However minimum-phase systems (a particular subset) do exhibit a direct

relationship between their magnitude and phase spectra. Bearing in mind the

difficulty in interpolating phase data due to the ambiguity involved (as discussed

above), this is a particularly interesting characteristic. If phase can be derived from

magnitude, phase interpolation becomes unnecessary, as interpolated phase can be

obtained from the relatively straight-forward (and, more significantly, valid)

interpolation of magnitude values.

From a DSP perspective, all of a minimum-phase system’s poles and zeros

must lie within the unit circle. Intuitively, all poles must lie within the unit circle for

system stability. If a system also has all zeros within the unit circle, it follows that its

inverse is stable. Such systems are defined as minimum-phase systems.

Oppenheim and Schafer [159] observe that any rational system function can

be broken into a minimum-phase and an all-pass system. An all-pass system can be

defined as one which has a magnitude response that is absolutely constant with

 51

respect to frequency [203]. Therefore, the magnitude of the minimum-phase all-pass

decomposition is represented solely by the minimum-phase system, and the phase is

reconstituted by both the all-pass and minimum-phase representations.

The system in question can thus be defined as:

 , (2.1)

where is a minimum-phase system and is an all-pass system.

The process of decomposition can be defined thus: any zeros outside the unit circle

in the system will be removed, and inserted into the all-pass system. As the all-pass

function, by definition, has a flat magnitude response, these zeros must be cancelled.

Cancelling poles are thus inserted into the all-pass system, to cancel these zeros.

These cancelling poles in the all-pass function will lie inside the unit circle, and will

cancel the zeros outside. The all-pass function is thus completed, and is stable (all

poles within unit circle). The overall system, however, now contains extra poles (the

cancelling all-pass poles). These are in turn cancelled by adding zeros at the same

location. These zeros will also therefore be inside the unit circle, so can be included

in the minimum-phase system, to avoid a constant cycle of cancellation should they

be included in the all-pass. These zeros are known as the conjugate-reciprocal zeros

of the zeros that lie outside the unit circle in the original system [159].

In summary: contains the poles and zeros of that lie within

the unit circle on the z plane, as well as conjugate reciprocal zeros of the zeros of

 that lie outside the unit circle, which are shifted to . also

contains cancelling poles to satisfy the all-pass definition of constant magnitude

response.

 52

2.3.1 Minimum-phase and HRTFs

Begault defines the HRTF as ‘the spectral filtering of a sound source before it

reaches the ear drum that is caused primarily by the outer ear’ [14]. However, it is

undesirable to use HRTFs that contain the auditory canal response of the dummy

head in artificial spatialisation applications, as the listener, using headphones that

transmit audio from the entrance of the ear canal, is then essentially listening through

two auditory canals, that of the dummy head and their own. This is avoided in the

MIT dataset used here through diffuse field equalisation, as discussed above.

Interestingly, the MIT dataset that contains the system and ear canal response

(the ‘compact’ dataset), on casual observation of the author, often leads to more

exaggerated artificial localisation, perhaps suggesting that listening through both

auditory canals helps improve a sense of externalization by exaggeration.

In [135], the transfer function from the free soundfield to the external ear and

the transfer function of the ear canal are treated separately. The authors decomposed

their measured transfer functions into minimum-phase and all-pass functions in order

to obtain a clear representation of phase without the 2 ambiguity. While doing this,

they realised that the minimum-phase function appeared to contain almost all the

detail of the phase spectrum. It is clear from their illustrations of a free field to

auditory canal entrance transfer function that the all-pass phase does indeed

approximate linearity. Regular large discontinuities in the phase spectra can be

observed, representing jumps of 2 (the periodic nature of phase explicitly

illustrated). The authors surmise that the all-pass phase approaches linearity for the

free field to ear canal function in question. Some non-linearities are however evident.

In the particular case under investigation, the phase spectrum of the all-pass

component clearly deviates from linearity just after 5 kHz, around 10 kHz and

 53

approaching 15 kHz. The paper goes on to assert that the all-pass component of the

full HRTF (including the ear canal response, as defined by Begault [14]) exhibits a

‘nearly linear’ phase response up to 10 kHz; the external ear approximates a

minimum-phase system in this frequency range.

This approximate all-pass linearity provides the key to minimum-phase based

HRTF binaural processing. If linearity is not assumed/valid, the resulting non-linear

all-pass heavily detracts from the method. A linear-phase function can be

implemented as a simple time delay. This time delay can be realised using a time-

domain, frequency-independent delay line; quite a simple and efficient process to

implement. The observation in [135] of approximate linear phase has become an

instrumental factor in binaural HRTF based processing, and has been used in several

studies of HRTFs, as above. However, in this thesis, this minimum-phase

assumption is re-evaluated. Alternatives are developed which do not rely on the

approximations involved. This essentially involves engaging more directly in the

phase ambiguity problem.

The minimum-phase and (assumed linear) all-pass decomposition of HRTFs

thus results in three data objects: The minimum-phase filter for the left and right ear,

and the delay between them. The overall magnitude will be represented by that of the

minimum-phase filter (whose magnitude is the same as that of the empirical HRTF);

the overall phase will be constituted by the minimum-phase phase spectrum

(derivable from the magnitude spectrum) plus a frequency independent, linear delay.

Figure 2.3 shows an empirical HRTF, its minimum-phase version and their common

magnitude plot.

 54

Figure 2.3: Three plots illustrating the HRTF for 0 degree elevation, 0 degree angle

(top), its minimum-phase representation (middle) and their common magnitude

spectrum (bottom); the solid line indicates original and dots indicate minimum-

phase magnitude spectra.

 55

When dealing with FIR filters, the minimum-phase approach is not only beneficial in

that it allows the phase spectrum to be derived directly from the magnitude

spectrum; it also constitutes the shortest realisable FIR filter containing all the

relevant data before the function dissipates to zero energy. This can be seen clearly

in the figure above.

The description of HRTFs as minimum-phase filters and delays above is

validated theoretically in the work on decomposition of impulses in [135]. However,

perhaps a more pertinent validity test from the point of view of a developer of

artificial spatialisation tools involves psychophysical testing of a subject group.

Kulkarni’s and co-authors’ seminal work in this area examining the sensitivity of

human subjects to HRTF phase spectra [111, and also in the more compact: 110] is

often cited. In the study, firstly (in preliminary objective tests), minimum-phase plus

delay impulses were compared to the empirically measured HRTFs they were

derived from. Waveform coherence was measured and a specific phase error test was

performed. Essentially, for this test, the best fit straight line was derived from the

residual phase when the minimum-phase was subtracted from the empirical phase.

The error in the linear fit of this line is then a measure of the deviation of the

minimum-phase plus delay model from the empirical.

Interesting results arise from both tests. Coherence values were high for the 2

data sets used. The four results (left and right for each data set) range from 75% to

97% of coherence indices above 0.9. Coherence values were systematically worse at

lower elevations and extremes of the horizontal plane. It is suggested that this is due

to the shadowing effect of the head and interactions with the torso making the all-

pass delay non linear, a phenomenon discussed in [108]. This is supported by better

 56

performance at higher elevations, where there is less obstruction in the path to the

contralateral ear. Phase error results enforce this assumption.

Several psychophysical tests were then performed. Typically, four processed

sounds were presented to the listener, the second or third (randomly) processed with

minimum-phase plus delay, the rest empirical. Subjects were asked to pick the odd

signal.

In the first experiment, random noise bursts were used, with random

locations in the data set. Subjects had a 50% chance of success, and performed at

chance, suggesting minimum-phase plus delay is a valid model. It is worth noting

that these are not localisation tests, but rather ‘odd one out’ or ‘spot the minimum-

phase’ tests. Therefore monaural (information presented to one ear, with the other

ear muted) as well as binaural conditions were tested. In the second test, a smaller

subset of locations was tested. 0, 90, 180 and -90 degrees relative to the listener in

the horizontal plane were chosen. Similar results were achieved, with the noteworthy

exception of one subject picking up on the low coherence of the right ear of the data

set (the data set used was the one that scored the lowest, by a significant margin,

coherence score of 75%; the others were all above 90%).

The next experiment in Kulkarni et al used the same parameters as that

immediately preceding it, with the exception that the noise burst was not

randomised, but fixed for each test. Monaural results were similar to the random

noise burst results, but binaural results show better than chance answers at 90 and -

90 degrees for two out of four tested subjects. These subjects cited a positional cue

as the reason for the improved differentiation ability (i.e. not a difference in the

timbre of the source; as monaural and binaural experiments are used and localisation

is not being tested, rather signal coherence, the specification of a location cue is

 57

significant). It is also worth noting that one of these subjects also performed better

than chance in the random noise experiment.

The two subjects who appeared to be able to distinguish correctly between

minimum-phase plus delay and empirically-measured HRTFs for fixed noise burst

sources at a success rate greater than chance were asked to perform another test. The

test was similar to the preceding one, but only looked at 90 and -90 degree locations.

Sources were filtered for a low and high pass test signal. Results showed that low-

pass results were at similar above chance levels to the previous test, but high-pass

results were at chance. This clearly points to a low-frequency cue present at extremes

of the horizontal plane, aiding the subject in distinguishing between minimum-phase

plus delay and empirical impulses. These results are expected, bearing in mind the

predominance of ITD at low frequencies, as per the duplex theory (magnitudes are

the same in the empirical and minimum-phase impulses, so the ability to distinguish

differences is based on timing information, which is more relevant at lower

frequencies). In [225] psychoacoustic experiments (offsetting ITD and IID against

each other) confirm this dominant role of low frequency ITD.

Kulkarni et al then take a closer look at the empirical and minimum-phase

plus delay impulses at the areas of interest (the extremes of the horizontal plane) as

well as 0 degrees and 180 degrees. The interaural phase for lower frequencies is

graphed for both models. As expected, 0 and 180 degree minimum-phase plus delay

models do not deviate significantly from empirical measurements, but 90 and -90

degrees do. These tests were performed on actual impulses, empirical and derived. A

model of the auditory periphery is used to test processed sources, yielding similar

results. Again, these results confirm that ITD plays an important role in localisation

at low frequencies. The non-linearity of ITD is also confirmed, specifically, ITD is

 58

greater at lower frequencies, as in [108]. This perhaps suggests that modelling ITD

as a linear delay is not adequate. Many of the finer non-linearities of the empirical

ITD are modelled by the minimum-phase HRTF, but these experiments highlight the

approximation involved in modelling the HRTF as a minimum-phase filter and linear

delay.

Final experiments used to test the overall importance of phase in localisation

provide a sense of perspective on the accuracy needed in phase representation. For a

fixed source at the four primary locations previously used, users could not tell the

difference between linear and empirical phase models. The linear model is based on

a zero-phase HRTF (magnitudes as per empirical, phase zeroed) plus a delay

extracted directly from the empirical HRTF. This suggests that the finer structures of

phase are not overly important, as long as the overall delay is approximated in

accordance with that of the empirical. A reversed-phase model, however, where

empirical phase was simply reversed and added to a linear delay was successfully

distinguished by subjects. Hence, although phase does not need to be exact, a phase

model that strays greatly from the empirical is easily perceived. Phase disparity is

greater between minimum-phase and empirical than linear phase and empirical for

the models in Kulkarni et al (which implies it offers an attractive model for binaural

processing; all the more so when the error, < 20 μs is within (generally, depending

on source type) the reported just noticeable difference/jnd for ITD).

The study concludes that phase spectrum differences are not significant

monaurally. Furthermore, binaurally, a relative insensitivity to interaural phase

spectra was illustrated, with the exception of low frequency ITD, which needs to be

accurate. The minimum-phase model was deemed ‘adequate’ for ‘most positions’.

 59

Instances of minimum-phase invalidity are also discussed in [32]; specifically

highlighting the contralateral HRTF and instances of strong torso reflection. In

[185], the authors again investigated efficient FIR and IIR HRTF representations.

Interestingly, as part of this study, 256 point minimum-phase HRTFs (relatively

long) were tested against 256 point empirical HRTFs and were detectable in certain

cases. In [191], the author highlights that although the assumption is convenient, the

external ear is not strictly minimum-phase.

The issue with the discrepancy in empirical and HRTF plus delay filters lies

in the non-linearity of the all-pass section. An extremely relevant issue in

implementation of a minimum-phase based binaural spatialisation system is how to

extract this linear delay/how to approximate the all-pass section as a linear delay.

This will be discussed in the next section.

2.3.2 ITD Extraction

In [139], the authors further discuss the minimum-phase all-pass decomposition.

They view the HRTF as a minimum-phase system, a delay and an all-pass system,

and conclude that omission of this all-pass is audible in some cases.

Shortly afterwards, the same researchers published on the specifics of

breaking the HRTF into minimum-phase and all-pass components [163]. Focusing

on methods of delay extraction, their review of the literature mentions Jot’s linear

curve-fitting method [93], a cross-correlation maximum method, and a threshold

detection method. Jot’s linear curve fitting [93] suggests modelling the ITD over a

low frequency range, instead of the whole range of the empirical impulses. A delay

based on the empirical data from 1000 to 5000 Hz is used. The excess phase is

examined, and a best fit linear curve is derived for this frequency band. The method

is described as ‘more robust’ than that detailed in [111], and is employed in the

 60

commercial spat~ spatialisation toolkit. The cross-correlation method (used in the

study outlined in detail above [111]) analyses the left and right channel of the HRTF

for similarity, with regard to a delay applied to the lagging signal. The maximum of

the result yields an appropriate ITD estimation. Importantly, in [111], further

accuracy is gained by performing the same procedure to the minimum-phase

representations and subtracting this value, as they will be inherently included in the

spatialisation process. Threshold methods essentially use analysis of signal pressure

onsets.

Once again (in [163]), the potential difficulties with minimum-phase HRTFs,

as well as the almost universal adoption of the technique are mentioned: ‘although

minimum-phase HRTFs with a pure delay as ITD are now widely applied, some may

still be audibly different from measured HRTFs’. The paper highlights potential

problematic locations, by focusing on the remaining all-pass component in the

minimum-phase, linear-phase plus all-pass break down. When the interaural group

delay at 0 Hz introduced into the binaural signal by the all-pass components is

greater than 30 μs, omitting the all-pass is audible (as concluded in [139]). An extra

delay is suggested in these situations. The authors conclude that the minimum-phase

plus delay model can be improved by taking the Interaural Group Delay Difference

(IGD) at 0Hz of the excess phase components (details of which can be found in

[141]). Thus another method of extracting the delay is arrived at (adding another

layer of complexity).

Delay extraction methods are also discussed in [32], which again mentions a

threshold method, interaural cross correlation (updated to consider signal envelope),

and fitting of excess phase. The cross-correlation method performed best in an

experiment whereby subjects matched minimum-phase delays to empirical,

 61

individualised HRTFs. Relative success of the minimum-phase model was reported

in the horizontal plane.

More recently, yet another approach is presented in [149]. The difference of

arrival time is represented as the maximum of the correlation of the HRIR and its

minimum-phase representation. This subtle update (based on the similarity of the

HRIRs and their minimum-phase counterparts) illustrates that the research question

is still open.

2.3.3 Implementing Variable Delays

From an implementation point of view, although a delay line can be thought of as a

simpler process than a frequency dependent filter, the situation becomes more

complex when fractional delays become appropriate. In a discrete digital system,

delay length possibilities increment sample by sample. In [93], implementation needs

of delay lines required for spatial processing are hypothesised. At a sampling rate of

50 kHz, a single sample delay will represent a time difference of 20 μs. In terms of

ITD, this implies an angle of approximately 2.7 degrees. This appears adequate if

average localisation blur is taken to be 3.6 degrees (as cited). However, as discussed

in [21], the lower limit of ITD resolution may be as low as 1 degree. In [234], the

authors highlight the need for frequency domain application of ITD, using the figure

of 7 μs as the resolution of the ear (1/3 of a sample at 44.1 kHz).

More significantly, however, is the need for smooth variance in delay lines.

In the case of dynamic source processing, delay lines truncated to sample by sample

resolution will cause undesirable noise. For these reasons, delay line interpolation is

required.

As an aside, it is assumed that minimum-phase based systems store and apply

delays at a sampling-rate resolution, when, clearly, a higher resolution may be

 62

appropriate. This constitutes another motivation for the novel methods introduced in

the next chapter, which both use frequency domain ITD.

In [93], an additional first order all-pass is suggested to add more time

accuracy (which will offer reasonably accurate frequency response up to of the

sampling rate). FIR Lagrange interpolation is discussed in [188] (considering not just

the adjacent point, but also further points on each side of the nearest available

measurement). The question of non-integral delays is thoroughly considered in

[115]. FIR (e.g. with Lagrange interpolation) and IIR (e.g. all-pass) methods are

discussed. In conclusion, this work recommends testing out a simple filter to start

with, for example a Lagrange interpolated FIR of length 2 or 4 (order 1 or 3; even

lengths give linear phase response). As will be discussed in the next chapter,

Lagrange of length 2 is deemed sufficient here (essentially a linear interpolator).

Worst case scenario low-pass effects are discussed in the work. However, the

relative simplicity of the approach, the frequent need for numerous delay lines (e.g.

the reverb implementation discussed later) and the acceptable response motivate its

use.

To reiterate, interpolated delay lines typically attenuate high frequencies, and

are therefore not ideal. However, informal listening tests performed in [38] suggest

that these artefacts are not significant (the present author believes that artefacts are

not severe but must be considered in certain scenarios).

2.4 Conclusion

In conclusion, a thorough literature review suggests that there are several open

research questions in the field, and highlights the multi-faceted nature of HRTF

based spatialisation. The minimum-phase plus delay approach is often assumed,

however, there are clearly instances where it is not valid. Extraction and dynamic

 63

implementation of delay lines is also non-trivial in the implementation of minimum-

phase based systems. With all of this in mind, the development of novel, non-

minimum-phase techniques is proposed.

 64

 65

Chapter 3. New Methods for Artificial Spatialisation

3.1 Introduction

This chapter reviews current Computer Music tools for binaural, HRTF based

spatialisation and gives theoretical detail of the novel approaches suggested

(motivated by the preceding literature review). A detailed discussion of phase

unwrapping, in the context of HRTF interpolation is also offered, concluding the

chapter.

3.2 Current Computer Music Tools

One of the primary initial goals of this research was to provide a stable, flexible and

efficient open source tool for HRTF based binaural spatialisation. The solutions

available at the time this project was commenced will be discussed below (hrtfer for

Csound and earplug~ for Pure Data (PD)), as well as more recent additions to the

open source repertoire. The more established approaches are summarised in table

3.1, below.

Approach Detail Comments

hrtfer MIT dataset, truncates to

nearest source

Lack of interpolation

earplug~ Time domain interpolation

algorithm

Computationally costly

iem_bin_ambi Virtual ambisonics Static setup

Table 3.1: Summary of established Computer Music binaural spatialisation tools

3.2.1 hrtfer for Csound

Csound is an open source software tool used for audio based research and creative

activities. The core of the system is based on opcodes: processing units with a

specific function (e.g. signal generation/processing, for more see [33, 25]). One such

 66

opcode is hrtfer, developed by Eli Breder and David MacIntyre in 1996. The opcode

uses the MIT HRTFs [142], and essentially convolves the input with the appropriate

HRTFs. Accurate spatialisation is available at static locations which correspond

exactly to HRTF measured points. However, at non-measured points, the nearest

data will be used, resulting in potential angular imprecision. This lack of

interpolation also causes a problem in the case of moving sources. The source jumps

from measured point to measured point, often resulting in discontinuities in the

output. Statically, the dataset is relatively dense at key locations (primarily the

horizontal plane), but does not satisfy MAA requirements. The authors suggest a

fade out of the old convolution result and a fade in of the new to minimise these

‘clicks’, which does reduce the severity of the noise. This feature is, however,

disabled in the latest version of Csound, as it causes dropouts in the audio. When

implemented by this author, the crossfades do reduce the discontinuities to a degree,

depending on the frequency content/bandwidth of the source (narrow-band sources

are still effected by the abrupt FIR filter switching; more noisy sources may mask the

switch). In all sources, however, jumps in location may perceptually imply a

staggered path, when a smooth trajectory is more desirable. This opcode could

greatly benefit from an interpolation algorithm, as discussed in the previous chapter.

Also, hrtfer uses the compact set of HRTFs, when perhaps the diffuse set is now

more appropriate.

3.2.2 earplug~ for PD

PD offers a more visual default editor than Csound, allowing users to edit a

canvas/patch, using object boxes not unlike csound opcodes. One such object is

earplug~ [229], which does offer an interpolation algorithm. The four nearest

measured points are used to find an interpolated value in between. A new HRTF is

 67

thus derived for each processing block (64 samples, as per PD’s default). Previous

interpolated HRIRs are stored and a similar interpolation is performed between the

current and previous HRIR (over time in this case; essentially fading out the old and

in the new, a computationally costly process). This interpolation is performed in the

time domain (on empirical HRIRs), the issues with which have been discussed in the

previous chapter. Also, as discussed in chapter 1, time domain convolution (of 128

point interpolated HRIRs) is considerably more computationally costly than

convolution performed in the frequency domain.

3.2.3 Virtual Loudspeakers: iem_bin_ambi

In [148], a virtual loudspeaker approach is taken, implemented in PD. Essentially,

static HRTFs are used to spatialise sources at loudspeaker positions. This paradigm

will be further discussed in chapter 6. Briefly, in a static listener scenario, this

approach removes the need for HRTF interpolation; source movement can be

controlled by the multi-channel signal feeding the virtual loudspeakers. In this case,

ambisonics is chosen as the multichannel algorithm. Inherently, any imperfections of

the multichannel approach will be reflected in the binaural reproduction. The

iem_bin_ambi objects realise this algorithm.

3.2.4 More Recent Approaches

The work on IIR HRTF filters discussed in the previous chapter is presented as a PD

external mobile~ [172, 173] (under development). In [181], the virtual ambisonics

approach (implemented as the Girafe system) is discussed, with a view to

implementation in Super Collider: a dynamically typed, client/server based audio

processing language.

 68

Perhaps most interesting is the minimum-phase based CW_binaural~,

presented at the PD convention in July 2009 [54]. The research paper presenting this

work clearly highlights the issues previously raised with minimum-phase

interpolation implementation. The object is designed using an object-oriented

paradigm, to allow for updates; its authors underline the continuously developing

nature of the research field, echoing the conclusions to the previous chapter.

Currently, cross-correlation is used to estimate ITD, but desirability of support for

various methods is highlighted. The authors also highlight the potential timbral

distortion imposed by using simpler approaches to delay lines. More complex

methods will reduce this distortion, but are more costly. In fact, in the benchmarking

tests performed, CPU peak usage is the same for independent HRTF filtering (an

FFT-based 128-point filter) as it is for implementation of an independent 3
rd

 order

delay; 3.12 peak CPU usage. A significant reduction is reported when using linear

interpolation (1.56 peak usage, only slightly larger than with non fractional delays).

In another interesting CPU usage test, 6.24 peak usage is reported in FFT based

processing of the complete process and 20.2 in time-domain convolution processing.

It is also important to consider real-time performance when implementing delays;

higher order delay line interpolation algorithms typically require use of past and

future samples, increasing latency. Using previous samples only makes the process

causal.

It is also worth pointing out that commercial, proprietary solutions are not

discussed here, as the source code/algorithms used are not available. However,

perhaps the most commonly used commercial tool in Computer Music: spat~, for

Max/MSP, is based on Jot’s research, which is abundantly referenced in this work.

 69

In conclusion, several solutions exist in the Computer Music domain (judging

by recent trends, it is hoped that activity in the area will continue to flourish). In light

of the literature reviewed in the previous chapter, there is, however, a need for an

approach that avoids the minimum-phase approximation, minimises any data

preparation/processing/compression (primarily to allow for direct creative use by

non-experts), allows for smooth movement of sources, is efficient, and is supported

in a flexible and dynamic environment.

3.3 Novel Algorithms: Theoretical Discussion

Two new approaches to HRTF interpolation, spatialisation and dynamic processing

are presented as a direct response to the preceding literature review. Their overall

motivation and theoretical methodology and justification are presented in the rest of

this chapter. In the following one, implementation specifics are discussed, from a

low level coding point of view (a resource often omitted from the literature). Finally,

objective and subjective tests validate the methods.

3.3.1 Motivation

This section refers directly back to chapter 2. With regard to HRTF individualisation,

the MIT diffuse field equalised dataset is chosen as averaged non-individualised data

[142]. Although the presented solutions are optimised for the angular and elevation

resolution of this particular dataset, any other configuration is possible (and in fact

generally simpler) with minor code updates (a command line solution example is

offered using the LISTEN database [124] in the ‘Chapter4/listen’ folder on the

accompanying CD-ROM, and is discussed below). The MIT solution is presented as

it is deemed the most suitable averaged dataset; it is also appropriate for validating

the concept and implementation of the new methods. Data is used directly. No pre-

 70

processing is required (with the exception of placing spectral versions of the HRIRs

into two large datafiles, for efficiency of processing and ease of use). Therefore, no

complex signal processing is required by a user who may wish to use a particular

dataset. This is a core idea of the algorithms presented. As has been highlighted in

the literature review in section 2.2, there are several potential ways to

minimise/compress data, many of which perform well in subjective and objective

tests. The approach taken here is to reduce data minimisation to truncation to 128

point audio files. It is hoped that this provides a more generic solution. It also

removes potential for data loss, which is pertinent in any minimisation algorithm.

The other core goal of these solutions is to avoid the minimum-phase approximation.

Once again, minimum-phase has been shown to perform well but is by no means

transparent. Therefore, empirical data is used directly (this point is also related to the

empirical-data-use goal, as transforming a dataset into minimum-phase plus delay

data is by no means trivial).

An immediate criticism of this approach is that it does not utilise potential

processing and storage savings. The approaches below are highly optimised (see the

discussion of source code in chapter 4). It is also hoped that the preceding discussion

of direct empirical data use justifies the approach: a user does not have to employ the

often complex (and often not fully documented) approaches to data minimisation,

and furthermore does not have to be troubled about what the data minimisation may

be omitting from the dataset. Equally, a dataset may be processed by a user before

being employed (a personalised dataset with improved low-frequency resolution may

be used if prepared in an appropriate way, for example).

One caveat to direct empirical use occurs in the Functional Phase Model,

discussed below. This approach essentially extracts accurate low-frequency phase

 71

from the dataset. However, if this analysis is not desirable, results from the MIT data

can be used, which represents an average low-frequency scaling factor.

From the point of view of interpolation, frequency-domain processing is

employed throughout. The relevant insensitivity to phase information at high

frequencies, high-frequency accuracy of a spherical head model, and need for

accurate low-frequency phase (all discussed in the previous chapter) informs the

processes. Phase interpolation is therefore focused on in the solutions presented. The

significant difficulty of delay extraction is avoided by using empirical data, as

opposed to minimum-phase. In an approach similar to that in [93], an update rate

defined by the length of the HRIR filter is used (344 Hz at 44.1 kHz sampling rate).

This ensures smooth movement for all but the most extreme source trajectories

(which will typically breach the boundaries implied by MAMA specifications), and

is deemed necessary to avoid artefacts (which may be present in systems with lower

update rates). In the real-time implementations, the ‘interpolation period’ is defined

by the host; Csound or the hardware being used. When required (for example in

delay lines), sample-rate based update is enforced. FIR filters are chosen, as the

empirical data can be understood directly in this form. Also, as discussed, FIR filters

better lend themselves to dynamic processing.

3.3.2 Phase Truncation

The first novel approach epitomises the goal of direct empirical data use. Four-point

linear magnitude interpolation is used (although this method cannot account for local

spectral anomalies, it is deemed appropriate for real time applications [93]). The

fidelity of the phase spectrum in interpolated HRTFs is dictated by the density of the

data set. The basic approach of truncating moving sources to the nearest measured

point is developed and focused on phase data here. The relative insensitivity to phase

 72

data (one of the three main conclusions in [111] is that ‘listeners are insensitive to

the details of the interaural phase spectrum as long as the interaural time delay of the

combined low-frequency part of the waveform is maintained.’) is exploited here.

Also, accurate low-frequency ITD is maintained. Nearest empirical phase data to the

required point is used.

When dynamic sources are processed, phase values ‘jump’ from empirical

point to point. As discussed, changing a filter during a dynamic process can lead to

discontinuities in the output. Continuously processing the input with old and new

data and cross fading is deemed too computationally expensive. Therefore, brief

parametric crossfades are introduced to remove any discontinuities in an efficient as

possible manner. These crossfades are parametric in that the user can decide how

long they are. The shortest available crossfade is one processing buffer (the length of

a HRIR: 128 samples). This length is appropriate for noisy sources, which can mask

any remaining discontinuity. However, more narrow-band sources may require a

longer crossfade to render any ‘click’ inaudible. A default value of eight buffers is

suggested (1024 samples: a very brief period of extra processing: old HRTF data

processed and faded out, new faded in). Crossfades of 1024 samples allow 43

equally spaced changes of index per second at a sampling rate of 44.1 kHz

(crossfades will begin to overlap after this point). Five degrees is the highest angle

increment resolution in the data set. Forty-three 5 degree changes per second imply a

speed of 215 degrees per second. This limitation falls comfortably within the

previously discussed MAMA limits.

Smooth, artefact-free dynamic source trajectories are therefore achieved. A

high update rate provides a robust solution to magnitude spectra. Phase spectra are

dealt with in a psychoacoustically-based manner. Insensitivity is exploited, while the

 73

importance of accurate low-frequency fidelity is maintained (albeit within the

constraints of the density of the dataset). Significantly, no data preparation,

minimisation or compression is required; therefore, the user does not require

knowledge of complex DSP. This direct use of empirical data and high correlation to

empirical data makes the algorithm ideal for both expert and casual use. The

algorithm is outlined in figure 3.1, below.

Figure 3.1: Phase truncation: source at 3 points in a trajectory from left to right. At

point 1, bottom left phase is used. At point 2, a crossfade occurs. At point 3, bottom

right phase is used.

3.3.3 Augmented Spherical Head Model

A second novel approach to HRTF interpolation for dynamic source spatialisation is

presently suggested. The approach essentially combines an empirical (magnitude

interpolation and derivation) and functional (phase derivation) model. This hybrid

approach has its basis in psychoacoustics. Linear magnitude interpolation, as

discussed above, performs adequately when endeavouring to interpolate HRTFs for

 74

use in real-time dynamic artificial spatialisation applications. Therefore, it is

employed again here, as in the Phase Truncation Model. Once again, the novel

aspect of the Functional Model lies in the treatment of phase.

From a functional point of view, the main challenge in phase derivation is to

identify a model that accurately calculates IPDs, therefore implying correct ITDs.

Perhaps a good starting point and one frequently suggested and used in applications

is to approximate the head to a sphere, as discussed in the previous chapter. This

obviously greatly simplifies the complex filtering of the non-uniformly shaped head,

outer ear and torso, losing a lot of spectral detail. The perceptual distortion of the

spatial image caused by this gross simplification of phase is related to the discussion

on sensitivity to phase in the previous chapter. In general terms, it was concluded

that low-frequency ITD, and therefore phase of the left and right ear, is spectrally the

most relevant, as it provides the predominant phase cue.

It is also apparent from the above discussion that these finer details of phase

may not be perceptually necessary, due to the auditory system’s lack of sensitivity to

phase spectra. The idea behind this method is to start with the spherical head model,

and to investigate possible improvements, bearing in mind this insight into phase

sensitivity.

The spherical head model can be used to calculate ITD mathematically.

Considering the case of the horizontal plane, ITD can be initially estimated as the

distance between the point of arrival at the nearer ear and that at the further ear. This

distance can be defined as:

 , (3.1)

 75

where d is head (/sphere) diameter and is the angle off lateral centre of the source.

Simple laws of trigonometry can be used to illustrate the above formula. Figure 3.2

illustrates the calculation.

Figure 3.2: ITD calculation

This clearly underestimates ITD somewhat, as the sound source will travel around

the head (by diffraction). This extra distance is given by the length of the arc:

 (3.2)

Time differences can be derived by dividing distances by speed. Thus dividing the

above formulae by the speed of sound in air gives the ITD for a particular angle off

lateral centre. Therefore, the combined formula for the horizontal plane [80] is:

 , (3.3)

where c represents the speed of sound in air. This more accurate formula is

illustrated in figure 3.3, below.

 76

Figure 3.3: More accurate ITD calculation

Considering the third dimension, which essentially represents variable source

elevation, a simple cosine factor can be used to reduce the ITD as the source gets

nearer to directly above the listener (maintaining the spherical-head approximation).

As HRTF datasets are typically measured at an equal distance from the listener at

each location (hence only one measurement at 90 degree elevation in the MIT

dataset: the source will be directly above the listener), the ITD will become smaller

as the source moves above or below the horizontal plane.

 (3.4)

where represents the elevation. This additional scaling factor is intuitive, bearing

in mind the trigonometric identity , so elevation values of 90 or -

90, directly above or below the listener, will give a scaling factor of 0. As the

elevation angle gets closer to 0, or the horizontal plane, this scaling factor will

approach 1. Minnaar et al describe this formula as the Extended

Woodworth/Schlosberg Formula [141]; it is also referred to in [187]. This formula

will be referred to as the Woodworth Model henceforth [228].

 77

Other models for ITD have been suggested, as discussed in chapter 2. Kuhn,

in a definitive study of ITD in the horizontal plane, proposes two functional models,

for the low and high end of the audible spectrum [108]. These models imply that

low-frequency ITDs are greater than their higher frequency counterparts by a ratio of

3:2. Of particular interest, this study also concludes that the Woodworth Model is

valid for steady state high frequency ITDs and clicks, where ITD is essentially

reduced to arrival times of portions of the source sound’s amplitude envelope.

Kuhn’s results also imply that ITD is frequency independent below 500 Hz and

above 3000 Hz.

Zotkin et al use the Woodworth Model for HRTF phase modelling and a

magnitude interpolation algorithm [234, 233]. This system forms the basis of a

virtual audio scene rendering tool. The software developed uses the CIPIC database,

which contains HRTF data from 43 subjects, as well as detailed measurements of

their ears.

A psychoacoustically-based reappraisal and improvement on this model is

suggested here. As concluded above, low-frequency consistency of empirical and

employed ITD is crucial to accurate modelling. Also, critical works in the area [108,

111] agree that higher-frequency ITD is not as significant; more specifically, a

Woodworth-based ITD can account for steady state high frequency ITDs [108].

Physiologically, as discussed in chapter 1, IPD-based localisation breaks down above

approximately 1500 Hz. Therefore a low-frequency, frequency-dependent scaling

factor is introduced as a more complete solution, requiring minimal extra processing.

Essentially, frequency-dependent ITD is extracted from the empirical HRTFs for the

low-frequency band of interest. These new values are then used as frequency-

 78

dependent scaling factors in the synthesis of the phase spectrum for the desired

HRTF.

The cross-correlation, onset detection and other more complex methods of

extracting ITD are typically used to derive a frequency-dependent delay to add as the

all-pass component in a minimum-phase plus delay HRTF synthesis system, as

discussed in chapter 2. However, perhaps a more accurate approach in this case is to

attempt to extract the explicit IPDs from the empirical data, and translate this phase

information into time difference data.

Primarily, psychoacoustically-based parameters are imposed on the range of

the spectrum to be scaled. 1500 Hz is therefore used as the upper boundary for

scaling. It is considered redundant to improve computational phase accuracy when

perceptual limitations will ultimately dictate. Physical IPD restrictions for sinusoidal

sources can be further quantified by finding the maximum unambiguous frequency

for a specific source location. At IPDs of 180 degrees and greater, the source

location is uncertain.

As with phase interpolation, this uncertainty is a result of the periodic nature

of phase. At higher frequencies and large angles off horizontal centre, IPDs start to

inherently include one or more full phase cycles of 2 . This implies further potential

for confusion, as a number of perceived source locations are possible. ITD

uncertainty is illustrated in figure 3.4, below.

 79

Figure 3.4: ITD uncertainty; a low frequency source (above) affords unambiguous

IPD cues, whereas a high frequency source implies ambiguity due to any number of

inherent multiples of 2 . Overall direction of arrival is assumed to be known here

(i.e. onset is heard).

The maximum frequency for a specific source location can be calculated thus:

 , (3.5)

where r is the head radius (again assuming a spherical head), c is the speed of sound,

 is the angle and the elevation of the source. This essentially represents the

frequency that corresponds to half the distance around the head to the contralateral

ear. The formula is used to calculate the maximum frequency for a specific source

location when endeavouring to extract unambiguous interaural phase differences.

This brings up another important issue: radius of the head is not equal from all

directions. The radius used here is derived from KEMAR’s head length: 9.55cm.

 80

Radius derived from head breadth is significantly smaller, highlighting the

approximations involved in assuming the head as a sphere.

Using head length minimises the threshold value used, thus minimising error.

Therefore, where appropriate, the 1500 Hz threshold is reduced, in accordance with

psychoacoustical and physiological limitations. This reduction is only manifested

towards the horizontal extreme of the hemisphere used.

Resolution for extremities in the horizontal plane will be as low as ca 700 Hz

(for elevation 0, angle 90). Most values will, however, allow resolution to the

threshold of 1500 Hz. Specifically, in higher bins at the FFT resolution employed

here (for the 128 point FFT used, the relevant bins at 44.1 kHz sampling rate are

344.53125, 689.0625, 1033.59375 and 1378.125 Hz), 243/183 out of 342

possibilities for higher bins are obtainable (there are only 342 possibilities in the 710

file database due to the symmetry of the dataset used, and the lack of interaural phase

difference at 0 and 180 degrees). It is important to note that the formula is based on

the assumption that the head is a sphere, and will therefore introduce inaccuracies.

However, this is not significant in this case, as the maximum value is just used as a

threshold. Actual phase differences are calculated from empirical data.

3.3.4 Non-linear ITD

Calculating the unambiguous IPD threshold frequency is the first step in extracting

psychoacoustically relevant IPD, to be used to augment the spherical-head model,

aligning it more closely with the empirical data. The goal is to derive a non-linear

ITD curve for sub 1500 Hz values for each of the 710 HRTFs in the database. Due to

the sheer volume of files, a generic formula is desirable. Also, from a processing

point of view, a generalised curve is desirable, to avoid an individual scaling curve

for each file. As discussed, the curve is expected to be predominantly > 1 (with an

 81

expected approximate ratio of 3:2), as low-frequency ITDs are greater than higher

frequency ITDs.

When endeavouring to derive this curve computationally, the previously

mentioned resolution of can be increased to 2 , as source location direction is

known. Practically, impulses will always come from the right if the angle is less than

180 degrees (with the exception of 0 and 180 degrees, where there is no IPD in

symmetric scenarios). This is always the case for the MIT dataset in question, as

only the right hemisphere is being analysed in the symmetric dataset. Right phase

will therefore always be expected to be larger/arriving first/leading. IPD can thus be

defined as right phase minus left. If there is an anomaly in this calculation (if the

right phase does not lead the left), the right phase can be augmented by 2 . A more

rigorous approach, which is critiqued in detail below, is to unwrap the phase. This

involves looking at the current and previous phase differences and correcting jumps

of greater than by adding/subtracting multiples of 2 . This method becomes more

relevant for higher frequencies, where the potential for phase ambiguity is greater. It

aims to provide an ‘unwrapped’ phase for the whole spectrum, as opposed to the

psychoacoustically non-ambiguous frequencies (and more specifically limited to

those under 1500 Hz, where applicable) that the simpler method addresses.

The code used for the extraction of the non-linear IPD will now be discussed

(see nonlinitd.cpp in the Chapter3 folder of the accompanying CD-ROM). As this is

a subset of the code discussed in the phase unwrapping discussion, below, only a

brief overview is offered, to avoid repetition (processes used in the spatialisation

tools are also not discussed, as they are dealt with in the more suitable context of the

applications considered in the next chapter). Firstly, the unambiguous phase

limitation and Woodworth ITD for the location in question are calculated:

 82

maxonecycle = (c / (2 * (radianangle + sin(radianangle)) * 9.55 *
 cos(radianelev)));

woodworthitd = (radianangle + sin(radianangle)) * 8.8 *
 cos(radianelev) / c;

Each HRTF for the appropriate dataset is opened (3 sampling rates are offered in the

real time implementations, so analysis needs to be done at three different sampling

rates) and an FFT is performed on the data. The phase of each component is

extracted.

/* 0Hz and nyq: real */
inl[0] = fftl[0];
inl[1] = fftl[irlength / 2];
inr[0] = fftr[0];
inr[1] = fftr[irlength / 2];

/* mag/phase format: polar, SQUARE(x) is (x)*(x) */
for(i = 2, k = 1; i < irlength; k++, i+=2)
{
 inl[i] = sqrt(SQUARE(fftl[k]) + SQUAREfftl[irlength - k]));
 inl[i+1] = atan2(fftl[irlength-k],fftl[k]);
 inr[i] = sqrt(SQUARE(fftr[k]) + SQUARE(fftr[irlength - k]));
 inr[i+1] = atan2(fftr[irlength-k],fftr[k]);
}

To reiterate, processes and practices such as the FFT algorithm, interface and data

processes will be discussed in the context of the main applications. An unwrapped

phase difference is then calculated. From this value, a real ITD for the bin in

question is calculated, and a scaling factor derived. The values are printed to a text

file, which allows analysis of each HRTF individually. The curve shape of each

HRTF can be retrieved; patterns can be followed etc, as discussed below. The text

file is organised thus: angle, elevation, maximum frequency for unambiguous

interaural phase difference, Woodworth ITD, then bin by bin phase information (left,

right phase, phase difference, derived ITD and scaling factor) up to 1500 Hz, or the

maximum realisable frequency without phase ambiguity for each HRTF.

The frequency bins in question are then focused on. Each bin is checked for

explicitly (as higher resolution processing is possible by changing the impulse size in

 83

defs.h). Four frequency bins are relevant here. The value of the bin is incremented by

the scale factor for the HRTF in question, and the number of values for that bin is

incremented (not all of the HRTFs will provide vales for the two higher bins, due to

the restrictions discussed above; the higher bins within the 1500 Hz range may be

higher in frequency than the unambiguous limit). Each value is printed before the

next file is processed.

for(i = 2; i < irlength; i+=2)
{
 freq = (i / 2) * sroverN;

 phasel = inl[i + 1];
 phaser = inr[i + 1];

 phasedif = phaser - phasel;

 while(fabs(phasedif - phasedifold) > pi)
 {
 if(phasedif > phasedifold)
 phasedif -= twopi;
 else
 phasedif += twopi;
 }

realitd = phasedif / (twopi * freq);

 if(woodworthitd)
 scale = realitd / woodworthitd;
 else
 scale = 1.0;

 if(freq < maxonecycle && freq <= 1500)

fprintf(fdata,"bin: %f\tphl: %f phr: %f\t\tphdif: %f
realitd: %f scalefact: %f\n", freq, phasel,
phaser, phasedif, realitd, scale);

 /* check exact freqs for low/high res... */

/* 44.1k: 344.531250, 689.062500, 1033.593750, 1378.125000 */
 /* 48k, 96k: 375, 750, 1125, 1500 */
 if(freq == 344.531250 && freq < maxonecycle)
 {
 bin1 += scale;
 bin1no++;
 }
 if(freq == 689.062500 && freq < maxonecycle)
 {
 bin2 += scale;
 bin2no++;
 }
 if(freq == 1033.593750 && freq < maxonecycle)
 {
 bin3 += scale;
 bin3no++;

 84

 }
 if(freq == 1378.125000 && freq < maxonecycle)
 {
 bin4 += scale;
 bin4no++;
 }

 phasedifold = phasedif;
}

Finally, an average scaling factor is arrived at by dividing the total scaling factor for

a bin by the number of values accumulated for that bin.

nonlinitd[0] = bin1 / bin1no;
nonlinitd[1] = bin2 / bin2no;
nonlinitd[2] = bin3 / bin3no;
nonlinitd[3] = bin4 / bin4no;

As with all code, care is taken to delete dynamically allocated memory and close

files. In summary, ITDs are derived from empirical IPDs and compared to

Woodworth ITDs. Scaling factors are then calculated. The average of all scaling

factors for each bin of the low-frequency spectra of the HRTFs is thus stored. Figure

3.5, below illustrates these scaling factors. As processing at 48 kHz and 96 kHz are

offered, the appropriate scaling factors are also calculated for these sampling rates.

By updating the defs.h file, the bin frequencies, the data folder name and the name of

the text files, the non-linear curve can be derived for these sampling rates also.

 85

Figure 3.5: Non-linear scaling factors for ITD

This figure illustrates the bins of interest for a 44.1 kHz sampling rate. The dataset

can be analysed by looking through the text file printed as part of the program. A

higher resolution FFT analysis (essentially achieved by zero padding the impulse

responses to 1024 samples) gives a deeper insight into the dataset (see

nonlinitdhighres.txt). As expected, the scaling factor curve is predominantly > 1, but

is not as uniform as a simple 3:2 ratio. Some anomalies are evident. For example, the

curve occasionally falls below a ratio of 1:1, with a particularly noticeable dip for

low sources behind the listener. Also, for frontal sources, a higher ratio for lower

frequencies is also apparently appropriate.

However, the curve does show a general trend, so an averaged model is used

across location. Therefore, an accurate, frequency-dependent ITD has been derived

based on the literature review presented. The values derived from this Extended

Woodworth/Schlosberg Non-linearly Low-frequency Scaled (hence forth Functional)

Model are then used in the re-synthesis of the phase spectrum. Using the simple,

 86

steady Woodworth model for high frequency, ambiguous, less perceptually relevant

phase and a much more accurate phase derived from the empirical data for the lower

frequency region model provides a psychoacoustically derived fit of the actual

behaviour of ITD.

3.3.5 Implementing a Working Spatialisation Tool using the Non-

linear ITD Curve

Having derived a non-linear low-frequency curve, issues involved with

implementing these scaling factors, both theoretically and practically will now be

discussed.

3.3.5.1 Applying Phase

The values derived from the Functional Model are then used directly in the re-

synthesis of the phase spectrum of the required HRTF in the spatialisation

application. Magnitude values are interpolated as before, phase values are derived

from the Functional Model. ITD is transformed to IPD by simply multiplying each

spectral bin frequency by 2 times the ITD (from the opcode implementation

discussed in the next chapter):

phasel = TWOPI_F * freq * -(itd/2);
phaser = TWOPI_F * freq * (itd/2);

The formula used essentially multiplies 2 by the bin frequency to give the amount

of rotations around the unit circle per second for the frequency in question. The ITD

value is the amount of seconds delay. Therefore, a phase value for each frequency is

derived. Timing information is thus introduced into the signal.

Importantly, the leading ear is given a positive orientation, and multiplied by

half the ITD value. The lagging ear/ear further from the source is given a negative

 87

orientation, and multiplied by minus half the ITD. This apparently unintuitive

operation is discussed below.

It is perhaps helpful to view the problem from both an ITD and IPD point of

view. ITD is, in these circumstances, a vectorial quantity; it has direction. ITD will

be positive on the nearer side to the source, and negative on the farther. From a phase

point of view, the leading ear will always have a larger phase, as above. Positive

phase goes to the nearer ear, as the source is arriving from that side.

For example, a source from right: the right ear will be given a positive phase,

the left, negative. Phase difference will then imply the correct ITD, as it does in the

scenario discussed above whereby IPD is extracted as opposed to imposed. Each ear

essentially follows its own phase function, as illustrated in figure 3.6, below. This

breakdown of phase is also utilised by Zotkin [234, 233].

Figure 3.6, IPD orientation

There is an x axis switch depending on direction of source arrival. This switch can

alternatively be thought of as right to left implying positive to negative, and left to

 88

right implying positive to next positive cycle (to 3), which is equivalent to

wrapping back to negative.

3.3.5.2 Impulse Shifting

Imposing phase values in this way will mean that the zero-centred/zero-phase

impulse will wrap to the end of the impulse for the nearer ear (the positive phase

essentially implying an earlier onset, which wraps to the end of the impulse; the

negative phase is delayed, as it gets to 0 phase later). Moving back into the time

domain, it now appears that the nearer ear impulse happens after the further ear, as

the nearer impulse has wrapped around to the end of the impulse. See the below

figure for an example.

 89

Figure 3.7: A non-shifted (above) and shifted (below) Functional Phase based Stereo

HRIR, for a source at 0 degree elevation, 90 degree angle.

This is clearly an unnatural result. Although IPD will be correct, even a casual

observation of the impulse illustrates the error in the order of the sound reaching the

respective ears. For this reason, the impulse is shifted in time, by half the size of the

 90

buffer. This shift ensures a causal filter, and is also performed in the linear phase

model in [111]. Essentially, this process adds the correct phase spectra to the zero-

phase, magnitude-only impulse and moves it to be centred around the mid point of

the filter. The result is a time-accurate and phase-accurate filter. Interestingly, adding

this time alignment provides much better localisation. This highlights the importance

in correct onset time as well as phase spectra for localisation.

In the figures above, both HRTFs represent the HRTF for a source to the

right of the listener (0 degree elevation, 90 degree angle). The right ear should

intuitively receive the signal first. As the functionally derived phase wraps around

the zero time point, this is not the case, as shown in the first figure. If the impulse is

shifted, to be centred around the centre tap of the filter, the situation is rectified.

Interaural phase and onset time are now both correct.

An STFT process is required for dynamic sources, as phase is no longer

derived to match magnitude (minimum-phase) or static (Phase Truncation).

Spatialisation in this scenario is more successful without the impulse shift. As the

STFT is used here, the process cannot strictly be defined as convolution. A more

accurate description is perhaps an STFT-based filtering process. Magnitudes and

phases are imposed on the input sound, but the full convolution output is not saved,

as the output is the same size as the input/impulse buffer. The magnitude spectrum

is, however, filtered by the impulse and the phase spectrum is also processed to

mimic the delays inherent in the phase spectra of the derived impulse. Due to the

processing departures from traditional convolution employed here, audible high

frequency noise will appear if there are abrupt peaks in an impulse. Usually,

impulses start at the beginning of the file, temporally, so these peaks will be

windowed in the output. Shifting the impulse is therefore not desirable in STFT

 91

implementation (and indeed, introduces noise due to non windowed, centred impulse

peaks). Spatial characteristics are however emphasised by repetition.

3.3.5.3 A Step towards Individualisation

The Functional Model uses the Woodworth formula as a basis for initial ITD

calculation. As this formula includes a radius parameter, the user can enter an

appropriate radius for their head. This provides an element of individualisation.

However, as the MIT dataset is used, HRTF data will imply listening through

KEMAR’s ears, with KEMAR’s head and torso altering auditory events. Also, as

discussed in the next chapter, there appears to be an optimal radius for low-

frequency accuracy with regard to comparison to the empirical data, which may not

necessarily be a good fit of an arbitrary user’s HRTFs. This radius based

individualisation is also recognised in [32].

3.4 Phase Unwrapping Issues

The difficulty with phase interpolation has been discussed above. Phase unwrapping

was also mentioned, in the context of deriving a non-linear ITD. Unwrapped HRTF

phase is often utilised in the literature (see section 3.4.4). However, this task is not

trivial, particularly when dealing with complex signals such as HRTFs.

Phase is a periodic quantity. Output of a Fourier Transform can be

transformed into polar form, as discussed above, to represent a particular bin’s

magnitude and phase values. Phase, being a periodic quantity, is represented within a

- to range. Frequently, the spectral component being measured by the bin in

question represents the reported phase value, +/- a multiple of full cycles/2 . This

implies that the component in question has the phase value reported by the FFT, with

some extra full periods of its sinusoidal cycle.

 92

To visualise the phase evolution of, for example, a harmonic of a note from a

particular tone, the phase of the partial can be extracted at various equally-spaced

points in the tones lifetime (using STFT analysis, for example). This phase can then

be viewed over time. Inconsistencies in the phase can be removed by ‘unwrapping’

it. To achieve a smooth phase plot, jumps in phase are replaced by incorporating the

appropriate 2 factor. In the example below, the phase inconsistency can clearly be

seen. Adding 2 to the phase output clearly resolves the issue.

Figure 3.8: Phase unwrapping: the apparent jump in phase is corrected by adding

2

The partial’s phase evolution in time can thus be clearly seen. This is perhaps an

intuitive illustration, as the sinusoidal component has clearly mapped out 1 full

angular cycle before the ‘jump’.

A less intuitive, though equally valid scenario is the vertical unwrapping of

phase. If an overall approximately linear delay to all partials in a particular FFT

frame is expected, phase can be similarly unwrapped; in this scenario frequency to

frequency. A smooth phase plot can thus be obtained, this time illustrating phase

over frequency range. For example, if all partials are delayed by a specific time

 93

interval, a linear plot would be expected, as illustrated in [14]. The non-linearities in

unwrapped HRTF phase plots can be explained by the various non-linearities

involved in the system: pinna shape, the role of the head, etc. This implies that some

frequencies are delayed for slightly longer/shorter time intervals than others and is to

be expected. Also, the expected time delays implied by the phase differences are

expected to broadly agree with the data published in [108].

3.4.1 Phase Unwrapping Algorithms

Phase unwrapping algorithms are summarised well in a recent paper by Karam and

Oppenheim [96]. One standard approach involves assuming that the differences

between consecutive phase values do not go over a particular threshold. This

threshold is typically chosen to be (half a full cycle). If a phase difference of larger

than the threshold is detected, multiples of 2 are subtracted/added appropriately, to

bring the result into an acceptable/expected range. The algorithm is discussed in

more detail below. As mentioned in [96], this threshold method fails if the phase

varies rapidly. An upsampling in frequency is suggested to improve accuracy [196].

Once again, the threshold of this upsampling varies from signal to signal, and

becomes impractical when implementing efficient analysis/processing on large

datasets.

Another common method mentioned in [96] is to use integration. The

unwrapped phase is attained using the derivative of the unwrapped phase, which is

represented by the imaginary part of the ratio of the derivative of the DFT and the

DFT. Once again, this method is problematic, this time with respect to the

integration step size. An adaptive decrease of the step size has been suggested.

Unwrapped phase changes in proportion to the proximity of poles or zeros to

the unit circle. Another method attempts to consider the zeros close to the unit circle

 94

separately. These zeros are located using polynomial factoring. More successful

composite algorithms, using either threshold detection or integration with this

polynomial factorisation method are reported.

Karam and Oppenheim [96] go on to show that threshold detection and

integration based methods both have approximately an 85% success rate in tests with

synthetic signals with randomly chosen zeros. Integration methods are significantly

slower. Polynomial factoring performs correctly less than 50% of the time, but the

composite methods, although significantly slower than the (Matlab implemented)

threshold method, perform at a greater than 99% success rate. The paper’s

conclusion is insightful, as it quantifies phase unwrapping as an unsolved problem.

The relatively recent nature of this paper (more recent than the publications that

mention phase unwrapping without elaboration, as discussed below) and this

conclusion illustrate the importance of considering phase unwrapping more

completely.

3.4.2 Phase Unwrapping and the MIT Dataset

It is with the above insights in mind that a thorough investigation of the phase of the

MIT HRTF dataset is embarked upon. The code in phaseunwrap.cpp (in the

‘Chapter3’ folder) will now be discussed (again, common details are discussed in the

context of the larger scale applications, in the next chapter). Firstly, variables and

FFT plans are setup. For each file in the HRTF dataset, the maximum frequency for

phase unambiguity is calculated, based on a spherical head with a radius of 9.55 cm,

as above. This detail is printed to a text file, and is only required for reference and

clarity.

A Woodworth formula based ITD is then calculated and printed to the text

file. As a time value is required, radians are used. Each stereo HRTF is read into a

 95

left/right buffer (padded in the case of a high resolution process), and transformed to

the frequency domain. For simplicity, a magnitude, phase version of the spectral data

is preferred. Phase is then unwrapped using the threshold method. This method is

used as it is implemented in Matlab [129], which is a commercial tool frequently

used for audio digital signal processing analysis and research [128].

Unwrapping is commenced at the first non-zero bin. Phase at 0 Hz will be

either 0 or /- . A positive real value implies phase of zero, negative /- . This can

perhaps be visualised clearly as a sinusoidal wave, which is purely real, so must start

its evolution at 0 or 180 degrees: a zero crossing. 180 degrees/ and -180 degrees/-

are ambiguous in this scenario. If 0 Hz is included in the unwrapping, this ambiguity

can cause difficulties and errors in IPD calculation. A test of the data illustrates that

beginning unwrapping at the first non-zero bin of a 128-point FFT gives acceptable

IPD values for that bin for all HRTFs in the dataset: slightly above the expected

Woodworth calculation [108]. This test is performed initially by ensuring that all

IPDs implied by the first non-zero left and right bin give a positive IPD. Later on in

the code, all bins below a 1500 Hz limit are tested against the expected Woodworth

ITD. This test validates the non-linear scaling factor extraction discussion above,

showing that the values for the first bin are as expected (the test is performed to

validate the unwrap method for low frequencies). Values are within an acceptable

range of ratio variation when compared to the expected ITD (they are all expected to

be higher, but also expected to vary due to the complexity of the HRTFs: a range of

.6 – 2.7 times the Woodworth ITD is deemed acceptable).

Following this, phase is unwrapped. Unwrapping the phase of the left and

right HRTF independently is perhaps more robust than unwrapping the phase

difference; both are tested (and give slightly different, but equally imperfect results).

 96

The double-precision floating point absolute value of the phase value in question and

the value for the previous phase bin is calculated, and tested against . If there is a

jump of greater than this threshold, a factor of 2 is added/subtracted until the phase

is within the desired range. If the current phase is greater than the previous, 2 is

subtracted, if less than, it is added. This is performed for the left and right phase, and

also the difference between the wrapped phase values. Phase difference of the left

and right unwrapped phase is then calculated. In dealing with this hemisphere of data

in the symmetrical dataset, right phase will lead left. Therefore, phase difference can

be calculated by subtracting the left phase from the right. The code snippet below

unwraps the phase of the left channel.

while(fabs(phasel - previousphasel) > pi)
{
 if(phasel > previousphasel)
 {
 phasel -= twopi;
 fprintf(fdata,"-");
 }
 else
 {
 phasel += twopi;
 fprintf(fdata,"+");
 }
}

The text file (convenient for analysing the data) is laid out as follows (see figure 3.9

for an example): each HRTF file is labelled, the psychoacoustically unambiguous

ITD frequency is listed (for reference), and then the Woodworth ITD is listed for the

location being analysed. Each bin, from the second to the one preceding the Nyquist

Frequency is then listed (the Nyquist Frequency is deemed not relevant, as it is

purely real). The left phase is listed, empirically followed by unwrapped.

Additions/subtractions of 2 are noted using +/- sign. The right phase is treated

similarly. The difference of these unwrapped phases and the ITD this difference

implies are listed next. Finally, the unwrapped phase difference is listed, followed by

 97

the implied ITD. Although perhaps ungainly, this is a practical and clear way to view

the data.

el: -40 az: 6

maximum freq for accuracy to one cycle with (spherical) head radius 0.0955m:
11235.938148
wwitd: 0.000041

1 344.53 pl:-0.3518 newpl:-0.3518 pr: -0.1192 newpr: -0.119208 pdif: 0.2326
realitd: 0.000107 pdifunwrap:0.2326 realitd: 0.000107

Figure 3.9: Phase unwrapping output file sample entry

3.4.3 Problems with Phase Unwrapping

This novel insight into the phase unwrapping model using comparison of the

unwrapped phase differences with expected ITD illustrates how the typically used

unwrap method is simply unreliable across the frequency spectrum of all HRTFs in

this dataset, and raises concerns about using it generally.

An example of the failure of unwrapping the phase difference, and

unwrapping left and right phase and noting the difference will now be given. If

looking at the approach of unwrapping the phase difference, a clear example of the

problem can be seen at elevation -40, angle 6 (see figure 3.10). At bin 30, a negative

ITD is implied. This is in error, as it suggests a source in the hemisphere to the left of

the listener, not the hemisphere being analysed. The phase difference between bin 30

and bin 29 is not greater than . Therefore, no unwrapping occurs. However, a phase

difference of greater than is clearly needed to arrive at an acceptable ITD. If a

positive multiple of 2 is included here, the ITD is within the correct range, and the

result is the same as that of the independently unwrapped left and right phase. Note

that this multiple may be needed sooner, to avoid the low value in bin 29. Running

the analysis at high resolution illustrates that an appropriate phase jump is clearly

 98

omitted, as negative ITD again occurs (high resolution can simply be achieved by

changing the impulse length to 1024; the code will automatically zero pad).

29 9991.41 pl:2.6516 ----- newpl:-28.7644 pr: -2.6939 ---- newpr: -27.826606 pdif:
0.9377 realitd: 0.000015 +pdifunwrap:0.9377 realitd: 0.000015
30 10335.94 pl:1.6947 ----- newpl:-29.7212 pr: 0.3410 ---- newpr: -24.791752 pdif:
4.9295 realitd: 0.000076 pdifunwrap:-1.3537 realitd: -0.000021

Figure 3.10: Example 1 of phase unwrapping issues

As an example of the case of error in calculation of left and right unwrapped

phase independently, at elevation 10, angle 10, at bin 26, the absolute difference of

the left phase value to the previous is approximately 2.36, but should be 3.93 to

achieve an acceptable ITD (i.e. another 2 needs to be subtracted). Interestingly,

unwrapping the phase difference resolves this issue. Also, a higher resolution

analysis resolves the issue in this case.

25 8613.28 pl:-2.0286 ---- newpl:-27.1614 pr: 2.4578 ---- newpr: -22.674929 pdif:
4.4864 realitd: 0.000083 pdifunwrap:4.4864 realitd: 0.000083
26 8957.81 pl:0.3327 ---- newpl:-24.8001 pr: -0.0118 ---- newpr: -25.144526 pdif: -
0.3445 realitd: -0.000006 +pdifunwrap:5.9387 realitd: 0.000106

Figure 3.11: Example 2 of phase unwrapping issues

Simply ensuring that the phase accumulates from the previous is also not a

valid solution due to the non-linearities in the dataset. For example, at elevation 0,

angle 90, bin 47. The right phase is slightly greater (phase accumulates with a

negative orientation here) than the previous, which appears to be the correct and

expected behaviour. Another example at the same elevation can be found at angle

120, bin 13, again the right phase. Again, the high resolution text file offers further

insight.

The problem is essentially that at places there should be jumps of greater than

the threshold due to the non-linearities in the HRTF data. Manually going through

the data to correct it with respect to the expected ITD is impractical. The unwrapping

method is simply not reliable for the whole HRTF spectrum. The threshold value of

 99

 is chosen, as if a smaller value is chosen, correcting a value between the threshold

and will result in a bigger jump. A value greater than as a threshold may allow

jumps that are in error. It is also worth noting that negative ITD should be considered

an extreme error (due to it being counterintuitive: the source travelling a further

distance should never arrive first); more subtle mistakes, caused by the same

problems, are not highlighted in this analysis.

Higher resolution processing also highlights another failing of phase

unwrapping. It can be clearly seen that more 2 multiples have been unwrapped as

the process reaches the last illustrated bin (for example at elevation -40, angle 90).

Therefore, 128 point processing has not considered enough multiples of 2 due to its

lower resolution.

Looking through the file, it is clear that this is a problem for higher

frequencies, as phase varies to a greater extent. This is perhaps intuitive when the

relative unambiguity of lower frequencies is considered. It is important to note that

all phase values in the dataset behave as expected, with respect to the Woodworth

ITD and the expected scale factor in the frequency range of interest for the non-

linear IPD extraction.

3.4.4 Phase Unwrapping Experimental Insights

This insight into phase unwrapping is particularly pertinent in the domain of HRTF

processing. Recognising limitations and potential problems is necessary when

looking closely at HRTF phase. It is hoped that this novel approach of comparing

unwrapped phase to expected ITD highlights some of the issues with previous work,

as well as the care necessary when dealing with complex phase spectra. It is also

hoped that this insight strengthens the Functional Model suggested here, as it works

within the constraints of the potential inaccuracies of phase unwrapping.

 100

As a coda to this section, a brief discussion of phase unwrapping from the

point of view of the literature is offered. Typically, Matlab [128] (threshold method)

is mentioned or the method of unwrapping is not discussed. In [216], the authors use

IIDs to make IPDs unambiguous in a source localisation application. Results are

matched to a HRTF database to get source location, building on previous work [217;

the overall work is published as 215]. Furthermore, a parametric HRTF lookup

model is introduced. Frequency-dependent scaling factors are discussed in what can

be considered an inverse application to how they are used in the present study:

localisation as opposed to spatialisation. In a recent work based on Viste’s model

[146], the authors implement this inversion. Introduction of the scaling factor is a

considerable development; unwrapping of phase is, however, not elaborated upon. It

is perhaps more appropriate to focus on the more important low-frequency part of

the spectrum, confident that unwrapping is reliable in this band. Unwrapping is also

mentioned in the previously discussed [30]. Finally, in [205], linear interpolation of

phase is discussed, which implies unwrapping; direct interpolation of phase leads to

problems with ambiguities.

In summary, it has been shown that phase unwrapping, upon close inspection,

is not an infallible method. Therefore, care and consideration must be taken before

employing the method, particularly with complex signals such as HRTFs.

3.5 Conclusion

In conclusion, novel methods of HRTF modelling and interpolation are offered.

Phase Truncation uses empirical data directly, exploiting relative insensitivity to

phase spectra. The Functional Model uses a psychoacoustically motivated model of

phase, extracting an accurate low-frequency ITD. The methods aim to avoid data

transformation, compression and processing. This chapter also offers a re-appraisal

 101

of phase unwrapping as a frequently-used technique in the domain of HRTF

processing, concluding that careful consideration is required before employing the

method.

 102

 103

Chapter 4. Algorithm Implementation and Validation

4.1. Introduction

This chapter offers an insight into the implementation of the introduced algorithms

as both offline and real time processing tools (Csound opcodes). The detail and

nuances of implementation of algorithms developed in the DSP research field is an

often-neglected topic. The goal of this chapter is thus to explicitly discuss how to

create an efficient, user friendly application using the algorithms discussed in the

previous chapter. Considerable effort has been dedicated to this development; it

constitutes a significant portion of this work. The dissemination of this work as open

source, accessible tools with the option of real-time processing was always a

priority; indeed, the relative lack of such tools served as a motivation for this study.

A command-line version of the Phase Truncation algorithm is offered; similar

implementations for the other algorithms naturally extend from this and are not

discussed. Implementation of all algorithms as Csound opcodes, with the possibility

of real-time processing is then discussed. Finally, objective and subjective tests

which confirm the success of the algorithms are discussed.

4.2. Command-line Implementation

The following discussion of a command line implementation of the Phase Truncation

algorithm is based upon [34]. In [34], the code is presented in a more didactic and

extended fashion, the intention being to illustrate how to build up a relatively large

scale signal processing application using procedural programming methods. As the

example used in [34] essentially offers an efficient command-line version of the

Phase Truncation algorithm, the same code will be discussed here. In this discussion,

 104

the code is similarly deconstructed, but less detail is afforded to more trivial aspects.

For all command-line-based examples in this work, certain aspects of file in/output,

coding style etc are dealt with in a similar manner. For this reason, these features of

the code are discussed only here, and only briefly. Note that all command-line

processing uses double floating-point precision. The C++ language is used.

4.2.1 Data Preparation

The MIT dataset is used here. Other datasets can be easily accommodated, such as

the LISTEN database [124]. In the ‘Chapter4/listen’ folder on the accompanying

CD-ROM, one of the several available (human subject) LISTEN datasets available is

prepared using datapreparationLISTEN.cpp. The command-line program below is

implemented in LISTENmover.cpp. Note that the database is less densely sampled,

and is not generalised. In the case of the MIT dataset, storage can be optimised as the

complex, diffuse dataset is symmetrical. The processing code must therefore reflect

this. A source at 270/-90 degrees on the listener’s horizontal plane can be accurately

represented by a source at 90 degrees, with the left and right HRTF data switched.

Only measurements from 0 – 180 degrees need to be stored in this scenario,

significantly reducing memory requirements. A more real world scenario, involving

an individualised set of HRTFs, as opposed to a dummy head, requires a full dataset

to be stored, as perfect symmetry is unlikely.

datapreparation.cpp constitutes a command line program which prepares the

HRIR data for processing (see Appendix 1 in Volume 2 for all code relevant to the

command line implementation; all code appendices are also available on the

accompanying CD-ROM). Essentially, the code reads each HRIR file (as mentioned

above, a HRIR for each measured location is provided), transforms it into the

frequency domain and prepares two large files containing all the left and right HRTF

 105

data respectively. Storing, opening, accessing and closing one large file is deemed

more efficient than dealing with each file separately. Preparing the data in this way

allows the opportunity to perform the transform from the time to frequency domain

at this offline preparation stage. As the main program, and, more significantly, the

real time implementations use frequency-domain processing, performing the

transformation at this stage greatly reduces online/real time processing tasks.

As mentioned in [34], certain aspects of code are more easily understood,

particularly by readers familiar with the C language, by simply observing the code.

For example, variable declaration can become more apparent by observing the

variable in use later in the program.

Briefly, a custom header file is used for both the data preparation and main

command line application. defs.h pre-empts the code, including stdio.h for in/output,

stdlib.h for utility functions, math.h for mathematical functions, string.h for string

manipulation, sndfile.h [123] for soundfile processing and fftw3.h [62] for Fourier

Transform processing:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <sndfile.h>
#include <fftw3.h>

The length of a mono HRIR is defined as irlength, irpadlength represents a

padded HRIR (overlap add convolution is used, to be discussed below; overlapsize

is also related). In the command line program, source trajectories are defined using a

breakpoint text file. The maximum number of breakpoints (maxbrkpts) and a

breakpoint function (bkpt) are thus also declared.

/* correct length for mono impulse */
#define irlength 128
/* padded impulse */
#define irpadlength 256
/* convolution overlap */

 106

#define overlapsize 127
/* maxumum points in a trajectory */
#define maxbrkpts 101

void bkpt(int *pers, double *els, double *angs, int *noofpoints,
 int maxpts);

datapreparation.cpp includes defs.h. Files are iterated through using an elevation

and angle variable, which are initialised to minimum values, as per the dataset (see

above). Various processing buffers, output file pointers and sound file variables are

declared. Also of significance in the declarations section is the FFT setup:

/* setup variables */
/* min elev, angle, increment, iterators */
int el = -40, az = 0, inc, i, j, k;
/* input from HRTF file */
double input[2 * irlength];
/* separate input into left and right */
double inl[irlength], inr[irlength], fftl[irlength], fftr[irlength];
/* file pointers */
FILE *foutl, *foutr;
/* fft plans */
fftw_plan forwardl, forwardr;
/* strings for filename */
char filename[14];
char hrtffile[22];
/* file in pointer */
SNDFILE *finhrtf;
/* file info */
SF_INFO *psfinfohrtf;
/* memory for file info */
psfinfohrtf = new SF_INFO;

FFTW is used throughout the command line examples. A detailed discussion of the

inner workings of FFTW is beyond the scope of this work. The main processing

paradigm is to break down the requested task into smaller sub tasks which can be

optimised based on the architecture being used. The online manual [64] is an

excellent resource for usage of the algorithm. The web page also points to more

information for the interested reader [66]. Initial command line implementations

utilised a complex FFT by Peterson [162]; it provided flexible and immediately

useful code. FFTW2 was also used in early versions (FFTW3 involves a re-design of

the API, so is incompatible). However, it was decided, bearing in mind the

performance results of FFTW3 [63] to update to FFTW3 processing. These results

 107

suggest that FFTW is ‘typically superior to other publicly available FFT software,

and is even competitive with vendor-tuned codes’. It is also extremely flexible, and

is not specifically designed for a particular architecture. Another particularly relevant

feature of FFTW, from the point of view of audio processing, is that it offers ‘fast

transforms of purely real input’. In keeping with the ethos of this work, it is also free

software.

FFTW3 transforms require transforms to be defined. These transforms will

later be implemented. The forward FFTW3 plans (which examine the current

processing machine and decide upon optimal implementation) used to transform the

left and right HRIRs into HRTFs are thus defined:

/* setup fft plans (see fftw documentation) */
forwardl = fftw_plan_r2r_1d(irlength, inl, fftl, FFTW_R2HC,

 FFTW_ESTIMATE);
forwardr = fftw_plan_r2r_1d(irlength, inr, fftr, FFTW_R2HC,

 FFTW_ESTIMATE);

Multiple plans with the same arguments and different in/output arrays share data to

speed up plan generation. This approach is also taken in the main program. The

FFTW3 API and interface are intuitive and flexible. As a real FFT is appropriate

here (see chapter 1), a real plan is setup, using the following function from the API:

fftw_plan_r2r_1d(int n, double *in, double *out, fftw_r2r_kind kind,
 unsigned flags);

The function name dictates the type of plan; here r2r refers to real to real, and its

dimension, here one-dimensional. The first three arguments are trivial: FFT size,

input and output buffer. The r2r plan exploits the redundancy involved in

performing the DFT on a real audio signal: the negative frequencies are complex

conjugates of the positive ones (the DFT returns the sampled spectrum from –

Nyquist Frequency to +Nyquist Frequency, as discussed in chapter 1). Also, the

values of 0 Hz and the Nyquist Frequency will always be real, so discarding the

 108

imaginary part of this complex number allows for a spectral output buffer equal in

size to the input time-domain buffer. As discussed below, care must be taken to treat

these values correctly when processing. The kind argument takes one of a number of

predefined kinds of transform. FFTW_R2HC is appropriate here: real audio data to

‘half complex’ spectral data. The spectral output buffer contains the transformed

data, which is stored in the format:

r0, r1, r2, ..., rn/2, i(n+1)/2-1, ..., i2, i1

rk is the real part of the k
th

 output, and ik is the imaginary part. In this case,

frequency bin k has its real part at out[k] and its imaginary part at out[irlength-

k]. Finally, flags completes the parameter list. It is possible to attempt to prepare

the best plan for the architecture being used, by running several FFTs (clearly time

consuming but finds the best FFT for the system in question: increasing initialization

time, decreasing run time). FFTW_ESTIMATE does not do this, but prepares a

reasonable plan, and is used here as this is not a real time application (although using

real FFT processing, pre-processing data and other optimisations make it very

efficient). Plans can then be executed at will by the programmer; input data can be

updated by simply updating the input array. This division of labour between

planning and execution characterizes FFTW3.

Also of interest in the declaration stage of the data preparation program is

soundfile declaration. libsndfile is used for sound file processing. Again, libsndfile is

an open source sound file processing library, written in C. It allows flexible

processing of audio files, with an intuitive API. Relevant functions will be discussed

as they arise in the code. At declaration (see above), a soundfile pointer is setup, as

well as a pointer to the structure that will contain data on the soundfile. Memory is

then allocated to this structure.

 109

Each of the 368 HRIR files is then processed. The program assumes the

HRIR files are all in a folder called ‘diffuse’ in the working directory. The

nomenclature of the MIT dataset is intuitive and clear, but implies some inelegant

code from an iteration point of view. As discussed above, the amount of

measurements per elevation varies, and the occasion arises whereby the

incrementation labelling is not constant (-40 and 40 degree elevation alternate

between 6 and 7, with the exception of every 7th value, which repeats a 6!). Opening

the appropriate file is dealt with using appropriately formatted strings (concatenating

an updated file name to the appropriate folder name), updated using elevation and

angle incrementation.

/* prep for file open string */
strcpy(hrtffile,"diffuse/");

/* prep file names */
if(az < 10)
 sprintf(filename, "H%de00%da.wav", el, az);
else if(az >= 10 && az < 100)
 sprintf(filename, "H%de0%da.wav", el, az);
else if(az >= 100)
 sprintf(filename, "H%de%da.wav", el, az);

/* sort out incrementation based on elev */
if(el == -40)
{
 if(inc != 6 || j % 7 == 0)
 inc = 6;
 else inc = 7;
}
else if(el == -30 || el == 30)
 inc = 6;
else if(el == -20 || el == -10 || el == 0 || el == 10 || el == 20)
 inc = 5;
else if(el == 40)
{
 if(inc != 6 || (j - 276) % 7 == 0)
 inc = 6;
 else inc = 7;
}
else if(el == 50)
 inc = 8;
else if(el == 60)
 inc = 10;
else if(el == 70)
 inc = 15;
else if(el == 80)
 inc = 30;
else if(el == 90)

 110

 inc = 0;

/* put together for full name */
strcat(hrtffile, filename);

The libsndfile file open function returns a null pointer if it fails to open the requested

file. The conditional statement below checks for this, returning an error if the file

cannot be opened. This construct is used throughout. The function also indicates how

the file should be opened (read/write) and the structure used to store data on the file

(previously allocated). The data is read in frames, as opposed to samples, which

implies two samples per frame for stereo, etc.

/* open appropriate file */
if(!(finhrtf = sf_open(hrtffile, SFM_READ, psfinfohrtf)))
{
 printf("error opening file\n");
 exit(1);
}

Each stereo interleaved file can then be read and simply separated into mono left and

right channels. In the same loop, the buffers are scaled down a little, to avoid any

potential distortion on output (this is more of an issue with the minimum-phase and

Functional Models, as the data transformations involved can introduce increased

pressure peaks). These buffers can be transformed to the frequency domain using the

FFTW plans, by calling fftw_execute.

/* read in file */
sf_readf_double(finhrtf, input, irlength);
/* close file */
sf_close(finhrtf);

/* put (double: -1.0 to +1.0) input into seperate left and right
buffers, scale a little */
for(i = 0; i < irlength; i++)
{
 inl[i] = input[2 * i] * .65;
 inr[i] = input[(2 * i) + 1] * .65;
}

/* fft */
fftw_execute(forwardl);
fftw_execute(forwardr);

Another optimisation is then performed. As discussed, the Phase Truncation

algorithm will use polar spectral information: magnitude and phase, as opposed to

 111

rectangular real and imaginary. The other algorithms (minimum-phase and

Functional) will use magnitude values directly, and derive phase, so can use the

same data files. For convenience of processing, the real valued 0 Hz and Nyquist

Frequency values are stored in the first and second point of the buffer, then the

magnitude and phase at each bin, sequentially. This involves a re-ordering of the

FFTW layout, grouping magnitude and phase in pairs, for ease of processing. It is

important to note that 0 Hz and the Nyquist Frequency are stored as real values, thus

maintaining their polarity, which dictates their phase (as discussed in the previous

chapter). Spectral data is written, in binary form, to the ‘datal.raw’ and ‘datar.raw’

files.

/* 0Hz and nyq */
inl[0] = fftl[0];
inl[1] = fftl[irlength / 2];
inr[0] = fftr[0];
inr[1] = fftr[irlength / 2];

/* mag/phase: polar */
for(i = 2, k = 1; i < irlength; k++, i += 2)
{
 inl[i] = sqrt(SQUARE(fftl[k]) + SQUARE(fftl[irlength - k]));
 inl[i+1] = atan2(fftl[irlength-k],fftl[k]);
 inr[i] = sqrt(SQUARE(fftr[k]) + SQUARE(fftr[irlength - k]));
 inr[i+1] = atan2(fftr[irlength-k],fftr[k]);
}

This data is written to a large left and right optimised spectral file. Incrementation of

angle and elevation (if appropriate) is then performed.

/* incrementation */
az = az + inc;

if(j == 28 || j == 59 || j == 96 || j == 133 || j == 170 || j == 207
 || j == 244 || j == 275 || j == 304 || j == 327 || j == 346
 || j == 359 || j == 366)
{

/* change elevation,reset variables */
 el = el + 10;
 az = 0;
 inc = 0;
}

To conclude, dynamically allocated memory is freed, files are closed and FFTW

plans destroyed:

 112

/* clear memory, close files */
delete psfinfohrtf;
fclose(foutl);
fclose(foutr);
fftw_destroy_plan(forwardl);
fftw_destroy_plan(forwardr);

This program can be compiled thus:

g++ datapreparation.cpp –o dataprep –I/usr/local/include
 –L/usr/local/lib –lsndfile –lfftw3

This assumes that libsndfile and FFTW3 are installed in the default locations. Thus

double precision HRTF datafiles are prepared. For the Csound opcodes, floating

point precision is used. The double precision data is simply cast to float and written

to a float file. Thus the Csound datafiles are more compact; floating point precision

is deemed adequate.

4.2.2 Main Program

The main program, binauralmover.cpp, uses this prepared data. Essentially, its task

is to use the HRTF data to artificially recreate user-defined source trajectories.

Smooth, artefact-free dynamic source behaviour is desirable, thus the Phase

Truncation algorithm is employed to interpolate HRTFs at run time. Four-point

linear magnitude interpolation is employed. The difficulties with phase interpolation

are addressed using the Phase Truncation algorithm. The defs.h file used by the

preparation program is also used by the main program. As discussion of the finer

detail of the code can become involved, figure 4.1, below illustrates an overview of

the Phase Truncation implementation, as well as the Functional Phase Model and

Minimum Phase approaches. It can therefore be referred to as required, and also

serves to compare the overall approaches to phase processing employed.

 113

Figure 4.1: An overview of the main HRTF processing involved in the algorithms

discussed; reading a source location and processing using HRTFs accordingly.

In the declarations section, the number of measurements per elevation is stored in an

array which is accessed by the interpolation algorithm:

int elevationarray[14] = {56, 60, 72, 72, 72, 72, 72, 60, 56, 45,
 36, 24, 12, 1};

Arrays of pointers to double are used to store and access the HRTF files:

/* arrays to store addresses of where all left and right hrtfs are
 stored: arrays of pointers to double. */
double *hrtfarrayl[14][37], *hrtfarrayr[14][37];

Dynamic trajectories, crossfades, interpolation, convolution, previous data used for

fading out when applicable, soundfile in/output and FFT transformations all require

variable declarations [34]. More FFTW plans are needed here than in the data

 114

preparation program. In this case, inverse transforms are required to perform inverse

FFTs (type FFTW_HC2R). Also, transforms of different sizes are needed, as both zero-

padded and non-zero-padded buffers need to be processed.

/* fftw plans */
fftw_plan invhrtfl, invhrtfr, forhrtflpad, forhrtfrpad, forin;
fftw_plan invoutl, invoutr, invoutlold, invoutrold;

invhrtfl = fftw_plan_r2r_1d(irlength, hrtflinterp, hrtfltd,

 FFTW_HC2R, FFTW_ESTIMATE);
invhrtfr = fftw_plan_r2r_1d(irlength, hrtfrinterp, hrtfrtd,

 FFTW_HC2R, FFTW_ESTIMATE);
forhrtflpad = fftw_plan_r2r_1d(irpadlength, hrtflpadtd,

hrtflpadspec, FFTW_R2HC,
FFTW_ESTIMATE);

forhrtfrpad = fftw_plan_r2r_1d(irpadlength, hrtfrpadtd,
 hrtfrpadspec, FFTW_R2HC,
 FFTW_ESTIMATE);

forin = fftw_plan_r2r_1d(irpadlength, inbuf, inspec, FFTW_R2HC,
 FFTW_ESTIMATE);

invoutl = fftw_plan_r2r_1d(irpadlength, outlspec, outl, FFTW_HC2R,
 FFTW_ESTIMATE);

invoutr = fftw_plan_r2r_1d(irpadlength, outrspec, outr, FFTW_HC2R,
 FFTW_ESTIMATE);

invoutlold = fftw_plan_r2r_1d(irpadlength, outlspecold, outlold,
FFTW_HC2R, FFTW_ESTIMATE);

invoutrold = fftw_plan_r2r_1d(irpadlength, outrspecold, outrold,
FFTW_HC2R, FFTW_ESTIMATE);

User input is required to decide the size of the crossfades. As discussed above, one

buffer of 128 samples (which can be thought of as the processing control rate) may

be sufficient for noisy sources, which can hide any possible discontinuity which may

not be completely removed by the fade. More narrow-band sources are less

forgiving, and typically require a longer fade. Values of 1–24 processing buffers are

enforced. An appropriate generic value is 8.

/* setup crossfades: over user defined number of convolution cycles
*/
printf("enter number of processing buffers for fades (>1),8 is good

 for musical source,less for noisy sources:\n");
scanf("%d",&fade);
if(fade <= 0)
{
 printf("fade number must be positive, exiting\n");
 exit(1);
}
if(fade > 24)
 fade = 24;
fadebuffer = fade * irlength;

 115

The user is also prompted for the name of a mono input file, which will be

spatialised. In this case, datafiles are limited to a sampling rate of 44.1 kHz (the real-

time solutions offer more flexibility; extension to consider other sampling rates is

trivial), so input file sampling rate should match.

HRTF datafiles are then read (from the working directory) and stored. An

efficient data structure is used to store and access the HRTFs. Each elevation (14

values) is iterated through. On each iteration, the appropriate number of angle

values/HRTFs are iterated through (remembering the symmetric nature of the

dataset). Memory is allocated for each HRTF, and filled with the appropriate data

(from the left/right datafiles). A three-dimensional structure is thus derived;

elevation increments on the x axis, angle increments on the y axis, and spectral bins

on the z axis. A two-dimensional array of pointers is possibly more intuitive from a

visualisation point of view. Each array point represents an elevation and angle. The

pointers store the first memory location of the buffer storing the appropriate HRTF.

Thus data access is efficient and intuitive.

/* store files */
for(i = 0; i < 14; i++)
 for(j = 0; j < elevationarray[i] / 2 + 1; j++)
 {
 /* hrtfarray[i][j] = &hrtfarray[i][j][0] */
 hrtfarrayl[i][j] = new double [irlength];
 hrtfarrayr[i][j] = new double [irlength];

fread(hrtfarrayl[i][j],sizeof(double), irlength,
hrtfleft);
fread(hrtfarrayr[i][j],sizeof(double), irlength,
hrtfright);

 }

Next, libsndfile is used to setup the data structure storing the details on the output

file, which will be stereo, have a sampling rate of 44.1 kHz and the same format (bit

rate and file type) as the input file.

/* initialise the SF_INFO structure (need to do this before opening
 file!), same as input but stereo */
psfinfoout->samplerate = psfinfoin->samplerate;
psfinfoout->channels = 2;

 116

psfinfoout->format = psfinfoin->format;

Dynamic source trajectories are read using a breakpoint file, the parsing of which is

dealt with by an external function, defined in binauralmoverfunctions.cpp.

/* function to read, check and store trajectory */
bkpt(percentages, elevs, angles, &countbkp, maxbrkpts);

Pointers to buffers to store percentage, elevation and angle values, an integer to keep

track of the number of breakpoints and a maximum breakpoint control value

constitute the arguments.

The function itself prompts the user to enter the name of a text file that

defines the trajectory. It then reads through the file, storing each percentage,

elevation and angle value. Elevations are truncated to the legal range (data is only

available from -40 degrees, presumably due to the floor in the measurement room,

and up to 90 degrees: directly above the listener), percentage values must accumulate

and be between 0 and 100. The function is completed when a percentage value of

100 or the end of the file is recognised. The last percentage value should also be 100.

The number of points (passed as an address to allow the function to update) is

incremented on each iteration.

void bkpt(int *pers, double *els, double *angs, int *noofpoints, int
maxpts)
{
 /* file details */
 FILE *finbkp;
 char bkpfilename[100];
 int i;

printf("enter breakpoint file (integer value
 percentages),include.txt extension (<100

characters):\n");
 scanf("%s",bkpfilename);

 if(!(finbkp = fopen(bkpfilename,"r")))
 {
 printf("error opening breakpoint file, exiting\n");
 exit(1);
 }

 for(i = 0; i < maxpts; i++)
 {
 /* read input from file */

 117

 if(!feof(finbkp))
 {
 fscanf(finbkp,"%d",&pers[i]);
 fscanf(finbkp,"%lf",&els[i]);
 if(els[i] > 90.0)
 els[i] = 90.0;
 if(els[i] < -40.0)
 els[i] = -40.0;
 fscanf(finbkp,"%lf",&angs[i]);

 /* do checks */
 /* legal % values ? */
 if(pers[i] > 100 || pers[i] < 0)
 {

printf("error, breakpoint file must run from
 0 to 100, exiting\n");

 exit(1);
 }
 /* percentage accumulation */
 if(i > 0 && pers[i] <= pers[i - 1])
 {

printf("error, percentage values must
 accumulate...%d is not > %d,

exiting\n",pers[i],pers[i-1]);
 exit(1);
 }

 /* end at 100% */
 if(pers[i] == 100)
 break;

 *noofpoints = *noofpoints + 1;
 }
 else
 break;
 }

 /* check last value is 100 */
 if(pers[*noofpoints] != 100)
 {

printf("error, percentage values must conclude with 100,
 not %d, exiting",pers[i]);

 exit(1);
 }

 /* close file */
 fclose(finbkp);
}

The following therefore implies a trajectory from 0 to 90 degrees:

0 0 0
100 0 90

More complete input checking is desirable. However, this is essentially a test-

bed/didactic [34] program; the real time programs are released, so are intended to be

more robust.

 118

Breakpoints are iterated through in the main loop of the main program. A

loop within this loop runs to the appropriate percentage of the overall length of the

convolved output (input: data available from input file + impulse: HRIR: 128

samples - 1). Each breakpoint percentage is considered here. A nested do, while loop

processes the input at the control rate (irlength).

/* main loop */
for(x = 0; x < countbkp; x++)
{
 start = sum;
 /* run to full length of convolved output */

sum = (int)((psfinfoin->frames + irlength - 1) * percentages[x
+ 1] / 100.0);

 do
 {

…
}

 while (k < sum);
}

Buffer by buffer processing can now be discussed. Of immediate interest is the

calculation of the angle and elevation values. Simple linear interpolation is used

from point to point in the breakpoint file. It is important to consider the breakpoints

section by section here.

/* change elev and angle according to bkpt file */
elev = elevs[x] + (elevs[x + 1] - elevs[x]) * (double)(k - start) /

(sum - start);
angle = angles[x] + (angles[x + 1] - angles[x]) * (double)(k –

 start) / (sum - start);

Elevations and angles are read using an indexing system. From the interpolated

values, the nearest measured indices are calculated. For example, an elevation of 5

returns the value 4.5. The lower relevant elevation data is index 4, the higher is index

5. The fractional value returned by the above code is used to determine the relative

amount of each elevation index to use in the interpolation process (only the high

value is needed by the interpolation formula used, see below). For example, for an

elevation of 7.5 degrees index 4 and 5 are again used (0 degree and 10 degree

 119

measurements respectively). 25% of the lower elevation and 75% of the higher

elevation will be used.

/* two nearest elev indices */
/* to avoid recalculating */
elevindexstore = (elev - minelev) / elevincrement;
elevindexlow = (int)elevindexstore;

if(elevindexlow < 13)
 elevindexhigh = elevindexlow + 1;
else
 elevindexhigh = elevindexlow; /* highest index reached */

/* get percentage value for interpolation */
elevindexhighper = elevindexstore - elevindexlow;

Angle values are treated similarly to elevation values, if a little more flexibly. For

example, a desired location of 270 degrees can be inputted literally, or by using -90

or indeed any value that results in a value of 270 when calculated modulus 360.

while(angle < 0.0)
 angle += 360.0;
while(angle >= 360.0)
 angle -= 360.0;

A subtle revision to the indexing system follows, this time used to check for a cross

fade. The nearest index is required this time, to check if the source trajectory has

moved on to a nearer measured point. The nearest angle index is calculated modulus

the number of values at the appropriate elevation, which allows processing through 0

degrees.

/* as above,lookup index, used to check for crossfade */
elevindex = (int)(elevindexstore + 0.5);

angleindex = (int)(angle / (360.0 / elevationarray[elevindex]) +

 0.5);
angleindex = angleindex % elevationarray[elevindex];

This preempts the main crossfade check. If either of the nearest indices are not equal

to their previous values, a crossfade is initiated (provided the application has

performed at least one processing control period). A warning is printed if already in

a crossfade period. Due to the brief nature of crossfades, this is unlikely, but may

occur in complex trajectories (where angle and elevation values are changing

 120

rapidly) or very swift trajectories. To avoid overlapping crossfades, the user may

reduce the size of the crossfades to a level that is still tolerable with regard to noise,

or slightly change the trajectory (bearing in mind limitations of the auditory system

regarding swiftly moving sources). However, overlapping crossfades may not be

audible, as a new crossfade is started in this scenario. If the previous crossfade is far

enough into its evolution, the switch to the new crossfade may be inaudible.

Initialising a crossfade involves storing the old HRTF data for fade out and

setting/resetting crossfade variables. If any of the indices change, the nearest

available phase value is updated (this will occur on the first run, as old index values

are intentionally initialised to illegal values). Angle and elevation indices are used to

read this HRTF data, whose phase spectrum will be used in the synthesis of the

interpolated HRTF. Pointers are used to access the correctly indexed HRTF arrays.

Hemispheric data is treated appropriately; the left and right channel are switched if

required. It is at this point that reading files and ultimately understanding angles and

elevations using indexing becomes clear.

/* crossfade happens if index changes:nearest measurement changes */
if (oldelevindex != elevindex || oldangleindex != angleindex)
{
 if(k > 0)
 {
 /* warning on overlapping fades */
 if(cross)
 {

printf("\nwarning: fades are overlapping: this
 could lead to noise: reduce fade size or
 change trajectory");

 cross = 0;
 }
 /* reset l */
 l = 0;
 crossfade = 1;
 for(i = 0; i < irpadlength; i++)
 {
 hrtflpadspecold[i] = hrtflpadspec[i];
 hrtfrpadspecold[i] = hrtfrpadspec[i];
 }
 }

if(angleindex > elevationarray[elevindex] / 2)
 {

 121

hrtfpl = hrtfarrayl[elevindex][elevationarray[elevindex]
 - angleindex];

hrtfpr = hrtfarrayr[elevindex][elevationarray[elevindex]
 - angleindex];

 for(i = 0; i < irlength; i++)
 {
 currentphasel[i]=hrtfpr[i];
 currentphaser[i]=hrtfpl[i];
 }
 }
 else
 {
 hrtfpl = hrtfarrayl[elevindex][angleindex];
 hrtfpr = hrtfarrayr[elevindex][angleindex];
 for(i = 0; i < irlength; i++)
 {
 currentphasel[i]=hrtfpl[i];
 currentphaser[i]=hrtfpr[i];
 }
 }
}

The next part of the code uses similar constructs to the above. The four nearest

empirical HRTFs are calculated and read, to be used in the magnitude interpolation

operation, two for the low elevation in question, two for the high. Similarly to the

elevation values, relative weightings are calculated. This weight calculation and the

reading of the first of the four points are illustrated below (the other three use

identical constructs).

/* avoid recalculation */
angleindexlowstore = angle / (360.0 / elevationarray[elevindexlow]);
angleindexhighstore = angle / (360.0 /

 elevationarray[elevindexhigh]);

/* 4 closest indices, 2 low and 2 high */
angleindex1 = (int)angleindexlowstore;

angleindex2 = angleindex1 + 1;
angleindex2 = angleindex2 % elevationarray[elevindexlow];

angleindex3 = (int)angleindexhighstore;

angleindex4 = angleindex3 + 1;
angleindex4 = angleindex4 % elevationarray[elevindexhigh];

/* angle percentages for interp */
angleindex2per = angleindexlowstore - angleindex1;
angleindex4per = angleindexhighstore - angleindex3;

/* read 4 nearest HRTFs */
/* switch l and r */
if(angleindex1 > elevationarray[elevindexlow] / 2)
{

 122

hrtfpl = hrtfarrayl[elevindexlow][elevationarray[elevindexlow]
 - angleindex1];

hrtfpr = hrtfarrayr[elevindexlow][elevationarray[elevindexlow]
 - angleindex1];

 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = hrtfpr[i];
 lowr1[i] = hrtfpl[i];
 }
}
else
{
 hrtfpl = hrtfarrayl[elevindexlow][angleindex1];
 hrtfpr = hrtfarrayr[elevindexlow][angleindex1];
 for(i = 0; i < irlength; i++)
 {
 lowl1[i] = hrtfpl[i];
 lowr1[i] = hrtfpr[i];
 }
}

Magnitude intepolation is then performed. Phase values are imposed in accordance

with the nearest empirical HRTF’s phase spectrum to the derived location. The

resulting HRTF is stored in rectangular form, in the ordering format required by

FFTW for inverse transform.

At this point, the insight into real FFT polar processing offered in the

previous chapter becomes relevant from an implementation point of view. As

mentioned before, the values for 0Hz and the Nyquist Frequency are stored in the

spectral data files as purely real values. The magnitude values can be simply derived

from the purely real values by taking the floating-point absolute value. As the

imaginary part of the values will always be 0, the floating point absolute value will

always give an accurate magnitude value. However, the phase value must be

considered. The polarity of the real value will dictate its phase. A positive real value

implies a phase of 0, negative a phase of /- , as per the inverse tangent function.

Therefore, interpolated magnitudes are calculated using the floating absolute value

of the real 0 Hz and Nyquist Frequency values. Phase of these values are enforced by

observing the nearest measured phase spectrum polarity for these values. If the

nearest phase values imply a phase of /- (due to a negative real value), a negative

 123

polarity is imposed upon the rectangular result (as above, the polar form used for

interpolation processing is transformed back to rectangular for FFTW processing).

The magnitude interpolation process essentially interpolates the low and high

elevation values (which may have different parameters due to the non-unform

number of empirical points per elevation). The results are then interpolated.

Briefly, the linear interpolation formula works by simply adding the first

value to the difference between the second and first value multiplied by the

proportion of the second value required: a + (b - a) * proportion of b. It was decided

that linear interpolation is both appropriate and sufficient here, particularly when

considering the real time implementations as the main focus of this work (from an

efficiency point of view), as mentioned in [93].

After dealing with 0Hz and the Nyquist Frequency, storing real values with

appropriate polarity, organised in the FFTW format, the rest of the data is dealt with.

The code below essentially interpolates magnitudes, applies phase and transforms

the result back to rectangular form, storing it in FFTW format.

/* magnitude interpolation */
/* 0hz and Nyq real values */
/* organised in format of fftw */
magllow = fabs(lowl1[0]) + (fabs(lowl2[0]) - fabs(lowl1[0])) *

 angleindex2per;
maglhigh = fabs(highl1[0]) + (fabs(highl2[0]) - fabs(highl1[0])) *

 angleindex4per;
magrlow = fabs(lowr1[0]) + (fabs(lowr2[0]) - fabs(lowr1[0])) *

 angleindex2per;
magrhigh = fabs(highr1[0]) + (fabs(highr2[0]) - fabs(highr1[0])) *

 angleindex4per;
magl = magllow + (maglhigh - magllow) * elevindexhighper;
magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
if(currentphasel[0] < 0.0)
 hrtflinterp[0] = -magl;
else
 hrtflinterp[0] = magl;
if(currentphaser[0] < 0.0)
 hrtfrinterp[0] = -magr;
else
 hrtfrinterp[0] = magr;

magllow = fabs(lowl1[1]) + (fabs(lowl2[1]) - fabs(lowl1[1])) *

 angleindex2per;
maglhigh = fabs(highl1[1]) + (fabs(highl2[1]) - fabs(highl1[1])) *

 124

 angleindex4per;
magrlow = fabs(lowr1[1]) + (fabs(lowr2[1]) - fabs(lowr1[1])) *

 angleindex2per;
magrhigh = fabs(highr1[1]) + (fabs(highr2[1]) - fabs(highr1[1])) *

 angleindex4per;
magl = magllow + (maglhigh - magllow) * elevindexhighper;
magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
if(currentphasel[1] < 0.0)
 hrtflinterp[irlength/2] = -magl;
else
 hrtflinterp[irlength/2] = magl;
if(currentphaser[1] < 0.0)
 hrtfrinterp[irlength/2] = -magr;
else
 hrtfrinterp[irlength/2] = magr;

/* other values are complex, in fftw format */
for(i = 2, j=1; i < irlength; j++, i+=2)
{
 /* interpolate high and low magnitudes */
 magllow = lowl1[i] + (lowl2[i] - lowl1[i]) * angleindex2per;

maglhigh = highl1[i] + (highl2[i] - highl1[i]) *
 angleindex4per;

 magrlow = lowr1[i] + (lowr2[i] - lowr1[i]) * angleindex2per;

magrhigh = highr1[i] + (highr2[i] - highr1[i]) *
 angleindex4per;

 /* interpolate high and low results,use current phase */
 magl = magllow + (maglhigh - magllow) * elevindexhighper;
 phasel = currentphasel[i + 1];

 /* polar to rectangular, organised in fftw order */
 hrtflinterp[j] = magl * cos(phasel);
 hrtflinterp[irlength - j] = magl * sin(phasel);

 magr = magrlow + (magrhigh - magrlow) * elevindexhighper;
 phaser = currentphaser[i + 1];

 hrtfrinterp[j] = magr * cos(phaser);
 hrtfrinterp[irlength - j] = magr * sin(phaser);
}

Interpolated HRTFs are transformed back to the time domain using a half complex to

real transform (FFTW_HC2R), zero padded, and transformed back to the frequency

domain. Zero padding is necessary for the overlap-add convolution process (to avoid

truncating the output). Overlap data is stored: the previous processed output overlaps

with the current. In the case of crossfades, the overlap will be the previous processed

output for the first of multi-buffer crossfades, and the previous processed old data for

the rest.

fftw_execute(invhrtfl);

 125

fftw_execute(invhrtfr);

/* scale and pad */
for(i = 0; i < irlength; i++)
{
 hrtflpadtd[i] = (hrtfltd[i] / irlength);
 hrtfrpadtd[i] = (hrtfrtd[i] / irlength);
}

for(i = irlength; i < irpadlength; i++)
{
 hrtflpadtd[i] = 0.0;
 hrtfrpadtd[i] = 0.0;
}

/* execute fft on padded hrtfs */
fftw_execute(forhrtflpad);
fftw_execute(forhrtfrpad);

/* look after overlap add */
for(i = 0; i < overlapsize ; i++)
{
 overlapl[i] = outl[i+irlength];
 overlapr[i] = outr[i+irlength];
 if(crossfade)
 {
 overlaplold[i] = outl[i+irlength];
 overlaprold[i] = outr[i+irlength];
 }
 /* overlap will be previous fading out signal */
 if(cross)
 {
 overlaplold[i] = outlold[i+irlength];
 overlaprold[i] = outrold[i+irlength];
 }
}

Input is read, zero-padded and transformed to the spectral domain before the

convolution process occurs. Convolution in the frequency domain is performed by

mutiplying spectra. Complex multiplication is required for all but 0 Hz and the

Nyquist Frequency, which are real numbers. FFTW requires scaling to be performed,

as the FFT result will include a factor of N (transform size) that needs to be

compensated.

/* read input */
count = sf_readf_double(fin, inbuf, irlength);

/* zero pad */
/* fills last one with zeros from count */
for(i = (int)count; i < irpadlength; i++)
 inbuf[i] = 0.0;

/* fft input */
fftw_execute(forin);

 126

/* convolution: spectral multiplication */
/* 0hz and Nyq */
outlspec[0] = inspec[0] * hrtflpadspec[0];
outrspec[0] = inspec[0] * hrtfrpadspec[0];
outlspec[irpadlength/2] = inspec[irpadlength/2] *

 hrtflpadspec[irpadlength/2];
outrspec[irpadlength/2] = inspec[irpadlength/2] *

 hrtfrpadspec[irpadlength/2];

/* complex multiplication according to fftw layout */
/* (a + i b)(c + i d) */
/* = (a c - b d) + i(a d + b c) */
for(i = 2, j = 1; i < irpadlength; j++, i+=2)
{
 /* real */

outlspec[j] = inspec[j] * hrtflpadspec[j] - inspec[irpadlength
 - j] * hrtflpadspec[irpadlength - j];

outrspec[j] = inspec[j] * hrtfrpadspec[j] - inspec[irpadlength
 - j] * hrtfrpadspec[irpadlength - j];

 /* imaginary */
outlspec[irpadlength - j] = inspec[j] *

hrtflpadspec[irpadlength - j] +
inspec[irpadlength - j] *
hrtflpadspec[j];

outrspec[irpadlength - j] = inspec[j] *
hrtfrpadspec[irpadlength - j] +
inspec[irpadlength - j] *
hrtfrpadspec[j];

}

fftw_execute(invoutl);
fftw_execute(invoutr);

/* scaled, as fftw is a sum */
for(i = 0; i < irpadlength; i++)
{
 outl[i] = outl[i] / irpadlength;
 outr[i] = outr[i] / irpadlength;
}

Crossfades are dealt with next. The crossfade or cross flags trigger the crossfade

convolution process. Essentially, old HRTF data, stored when a crossfade is

required, is convolved with the input. The cross variable ensures crossfade

convolution is performed for the correct crossfade length (for more detail, see [34]).

Values for the next index check are also stored in this section of code.

/* setup for fades */
if(crossfade || cross)
{
 crossout = 1;

 /* convolution */
 /* 0hz and Nyq */
 outlspecold[0] = inspec[0] * hrtflpadspecold[0];

 127

 outrspecold[0] = inspec[0] * hrtfrpadspecold[0];
outlspecold[irpadlength/2] = inspec[irpadlength/2] *

 hrtflpadspecold[irpadlength/2];
outrspecold[irpadlength/2] = inspec[irpadlength/2] *

 hrtfrpadspecold[irpadlength/2];

 /* complex multiplication */
 for(i = 2, j = 1; i < irpadlength; j++, i+=2)
 {
 /* real */

outlspecold[j] = inspec[j] * hrtflpadspecold[j] –
 inspec[irpadlength - j] *
 hrtflpadspecold[irpadlength - j];

outrspecold[j] = inspec[j] * hrtfrpadspecold[j] –
 inspec[irpadlength - j] *
 hrtfrpadspecold[irpadlength - j];

 /* imaginary */
outlspecold[irpadlength - j] = inspec[j] *

hrtflpadspecold[irpadlength - j]
+ inspec[irpadlength - j] *
hrtflpadspecold[j];

outrspecold[irpadlength - j] = inspec[j] *
hrtfrpadspecold[irpadlength - j]
+ inspec[irpadlength - j] *
hrtfrpadspecold[j];

 }

 /* ifft, back to time domain */
 fftw_execute(invoutlold);
 fftw_execute(invoutrold);

 /* scaling */
 for(i = 0; i < irpadlength; i++)
 {
 outlold[i] = outlold[i] / irpadlength;
 outrold[i] = outrold[i] / irpadlength;
 }

 cross++;
 cross = cross % fade;
}

/* for next check */
oldelevindex = elevindex;
oldangleindex = angleindex;

Finally, output is prepared and written. In the case of a crossfade, the input processed

with the old HRTF data is faded out, the new faded in. An audio-rate linear fade is

used. In the vast majority of processing control periods, however, the output buffer is

simply filled with the processed data. The main control rate variable is iterated and

the output is written. A check is performed to ensure the output file size is correct

(input + impulse – 1 samples).

if(crossout)

 128

 for(i = 0; i < irlength; i++)
 {

lrout[2 * i] = (outlold[i] + (i < overlapsize ?
overlaplold[i] : 0.0)) *
(1.0 - (double)l / fadebuffer) +
(outl[i] + (i < overlapsize ? overlapl[i] : 0.0))
* (double)l / fadebuffer;

lrout[(2 * i) + 1] = (outrold[i] + (i < overlapsize ?
overlaprold[i] : 0.0)) *
(1.0 - (double)l / fadebuffer) +
(outr[i] + (i < overlapsize ? overlapr[i] : 0.0))
* (double)l / fadebuffer;

 l++;
 }
else
 for(i = 0; i < irlength; i++)
 {

lrout[2 * i] = outl[i] + (i < overlapsize ? overlapl[i]
 : 0.0);

lrout[(2 * i) + 1] = outr[i] + (i < overlapsize ?
 overlapr[i] : 0.0);

 }

/* do every irlength samples! */
k += irlength;

/* if on last run, only write output length mod irlength frames */
if(k > psfinfoin->frames + irlength - 1)

sf_writef_double(fout, lrout, (psfinfoin->frames + irlength –
 1) % irlength);

else
 sf_writef_double(fout, lrout, irlength);

The only remaining points of interest in the main program are the deallocation of the

two-dimensional array of pointers, and the destruction of the FFTW plans:

for(i = 0; i < 14; i++)
 for(j = 0; j < elevationarray[i] / 2 + 1; j++)
 {
 delete[] hrtfarrayl[i][j];
 delete[] hrtfarrayr[i][j];
 }

fftw_destroy_plan(invhrtfl);
…

The code can be compiled, assuming default locations for FFTW3 and libsndfile,

with the command:

g++ binauralmover.cpp binauralmoverfunctions.cpp –o mover
–I/usr/local/include –L/usr/local/lib –lsndfile –lfftw3

As discussed, when run, the program will prompt for the number of buffers for each

crossfade and the file names for the input mono audio and the text file describing the

 129

trajectory. A sample trajectory file is included as move.txt. A brief noise burst,

noise.wav and musical sample sample.wav are included as source audio. The

narrowband guitar riff performs well with the suggested eight crossfade buffers. The

noisy source can better mask any discontinuities caused by phase updates, so one

crossfade buffer is sufficient, and, in fact leads to a more continuous result.

4.2.3 Real-time Implementation

A command line implementation of the Functional Model follows from the above.

The novel algorithms have also been implemented as Csound opcodes, to allow for

real-time processing (using Csound’s FFT). A discussion of these opcodes inherently

involves an implementation of the Functional Model, as well as a minimum-phase

implementation. Therefore, it is perhaps more appropriate to present these algorithms

as real-time implementations here, after discussing the more pertinent command-line

points above. Many of the coding constructs follow from the command-line

discussion and the code is again thoroughly commented; repetition in this discussion

is minimised accordingly.

The opcodes have been a part of Csound since version 5.08 (February 2008).

However, a recent complete code update was completed, with various improvements

of code clarity, algorithms and optimisation. It is this code which will be discussed

(see hrtfopcodes.c, Appendix 2). It is also important to recognise that offline

processing is also possible with Csound, in the form of file output.

The file defines three opcodes: hrtfmove, hrtfmove2 and hrtfstat [46, 47, 48].

hrtfmove offers Phase Truncation based processing, as above; as well as minimum-

phase based processing. hrtfmove2 uses STFT processing and the Functional Model.

STFT processing is necessary to avoid artefacts as the phase changes control period

by control period in a dynamic trajectory, as discussed in chapter 3. However, static

 130

sources do not suffer from these artefacts, as the phase is not changing. hrtfstat

exploits this fact, reverting back to overlap-add processing, improving efficiency.

Opcode usage is discussed elsewhere [35].

A number of definitions/declarations are required for the opcodes, including

the appropriate non-linear ITD scaling value arrays and extracted minimum-phase

delay values (both discussed at length above). Note that HRTF data (magnitude,

phase, delays and scaling factors) is stored as float (datafilesfloat.cpp writes these

lower precision files).

It is also necessary to check that the byte order of the file is correct for the

architecture being used. If a big endian architecture is being used, a byte swap

function is called. This function was added by the Csound core developers after the

issue arose on first release. Detail of developing plug-in opcodes is beyond the scope

of this discussion, and is dealt with elsewhere [121, 44]. A standard approach to

opcode development is adopted accordingly: a constructor/opcode initialisation

function and a processing function are declared, as well as a structure containing the

internal variables required (dataspace) for an instance of the opcode.

4.2.3.1 hrtfmove

hrtfmove’s outputs are simply the stereo processed audio. Inputs are the unspatialised

input mono audio, a control (k) rate angle and elevation parameter, an initialisation

(i) time file name for the left and right HRTF data file, the mode of operation

(minimum-phase or Phase Truncation), defaulting to 0 (Phase Truncation), the

number of buffers for crossfades and the sampling rate. The latter three arguments

are optional.

aleft,aright hrtfmove asrc, kaz, kel, ifilel, ifiler [, imode = 0,
 ifade = 8, sr = 44100]

 131

Memory allocation is dealt with using AUXCH variables in Csound; memory is

allocated dynamically in the initialisation function. Significant variables will be

discussed as they arise. hrtfmove’s initialisation function declares some variables

local to the function/method (these will be lost after the method is called, however,

variables in the data structure will be maintained), such as Csound’s file pointer

format, used to open and store the HRTF files. Optional inputs are set to local

variables, to avoid unnecessary repeated reference of the structure (note that MYFLT

refers to single or double-precision floating point precision, depending on the

Csound install).

/* left and right data files: spectral mag, phase format. */
MEMFIL *fpl = NULL,*fpr = NULL;
int i;
char filel[MAXNAME],filer[MAXNAME];

int mode = (int)*p->omode;
int fade = (int)*p->ofade;
MYFLT sr = *p->osr;

Input values are read (and checked); the sampling rate dictates the default impulse

length, padded impulse length and overlap size. Note that three typical sampling

rates are allowed, 44.1 kHz, 48 kHz and 96 kHz. Each sampling rate requires a new

dataset, so it is hoped that offering these three options strikes a balance between

flexibility and data size/clarity.

Data files are opened, using Csound’s file open function, which includes the

endian check, and the dataspace is populated with appropriate values. Pointers in the

dataspace are set to point to the first memory location of the HRTF data files.

/* flag for process type: default phase trunc */
if(mode == 1)
{
 p->minphase = 1;
 p->phasetrunc = 0;
}
else
{
 p->phasetrunc = 1;
 p->minphase = 0;
}

 132

/* fade length: default 8, max 24, min 1 */
if(fade < 1 || fade > 24)

fade = 8;
p->fade = fade;

/* sr, defualt 44100 */
if(sr != 44100 && sr != 48000 && sr != 96000)
 sr = 44100;
p->sr = sr;

if (UNLIKELY(csound->esr != sr))

csound->Message(csound, Str("\n\nWARNING!!:\nOrchestra SR not
 compatible with HRTF processing SR of:
 %.0f\n\n"), sr);

/* setup as per sr */
if(sr == 44100 || sr == 48000)
{

irlength = 128;
 irlengthpad = 256;
 overlapsize = (irlength - 1);
}
else if(sr == 96000)
{
 irlength = 256;
 irlengthpad = 512;
 overlapsize = (irlength - 1);
}

/* copy in string name */
strcpy(filel, (char*) p->ifilel);
strcpy(filer, (char*) p->ifiler);

/* reading files, with byte swap */
if (UNLIKELY((fpl = csound->ldmemfile2withCB(csound, filel,

 CSFTYPE_FLOATS_BINARY, swap4bytes)) == NULL))
return

csound->InitError(csound, Str("\n\n\nCannot load left
data file, exiting\n\n"));

if (UNLIKELY((fpr = csound->ldmemfile2withCB(csound, filer,

 CSFTYPE_FLOATS_BINARY, swap4bytes)) == NULL))
 return

csound->InitError(csound, Str("\n\n\nCannot load right
data file, exiting\n\n"));

p->irlength = irlength;
p->irlengthpad = irlengthpad;
p->overlapsize = overlapsize;

/* the amount of buffers to fade over. */
p->fadebuffer = (int)fade*irlength;

/* file handles */
p->fpbeginl = (float *) fpl->beginp;
p->fpbeginr = (float *) fpr->beginp;

 133

Memory is then allocated. If the memory does not exist, or it exists and is less than

the appropriate size, memory is allocated dynamically. Delay buffers for minimum-

phase processing are allocated according to a safe maximum delay time. All memory

is zeroed; one example of this is given below:

if (!p->insig.auxp || p->insig.size < irlength * sizeof(MYFLT))
csound->AuxAlloc(csound, irlength*sizeof(MYFLT), &p->insig);
…
memset(p->insig.auxp, 0, irlength * sizeof(MYFLT));

The appropriate minimum-phase window is defined (use of the window in the

minimum-phase process is discussed below).

win = (MYFLT *)p->win.auxp;

/* min phase win defined for irlength point impulse! */
win[0] = FL(1.0);
for(i = 1; i < (irlength / 2); i++)

win[i] = FL(2.0);
win[(irlength / 2)] = FL(1.0);
for(i = ((irlength / 2) + 1); i < irlength; i++)
 win[i] = FL(0.0);

An interesting update to the command line process is also initiated here.

Interpolation processing is only necessary if the source moves. As optimisation is

crucial for the real time process, this redundancy is exploited. Variables are setup

and used to check if the source has moved since the last processing period. They are

initialised to values out of the legal range, to ensure processing occurs on the first

control period:

/* setup values used to check if src has moved, illegal values to
 start with to ensure first read */
p->anglev = -1;
p->elevv = -41;

The processing function starts by referencing the dataspace, again to avoid

unnecessary multiple referencing. Local variables are also declared (whose values do

not need to be maintained from call to call). The method is called every ksmps.

Therefore, processing at audio rate is looped. Input and output buffers are filled/read

at this rate.

 134

n = csound->ksmps;

for(j = 0; j < n; j++)
{

/* ins and outs */
 insig[counter] = in[j];

 outsigl[j] = outl[counter];
 outsigr[j] = outr[counter];

 counter++;
 …

A slightly different construct is used to ensure a fade does not happen on the first

run, as processing is real-time in this scenario, as opposed to offline.

if(phasetrunc)
{

/* used to ensure fade does not happen on first run */
 if(initialfade < (irlength + 2))
 initialfade++;
}

The majority of processing occurs at the internal control rate, essentially based on

the length of a HRIR:

if(counter == irlength)

Crossfade flags are reset; angle and elevation values are treated similarly to the

command-line code. Processing only proceeds if the angle or elevation value has

changed since the last internal control rate. The bulk of the costly processing is

included in this conditional statement, so, for static sources, efficiency is improved.

/* only update if location changes! */
if(angle != p->anglev || elev != p->elevv)
{
 /* two nearest elev indices to avoid recalculating */

elevindexstore = (elev - minelev) / elevincrement;
 elevindexlow = (int)elevindexstore;

…

Elevation and angle indexing is performed as with the command-line program. If

Phase Truncation programming is being performed, crossfade initialisation is also

dealt with similarly. In the real time implementation, the data files are accessed more

simply. They are loaded into independent memory directly, and accessed using a

 135

skip variable, which is incremented according to the location of the appropriate

HRTF. For example:

/* store point for current phase as trajectory comes closer to a new
 index */
skip = 0;
/* store current phase */
if(angleindex > elevationarray[elevindex] / 2)
{
 for(i = 0; i < elevindex; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < (elevationarray[elevindex] - angleindex); i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 currentphasel[i] = fpindexr[skip + i];
 currentphaser[i] = fpindexl[skip + i];
 }
}
else
{
 for(i = 0; i < elevindex; i++)
 skip +=((int)(elevationarray[i] / 2) + 1) * irlength;
 for (i = 0; i < angleindex; i++)
 skip += irlength;
 for(i = 0; i < irlength; i++)
 {
 currentphasel[i] = fpindexl[skip+i];
 currentphaser[i] = fpindexr[skip+i];
 }
}

The current phase and four nearest buffers are filled accordingly. Interpolation is

also a similar process to the command line.

The log magnitude is required for minimum-phase, so magnitude values are

stored accordingly. log(0) is avoided, as it is undefined:

logmagl[i] = LOG(magl == FL(0.0) ? FL(0.00000001) : magl);

Deriving the minimum-phase from the log magnitude of the interpolated HRTF

follows a real cepstrum method. In [81], the method is described explicitly. The

window function is defined as:

 (4.1)

 136

The IFFT (using Csound’s internal inverse FFT) of the log magnitude of the HRTF

is windowed. The (complex) exponential of the spectral result, transformed back into

the time domain constitutes the minimum-phase response. As discussed above, this

minimum-phase preparation process is costly. Jot also mentions the possibility of

direct phase interpolation, but this involves storing a different dataset, as well as

offline preparation of this dataset [93].

if(minphase)
{

/* ifft!...see Oppehneim and Schafer for min phase
 process...based on real cepstrum method */

 csound->InverseRealFFT(csound, logmagl, irlength);
 csound->InverseRealFFT(csound, logmagr, irlength);

 /* window, note no need to scale on csound iffts... */
 for(i = 0; i < irlength; i++)
 {
 xhatwinl[i] = logmagl[i] * win[i];
 xhatwinr[i] = logmagr[i] * win[i];
 }

 /* fft */
 csound->RealFFT(csound, xhatwinl, irlength);
 csound->RealFFT(csound, xhatwinr, irlength);

 /* exponential of result */
 /* 0 hz and nyq purely real... */
 expxhatwinl[0] = EXP(xhatwinl[0]);
 expxhatwinl[1] = EXP(xhatwinl[1]);
 expxhatwinr[0] = EXP(xhatwinr[0]);
 expxhatwinr[1] = EXP(xhatwinr[1]);

 /* exponential of real, cos/sin of imag */
 for(i = 2; i < irlength; i += 2)
 {
 expxhatwinl[i] = EXP(xhatwinl[i]) *

 COS(xhatwinl[i + 1]);
expxhatwinl[i+1] = EXP(xhatwinl[i]) *

 SIN(xhatwinl[i + 1]);
 expxhatwinr[i] = EXP(xhatwinr[i]) *

 COS(xhatwinr[i + 1]);
expxhatwinr[i+1] = EXP(xhatwinr[i]) *

 SIN(xhatwinr[i + 1]);
 }

 /* ifft for output buffers */
 csound->InverseRealFFT(csound, expxhatwinl, irlength);
 csound->InverseRealFFT(csound, expxhatwinr, irlength);

 /* output */
 for(i= 0; i < irlength; i++)
 {
 hrtflpad[i] = expxhatwinl[i];

 137

 hrtfrpad[i] = expxhatwinr[i];
 }
}

The minimum-phase/Phase Truncation based zero-padded HRTF can then be used in

the convolution process.

Another step involved in the minimum-phase process is adding the frequency

independent delay, in place of the all-pass system. For dynamic source trajectories,

this involves interpolating the appropriate delay time, in a similar, if simpler manner

to HRTF reading and interpolation. Note that delays were calculated using the

method from [111], as it is frequently referenced as the study that validates the

minimum-phase model. All of the above processing only occurs if the angle or

elevation change, highlighting the redundancy of static sources.

…
delayfloat = delaylow + ((delayhigh - delaylow) * elevindexhighper);

Overlap-add convolution can then be performed to generate the output. Overlap data

is dealt with similarly to the command-line program (considering crossfades in the

case of Phase Truncation). Csound provides a function for complex multiplication of

real FFT buffers. Crossfade convolution and output are also dealt with similarly.

Minimum-phase output involves a variable delay line. The delay is imposed on the

left or right signal, depending on which hemisphere the source lies in. A variable

delay construct which allows zero delay is used (by writing before reading).

Feedback is not feasible on such a construct, but is not required here.

if(angle > FL(180.0))
{

vdtr = delayfloat * sr;
 vdtl = FL(0.0);
}
else
{
 vdtr = FL(0.0);
 vdtl = delayfloat * sr;
}

/* delay right */

 138

if(vdtr > mdtr)
vdtr = FL(mdtr);

for(i = 0; i < irlength; i++)
{
 rpr = ptr - vdtr;

rpr = (rpr >= 0 ? (rpr < mdtr ? rpr : rpr - mdtr) : rpr +
 mdtr);

 posr = (int) rpr;
 fracr = rpr - posr;
 delmemr[ptr] = outr[i];

outvdr = delmemr[posr] + fracr*(delmemr[(posr + 1 < mdtr ?
 posr + 1 : 0)] - delmemr[posr]);

 outr[i] = outvdr;
 ptr = (ptr != mdtr - 1 ? ptr + 1 : 0);
}

/* delay left */
if(vdtl > mdtl)
 vdtl = FL(mdtl);
for(i = 0; i < irlength; i++)
{
 rpl = ptl - vdtl;

rpl = (rpl >= 0 ? (rpl < mdtl ? rpl : rpl - mdtl) : rpl +
 mdtl);

 posl = (int) rpl;
 fracl = rpl - (int) posl;
 delmeml[ptl] = outl[i];

outvdl = delmeml[posl] + fracl*(delmeml[(posl + 1 < mdtl ?
 posl + 1 : 0)] - delmeml[posl]);

 outl[i] = outvdl;
 ptl = (ptl != mdtl - 1 ? ptl + 1 : 0);
}

p->ptl = ptl;
p->ptr = ptr;

4.2.3.2 hrtfstat

hrtfstat is defined next. Outputs are left and right spatialised digital audio, as before.

Inputs are angle and elevation values, this time at i time, as the opcode is meant for

static source processing, as well as the mono input audio and file names. Optional

inputs are a value for the head radius used in the formula for the Functional Model,

and sampling rate.

aleft, aright hrtfstat ain, iang, iel, ifilel, ifiler [,iradius =
 8.8, isr = 44100]

The initialisation function uses many of the same constructs as hrtfmove. Head

radius defaults to 8.8 cm (see below for reasoning). As source location and

 139

interpolation only needs to be performed once, when the opcode is initialised, it can

be performed in the initialisation function.

IPD is applied using the Functional Model, as discussed above, in the

theoretical discussion of the method. A radian angle is required for the formula, so

the angle in degrees is transformed (it is also brought into the relevant hemisphere, if

appropriate). The Woodworth formula is used as an initial spherical-head ITD

estimate. This implementation of the formula requires the angle to be in the first

quadrant (relative to the listener’s front centre, anti-clockwise). The Woodworth

based ITD is given by the itdww variable.

/* woodworth process */
/* ITD formula, check which ear is relevant to calculate angle from
*/
if(angle > FL(180.))
 radianangle = (angle - FL(180.)) * FL(PI / 180.);
else
 radianangle = angle * FL(PI / 180.);
/* degrees to radians */
radianelev = elev * FL(PI / 180.);

/* get in correct range for formula */
if(radianangle > FL(PI / 2.0))

radianangle = FL(PI) - radianangle;

/* woodworth formula for itd */
itdww = (radianangle + sinf(radianangle)) * r * cosf(radianelev) /

 FL(c);

Magnitude interpolation is performed as before. Phase for 0 Hz and the Nyquist

Frequency is set to 0, by making their magnitudes positive (this is in line with the

Functional derivation of phase, as opposed to empirical). The functional interaural

phase spectrum is then applied. First, the appropriate frequency is derived from the

point in the iteration, the sampling rate and the size of the FFT buffer (the latter 2

constituting the sroverN variable). For the appropriate sampling rate, the scaling

factor array is used to scale the ITD for the appropriate low-frequency bins. A final

scaling factor of 1.0 ensures that non-scaled ITD values maintain the Woodworth

formula value. As discussed above, ITD is transformed into phase by transforming

 140

time differences to phase differences. The ITD is halved; the leading ear gets a

positively oriented phase, the lagging negative. With magnitude and phase derived, it

is possible to return to rectangular form and the time domain.

freq = (i / 2) * p->sroverN;

/* non linear itd...last value in array = 1.0, so back to itdww */
if(p->sr == 96000)
{
 if ((i / 2) < 6)
 itd = itdww * nonlinitd96k[(i / 2) - 1];
}
if(p->sr == 48000)
{
 if ((i / 2) < 6)
 itd = itdww * nonlinitd48k[(i / 2) - 1];
}
if(p->sr == 44100)
{
 if((i / 2) < 6)
 itd = itdww * nonlinitd[(i / 2) - 1];
}

if(angle > FL(180.))
{
 phasel = TWOPI_F * freq * (itd / 2);
 phaser = TWOPI_F * freq * -(itd / 2);
}
else
{
 phasel = TWOPI_F * freq * -(itd / 2);
 phaser = TWOPI_F * freq * (itd / 2);
}

/* polar to rectangular */
hrtflfloat[i] = magl * COS(phasel);
hrtflfloat[i+1] = magl * SIN(phasel);

hrtfrfloat[i] = magr * COS(phaser);
hrtfrfloat[i+1] = magr * SIN(phaser);

As discussed theoretically above, the buffers are shifted to ensure correct onset as

well as interaural phase, using shift buffers. The impulse is centred around the centre

tap of the filter, using the shift variable. Zero padding and spectral transformation

can then be performed.

for (i = 0; i < irlength; i++)
{
 /* scale and pad buffers with zeros to fftbuff */
 leftshiftbuffer[i] = hrtflfloat[i];
 rightshiftbuffer[i] = hrtfrfloat[i];
}

 141

/* shift for causality...impulse as is is centred around zero time
 lag...then phase added. */
/* this step centres impulse around centre tap of filter (then phase
 moves it for correct itd...) */
shift = irlength / 2;

for(i = 0; i < irlength; i++)
{
 hrtflpad[i] = leftshiftbuffer[shift];
 hrtfrpad[i] = rightshiftbuffer[shift];

 shift++;
 shift = shift % irlength;
}

/* zero pad impulse */
for(i = irlength; i < irlengthpad; i++)
{
 hrtflpad[i] = FL(0.0);
 hrtfrpad[i] = FL(0.0);
}

/* back to freq domain */
csound->RealFFT(csound, hrtflpad, irlengthpad);
csound->RealFFT(csound, hrtfrpad, irlengthpad);

The process function is straightforward for the static implementation of the

Functional Model. It uses the hrtfl/rpad buffers, which contain the interpolated

HRTFs, derived in the initialisation function, as the impulse in the convolution

operation. No crossfades need to be considered, so the convolution operation is

standard.

4.2.3.3 hrtfmove2

The dynamic version of the Functional Model, hrtfmove2, interpolates the impulse in

the same way, but reverts to updating interpolation in the perform method, similarly

to hrtfmove. Input arguments are again audio in, k-rate angle and elevation, i-time

file names, i time STFT overlap, and head radius and sampling rate, as with the static

Functional implementation.

aleft, aright hrtfmove2 ain, kang, kel, ifilel, ifiler
[, ioverlap = 4, iradius = 8.8, isr =
44100]

 142

The design of the STFT process used is based on the Sound Object Library [197],

with some updates for this specific application. As overlap-add convolution is not

performed here, no padded impulse or overlap-add variables are required. STFT

overlap is limited to 2, 4, 8 or 16 and defaults to 4. The STFT output, as discussed in

chapter 1, is made up of the sum of a number of overlapping windowed outputs, so a

number of processing buffers are required. This is done by essentially using large 1-

dimensional buffers to represent two-dimensional constructs. A Hanning window is

used in the STFT [144].

The processing function performs interpolation, as before, but this time in a

different overall structure, optimised for flexible STFT processing. In the main

audio-rate loop (the ksmps loop), the signal is distributed into the input buffer. The

overlapskipin buffer is initially filled with values that represent the

incrementation implied by the overlap variable (the hopsize is defined by the

impulse divided by the overlap). Essentially, the buffer keeps track of the iterations

through each of the input buffers used in the process. The first buffer’s input starts at

0, the second at the hopsize, the third at twice the hopsize etc. In this way, the

staggered input required is achieved. A similar buffer is used to keep track of the

overlapping output.

for(i = 0; i < overlap; i++)
{
 /* so, for example in overlap 4: will be 0, 32, 64, 96 if ir =

 128 */
 overlapskipin[i] = p->hopsize * i;
 overlapskipout[i] = p->hopsize * i;
}

The input buffer, which essentially represents a two-dimensional array (implemented

as one large buffer) of staggered input audio is filled (and windowed) accordingly.

/* distribute the signal and apply the window */
/* according to a time pointer (kept by overlapskip[n]) */
for(i = 0; i < overlap; i++)
{

 143

 inbuf[(i * irlength) + overlapskipin[i]] = in[j] *
win[overlapskipin[i]];

 overlapskipin[i]++;
}

The appropriate input buffer is read using the variable t, which decrements every

time a buffer is processed. This variable ensures that the appropriate buffer is read

when needed. Once read, the index of an input buffer is zeroed, so it is overwritten.

/* t used to read inbuf...*/
t--;
if(t < 0)
 t = overlap - 1;

/* insert insig for complex real, im fft */
for(i = 0; i < irlength; i++)
 complexinsig[i] = inbuf[(t * irlength) + i];

/* zero the current input sigframe time pointer */
overlapskipin[t] = 0;

Once processed with the appropriate interpolated HRTF, output is placed in a similar

buffer to the large input array; again representing a series of 2-D buffers.

for(i = 0; i < irlength; i++)
{
 outbufl[(t * irlength) + i] = outspecl[i] / (overlap * FL(0.5)

* (sr / FL(44100.0)));
outbufr[(t * irlength) + i] = outspecr[i] / (overlap * FL(0.5)

* (sr / FL(44100.0)));
}

Final output is dealt with in a similar way to input. Each outputted sample is the sum

of each appropriately indexed buffer. Once again, the variable t deals with

appropriate output buffer index resetting.

/* output = sum of all relevant outputs: eg if overlap = 4 and
 counter = 0, */
/* outsigl[j] = outbufl[0] + outbufl[128 + 96] + outbufl[256 + 64] +
 outbufl[384 + 32]; */
/* * * * * [] + */
/* * * * [*] + */
/* * * [*] * + */
/* * [*] * * = */
/* stft! */

outsuml = outsumr = FL(0.0);

for(i = 0; i < (int)overlap; i++)
{
 outsuml += outbufl[(i * irlength) + overlapskipout[i]] *

 win[overlapskipout[i]];
 outsumr += outbufr[(i * irlength) + overlapskipout[i]] *

 144

 win[overlapskipout[i]];
 overlapskipout[i]++;
}

if(counter == hopsize)
{
 /* zero output incrementation... */
 /* last buffer will have gone from 96 to 127...then 2nd last
 will have gone from 64 to 127... */
 overlapskipout[t] = 0;
 counter = 0;
}

outsigl[j] = outsuml;
outsigr[j] = outsumr;

Finally, the OENTRY structure is filled with the arguments: opcode size, processing

rates (i and a rate here), out types, in types, i-rate function (initialisation), k-rate

function (not applicable here, so NULL) and a-rate function (perform). Out types are 2

stereo audio streams for all three opcodes (‘aa’). Inputs vary for each, all take audio

input as their first type, the dynamic opcodes (hrtfmove and hrtfmove2) take k-rate

angle and elevation values next, the static opcode (hrtfstat) takes i rates here. String

values for the HRTF file names follow. Optional arguments complete the input type

lists. ‘o’ defaults to 0, and is i rate [44]. The LINKAGE macro in the code below deals

with opcode registration. The plugin opcodes are thus completed.

/* see csound manual (extending csound) for details of below */
static OENTRY localops[] =
{
 { "hrtfmove", sizeof(hrtfmove),5, "aa", "akkSSooo",
 (SUBR)hrtfmove_init, NULL, (SUBR)hrtfmove_process },
 { "hrtfstat", sizeof(hrtfstat),5, "aa", "aiiSSoo",
 (SUBR)hrtfstat_init, NULL, (SUBR)hrtfstat_process },
 { "hrtfmove2", sizeof(hrtfmove2),5, "aa", "akkSSooo",
 (SUBR)hrtfmove2_init, NULL, (SUBR)hrtfmove2_process }
};

LINKAGE

4.2.3.4 Opcode Optimisation

The discussion above represents a recent update to the real time implementation of

the HRTF algorithms; as part of this update, complex FFT processing was replaced

by real FFT processing for efficiency reasons. Issues like the previous discussion of

 145

0 Hz and Nyquist Frequency values make this a non-trivial update. Code was also

completely reviewed, resulting in efficiency and clarity updates (such as only

updating spatialisation parameters when sources move, as above).

Moving a source from 0 degrees to 90 degrees with Phase Truncation based

hrtfmove, using a complex FFT model (old code) averages a CPU time of .22

seconds for 2 seconds of processing, over 10 iterations (Intel Core 2 CPU, T7400 @

2.16 GHz, Windows XP). The real FFT update improves this figure to .19 seconds.

Interestingly, hrtfer, with no interpolation averages .235 seconds (it is assumed that

code optimisations are responsible for improvements here). The minimum-phase

version of hrtfmove averages .21 seconds. All processing for these tests was done at

a sampling rate of 44.1 kHz. For static sources using hrtfmove, the optimisation

applied reduces the process (with the same parameters with the exception of the

trajectory) to an average of .16 seconds. These results are summarised in table 4.1,

below.

Algorithm Average Time Taken

hrtfmove (complex FFT) .22

hrtfmove (real FFT) .19

hrtfmove (minimum phase) .21

hrtfer .235

Table 4.1: Comparison of average time taken by various algorithms to process 2

seconds of dynamic trajectories.

In summary, Phase Truncation takes less computation time than a similarly setup

minimum-phase process. Also, significant improvements can be derived from real

FFT processing (as opposed to compex, a 14% reduction; also, less storage is

required).

 146

4.3. Algorithm Testing

In order to validate the theory and implementation of the algorithms developed, both

objective and subjective tests were performed. The primary goal of smooth, artefact-

free source motion was constantly considered in the inception and development of

testing methods.

If objectively/numerically testing a HRTF interpolation algorithm such as a

minimum-phase plus delay model, typically, as in [111] the derived HRTF can be

compared numerically to the empirical measurement for a particular location. A

degree of error can be obtained from this comparison. In the case of Phase

Truncation, however, the empirical and algorithmically derived HRTF will be

identical at empirically measured points (Phase Truncation aims to provide empirical

measurements where available and a perceptually accurate HRTF spectrum

elsewhere by interpolating magnitudes and truncating to the nearest measured

phase).

A suggested approach to this difficulty is presented in [77]. A subset of the

measured data can be taken. For example, if a HRTF is available at 5, 10 and 15

degrees, the 10 degree measurement can be estimated using the interpolation

technique, then compared to the empirical measurement. In the case of Phase

Truncation, this will result in a significantly less accurate result than in a real usage

scenario which employs all measured points. Part of the strength of the algorithm is

based on the typically densely measured datasets currently available. In a dataset

measured at 5 degree increments, the phase spectrum will never be more than 2.5

degrees in spatial error. However, in the above experimental procedure this error will

be 5 degrees. Also, interpolated magnitude values will deviate more than typical

usage for the same reasons. Furthermore, the primary goal of this work is to provide

 147

smoothly moving sources, with accurate, artefact-free transitions from one

empirically measured point to another. The update of open source HRTF processing,

binaural reverb and multichannel binaural applications that the HRTF algorithms

were designed for highlight this goal. As mentioned in [211], high-quality virtual

reality and multimedia applications require a smooth perception of sound source

movement. It is with the above considerations in mind that a perceptual test is

considered more appropriate to validate the method. The Phase Truncation method is

thus tested by listeners for any artefacts introduced when it is used to dynamically

spatialise source trajectories.

The Functional Model can be tested numerically as above, as it is similar to

the minimum-phase approach, in that it creates a whole new dataset. For example,

the modelled point at 5 degrees azimuth and 0 degree elevation can be tested against

the empirical measurement at that point, unlike in the Phase Truncation case where

the empirical and interpolated points constitute identical filters. The Functional

Model can also be incorporated into the perceptual movement tests.

4.3.1 Objective Testing

Several approaches to objective testing were considered. The gammatone filter

discussed in [192] was initially considered as a suitable tool. Essentially, the

spectrum is bandpass filtered in a manner that imitates the cochlea. The

implementation investigated uses four second-order filters per band. Originally, the

intention was to investigate a frequency dependent ITD band by band. However, the

short HRIR signals did not integrate well with the model (in relation to the time

response of the gammatone filters). Some issues were also encountered with

extracting the delay of the filtered signals.

 148

Ultimately, a direct, clinical approach was taken. The goal of the test was to

investigate the low-frequency temporal accuracy of the Functional Model, compared

to the minimum-phase model. Therefore, a dataset of each was prepared, low-pass

filtered and the ITD extracted using the maximum of the cross correlation of the left

and right HRIR.

Once again, C++ code was used to perform these tests. The file defs.h in the

‘Chapter4/testing’ folder on the accompanying CD-ROM (which includes all

relevant files) includes the relevant headers and defines default values. A delay and

low-pass filter function are also declared. These functions are explicated in

functions.cpp. The delay function is simple, and uses a number of samples as its

input delay time:

double delay(double *sig, int dt, double *del, int *p, int vecsize,
 double sr)

{
double out;

 for(int i=0; i < vecsize; i++)
 {
 out = del[*p]; /* read current val */
 del[*p] = sig[i]; /* write in val */
 sig[i] = out; /* write o/p to buffer... */

*p = (*p != dt - 1 ? *p + 1 : 0); /* increment, if at
end, go to start! */

 }
 return *sig;
}

The low-pass is a simple first order recursive filter, and will be discussed in the

context of the reverberation opcodes discussed in the next chapter.

The diffuse dataset is prepared in the file diffusescaled.cpp. The process

essentially goes through each file, scales it down (all datasets are scaled by an

empirically determined factor of .65, as the nature of the minimum-phase and

functional-phase models lead to clipping if no scaling is applied) and stores it

conveniently. A large file containing all impulses is also prepared, for observation

purposes.

 149

The functional dataset is prepared in the file wwloop.cpp. A little more

consideration is required here. FFTW is again used for the Fourier transforms

necessary, as discussed above. Each file is transformed to polar form (0 Hz and the

Nyquist Frequency are given phases of 0, as a fully synthetic phase spectrum is

favoured). Functional phases are derived, as in the opcode described above.

However, for convenience, FFTW format is maintained in this scenario. Therefore,

the format of magnitudes, followed by phases is employed:

/* complex */
for(i = 1; i < (irlength / 2); i++)
{
 /* mags */

polarl[i] = sqrt(fftl[i] * fftl[i] + fftl[irlength - i] *
fftl[irlength - i]);

polarr[i] = sqrt(fftr[i] * fftr[i] + fftr[irlength - i] *
fftr[irlength - i]);

 /* phases */
 freq = i * sroverN;

 /* recalculate, with reset on last iteration */
 if(i < 6)
 {

itd = (radianangle + sin(radianangle)) * r *
cos(radianelev) / c;

 itd = itd * nonlinitd[i - 1];
 }

 polarl[irlength - i] = twopi * freq * -(itd / 2);
 polarr[irlength - i] = twopi * freq * (itd / 2);
}

Maintaining FFTW’s format makes returning to rectangular form and the time

domain convenient. The impulses are then shifted in time, for causality and correct

orientation, as above.

The minimum-phase loop is a little more complex again, as in

minphaseloop.cpp. In preparation for minimum-phase processing, the appropriate

window is prepared. As above, the conjugate of the right impulse is derived and the

cross spectrum calculated:

/* get conjugate of right response */
for(i = (irlength / 2 + 1); i < irlength; i++)
 crosscorr[i] *= -1;

 150

/* cross spectrum, 0 Hz & Nyquist */
crossfft[0] = crosscorl[0] * crosscorr[0];
crossfft[irlength / 2] = crosscorl[irlength / 2] *
crosscorr[irlength / 2];

/* (x + yi)(u + vi) = (xu – yv) + (xv + yu)i complex multiplication
*/
for(i = 1; i < (irlength / 2); i++)
{

crossfft[i] = crosscorl[i] * crosscorr[i] - crosscorl[irlength
 - i] * crosscorr[irlength - i];

crossfft[irlength - i] = crosscorl[i] * crosscorr[irlength –
 i] + crosscorl[irlength - i] *
 crosscorr[i];

}

The maximum of this cross correlation is, once again, understood as the interaural

delay:

/* ifft, scale */
fftw_execute(invcross);

for(i = 0; i < irlength; i++)
 cross[i] = cross[i] / irlength;

/* get max sample value */
maxvalue = cross[0];
maxsampleval = 0;
for(i = 0; i < irlength; i++)
{
 if(fabs(cross[i]) > fabs(maxvalue))
 {
 maxvalue = cross[i];
 maxsampleval = i;
 }
}

Log magnitude values are then calculated. Again, the FFTW format is maintained.

Also, to reiterate, it is important not to allow 0 log-magnitude values, as the log of 0

is undefined:

/* get log magnitudes, with zero phases for ifft */
/* 0 Hz & Nyq: positive mags */
magl = fabs(fftl[0]);
magr = fabs(fftr[0]);
logmagl[0] = log(magl == 0.0 ? 0.00000001 : magl);
logmagr[0] = log(magr == 0.0 ? 0.00000001 : magr);
magl = fabs(fftl[irlength / 2]);
magr = fabs(fftr[irlength / 2]);
logmagl[irlength / 2] = log(magl == 0.0 ? 0.00000001 : magl);
logmagr[irlength / 2] = log(magr == 0.0 ? 0.00000001 : magr);

for(i = 1; i < (irlength / 2); i++)
{

 151

magl = sqrt(fftl[i] * fftl[i] + fftl[irlength - i] *
fftl[irlength - i]);
magr = sqrt(fftr[i] * fftr[i] + fftr[irlength - i] *
fftr[irlength - i]);

 logmagl[i]= log(magl == 0.0 ? 0.00000001 : magl);
 logmagr[i]= log(magr == 0.0 ? 0.00000001 : magr);
}

Phase values are left at 0 at this point. The time-domain version of the log

magnitudes is windowed, transformed back into the frequency domain and the

exponential is taken (care must be taken to correctly calculate the complex

exponential):

/* exponential of complex result */
/* 0 hz and nyq purely real... */
expxhatwinl[0] = exp(fftl[0]);
expxhatwinr[0] = exp(fftr[0]);
expxhatwinl[irlength / 2] = exp(fftl[irlength / 2]);
expxhatwinr[irlength / 2] = exp(fftr[irlength / 2]);

for(i = 1; i < (irlength / 2); i++)
{
 expxhatwinl[i] = exp(fftl[i]) * cos(fftl[irlength - i]);

expxhatwinl[irlength - i] = exp(fftl[i]) * sin(fftl[irlength -
i]);

 expxhatwinr[i] = exp(fftr[i]) * cos(fftr[irlength - i]);
expxhatwinr[irlength - i] = exp(fftr[i]) * sin(fftr[irlength -
i]);

}

The process of extracting the interaural delay is then performed on the minimum-

phase buffers, to extract the interaural delay between them. This value is then

subtracted from the empirical extracted delay, before the appropriate data is written

to file. A text file is written to the same folder as the HRIRs, detailing the empirical,

minimum-phase and overall delay for each measured location.

As the data files have now been prepared, objective testing can commence.

The file hrtftestingloop.cpp contains the code. The file for each location of the

empirical data, Functional and minimum-phase models is opened and stored. A low-

pass filter is then applied, with a cutoff at 1000 Hz (bearing in mind the 1500 Hz

threshold of ITD and the filter response, as below in figure 4.2). This is a first order

filter, with a smooth rolloff. Therefore higher frequencies will pass through the filter,

 152

but will be attenuated. This will work in the favour of the minimum-phase data, as

the functional data is linearly approximated in the higher-frequency ranges:

Figure 4.2: Low-pass filter used in objective test response

/* filtering */
/* LOW PASS ALL */
/* initialise internals to zero.... */
flemp = fremp = flempscal = frempscal = flmp = frmp = flww = frww =
0.0;
lowpass(inlemp, 1000.0, &flemp, irlength);
lowpass(inremp, 1000.0, &fremp, irlength);
lowpass(inlempscal, 1000.0, &flempscal, irlength);
lowpass(inrempscal, 1000.0, &frempscal, irlength);
lowpass(inlmp, 1000.0, &flmp, irlength);
lowpass(inrmp, 1000.0, &frmp, irlength);
lowpass(inlww, 1000.0, &flww, irlength);
lowpass(inrww, 1000.0, &frww, irlength);

The low frequency delay for each file is then extracted, as above. As an additional

confirmation of the ITD extraction algorithm, both the empirical and scaled

empirical dataset are processed.

Details are output to a text file, which lists each location, the extracted delays

from each file at that location, and keeps track of the minimum-phase and Functional

Model deviation from the empirical data.

Finally, the file hrtftestingloop4x.cpp contains the code to process up-

sampled HRIRs. Essentially the same as hrtftestingloop.cpp, care must be taken to

 153

update buffer sizes and sampling rate based processes. Up-sampling of the empirical

data, followed by derivation of the minimum-phase and Functional datasets was

considered, as was higher resolution FFT analysis. However, as 44.1 kHz and 128-

point impulses are assumed to be the most common processing parameters, datasets

prepared at 44.1 kHz were up-sampled by a factor of four directly. These high-

sampling-rate files provide more accuracy (no extra data can be extracted in the

upsampling, but the interpolation in the process leads to more accurate delay

extraction).

4.3.1.1 Results

As expected, creating the Functional dataset using different non-linear scaling

factors, derived from different radii, gives different results. An optimal radius for

minimal deviation from the empirical data appears to be approximately 8.8 cm. The

dataset begins to stray further from the empirical data when radii move away from

this value, getting either smaller or larger. The filter also has an effect on results. If

all data files are high pass filtered, the minimum-phase data is more accurate, due to

the spherical-head approximation. If the low-pass filter cutoff is set lower, the

Functional Model becomes more accurate.

For a head radius of 8.8 cm and the filter set at 1000 Hz, at 44.1 kHz

sampling rate, the minimum-phase Model deviates from the empirical data by a total

of 251 samples, whereas the Functional Model only deviates by 211. This is for the

entire dataset. For the most relevant horizontal plane, the minimum-phase deviation

is 45 samples, the Functional Model 39.

The high resolution results confirm this result. For the same parameters, the

minimum-phase deviation is 1076 samples, the Functional Model 827 (see figure

 154

4.3, below). For the horizontal plane, the values are 183 and 156 samples

respectively (figure 4.4). The higher error is expected as the sampling rate is higher.

Figure 4.3: Overall high-resolution objective test results: the low frequency ITD

extracted from the minimum phase model deviates further from the empirical data

than that of the functional model

Figure 4.4: Horizontal plane high-resolution objective test results

This frequency specific objective test, developed specifically for the scenario under

analysis illustrates clearly that the Functional Model more accurately represents the

 155

empirical data from a low-frequency ITD point of view (it also gives an insight into

the optimal radius for processing: approximately 8.8 cm). This is the case both for

the whole dataset and the most significant horizontal plane. Deviations from

agreement with the empirical data are expected in the Functional Model, as the

scaling involved is averaged to improve generality and efficiency. Also the filter

used is quite forgiving to the minimum-phase approach, as it lets through some

higher frequencies which exhibit a much less accurate ITD in the Functional Model,

by design. The results for the minimum-phase data not only confirm the success of

the Functional Model, but highlight the problems with assuming the all-pass

component of the minimum-phase all-pass decomposition is linear. Once again, it

should be noted that the delay extraction method used in [111] is used. As discussed,

other methods of delay extraction exist (it is also important to realise that the method

relies on similarity of the left and right impulses).

4.3.2 Subjective Tests

In the perceptual experiments presented, minimum-phase is presented as the

generally accepted basis for achieving source movement by HRTF interpolation.

Phase Truncation and the Functional Model are also presented, as the novel methods

under investigation.

As discussed previously, some inaccuracies in the minimum-phase

representation are mentioned by [111], specifically for contralateral areas and low

elevations. It is important to note here that the experiments conducted in Kulkarni et

al constituted a much more detailed study (preference tests vary in complexity from

the extremely detailed to more casual, simple analysis [61]). Subjects were exposed

to many more stimuli, over a longer period of time. Also, static sources were used in

the comparison of minimum-phase plus delay and empirical measurements. Subjects

 156

had several hours of listening experience before the experiment was run, so could be

considered experienced. Another important aspect of the experiments in Kulkarni et

al is the dataset used. Datasets can vary considerably, as highlighted above. This is

due to the fact that the hearing mechanism is not physiologically uniform from

person to person. So, the minimum-phase representation of the dataset used in the

perceptual experiments in Kulkarni et al (measured from a human subject) may be

relatively more or less accurate per subject than that of the MIT KEMAR dataset

employed here. Furthermore, only 50% (two of four) of the experienced listeners in

the experiment demonstrated a distinct ability to identify the minimum-phase stimuli

when asked to distinguish between minimum-phase and empirical. As mentioned

before, this was specifically for the low-frequency content of the stimuli (hence the

low-frequency scaling in the Functional Model).

In summary, although minimum-phase has been shown to be accurate for

most locations, there are clearly some specific areas in the listener’s spatial

environment and certain conditions whereby a minimum-phase plus delay

approximation of empirical HRTFs is not accurate, as per Kulkarni’s and co-authors’

seminal paper. However, it is difficult to reproduce these inaccuracies, particularly in

brief experiments with non- experienced users. It is therefore anticipated that results

of the listening tests may not show significant benefits of Phase Truncation or the

Functional Model over minimum-phase plus delay. However, numerical tests do

show that the Functional Model does provide a more accurate low-frequency phase

spectrum when the complete dataset is considered. At the outset, it is expected that,

as the current experiments are performed on non-experienced listeners, that a similar,

high quality result for all methods will be observed.

 157

Subjective tests were performed using Csound’s FLTK opcodes [45]. It was

found that a suitable interface could be designed using the flexible nature of the

opcodes (the interface is illustrated in figure 4.5). A similar interface to that found in

[125, 230 or 86] was designed. The test was designed based on ITU-R standards [85,

86]. Interestingly some problems with biasing in generally employed audio

preference tests have recently been highlighted [232]. These include affective biases

(based on subject mood, expectations, affective language in test), score mapping

(problems with scoring scales) and user interface based biases.

Figure 4.5: Subjective testing interface

A common subjective test of interpolation algorithms is the 4I-2AFC method (used

for example in [111]): four interval two alternative forced choice method. Four

samples are presented to a subject. The first and last are the same, and one of the

second or third is different. Subjects are asked to tell which one. Chance

performance then implies no perceptual difference between the samples. Again, due

 158

to the nature of the novel algorithms and the necessity for source movement in the

final application, a moving source test was developed.

The designed test is similar to the A/B/Ref test defined in GuineaPig [84] (a

preference testing software tool; used in [125]) as ‘three samples are played.

Samples A and B are graded against the reference.’ Due to the restriction of not

having a true reference signal, the source in question processed with static start and

end point empirical HRTFs constitute the reference. In this case, the samples to be

graded are the same sample moved from start to end point. Obtaining an accurate

reference would involve recording each source moving along each trajectory in the

same environment where the HRTFs were originally recorded. Practically, this

would involve re-recording all HRTF measurements and source movements in the

finely controlled circumstances mentioned above.

Consequently, due to the above considerations and limitations, a subjective

test based on ITU standards was developed. The minimum-phase, Phase Truncation,

Functional Model and original Csound hrtfer output are the four algorithms in

question. Listeners were asked to rate the samples according to a five-point quality-

grading scale [85]. The inclusion of the hrtfer output can be seen as an anchor

condition, as per the MUSHRA method [86]; also, one of the goals of the current

work is to further develop hrtfer. Anchors are test signals which are perceptually

impaired purposefully to provide a base level (here, hrtfer is included as an anchor as

it does not perform interpolation). Typically MUSHRA tests include the reference

signal, with several samples to be compared, but again, adaptations must be made

here due to the lack of a reference signal. Note, in this case, the anchor is not used in

each test due to the nature of the designed test. The known issues with the hrtfer

algorithm for moving sources, as discussed previously make it a suitable anchor

 159

candidate. Note that a diffuse dataset was prepared for hrtfer, as it uses a non-diffuse

field dataset. This ensures that all algorithms use the same dataset. The test will now

be described. User instructions read as follows:

Please listen to the sounds at the top of each tab (by clicking the buttons)
They represent a source sound located at a start and end point.
Then please listen to each of the movement sounds below (the sources are
repeated in the movement).
These movement sounds aim to smoothly move the source sound from start
to the end point.
You will then be asked to judge each movement sound.
PLEASE RATE EACH ON THE FOLLOWING CRITERIA:
You are judging movement sounds on smooth, artefact free movement.

5: Excellent: no distortion or noise
4: Good: some slight distortion or noise
3: Fair: distortion or noise audible
2: Poor: distortion or noise begins to affect listening experience
1: Bad: distortion or noise severely affects listening experience

eg Score of 5 represents smooth movement that sounds like the sound is
convincingly moved from start to end point, without any
alterations/clicks/noise added to the sound.
Some slight filtering/movement not completely smooth; perhaps the sound is
a little altered scores 4.
Some slight clicks/jumps as the sound moves: 3
Clicks/jumps as the sound moves through its trajectory: 2
More severe clicks/jumps: 1

You may listen to each sound any number of times, 3 is recommended, you
may need more for early tests to familiarise yourself with the task
Please click 'done' on the last tab when done...

NOTE: You are not judging how convincing the spatial location of the sound
is, just the effect the movement has on the source sound, if any;
Some of the start/end points may not be easy to locate in headphones, but
you should still be able to rate the movement.
Three training trials (T1-T3) are presented before the trials (1-18) begin...

A thorough, if verbose approach was purposefully chosen after initial trials. It was

found that total immersion in the project can lead to inadvertent omission of an

important instruction! Verbal instructions were also given both before and during the

training phase regarding GUI use, sample content, etc.

 160

The subject of the test: smooth source movement is defined, and the ITU-R

quality-based scale defined, with each step explicitly described. Note that non-

individualised HRTFs are being used here, which can lead to front-back confusion

and localisation inaccuracies (as discussed). Therefore, spatial location is not being

assessed in this test. Examples of impairments are also given. Users are permitted to

repeat playback of reference and sample files, as desired. Also, users can stop

samples if required, and cannot play more than one sample at a time. Participant

training is important to the trial [86]; three sample tests are presented. These aim to

familiarise subjects with the sound samples, task and interface. Movement was

purposefully limited in speed to allow the subject to listen for changes in the output.

Source sounds were also repeated to allow for user familiarity (all sources are

introduced in the training phase, but preliminary trials suggested that source

familiarity for long sources, as well as swift source movement were problematic).

Start, mid and end points were considered to aid listeners in discerning audible

changes. Mid points were, however deemed unnecessary by listeners in early trials.

Although not typically thought of as a tool for GUI preference test

development, Csound proved to be a flexible and efficient environment. The source

is included as preftests.csd in the ‘Chapter4/preftests’ folder on the accompanying

CD-ROM (which also contains the results and source audio files). The FLTK

opcodes are used to setup the GUI and then interact with the playback opcodes. A

simple playback instrument (using loscil) and stop instrument provide the audio

processes. An output text file stores the results. Using the outputs of the FLTK

sliders at the time of completion, simple data analysis is also performed and printed

to the text file. To avoid real-time processing overhead, all samples are prepared and

stored in tables. The FLTK buttons trigger instances of the instruments.

 161

Speech, a noisy signal and a narrow band musical signal were used as

samples to cover various temporal and spectral scenarios [98]. Simple (movement in

one plane only) and complex source trajectories were tested and spread evenly

among the algorithms. Nine subjects were tested, all of whom had some experience

of working with audio. The source samples were prepared in such a way to allow for

maximum potential for analysis (nine results for each algorithm, three of each

algorithm for each source, 18 simple, 18 complex movements, etc). All files were

normalised, Phase Truncation uses fades of eight buffers for the vocal and musical

sources, and 1 for the noisy source, the Functional Model uses an STFT overlap of 4.

4.3.2.1 Results

Each result file is included in the ‘results’ folder. From a statistical verification point

of view, an assessment of normality was performed on the data (the main statistical

reference used: [160]). Data in the Functional Model results group was not normally

distributed. Parametric tests typically assume that the sample is normally distributed.

Non-parametric tests make fewer assumptions (and are therefore appropriate for non-

normal data and small subject groups) [232]. Therefore, non-parametric tests were

used when investigating significance. The non-parametric equivalent to a one-way

repeated measures ANOVA is a Friedman Test. Results of this test show a

significant difference between groups. Comparing the ranks for the algorithms

illustrates that there is a steady increase in scores in each group with the Functional

Model ranking the highest, just above Phase Truncation, followed by minimum-

phase and the anchor condition. Descriptive statistics are illustrated in table 4.2,

ranks in table 4.3. Further statistical analysis was deemed unnecessary bearing in

mind the relatively small sample size.

 162

Method Mean Standard

Deviation
N

hrtfer 2.77742744 .608413002 9

Minimum-phase

Model
4.26723333 .345453380 9

Phase Truncation 4.63926089 .487147836 9

Functional Model 4.71220867 .409740078 9

Table 4.2: Subjective testing descriptive statistics

Method Mean Rank

hrtfer 1.00

Minimum-phase Model 2.33

Phase Truncation 3.17

Functional Model 3.50

Table 4.3: Subjective testing ranks

The above analysis validates the novel algorithms. The means are illustrated visually

in figure 4.6. Clearly, Phase Truncation and the Functional Phase Model perform

close to a rating of ‘excellent’. Minimum-phase is closer to a rating of ‘good’,

indicating that subjects reported some artefacts in minimum-phase based

spatialisation. As discussed above, further insight is available due to the considered

preparation of the test. Of particular interest here are the mean values for the noise

source (figure 4.7). The minimum-phase model’s discrepancies are highlighted here;

the noisy source is less forgiving than the narrow-band sources. Admittedly,

improvements to the minimum-phase model may be possible, using different

techniques for delay extraction or more complex delay line interpolation. Having

said this, one of the core aims of the novel algorithms is to reduce these

complexities/uncertainties.

 163

Figure 4.6: Overall preference test means

Figure 4.7: Preference test means: noise source

In conclusion, objective and subjective tests indicate that the novel algorithms

perform better than a similarly prepared minimum-phase model. Efficient, user-

friendly implementations of the algorithms are offered, complemented by what is

hoped to be transparent development details. Both novel methods perform

excellently; the Phase Truncation Model is more efficient as it uses overlap-add

convolution, so should be perhaps preferred in a real-time scenario (see Chapter 5; a

discussion of binaural reverberation, which illustrates a direct application of the

algorithm).

 164

4.4 Conclusions

In conclusion, this chapter has offered a detailed insight into implementation of the

novel algorithms introduced in chapter 3. As with any detailed development project,

an abundance of subtle challenges are faced. It is hoped that solutions to these

challenges are presented in a more transparent way than the often minimally detailed

literature.

Both algorithms offer an empirical alternative to a minimum-phase approach.

The Phase Truncation algorithm is perhaps more suited to scenarios involving denser

datasets and higher efficiency demand. The Functional Phase Model is perhaps more

appropriate in a sparser dataset, where the functional phase can be used to model a

more continuous spectrum (it is less efficient, however, as it uses the STFT). Both

objective and subjective tests clearly highlight the success of the novel algorithms,

which both perform better than a minimum-phase implementation. The goals of the

work are thus met and surpassed.

 165

 166

Chapter 5. Binaural Reverberation

5.1 Introduction

A creative or functional use of the HRTF opcodes reveals the anechoic nature of

their capture. In typical natural listening situations, environmental processing plays a

significant role in the sonic experience. Therefore, it is important to investigate the

application of reverberation to binaural audio. In an interesting and pertinent study,

Begault [17] investigates the perceptual effects of adding synthetic spatial

reverberation (based on [189]) to HRTF spatialised audio. It appears that adding

synthetic reverberation to binaural signals greatly improves source externalisation,

which perhaps quantifies the anecdotal difficulties reported by this author in using

the HRTF opcodes creatively. However, localisation ability does suffer as a result of

the addition of artificial reverberation [17]. Perhaps intuitively, an increased sense of

distance was also achieved by adding artificial reverberation. The non-individualised

nature of the HRTFs used does slightly challenge the results (also, perhaps a more

advanced reverberation model may be more appropriate to draw decisive

conclusions).

The precedence effect suggests that early reflections arriving within 5 - 40 ms

(depending on source type) should not, in typical situations, have an effect on

localisation of a direct source [143]. However, in [174], the authors show that the

precedence effect does not eliminate all influence of room reflections. This perhaps

goes towards explaining the reported reduced localisation ability. As the artificial

reverberation under development here aims to simulate real-world scenarios, this

reduction in localisation accuracy is perhaps desirable, as it is more appropriate to

real-world experiences.

 167

In [233], the authors highlight the need for reverberation processing in virtual

audio spaces to improve externalisation. It is concluded in [180] that even simple

reverb models aid externalisation; a study is cited in [16] which reports 2%

externalisation being improved to 90% by adding reverberation. In [19], this

requirement is also discussed; experiments suggested that addition of reverberation

also actually improves azimuth localisation abilities (but not elevation). The

influence of reflections on distance perception is clearly illustrated in [152].

This author’s initial goal, with regard to reverberation, was to simply

examine the literature with the intention of augmenting the HRTF interpolation

models with an appropriate and acceptable artificial reverberation, with the focus

remaining on the direct source. However, it became clear that the HRTF algorithms

could form the distinguishing feature in a much more integrated solution. A more

general, user-friendly, parametric and complete solution to binaural processing was

thus arrived at. With the focus remaining on advancing tools for Computer Music,

usability and efficiency were prioritised and constantly considered when striving for

accurate artificial binaural reverberation. The tools arrived at essentially update, re-

contextualise, develop and improve existing classic algorithms.

5.2 Literature Review

A vast amount of literature is available on the topic of artificial reverberation, as it

has many practical, academic and commercial applications. A discussion of a

selection of publications with particular relevance to the context of this study is

presented.

 168

5.2.1 Historical Perspective

The discussion below of development of artificial reverberation is summarised in

table 5.1.

Reference Method

Schroeder [189], 1962 Comb and all-pass filters

Moorer [145], 1979 Feedback based, development of low-

pass sections

Allen and Berkley [6], 1979 Image model

Stautner and Puckette [202], 1982 Feedback delay networks; introducing

matrices

Kendall and Martens [102], 1984 Spatial Reverberator

Jot et al [various, see text] Extensive system development, FDN

based

Savioja [186], 2000 Wave-based methods

Table 5.1: Historical summary of artificial reverberation

Schroeder’s seminal work of 1962 [189] discusses the need for control of frequency

response and reflection density in artificial reverberation. He discusses the

(frequency-response-based) suitability of comb and all-pass filters for the task,

arriving at the conclusion that a mix of both is perhaps most suitable: a number of

parallel comb filters feeding into a number of all-pass filters in series. The paper also

discusses how longer low-frequency reverb times are inherently appropriate and

even offers a solution to multi channel output. Of particular relevance to the current

work is Schroeder’s assertion that ‘there are about 15 large response peaks in every

100 cps interval for a room with 1 sec reverberation’. This is generalised in [193] to:

 (5.1)

This formula indicates that the total of the delay lines should be greater than .15 of

the reverb time times the sampling frequency. As pointed out in [90], modal density

is frequency dependent and is proportional to the square of frequency:

 , (5.2)

 169

where volume, frequency and sound velocity. More recently [97], this

modal density has been further investigated and updated using more complex (and

computationally expensive) modal filters.

Schroeder’s model was later extended to become the ubiquitous freeverb.

Moorer [145] gives an historic insight into artificial reverberation before discussing

in more detail the inherently low-pass nature of rooms, offering some detail on high-

frequency air absorption with distance (this is more significant than it first appears,

as sound will travel a significant distance when, for example, higher-order

reflections in a reasonably sized room are considered). Further development of the

low-pass element of the feedback reverberator and the importance of early

reflections are also discussed.

Around the same time, Allen and Berkley [6] suggested using an image

model to generate room impulse responses. A robust and pervasive algorithm, the

model works by using virtual images of actual source sounds in virtual rooms

adjacent to the actual room in question. The model, perhaps best understood visually

(see figure 5.1, below), considers a source S, and listener L. Virtual sources V are

mirror images of S in ever further virtual adjacent rooms. The visualisation offered

here shows a virtual source in the room directly to the right of the actual room. The

virtual source here represents a reflection off the right-hand wall. The virtual source

in the virtual room to the right of that represents the reflection first off the left wall,

then the right (two reflections: second order). Each virtual source thereby represents

a reflection pattern. Each can be dealt with separately from a point of view of surface

filter genealogy, distance travelled and spatial origin. The arrows in the image show

actual trajectories modelled in the actual room, and extended virtual trajectories in

the virtual rooms.

 170

Figure 5.1: The Image Model

Originally designed to consider only shoebox shaped rooms, the model was soon

extended to arbitrary polyhedra [23]. An implementation of this extension is

discussed in [22], which again breaks artificial reverberation into early reflections

(using the image model) and a later reverberant tail. The system is noteworthy in that

it is optimised for concert hall modelling. The source and listener are assumed to be

positioned centrally, and multi-channel output is suggested.

Ray tracing is another well established (for example it is discussed practically

in [106], from 1967, in relation to concert hall acoustics) geometric model, but is

criticised by Borish [23]. Briefly, the model assumes the source emits sound particles

in all directions, which eventually reach an area around the listener after a series of

(usually) specular reflections [23, 14]. An interesting frequency dependent

implementation of ray tracing, considering diffusion is presented by Kuttruff [113].

Borish points out that ray tracing can omit reflections in error as rays which are

 171

terminated when they reach the listener may actually reach the listener again if

continued. The finite number of rays emitted is another issue. The image model, due

to its distance-based control, is more suitable for early reflections (both models will

produce identical results if processed infinitely [23]).

Shortly after Allen and Berkley’s work, Stautner and Puckette [202]

introduced the idea [178] of the Feedback Delay Network (FDN). The unit

reverberators introduced by Schroeder [189] were reconsidered using matrix

mathematics. A number of comb filters were used, all of which fed into a

multiplication matrix which dispersed all of the signals (this is discussed in more

detail in the implementation section below). Each delay line then essentially feeds

into every other delay lines feedback path. Jot, more recently, further investigated

FDNs [90, 88, 89, 91 and 93], investigating analysis and synthesis of a particular

impulse response, as well as parametric scenarios (again, discussed further below).

In 1990, Kendall et al [104] used PCA-based HRTFs and an image model for

early reverberation. They discuss, in a practical nature, several perceptual and design

idiosyncrasies involved in developing their spatial reverberator (first introduced in

1984 [102]), such as consideration of head rotation and HRIR measurement issues.

In another paper discussing this research [103], which visualises the process

very well, the later reverb is discussed. The delay lines used for the first and second-

order image model virtual sources feed into a recursive delay unit, thus modelling

higher-order rooms. ‘In between’ rooms are dealt with by cross feeding the delays.

Again, the possibility of multiple spatialised outputs is possible.

The ‘Ball within the Box’ (BABO) [179] paradigm, published in 1995, offers

a more general approach, with its roots based in physical modelling, aiming to act as

a general physical model of a resonating system. In a manner similar to that

 172

eventually adopted here, it uses an image model, and adds diffusion using an FDN.

As it is physically based, delay lines used in this FDN are based on room/resonator

size [178]. BABO is a complex and accomplished model, however, it does not focus

on binaural reverb, which is the main issue dealt with in this thesis.

More recently (2008), Murphy et al, after Savioja [186] discuss recent

updates to their Renderair system [147]. The system is based on a digital waveguide

mesh, an extension of a digital waveguide (which is traditionally used to model the

behaviour of a wave pattern on, for example, a string). The authors illustrate how a

three-dimensional digital waveguide mesh is prohibitive due to processing power

and memory requirements. The time required to compute a .8 second impulse using a

3-D mesh is 14 hours 18 minutes (for a relatively small music practice room). A

hybrid approach of separating early and late reverb and using a 3-D mesh for the

more significant early reverb and a 2-D mesh for the later reverberant field greatly

reduces this computation time. This physical modelling approach offers a high level

of accuracy, inherently considering, for example, diffraction. The model performs

well in preliminary tests.

These waveguide techniques are summarised in [187, 186]. The waveguide

mesh discussed above can be classified as a wave-based model, as it aims to solve

the wave equation, using Finite Difference Time Domain methods. Finite Element

Modelling and Boundary Element Modelling are other methods which can be

considered as wave based. They both attempt to solve the wave equation

numerically. The image model and ray tracing discussed above constitute another

subsection of computational room modelling, labelled as ‘ray-based’. Scale

modelling can also be a useful tool in room acoustics.

 173

Convolution with a measured Binaural Room Impulse Response (BRIR) is

another option. The method can be computationally costly, but is optimisable [69]. It

also requires an interpolation algorithm to allow for dynamic source/listener

behaviour. The difficulties involved are discussed in [205], where the problem is

broken down by taking measured impulse responses, truncating early reflections,

interpolating and modelling the late reverberant tail.

From an implementation point of view, a dynamically updated FIR for direct

sound and early reflections is suggested in [233]. Care must be taken in this scenario

to avoid audible inconsistencies as filters change. A dynamic time warping

interpolation of early reflections is presented in [99]. As discussed below, an

approach based on the novel HRTF interpolation algorithms is presented here.

To conclude this historical perspective, multi-channel reverberation

algorithms should briefly be considered, as multi-channel domestic setups become

more pervasive. In [190], constant power panning is used to spatialise a source, and

spatially sampled FIRs reconstitute early reflections, with incoherent late

reverberation for each channel generated recursively. More recently, the image

model was used to derive multi-channel impulses from one or two room impulse

responses in undetermined scenarios [112]. Related to the topic of multi-channel

room impulse responses, Spatial Impulse Response Rendering (SIRR) [168] and the

resulting Directional Audio Coding (DirAC) [164] move towards an analysis-

synthesis method for analysing the spatial information from an input and outputting

to an appropriate multi channel configuration (discussed further in chapter 6).

Commercially, many options for artificial reverb exists [20], with industry

favouring Lexicon hardware and software [122], Eventide hardware [58] and Waves

IR Convolution [220]. In [20], the authors objectively test six reverberation tools.

 174

They mention that many corporate designs are proprietary, and highlight the large

price range (the tested tools range from freeware to 2,000 outboard equipment).

Interestingly, they conclude that ideal reverb design is an open question, and that the

objective measurements they suggest (including interaural difference and interaural

cross correlation) can only imply trends in quality.

5.2.2 A Focused Approach

It is clear from the above discussion that artificial reverberation using HRTFs is not a

new area of research. Indeed, Kendall and Martens were working on their ‘spatial

reverberator’ in the early 1980s [104], described by Begault as ‘perhaps the first

implementation of the image model technique with HRTF filtering’ [14]. A

frequently recurring feature of this and the other systems mentioned above is the

decomposition of the impulse into early reflections and later reverb. This tradition is

honoured here, and immediately raises the question of discriminating between early

reflections and later reverberation.

Criteria for early reflections are reviewed in [133]. Options include: fixed

values (50/80 ms being judged as ‘early’), reflection order based (widely used, fourth

order suggested in literature [150]), mean free path based (the mean distance of a

sound ray between two reflections in a room), reflection density (Schroeder suggests

1000 echoes per second [189], Griesinger up to 10000 [75]) and room volume (a

simpler measure). Subjective experiments are presented comparing measured BRIRs

with synthesised ones. These synthesised BRIRs are created by adding later impulses

to early reflections with varying early reflection lengths. Although results are not

discussed, reducing early reflections to 20 ms clearly has an adverse effect. In a later

work by the same authors, 40 ms is suggested as an appropriate truncation point

[134]. Interestingly, this work also confirms the diffuseness of the late tail, as several

 175

late tail locations and binaural head orientations were used with no noticeable

degradation when interchanged.

Murphy and Stuart [204] use a statistical tool to decide when the early

reflections end. The late diffuse field is inherently more normally distributed than the

early reflections, which illustrate higher kurtosis. The focus of this study is more on

measured, static impulses. The dynamic model presented in this thesis addresses

moving sources and, through its integrated design removes the requirement for a

crossfade from early to late.

The approach taken to early reflection duration in this work is mean free path

and order based, but, more importantly, is parametric: the user is provided with

suggestions, but can ultimately control the delay on the reverberant tail. Two

opcodes are developed, hrtfearly, for early reflections, and hrtfreverb, for the

later reverberant tail. The opcodes are discussed in detail below from an

implementation point of view. Flexibility and usability were core design

considerations. Therefore, hrtfearly can operate with either a small number of

simple inputs for immediate use, or a more complete set of parameters for more

expert environment modelling. hrtfreverb does not have as many parameters, but

does require crucial and sensitive low and high frequency reverb-time arguments.

However, hrtfearly outputs suggested values for these outputs based on the room

geometry used, thus again allowing immediate use. This simple modular approach,

inspired by the signal flow design of Csound allows for multiple sources

(hrtfearlys) feeding into one model of the late reverb (hrtfreverb) of the room in

question. This completely flexible, real-time, parametric paradigm is maintained

throughout. A more physical approach to the control interface is taken than the

perceptual approach discussed in [102] or [93].

 176

It was decided not to add an extra low-pass filter for air absorption [see 145,

186], as this can be controlled using the high-frequency response of the surfaces

(which will be considered numerous times, based on the number of related

reflections) [91]. Alternatively, as Csound is the chosen implementation medium, a

simple overall low-pass filter can be inserted into the general signal flow or indeed

on the source before it is processed to simulate direct source distance.

It is with all of the above in mind that an early reflection/later reverb is

developed. More specifically, the well established geometric image model is used as

the starting point for the early reflection processing [6], and an efficient, similarly

well established and common recursive model constitutes the basis of the later

diffuse tail [91]. In developing a complete model, various updates and improvements

are suggested.

5.3 Algorithm Design and Implementation

Considering the literature review and focused approach discussed above, algorithm

design and implementation will now be discussed.

5.3.1 Early Reflections

As Smith [193] identifies, early reflections should be spatialised. Kendall and

Martens discuss this in a paper giving background to their ‘spatial reverberator’,

visually highlighting spatiotemporal changes as source/listener changes location

[104]. They therefore spatialise first and second-order reflections. Begault has

researched how accurate early reflections need to be, perceptually, from the point of

view of artificial reverberation [15], investigating (amplitude) threshold levels for

early reflections. In similar, more recent work by Jensen and Welti [87], masking

levels in BRIRs were investigated with the intention of simplifying the necessary

 177

reverberant filters (replacing masked reflections with a simpler signal) required to

model the space in question. A more parametric, dynamic solution is offered in the

approach taken here.

In [93], Jot et al suggest a simplified model for early reflections. Initially, a

stereophonic model is discussed: using only time and intensity differences for early

reflections, omitting spectral cues. Using temporal integration as a justification, an

averaged spectral filter to consider binaural cues and surface filtering is then

suggested. ‘Preliminary’ psychoacoustic testing on these models using individualised

HRTFs suggests that this average filter performs well compared to individually

spatialised early reflections, with the exception of a significantly delayed lateral

reflection. Furthermore, Jot et al discuss a diffuse filter applied to the late reflections

in their model: the spectrum of the diffuse-field HRTFs multiplied by a Gaussian

noise, the spectrum of which is characterised by the room. Using this diffuse filter

alone results in some reported perceptual success. This scenario is updated here.

In the model presented here, greater accuracy in early reflections was decided

upon for three reasons:

1 The potential unreliability of the precedence effect, discussed above.

2 The ongoing discussion in previous chapters of the overall paradigm of

minimisation of data preparation (Jot’s averaged HRTF filter needs to

be updated for dynamic sources; also, as discussed in chapter 2, Jot uses

minimum-phase processing).

3 The availability of ever increasing processing power.

Early reflections are processed to the same degree of accuracy as the direct source.

To the user who may find this to be too costly in processing power/an overestimation

of the abilities of the auditory system (despite the above discussion), processing just

 178

the direct source is possible. In fact, the algorithm presented is very flexible and

parametric; any order of image reflections from 0-4 is possible. The later reverberant

field (discussed below) uses improved versions of Jot’s FDN.

Therefore, a traditional, simplified model of spatialised direct source plus

diffuse reverberant field is available (albeit with improvements discussed below), as

well as a more accurate model of spatialised early reflections. Once again, this more

accurate model fits with the overall goal of omitting data preparation from the

process, allowing immediate, user friendly application and direct processing of

empirical HRTFs. This reflection specific, individual approach to early reflections is

similar to that employed in [186 and 187], which present an advanced auralisation

system, DIVA. Again, the main difference here is the use of empirical HRTFs. Also,

the late reverberant field is updated here (as below).

The image model is employed here; its implementation is discussed below. In

criticism of the model, it is generally designed to only consider specular reflections.

As discussed in chapter 1, sound waves only behave in a specular nature (angle of

incidence equal to angle of reflection) when the wavelength of the sound source is

smaller than the reflecting surface. In the opposing case, sound waves behave in a

diffuse manner: sound reflects in all directions.

Also, high-order image model use can cause a comb filtering effect (as

virtual sources are mirrored to equally spaced locations). This is avoided here as an

independent model is used for late reverberation processing. A possible

improvement to this problem by way of randomisation of virtual source locations

was recently proposed [24].

 179

5.3.2 Later Diffuse Field

Following the historical discussion above, the late diffuse field is based on Jot’s

FDN. Essentially, the circuit splits an input signal, feeding separate copies to a

number of delay lines. The delay lines feed into a matrix, which increases the density

of the output, using cross fertilisation. A low-pass filter in each of the delay

loops/comb filters allows for frequency-dependent reverberation times. However,

reducing the high-frequency reverb time (relative to that of low frequencies; the

typical scenario) also reduces high frequency energy, which is not ideal. Therefore, a

compensation filter is used to boost these (higher) frequencies after the delay line

outputs have been summed.

Jot discusses both reproduction of a measured room impulse and a parametric

scenario [90, 88, 89, 91 and 93]. From an analysis-synthesis point of view [88, and

the more exhaustive 90], an STFT is performed on a measured impulse. Then, the

Energy Decay Relief (EDR) is calculated using a time reversed integration of this

analysis:

 , (5.3)

where h(t) is a time domain signal, transformed to using the STFT.

So, starting at the end of the impulse, the remaining energy at any frequency

can be calculated by moving slightly back in time. The EDR follows from the

Energy Decay Curve (EDC), which is typically not frequency dependent.

Normalising this EDR with the reverberation time constitutes incorporating the tone

correction filter. Therefore, the normalised EDR at time 0 represents the initial

(frequency-dependent) energy, as opposed to the total energy. Use of the resulting

FDN as a more parametric artificial reverberator is discussed as an application of the

 180

analysis-synthesis method, with a realisation offered in IRCAM’s Spat software

[198]: a commercial product emerging from the research led by Jot. A

comprehensive system, it again uses an early reflection (with an intermediate

‘clustered’ reflection option)/late reverb approach, minimum-phase HRTFs and

several output options. More detail on the parametric scenario is given in [91], with

equations for first-order frequency dependent reverb time and tone correction filters

suggested (as implemented below).

Very recently, interaural coherence (a frequency dependent function) was

added to Jot’s FDN [137]. The relevance of coherence is discussed in a previous

paper [60] which concludes that interaural coherence aids localisation in complex

listening scenarios. Essentially, the authors developed a model of source localisation

which only considers ITD and ILD when interaural coherence is above a threshold

(in critical bands). This model accounts for documented localisation ability in

complex listening environments, so strongly suggests the significant role of

interaural coherence. Correct interaural coherence in binaural impulses was

implemented for measured impulses in [137], in a manner similar to the analysis-

synthesis work done by Jot [90, 88]. Here, this addition is taken further; it is

considered in a parametric scenario. More significantly, dynamic sources/room

impulses are considered. Interestingly, in a related work, Menzer and Faller have

also worked on extracting a BRIR from an ambisonic response, by extracting

direction for early reflections and processing with HRTFs [138]. Results in [137]

show interaural coherence agreement between measured and synthesised impulse

response. Therefore, the general technique is used in this work.

In criticism of this model, the Schroeder frequency is not considered, as

conceded by Jot [90]. Also, perceptual research suggests three band FDN absorbent

 181

filters [91]. Bearing in mind the potentially high number of delay lines involved (see

below), and the desire for a relatively simplified user interface, first-order filters are

maintained (a 12
th

 order minimum-phase IIR is used for the tonal filter in [88],

second-order are discussed elsewhere [93]).

5.3.3 hrtfearly: Early Reflections Implementation

As with the HRTF algorithms, a considerable amount of effort was put into optimal

implementation of the reverb algorithms. Command line C-based prototypes were

developed for algorithm testing and verification. An accumulative process was

employed, starting with a simple Schroeder model, progressing gradually to a full

binaural two stage image model/FDN reverb. As with the HRTF algorithms

discussed in previous chapters, real-time implementation within a well-supported,

flexible framework is desirable. Working implementations of the algorithms in the

form of tested, user friendly and immediate software solutions is a priority.

The implementation will now be discussed in some detail, as it is deemed an

integral part of this research. The Csound implementations will be discussed, as they

represent the majority of the non-trivial aspects of the command line solutions, and

offer real-time processing. Aspects covered in previous chapters and trivial code

details will not be discussed.

The early reflections code hrtfearlies.c, included in appendix 3 and in the

‘Chapter5’ folder on the accompanying CD-ROM essentially embeds the Phase

Truncation algorithm within an optimised dynamic image model, including

reflection filters. A broad overview of the early reflections algorithm is given in

figure 5.2, below.

 182

Figure 5.2: Overall early reflection process

As before, an endian based byte switch is defined, as well as the required HRTF

dataset constants. The low-pass filter used to apply the coarse surface response of the

user-defined environment is a simple first order IIR, equivalent to that implemented

in the tone opcode [49]. A gentle low-pass response is achieved by using the

following definitions for a and c and the filter equation [53]:

 , (5.4)

where

and

The filter function arguments start with a pointer to MYFLT, in this case, a

processing buffer. High and low response variables are next, followed by delay

memory, a processing vector size and sampling rate. The function essentially derives

appropriate filter coefficients from its response. Note that the filter is assumed to

always be low-pass, in keeping with typical room surfaces and the inherent nature of

high frequency energy.

MYFLT filter(MYFLT* sig, MYFLT highcoeff, MYFLT lowcoeff,
 MYFLT *del, int vecsize, MYFLT sr)

 183

Variables are setup to avoid recalculation and simplify the equations. The high and

low coefficients, passed to the function, are absorption coefficients, so the response

of the filter at high and low frequencies is calculated by subtracting the coefficients

from 1. As the low response is assumed to be greater than the high, it is used as a

scaling factor. A low frequency and Nyquist Frequency response are thus arrived at.

The Nyquist Frequency response must be less than or equal to (implying a

low-pass response which will have a cutoff/-3dB level at the Nyquist Frequency).

MYFLT costh, coef;
int i;

/* setup filter */
MYFLT T = FL(1.0) / sr;
MYFLT twopioversr = FL(2.0 * PI * T);
MYFLT freq;
MYFLT check;
MYFLT scale, nyqresponse, irttwo, highresponse, lowresponse, cosw,

a, b, c, x, y;

irttwo = FL(1.0 / sqrt(2.0));

/* simple filter deals with difference in low and high */
highresponse = FL(1.0) - highcoeff;
lowresponse = FL(1.0) - lowcoeff;
/* scale factor: walls assumed to be low pass */
scale = lowresponse;
nyqresponse = highresponse + lowcoeff;
/* should always be lowpass! */
if(nyqresponse > irttwo)
 nyqresponse = irttwo;

The filter response at cutoff 5000 Hz is illustrated in figure 5.3, below.

 184

Figure 5.3: Low-pass response

The cutoff frequency (freq) of the filter is then obtained, using the response at the

Nyquist Frequency. The magnitude response of the filter is used in this calculation,

which is outlined below.

If the filter is understood as

 , (5.5)

where del is the previous output, sig[i] is the input and c is as described above. The

magnitude response of this filter can be derived:

 (5.6)

The magnitude response at the Nyquist Frequency (N) can then be calculated

(will be -1 in this case, as):

 185

Recalling that the value of N is known (assuming limits of stability), by design, and

that c is the unknown, the quadratic formula can be used to solve this quadratic

equation for :

 (5.7)

In this case,

, and .

The discriminant of the quadratic formula determines the nature of the

solutions/roots. In this case,

, and

As the discriminant is greater than 0 (assuming a non-zero response at the Nyquist

Frequency), two distinct real roots are implied.

Substituting in to the formula, the roots are:

 and

 and

 (5.8)

 186

In this scenario, either of these roots will give the same result for the cutoff

frequency of the filter, when substituted into the filter equations. This is proven

below. In the code, the positive square root of the discriminant is chosen.

/* calculate cutoff, according to nyqresponse */
/* w = twopioversr * f (= sr / (MYFLT)2.0) (w = pi in the case of
 nyq...2pi/sr * sr/2) */
/* cosw = (MYFLT)cos(w);... = -1 in case of nyq */
cosw = FL(-1.0);

a = c = FL(SQUARE(nyqresponse) - FL(1.0));
b = (FL(2.0) * cosw * FL(SQUARE(nyqresponse))) - FL(2.0);

/* '+' and '-' sqrt in quadratic equation give equal results in this
 scenario: working backwards to find cutoff freq of simple tone
 filter! */
x = (-b + FL(sqrt(SQUARE(b) - FL(4.0) * a * c))) / (FL(2.0) * a);

Once the filter value of c has been calculated, further ‘reverse engineering’ is

required to arrive at the actual cutoff frequency. As per the low-pass equation (5.4),

 (5.9)

Therefore, setting

,
 (5.10)

 (5.11)

So, in solving for y,

 , (5.12)

or, in code:

y = (-FL(SQUARE(x)) - FL(1.0)) / (FL(2.0) * x);

 187

Having arrived at this result, it is possible to prove that both roots of the quadratic

equation (which represent the coefficient c in the magnitude response) will give the

same result when substituted into the filter equation. The variable c in the above

equation is substituted for each of the roots of the quadratic calculated above in the

left and right columns below.

The two solutions are equal in this scenario, due to the filter equation. Therefore,

only one root needs to be calculated, as above. Having set

,

the inverse cosine of 2-y divided by 2 /SR gives the cutoff frequency:

 188

freq = FL(acos(check));
freq /= twopioversr;

The filters coefficients can be calculated from the cutoff and used in the derivation of

the filtered output: the input is multiplied by a, and c times the previous output is

subtracted. The scaling, as discussed above, completes the process:

/* filter */
costh = FL(2.0) - FL(cos(freq * twopioversr));
coef = FL((sqrt(costh * costh - 1.0) - costh));

for(i = 0; i < vecsize; i++)
{
 /* filter */
 sig[i] = (sig[i] * (1 + coef) - *del * coef);
 /* scale */
 sig[i] *= scale;
 /* store */
 *del = sig[i];
}

The band-pass filter used to provide the more detailed surface response [175] has

been implemented after the eqfil opcode [43]. The code has been rewritten for use

here and essentially implements the appropriate second-order filter equations,

processing vectors of audio in a similar manner to the low-pass function, above:

/* band pass for surface detail, from csound eqfil */
MYFLT band(MYFLT* sig, MYFLT cfreq, MYFLT bw, MYFLT g, MYFLT *del,

 int vecsize, MYFLT sr)
{
 MYFLT T = FL(1.0) / sr;
 MYFLT pioversr = FL(PI) * T;

MYFLT a = FL(cos(cfreq * pioversr * 2.0));
 MYFLT b = FL(tan(bw * pioversr));
 MYFLT c = (FL(1.0) - b) / (FL(1.0) + b);
 MYFLT w, y;
 int i;

 for(i = 0; i < vecsize; i++)
 {
 w = sig[i] + a * (FL(1.0) + c) * del[0] - c * del[1];
 y = w * c - a * (FL(1.0) + c) * del[0] + del[1];
 sig[i] = FL(0.5) * (y + sig[i] + g * (sig[i] - y));
 del[1] = del[0];
 del[0] = w;
 }

 return *sig;
}

 189

The broadly object-oriented design of a constructor and processing function, with a

dataspace is once again followed here. As before, significant variables from the

dataspace/internal variables in the defined structure will be discussed where relevant.

Of particular note here is the requirement for multiple Phase Truncation processing

variables, which are stored in dynamically allocated memory (elevation/angle

indices, etc). Required inputs to the opcode are the unspatialised audio, the source

and listener geometric location, HRTF data files and a default room. These

requirements are purposefully minimised for immediate and convenient use.

Optional arguments provide much more detailed processing: the number of Phase

Truncation fade buffers, sampling rate, order of image model processing, inclusion

of reflections from three dimensions, as opposed to solely the horizontal plane, a

head-rotation value (k-rate), then room size and surface low and high-frequency

absorption coefficients and band pass parameters for the walls, floor and ceiling.

The initialisation function declares local variables before dealing with

defaults for optional parameters. Phase Truncation fades default to eight processing

buffers, as before. By default, image sources in two dimensions are processed to first

order. Phase Truncation based setup of buffer sizes and data file reading is

performed. Three ‘preset’ rooms are available, number 1 being the default. Wall,

floor and ceiling coefficients are setup if a default room is chosen:

if(defroom)
{
 p->wallcoefhigh = FL(.3);
 p->wallcoeflow = FL(.1);
 p->wallg1 = FL(.75);
 p->wallg2 = FL(.95);
 p->wallg3 = FL(.9);
 p->floorcoefhigh = FL(.6);

p->floorcoeflow = FL(.1);
 p->floorg1 = FL(.95);
 p->floorg2 = FL(.6);
 p->floorg3 = FL(.35);
 p->ceilingcoefhigh = FL(.2);
 p->ceilingcoeflow = FL(.1);
 p->ceilingg1 = FL(1.0);

 190

 p->ceilingg2 = FL(1.0);
 p->ceilingg3 = FL(1.0);
}

Values listed in [80] are loosely followed, to imply plasterboard walls, painted

plaster ceilings and carpet floors, with some perceptual tweaking. A value of 0

entered into the preset room parameter implies that optional parameters will be used.

High and low absorption coefficients and band-pass gains are then checked and set.

Absorption coefficients must fall between 0 and 1, and band-pass gains between 0

and 10:

else
{

p->wallcoefhigh = (*p->owlh > FL(0.0) && *p->owlh < FL(1.0)) ?
 *p->owlh : FL(.3);

p->wallcoeflow = (*p->owll > FL(0.0) && *p->owll < FL(1.0)) ?
*p->owll : FL(.1);

p->wallg1 = (*p->owlg1 > FL(0.0) && *p->owlg1 < FL(10.0)) ?
 *p->owlg1 : FL(.75);

p->wallg2 = (*p->owlg2 > FL(0.0) && *p->owlg2 < FL(10.0)) ?
 *p->owlg2 : FL(.95);

p->wallg3 = (*p->owlg3 > FL(0.0) && *p->owlg3 < FL(10.0)) ?
 *p->owlg3 : FL(.9);

p->floorcoefhigh = (*p->oflh > FL(0.0) && *p->oflh < FL(1.0))
 ? *p->oflh : FL(.6);

p->floorcoeflow = (*p->ofll > FL(0.0) && *p->ofll < FL(1.0)) ?
 *p->ofll : FL(.1);

p->floorg1 = (*p->oflg1 > FL(0.0) && *p->oflg1 < FL(10.0)) ?
 *p->oflg1 : FL(.95);

p->floorg2 = (*p->oflg2 > FL(0.0) && *p->oflg2 < FL(10.0)) ?
 *p->oflg2 : FL(.6);

p->floorg3 = (*p->oflg3 > FL(0.0) && *p->oflg3 < FL(10.0)) ?
 *p->oflg3 : FL(.35);

p->ceilingcoefhigh = (*p->oclh > FL(0.0) && *p->oclh <
 FL(1.0)) ? *p->oclh : FL(.2);

p->ceilingcoeflow = (*p->ocll > FL(0.0) && *p->ocll < FL(1.0))
 ? *p->ocll : FL(.1);

p->ceilingg1 = (*p->oclg1 > FL(0.0) && *p->oclg1 < FL(10.0)) ?
 *p->oclg1 : FL(1.);

p->ceilingg2 = (*p->oclg2 > FL(0.0) && *p->oclg2 < FL(10.0)) ?
 *p->oclg2 : FL(1.);

p->ceilingg3 = (*p->oclg3 > FL(0.0) && *p->oclg3 < FL(10.0)) ?
 *p->oclg3 : FL(1.);

}

Room preset 1 is a medium sized room, room 2 is small and room 3 is large:

/* medium room*/
if(defroom == 1)
{
 rmx = 10;
 rmy = 10;
 rmz = 3;

 191

}
/* small*/
else if(defroom == 2)
{
 rmx = 4;
 rmy = 4;
 rmz = 3;
}
/* large*/
else if(defroom == 3)
{
 rmx = 20;
 rmy = 25;
 rmz = 7;
}

Optionally, parameters for the room size are checked (minimum room dimensions

are) and read:

/* read values if they exist, use medium if not valid (must be at
 least a 2*2*2 room!*/
else
{
 rmx = *p->ormx >= FL(2.0) ? *p->ormx : 10;
 rmy = *p->ormy >= FL(2.0) ? *p->ormy : 10;
 rmz = *p->ormz >= FL(2.0) ? *p->ormz : 3;
}

The number of sources (the actual source and the image sources) is then calculated.

The value of the impulses integer starts at 1, as order 0 implies processing once: the

direct source. In the two-dimensional case, the number of sources can be calculated

by iterating up to the order number, and adding four times each iteration (see figure

5.1). Order 1 will have , order 2, , etc. In the three-dimensional case,

images including ceiling/floor reflections need to be considered. The temp variable,

initialised to 2, facilitates this calculation. The number of two-dimensional sources is

calculated and increased by the appropriate number of three-dimensional images.

Essentially, twice the preceding number of threads is added to temp, which starts out

at 2 (one source for the topmost image, one bottom). For example, order three: the

first iteration of the loop, impulses = 5, temp = 2 + 2(5) = 12 (essentially calculating

order 2 three-dimensional sources), the second, impulses = 13, temp increases to

38, the third, impulses = 25. At this stage, the temp calculation is already

 192

completed, so the final addition happens, impulses = 63 and the loop is complete.

The number of sources is passed back to the dataspace, to be used in the performance

function.

/* how many sources? */
if(threed)
{
 for(i = 1; i <= order; i++)
 {
 impulses += (4 * i);
 if(i <= (order - 1))

/* sources = 2d impulses for order, plus 2 * each
preceding no of impulses eg order 2: 2d = 1 + 4
+ 8 = 13, 3d + 2*5 + 2 = 25 */

 temp += 2*impulses;
 else
 impulses = impulses + temp;
 }
}
else
{
 for(i = 1; i <= order; i++)

/* there will be 4 * order additional impulses for each
 order */

 impulses += (4*i);
}
p->impulses = impulses;

Next, memory is dynamically allocated and zeroed, in a similar fashion to the HRTF

opcodes. A number of sources are processed, depending on the order chosen by the

user. Memory is allocated accordingly. The next task involves reverb time

calculation. As a rectangular room is assumed, opposite surfaces will have the same

surface area, so only three surface area calculations/variables are required.

wallS1 = rmy * rmz;
wallS2 = rmx * rmz;
cfS = rmx * rmy;

The Norris-Eyring reverb time formula is then calculated for the defined room [80]:

 , (5.13)

 193

where is the absorbtion coefficient of the surface at frequency , is its

surface area and the rooms volume. The denominator for low and high frequency

is calculated for each surface, following from the code below.

Salphalow = wallS1 * FL(log(1.0 - p->wallcoeflow)) * FL(2.0);

A low and high frequency reverb time are thus arrived at. Informal listening tests

suggested that a Q factor of .2666667 (a 4 octave bandwidth) provides appropriate

bandpass characteristics. The -3dB cutoff frequencies are listed in the code

(calculated using the formulas listed: 62.5 Hz – 1,000 Hz, cf 250 Hz, 250 Hz – 4,000

Hz, cf 1,000 Hz, 1,000 Hz – 16,000 Hz, cf 4,000 Hz) imply a wide filter, with

smoother responses, the subtlety of which suits this application.

As delay is used to simulate source distance, a maximum delay is required to

setup delay lines. The hypotenuse rule is used to calculate the maximum possible

path in the room, which is extended to 3 dimensions if necessary:

maxdist = FL(sqrt(SQUARE(rmx) + SQUARE(rmy)));
if(threed)

maxdist = FL(sqrt(SQUARE(maxdist)+SQUARE(rmz)));
maxdist = maxdist * (order + 1);

As mentioned in the code, a per-order calculation could potentially reduce memory

requirements, but would introduce further complexity, and is deemed unnecessary

when low-order processing is expected and imposed. The mean free path, used to

calculate a suggested delay for the later reverberant tail is then calculated:

meanfreepath = FL(4.0) * vol / (surfacearea * p->c);

Delay line memory can then be allocated. As with the real-time HRTF opcodes,

processing is optimised by minimising unnecessary calculations for static sources.

Current locations are checked against previous ones to check if a source has moved,

which implies the necessity to interpolate HRTFs etc. Therefore, the first values used

 194

in the check are set to be illegal, to ensure the first pass (initialisation) processes the

source.

The processing function, as mentioned above, essentially nests HRTF Phase

Truncation processes in a structure setup in the initialisation function. The first task

completed by the processing function is to test for legal source/listener locations.

These values are restricted to being inside the room:

if(srcx > (rmx - FL(.1)))
 srcx = rmx - FL(.1);
if(srcx < FL(.1))
 srcx = FL(.1);

The source and listener are expected to have a minimum physical size, so cannot lie

on the boundaries (the limitation imposed is to be within 10cm of each boundary).

Next, a k-rate section of the code calculates distances, delays and amplitudes for

each source (the real one and all images). This processing only occurs if the source

or listener has moved since the last processing pass:

if(srcx != p->srcxk || srcy != p->srcyk || srcz != p->srczk ||
 lstnrx != p->lstnrxk || lstnry != p->lstnryk ||
 lstnrz != p->lstnrzk)

Check values for this optimisation are first stored for the next pass:

p->srcxk = srcx;

Each source is processed in a nested loop operation. Convenient formulae for image

model calculation are given in [131]. Basically, the virtual source can be found

using:

 , (5.14)

where i is the image number, is the source location and the room dimension,

all in the x plane. Subtracting the listener location gives the distance from (virtual)

source to listener in the x plane. Negative values of i imply sources lying on the

 195

negative x axis. For example, the second-order image to the left of the actual room: i

= -2, results in a location of:

 (5.15)

Positive values, conversely, represent positive x axis values:

 (5.16)

Thus the geometry system is setup and calculated in each plane (including the z

plane if three-dimensional processing is being considered). Nested loops start at the

virtual point furthest from the real room on the negative plane, and move to that on

the positive plane:

for(xc = -order; xc <= order; xc++)

The formula is interpreted for real-time processing thus:

formxpow = (int)pow(-1.0, xc);
formx = (xc + (1 - formxpow)/2) * rmx;
tempsrcx[M] = formxpow * srcx + formx;

Unnecessary duplication of calculation is thus avoided. The same author (as [131])

also suggests improving the speed of calculation of full impulses using sorted lookup

tables [132], however, the low-order, real-time binaural nature of this

implementation of the image model does not require this optimisation. The distance

of each source is simply calculated using Pythagoras’ Theoroem, and transformed

into time by dividing by speed. Minimum distance is set to .45 m, as HRTF

processing within this range is not accurate, as the near-field HRTF changes with

distance (see below). Amplitude factors for each reflection are then calculated,

avoiding distortion. A digital delay time is calculated for each image.

 196

Audio-rate processing uses a variable delay line (which allows for 0 delay by

writing to the delay line before reading) for each image, each contributing to the

overall output for each sample. Care is taken to read the allocated buffers of memory

at the correct locations, and to apply the correct amplitude to each reflection:

for(M = 0; M < impulses; M++)
{
 /* a rate vdel:*/
 rp = delp[M] - vdt[M];

rp = (rp >= 0 ? (rp < maxdelsamps ? rp : rp - maxdelsamps) :
rp + maxdelsamps);

 frac = rp - (int)rp;
 /* shift into correct part of buffer*/
 pos = (int)rp + skipdel[M];
 /* write to l and r del lines*/

dell[delp[M] + skipdel[M]] = predell[counter + M * irlength] *
 amp[M];

delr[delp[M] + skipdel[M]] = predelr[counter + M * irlength] *
 amp[M];

 /* read, at variable interpolated speed*/
outltot += dell[pos] + frac*(dell[(pos + 1 < (maxdelsamps +

 skipdel[M]) ? pos + 1 :
 skipdel[M])] - dell[pos]);

outrtot += delr[pos] + frac*(delr[(pos + 1 < (maxdelsamps +
 skipdel[M]) ? pos + 1 :
 skipdel[M])] - delr[pos]);

 delp[M] = (delp[M] != maxdelsamps - 1 ? delp[M] + 1 : 0);

 outsigl[j] = outltot;
 outsigr[j] = outrtot;
}

As with the HRTF opcodes, the rate at which the interpolation is performed is

dictated by the length of the impulse responses used: 128 samples. Each reflection is

once again considered, as above. Interpolation only occurs if the source has moved

since the last HRTF buffer size process (an independent check to the k-rate check

above).

At this point, the issue of near-field HRTFs is considered. In [56], the authors

state that neglecting HRTF range dependence is ‘invalid for nearby sources’. As

mentioned in chapter 2, within five times head radius (approximated to .45 m here,

as above) is defined as significantly range dependent in [55]. A check for near-field

sources is therefore made; near-field processing of HRTFs is not performed. The

 197

HRTF used thus stays the same within this range. Relative x and y axis source to

listener variables are calculated and the inverse tangent is used to calculate the

source angle. A degree value, relative to polar North is calculated with a clockwise

orientation:

/* - to invert anticlockwise to clockwise*/
angle = FL(-(atan2(tempy, tempx)) * 180.0 / PI);
/* add 90 to go from y axis (front)*/
angle = angle + 90;

The nature of the C++ atan2 function dictates that only the case where both x and y

variables are 0 needs to be checked for. If this occurs, the source is assumed to be in

front of the listener.

Elevation calculation is a little more involved. A triangle is created whose

apexes consist of the source, the listener, and a point directly above/below the source

and level with the listener. The cosine rule can then be used to calculate the elevation

of the source (the length of each line thus needs to be calculated):

/* cosine rule */
coselev = FL((SQUARE(bc) + SQUARE(ab) - SQUARE(ac)) /

 (2.0 * ab * bc));
elev = FL(acos(coselev)* 180.0 / PI);

If the source and listener are at the same x, y point, the source and listener are at the

same location, or directly above/below each other:

/* source at listener*/
if(ac == FL(0.0))
 elev = FL(0.0);
 /* source above listener*/
else
 elev = FL(90.0);

If the z coefficient of the source is less than that of the listener, the angle is made

negative, indicating a source below the listener. Elevation values are then checked,

and index values are calculated as per the HRTF opcodes. Head rotation is

considered in the angle calculation, by subtracting the arriving value, for example, an

angle of 0 degrees with a rotation of 90 implies an angle of -90 degrees. The phase

 198

truncation process continues, with care being taken to read the correct values for the

image in question, for example the old indices, ‘cross’ flag, etc. Dynamically

allocated buffers must also be dealt with in a considered manner, using the M

variable, for example currentphasel/r etc.

Surface reflections are considered next. Once again, convenient formulae are

provided in [131]. The coefficient of each wall needs to be raised to the power of the

number of reflections off that wall. The latter part of this calculation is formulated

thus:

 (5.17)

for the wall (along the x axis) closest to the origin and

 (5.18)

for the wall opposite it, where i is the order of the virtual source in question. For

example, order 2 implies one reflection off the wall closest to the origin and one off

the opposite wall. Similarly, y and z axes wall reflections can be calculated. In code:

wallreflections = (int)abs((int)(xc * .5 - .25 +
 (.25 * pow(-1.0, xc))));

Filters are applied directly to the HRIR, using the equations discussed above.

Essentially, a series of filter processes occurs iteratively, for each reflection. In

minimising the already lengthy list of expert parameters, each wall is assumed to

have the same filter parameters in two-dimensional processing, so all wall filters can

be considered as the same process. The left and right HRIR are low-pass filtered,

then each band of the band-pass filter is processed (with the fixed parameters

discussed above).

for(i = 0; i < wallreflections; i++)
{
 delsinglel = delsingler = FL(0.0);

filter(hrtflinterp, p->wallcoefhigh, p->wallcoeflow,
 &delsinglel, irlength, sr);

 199

filter(hrtfrinterp, p->wallcoefhigh, p->wallcoeflow,
 &delsingler, irlength, sr);

deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1]
 = 0.0;

band(hrtflinterp, FL(250.0), FL(250.0) / p->q, p->wallg1,
 deldoublel, irlength, sr);
band(hrtfrinterp, FL(250.0), FL(250.0) / p->q, p->wallg1,
 deldoubler, irlength, sr);
deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1]

 = 0.0;
band(hrtflinterp, FL(1000.0), FL(1000.0) / p->q, p->wallg2,
 deldoublel, irlength, sr);
band(hrtfrinterp, FL(1000.0), FL(1000.0) / p->q, p->wallg2,
 deldoubler, irlength, sr);
deldoublel[0] = deldoublel[1] = deldoubler[0] = deldoubler[1]

 = 0.0;
band(hrtflinterp, FL(4000.0), FL(4000.0) / p->q, p->wallg3,
 deldoublel, irlength, sr);
band(hrtfrinterp, FL(4000.0), FL(4000.0) / p->q, p->wallg3,
 deldoubler, irlength, sr);

}

Note that delay memory can be reused in this scenario, as the filtering process is not

performed on a continuous signal. The memory is zeroed on each pass, and a 128-

sample HRIR is fully processed each time. The three-dimensional processing

addition for floor and ceiling reflections illustrates how surfaces can be considered

individually. HRIRs are zero padded, transformed to the frequency domain, and

stored. The overlap-add convolution output process is then dealt with, as in the

HRTF opcodes, bearing in mind the multi-image processing. This prepares the pre-

delay output buffers, to be used in the audio-rate section of the processing function.

It is hoped that the above discussion illustrates the original aspects of this real-time

implementation of a binaural image model, as well as the many non-trivial

programming design and implementation issues that are typically not discussed in

the literature. The full code is presented in Appendix 3, with comments which

highlight issues not discussed above.

 200

5.3.4 hrtfreverb: Diffuse Field Implementation

The reverberant tail code (see appendix 3, and the accompanying CD-ROM) for the

opcode hrtfreverb will now be discussed. The first new construct in this code is

the declaration of the matrices used in the FDN process. Householder matrices are

defined (size: , and). A list of prime numbers, used as delay

line lengths are defined next (primes are used to avoid common factors/emphasis in

delay lines). The inputs and outputs of this opcode are a little simpler than that of

hrtfearly. Output values are the stereo processed signal, and an i-rate variable

which offers a suggested delay for the late tail. Inputs are the mono, non-spatialised

input, a low and high reverb time, HRTF data file names/locations, and three

optional parameters. These consist of sampling rate, mean free path and processing

order. The reverb times and mean free path can be derived from an instance of

hrtfearly, and the same order of processing can be used. This illustrates how the

opcodes are intrinsically linked. Having said this, as discussed above, hrtfreverb is

also designed to function as a stand-alone opcode.

The dataspace of hrtfreverb is less similar to that of the HRTF opcodes

than that of hrtfearly. Delay-line iterators and dynamic memory pointers

predominate. The filters, discussed above, used to achieve correct interaural

coherence and tonal correction also require memory.

The initialisation function/constructor is again substantial, primarily due the

setting up of the aforementioned filters. Another design issue is highlighted here. As

presented, the opcodes can use the MIT HRTF data [142] at three sampling rates.

This implies three sets of datafiles (two files for each set: left and right data). Adding

the filter coefficients to these datafiles was considered. Ultimately, however, a

simple dataset format was decided upon. Should the need arise, the code can be

 201

modified to accept other datasets, for example the LISTEN [124] database, as

illustrated in the HRTF processing command-line code in ‘Chapter4/listen’. To

conform to the broad infrastructure of the HRTF suite of opcodes, and benefit from

the optimisations offered, any dataset must be prepared in a manner that is

compatible with their design. Maintaining a simple structure here is thus desirable: a

left and right HRTF datafile ordered and stored in polar format. Adding complex

filter data to this file format complicates the process. Therefore, the opcode itself,

which will be the sole user of the filter information, performs this calculation.

As before, variable declaration will be discussed in the context of non-trivial

use, and is liberally commented in the code. The mean free path with respect to time

(an optional input, which defaults to 0) is set to that of a medium room if it is not set,

if it is less than or equal to the mean free path of the smallest allowed room in

hrtfearly () or if it is greater than 1 (which implies a mean free path of

344 metres, implying a very larger space):

if(meanfp <= 0.003876 || meanfp > 1)
 meanfp = FL(0.0109);

Processing order defaults to 1 (as a p type [44]) and must be between 0 and 5.

Reverb times must be positive and non-zero. Processing buffer sizes are setup,

HRTF data files are opened and filter memory is allocated dynamically, as before.

Some of this dynamically-allocated memory will be filled in the initialisation

function, so does not need to be zeroed. Delay iterators are zeroed before delay line

lengths are decided upon. A maximal reverb time is arrived at from the opcode

inputs:

delaytime = rt60low > rt60high ? rt60low : rt60high;

Individual delay line lengths are then calculated, and form a key part of the FDN, as

discussed above. Firstly, Schroeder’s criterion of 0.15 modes per Hz is considered:

 202

delaytime /= 7;

Overall delay time should be greater than .15 (c1/7) of reverb time. The mean

free path is an intuitively appropriate average delay, for each delay line in the FDN

[193]. Therefore, the appropriate number of delay lines is decided upon by dividing

the appropriate delay time by each available number of delay lines (6, 12 or 24),

subtracting the mean free path, taking the absolute value, and using the lowest result:

/* which no. of delay lines implies ave delay nearest to mfp(which
 is an appropriate ave)? */
Msix = abs((int)(delaytime / 6) - meanfpsamps);
Mtwelve = abs((int)(delaytime / 12) - meanfpsamps);
Mtwentyfour = abs((int)(delaytime / 24) - meanfpsamps);
M = Mtwelve < Mtwentyfour ? (Msix < Mtwelve ? 6 : 12) : 24;

The delay time is then divided by the number of delay lines, to find an appropriate

average delay. If the new delay time value is less than the mean free path with regard

to time, it can be increased to the mean free path, thereby increasing the modes/Hz

and having a more desirable average delay. A check is made for the maximum value

in the array of primes (delay line length distribution is discussed below). A minimum

value check also occurs, independently for each number of delay lines. Essentially,

these checks are needed as a base delay is decided upon and chosen by proximity in

the primes array. Other delays are chosen to be above and below this value. The

checks ensure that this delay line length allocation does not go out of range. The base

delay figure is chosen using the following code:

/* choose appropriate base delay times */
for(i = 0; i < 212; i++)
{
 if(M == 6)
 test = (i > 6 ? i : 6) - 6;
 else if(M == 12)
 test = (i > 15 ? i : 15) - 15;

else
 test = (i > 16 ? i : 16) - 16;

 if(primes[i] > delaytimeint || primes[test] >

 meanfpordersamps)
 {
 basedelay = i - 1;
 if(primes[test] > meanfpordersamps)

 203

 printf("\nfdn delay > earlies del..., fixed!");
 *p->idel = FL(meanfpordersamps - primes[test - 1]) / sr;
 break;
 }
}

This code loops through 212 prime values in the primes array. If the current value in

the array is greater than the chosen delay time (as above), the base delay is set to the

previous prime. Therefore, the maximum value chosen is value 210 (last array

iteration: i = 211). As the array contains 229 values, array point 228 contains the last

(0 is included as an array index). Therefore, up to 18 greater primes are available. If

the appropriate base delay is found, the program breaks out of the loop. If the

shortest of the prime values used as delay line lengths is greater than the delay

implied by the mean free path and the order of processing (which is output by the

opcode as an i-rate value), real-time processing (bearing in mind the inherent delay

of one convolution buffer) is not possible, as the early reflections need to be delayed

in this scenario to achieve a suitable delay on the later reverberation (if the suggested

mean free path/order based delay is desirable). A test variable is used in this check to

determine the shortest delay. If 6 delay lines are used, the shortest will be the base

delay–6, as values above and below the base delay are used. Similarly, 12 delay lines

imply a subtraction of 15 and 24 a subtraction of 16. This variable needs to stay

positive.

The suggested output delay is also offered at this stage. The inherent delay in

the FDN is subtracted from the delay implied using the mean free path and order

inputs, to give the appropriate delay for the late reverberant tail. Just before this

construct in the code, maximum and minimum values for the base delay are set. A

maximum value of 10112 samples is set and minimum values are set to ensure there

are enough primes before the base value to allow for the prime selection process,

which chooses primes above and below the base value. The more delay lines used,

 204

the greater the spread of delay line lengths. Therefore, a higher minimum value

exists for 12 and 24 delay line scenarios.

The array of primes is chosen somewhat arbitrarily but does possess a broad

structure. Two primes in every hundred are chosen, with four in every hundred

below 400 to allow for short reverb times. Also, approaching the value chosen for

the high limit, independent reflections are audible due to the limited number of delay

lines. Interestingly, this can result in an appealing compositional effect, but an

unnatural reverberation. Typically, the extremely large rooms implied by such long

delay lines are very unrealistic (the longer delays imply distances of approximately

80 metres in typical scenarios). The checks and limitations involved offer flexible

processing, beyond the necessities of the reverberation algorithm and into a more

creative realm, while also ensuring stability. Delay lines are then allocated:

/* fill delay data, note this data can be filled locally */
delaysp[0] = primes[basedelay];
delaysp[1] = primes[basedelay + 3];
delaysp[2] = primes[basedelay - 3];
delaysp[3] = primes[basedelay + 6];
delaysp[4] = primes[basedelay - 6];
delaysp[5] = primes[basedelay + 9];
if(M ==12 || M==24)
{
 delaysp[6] = primes[basedelay - 9];
 delaysp[7] = primes[basedelay + 12];
 delaysp[8] = primes[basedelay - 12];
 delaysp[9] = primes[basedelay + 15];
 delaysp[10] = primes[basedelay - 15];
 delaysp[11] = primes[basedelay + 18];
}
if(M ==24)
{
 /* fill in gaps... */
 delaysp[12] = primes[basedelay + 1];
 delaysp[13] = primes[basedelay - 1];
 delaysp[14] = primes[basedelay + 4];
 delaysp[15] = primes[basedelay - 4];
 delaysp[16] = primes[basedelay + 7];
 delaysp[17] = primes[basedelay - 7];
 delaysp[18] = primes[basedelay + 10];
 delaysp[19] = primes[basedelay - 10];
 delaysp[20] = primes[basedelay + 13];
 delaysp[21] = primes[basedelay - 13];
 delaysp[22] = primes[basedelay + 16];
 delaysp[23] = primes[basedelay - 16];
}

 205

Values in the vicinity of the base delay are chosen to maintain the desired average

delay. Also, the prime numbers minimise undesirable combing effects of delay lines

accumulating (although a physical approach is also possible [179], this more generic

and typical approach is favoured here). Delay lines are then setup and zeroed, as

before:

if (!p->del1.auxp || p->del1.size < delaysp[0] * sizeof(MYFLT))
 csound->AuxAlloc(csound, delaysp[0] * sizeof(MYFLT),

&p->del1);

Interaural coherence filters are then setup. This involves iterating through each

HRTF file and extracting the appropriate information. As the dataset is symmetrical

in this case (as discussed in previous chapters), measurements are doubled, as, for

example, the HRTF for 0 degree elevation, 90 degrees angle is the same as that for 0

degree elevation, 270 degree angle with the channels interchanged [142]. This is,

however, in error for measurements that are on the median plane, which should only

be included once. As discussed above, the methodology from [137] is followed to

obtain the interaural coherence. Firstly, the power spectrum is obtained:

 , (5.19)

where there are N HRTFs in the dataset. The magnitude of the complex numbers

representing each frequency bin is already stored in the datafile format used. The

symmetry of the dataset is dealt with by considering the left and right buffers of each

HRTF thus:

powerp[j] = powerp[j] + (MYFLT)SQUARE(bufflp[j]) +
 (MYFLT)SQUARE(buffrp[j]);

Locations on the median plane are omitted here using the following check (which

appears inelegant but is necessary due to the nature of the data measurement):

if(i == 0 || i == 28 || i == 29 || i == 59 || i == 60 ||
 i == 96 || i == 97 || i == 133 || i == 134 || i == 170 ||

 206

 i == 171 || i == 207 || i == 208 || i == 244 || i == 245 ||
 i == 275 || i == 276 || i == 304 || i == 305 || i == 328 ||
 i == 346 || i == 347 || i == 359 || i == 360 || i == 366 ||
 i == 367)
 skipdouble = 1;
else
 skipdouble = 0;

The skipdouble variable is used to flag iterations whereby the symmetrical

doubling can be skipped. In this case, only the following code is necessary:

powerp[j] = powerp[j] + (MYFLT)SQUARE(bufflp[j]);

Instead of considering the left and right power, only the left is considered. Thereby,

the full dataset is considered correctly. Each HRTF is considered once, in the

symmetrical HRTF case by using both the left and right (which essentially represents

the left channel in the opposite HRTF; the opposing hemisphere) functions. An

average power spectrum is arrived at by performing the division by the total number

of HRTFs in the full dataset. 0 Hz and the Nyquist Frequency are considered

independently in a similar manner. The interaural coherence is calculated as:

 (5.20)

The numerator is calculated first and requires conversion back to rectangular form as

the complex conjugate and complex multiplication is required. 0 Hz and the Nyquist

Frequency are dealt with in a straightforward manner, being purely real:

nump[0] = nump[0] + (bufflp[0] * buffrp[0]) + (buffrp[0] *
 bufflp[0]);

nump[1] = nump[1] + (bufflp[1] * buffrp[1]) + (buffrp[1] *
 bufflp[1]);

By multiplying the left data by the conjugate of the right, and vice versa, opposing

hemispheres are both considered. The skipdouble check is once again utilised to

resolve the symmetry issues: only the left data multiplied by the conjugate of the

 207

right is necessary in the median plane (as left data = right data in these cases). The

multiplication is then achieved thus:

for(j = 2; j < irlength; j += 2)
{
 rel = bufflp[j] * (MYFLT)cos(bufflp[j + 1]);
 iml = bufflp[j] * (MYFLT)sin(bufflp[j + 1]);
 rer = buffrp[j] * (MYFLT)cos(buffrp[j + 1]);
 imr = buffrp[j] * (MYFLT)sin(buffrp[j + 1]);

if(skipdouble)
 {
 nump[j] = nump[j] + ((rel * rer) + (iml * imr));
 nump[j + 1] = nump[j + 1] + ((rel * -imr) +

 (iml * rer));
 }
 else
 {

nump[j] = nump[j] + ((rel * rer) + (iml * imr)) +
 ((rer * rel) + (imr * iml));

nump[j + 1] = nump[j + 1] + ((rel * -imr) + (iml * rer))
 + ((rer * -iml) + (imr * rel));

 }
}

Magnitudes are derived to complete the numerator calculation. Calculating the

denominator is trivial in the case of a symmetrical dataset, as the left and right power

is equal:

for(i = 0; i < irlength; i++)
 denomp[i] = powerp[i];

Finally, interaural coherence filters can be obtained using the following formulae:

 (5.21)

 , (5.22)

implemented as code:

coherup[0] = FL(sqrt((1.0 + cohermagsp[0]) / 2.0));
coherup[1] = FL(sqrt((1.0 + cohermagsp[1]) / 2.0));
cohervp[0] = FL(sqrt((1.0 - cohermagsp[0]) / 2.0));
cohervp[1] = FL(sqrt((1.0 - cohermagsp[1]) / 2.0));

for(i = 2; i < irlength; i += 2)
{
 coherup[i] = FL(sqrt((1.0 + cohermagsp[i]) / 2.0));
 cohervp[i] = FL(sqrt((1.0 - cohermagsp[i]) / 2.0));
 coherup[i + 1] = FL(0.0);

 208

 cohervp[i + 1] = FL(0.0);
}

Inverse Fourier transforms (without the need to go from rectangular to polar, as zero

phase values imply equality) give the FIR filter coefficients. Note that the filters are

shifted for causality; as zero phase has been applied, the filter wraps around the zero

time point in the time domain. Therefore, a shift (half the filter length/typically 64

taps) is applied:

filtoutp[i] = HRTFavep[(i + (irlength / 2)) % irlength] * irlength;

Filters for power, left and right coherence are then zero padded and Fast Fourier

Transformed for overlap-add convolution. These filters are kept at the HRTF

resolution of 128 samples at 44.1 kHz (using overlap-add convolution with zero

padding to 256). This design decision was made to maintain consistent binaural

accuracy levels. Simpler, less costly IIRs may be appropriate in low complexity

datasets, but future possible developments are considered regarding other datasets.

Efficient IIR filters are, however, used to model the room response [91].

Local copies of relevant dataspace members are assigned, as before, to avoid

unnecessary referencing. Each delay line path essentially acts as a comb filter, with a

frequency dependent gain factor. The gain of a comb filter can be described as:

 , (5.23)

where is the delay time and the reverb time [53]. The reverb time is, in this

scenario, frequency dependent. Therefore, so is the gain. The filter for each delay

line can thus be described as:

 209

 (as in [193])

Jot [91] uses first order IIR filters to model this response:

 , (5.24)

where , is the delay line length as a function of time, and

()

Equations are implemented from [193], after [91]. Note that the formulas are valid

for ‘not too small values of and not too long delays’ [91]: i.e. realistic room

parameters (checks are made for stability of output, as opposed to valid formulae, as

the user may wish to employ extreme parameters for compositional use).

The value of is simply calculated as:

alpha = rt60high / rt60low;

The values for low and high reverberation times have already been checked, as

above. For each delay line, the constant value part of is calculated as:

aconst = FL((log(10.0) / 4.0) * (1.0 - (1.0 / SQUARE(alpha))));

Actual values of and are then calculated using a loop:

for(i = 0; i < M; i++)
{
 exp = FL((-3.0 * delaysp[i] * T) / rt60low);
 gip[i] = FL(pow(10.0, exp));
 aip[i] = exp * aconst;

…

Stability is ensured by avoiding values of of 1 or greater, as the filter equation

involves multiplying the previous output by . The filter can be inverted. This

implies the extraordinary scenario of an overall high-pass room, which is

 210

counterintuitive when the transfer of high-frequency energy is concerned

(remembering that hrtfreverb may be acting independently of hrtfearly, by

design). Stability is similarly ensured in this scenario. If the filter becomes unstable

for any of the delay lines, the clipcheck flag is set, and a linear response is imposed

(the do, while loop is restarted):

if(aip[i] > .99 || aip[i] < -.99)
{

printf("\nwarning, approaching instability, fixed with a flat
 late reverb!");

 clipcheck = 1;
 if(aip[i] > .99)
 rt60high = rt60low;
 else
 rt60low = rt60high;
 break;
}

Note that the stability of is ensured as 10 is raised to a negative power, implying a

value below 1 and above 0 for positive delay length and reverb time (both intuitively

so). The tonal correction filter, used to compensate for the reduction of energy with

reduction of delay time in the (typically) higher frequencies is also setup in the

initialisation function. As discussed above, this is a first order FIR filter [193, 91]:

 (5.25)

The coefficient b is calculated as:

, with as before.

In code:

p->b = FL((1.0 - alpha) / (1.0 + alpha));

To complete the complex initialisation function, dataspace variables are

zeroed/initiated as appropriate.

 211

The processing function uses the preparation performed in the initialisation

function to process the audio. Local copies of buffers/variables are declared, for

example, the delay lines:

del1p = (MYFLT *)p->del1.auxp;
del2p = (MYFLT *)p->del2.auxp;
del3p = (MYFLT *)p->del3.auxp;
del4p = (MYFLT *)p->del4.auxp;
del5p = (MYFLT *)p->del5.auxp;
del6p = (MYFLT *)p->del6.auxp;

if(M==12 || M==24)
{
 del1tp = (MYFLT *)p->del1t.auxp;
 del2tp = (MYFLT *)p->del2t.auxp;
 del3tp = (MYFLT *)p->del3t.auxp;
 del4tp = (MYFLT *)p->del4t.auxp;
 del5tp = (MYFLT *)p->del5t.auxp;
 del6tp = (MYFLT *)p->del6t.auxp;
}
if(M==24)
{
 del1tfp = (MYFLT *)p->del1tf.auxp;
 del2tfp = (MYFLT *)p->del2tf.auxp;
 del3tfp = (MYFLT *)p->del3tf.auxp;
 del4tfp = (MYFLT *)p->del4tf.auxp;
 del5tfp = (MYFLT *)p->del5tf.auxp;
 del6tfp = (MYFLT *)p->del6tf.auxp;
 del7tfp = (MYFLT *)p->del7tf.auxp;
 del8tfp = (MYFLT *)p->del8tf.auxp;
 del9tfp = (MYFLT *)p->del9tf.auxp;
 del10tfp = (MYFLT *)p->del10tf.auxp;
 del11tfp = (MYFLT *)p->del11tf.auxp;
 del12tfp = (MYFLT *)p->del12tf.auxp;
}

The processing loop runs, as before, to the length of a control period. As per figure

5.4, two uncorrelated outputs are taken from the FDN. This is done, following [137],

by ensuring that the vectors c and d are perpendicular. Every second value is simply

made negative in each of the three even number of delay line cases (6, 12 or 24). The

cross product of the vectors clearly illustrates this perpendicularity. As also

mentioned in [137], keeping both scaling vectors to the same absolute

value/magnitude is also inherently advisable to maintain some parity in the levels of

both output channels. Hence the non-zero vectors. In previous incarnations of the

FDN [193, 90, 137], each signal was scaled before being input into the delay line.

 212

Initially, this signal flow was employed here also. However, in investigating

efficiency, this scaling was moved to the output of the FDN, which reduces 6/12/24

divisions to 2. The factor of division is equal to the number of delay lines, and is

essentially used to avoid distortion resulting from the combination of all matrix

outputs. Figure 5.4, below, illustrates the overall process. The input is processed by

the early reflections opcode, and added to the delayed, scaled output of the FDN.

This gain and delay processing is assumed to be performed externally (a suggested

delay is offered by hrtfreverb). The input signal is passed through the matrix. A

left and right output are then derived using the processes discussed.

Figure 5.4: Schematic of overall binaural reverberation process: the input is sent to

the FDN as well as the early model; the FDN input gets split and sent to each delay

line, which also contains a low-pass filter. Uncorrelated outputs are then tone

corrected and processed with coherence and binaural filters, delayed and scaled.

To complete this section of the code, the FIR tone correction filter is implemented.

The filter’s transfer function:

 (5.26)

 213

can be rewritten as the filter’s equation thus:

 , (5.27)

or

 (5.28)

In code:

/* dot product of l and r = 0 for uncorrelated */
tonall = (del1p[u] - del2p[v] + del3p[w] - del4p[x] + del5p[y] –

 del6p[z]);
if(M==12 || M==24)

tonall += (del1tp[ut] - del2tp[vt] + del3tp[wt] - del4tp[xt] +
 del5tp[yt] - del6tp[zt]);

if(M==24)
tonall += (del1tfp[utf1] - del2tfp[vtf1] + del3tfp[wtf1] –

 del4tfp[xtf1] + del5tfp[ytf1] - del6tfp[ztf1] +
 del7tfp[utf2] - del8tfp[vtf2] + del9tfp[wtf2] -
 del10tfp[xtf2] + del11tfp[ytf2] - del12tfp[ztf2]);

matrixlup[counter] = FL(((1.0 / (1.0 - b)) * tonall) - ((b /
 (1.0 – b)) * inoldl));

matrixlup[counter] /= M;
inoldl = tonall;

tonalr = (del1p[u] + del2p[v] + del3p[w] + del4p[x] + del5p[y] +

 del6p[z]);
if(M==12 || M==24)

tonalr += (del1tp[ut] + del2tp[vt] + del3tp[wt] + del4tp[xt] +
 del5tp[yt] + del6tp[zt]);

if(M==24)
tonalr += (del1tfp[utf1] - del2tfp[vtf1] + del3tfp[wtf1] –

 del4tfp[xtf1] + del5tfp[ytf1] - del6tfp[ztf1] +
 del7tfp[utf2] - del8tfp[vtf2] + del9tfp[wtf2] -
 del10tfp[xtf2] + del11tfp[ytf2] - del12tfp[ztf2]);

matrixrvp[counter] = FL(((1.0 / (1.0 - b)) * tonalr) - ((b /
 (1.0 – b)) * inoldr));

matrixrvp[counter] /= M;
inoldr = tonalr;

Inputs to the FDN are taken from the delay lines. Each delay line is passed through

the appropriate low-pass filter, the coefficients of which were calculated in the

initialisation function. As above, the filter equation can be arrived at from its transfer

function:

 , (5.29)

 214

or

 (5.30)

In code:

for(j = 0; j < M; j++)
{

inmatlpp[j] = (gip[j] * (1 - aip[j]) * inmatp[j]) + (aip[j] *
 dellpp[j]);

 dellpp[j] = inmatlpp[j];
}

Matrix multiplication is the next required process. Several matrices have been

suggested, as discussed practically in [193, 89]. A householder matrix:

 [193], (5.31)

where = [1, 1, …, 1] and is the identity matrix, was found to perform well,

so is chosen here (realised in the , and matrices at the start of

the hrtfreverb opcode). Stability issues are reported in [204] not only with the

embedded Householder, but also with a non-embedded Householder (with an ad hoc

fix suggested; no issues were found with non-embedded Householder matrices in

this work). Non-embedded matrices are thus used, which unfortunately reduces

efficiency. Therefore non-power-of-two sizes can be used (if the matrix order is

power-of-two size, a scaled unitary matrix can be used, avoiding a scaling factor for

each operation). Each item in the output array is arrived at by multiplying the

appropriate line in the appropriate matrix by each of the items in the input audio

vector. Thereby, every delay line input is incorporated into each output, thus

diffusing the input signal:

for(j = 0; j < M; j++)
{
 outmatp[j] = FL(0.0);
 for(k = 0; k < M; k++)
 {
 if(M == 24)
 outmatp[j] += (matrix24[j * M + k] * inmatlpp[k]);
 else if(M == 12)

 215

 outmatp[j] += (matrix12[j * M + k] * inmatlpp[k]);
 else
 outmatp[j] += (matrix6[j * M + k] * inmatlpp[k]);
 }
}

To conclude the delay process, delay lines are filled with the input, delay line

iterators progress and are checked. Audio-rate output is created in this way. Once

again, an internal control rate of the HRTF filter size is also constantly processing. If

an internal counter reaches this value, the FDN outputs are zero padded, Fast Fourier

Transformed and convolved with the left and right interaural coherence filters. The

final step in the application of the interaural coherence is then applied, as per figure

5.4, above.

for(j = 0; j < irlength; j++)
{
 hrtflp[j] = matrixlup[j] + matrixrvp[j];
 hrtfrp[j] = matrixlup[j] - matrixrvp[j];
}

The power filter is applied in another convolution, as the final step in the late

reverberation process. The suggested delay of the late reverb onset and a (possibly

related) user-defined scaling factor can easily be applied using existing Csound

functionality. To complete the opcode, dataspace variables are updated for the next

control rate.

5.4 Conclusion

It is hoped that the many subtle (and indeed not so subtle, for example filter stability)

nuances involved in coding a functioning, open source, reliable implementation of

existing artificial reverberation algorithms, with the addition of several updates, are

somewhat demystified in the above chapter. It is hoped that the occasionally

ostensibly verbose discussion of implementation topics so often omitted from the

literature is thus justified.

 216

In summary, a review of artificial reverberation, in the context of binaural

processing was offered. A re-appraisal of classic methods and integration of more

recent developments led to the development of two opcodes, hrtfearly for high

resolution, flexible early reflection processing and hrtfreverb, which provides an

efficient, stable recursive diffuse field, with accurate interaural coherence (built on a

dynamic FDN). The opcodes are designed to be user friendly, while also offering

detailed control if required. They also integrate with each other well, as hrtfearly’s

outputs can be used to inform the processing in hrtfreverb.

 217

 218

Chapter 6. Applications

6.1 Introduction

An application of the HRTF and binaural environmental processing tools will be

discussed in this chapter. The tool, MultiBin, is essentially an auralisation tool. A

user can place a source in a room of their own design; both source and listener are

dynamic in this real time scenario. Although designed to be generic, the primary

application of MultiBin is the audition of multi-channel audio algorithms.

Essentially, each loudspeaker in a desired multi-channel setup is modelled

binaurally. The multi-channel signal is then sent to the application for dynamic

audition. The chapter thus commences with a brief overview of multi-channel

processing (reduced in scope from previous literature reviews), followed by

discussion of MultiBin, from an implementation and usage point of view.

6.2 Historical Context of Multi-channel Audio

In [127], an historic overview of spatialisation techniques, tools and trends is

offered. The earliest system discussed used multiple telephone transmitters and

receivers in 1881. The stereo techniques of Blumlein followed in the 1930s, followed

by Disney’s Fantasia multi-channel development. The Musique Concrète and

Elektronische Musik schools of the 1950s further developed spatialisation as a

composition tool. Computer based research then began to inform spatialisation and

environmental processing systems, the point at which the literature review offered

here, and in chapter 2 essentially begins. A brief overview of multi-channel

spatialisation algorithms is offered below, in the context of a multi-channel binaural

tool.

 219

6.3 Stereo

Although stereophony strictly refers to any system that delivers spatial sound,

‘stereo’ playback has come to represent two-channel audio reproduction [182].

Typically, amplitude differences between the left and right loudspeaker give rise to

the perception of phantom sources between them. In [166], Pulkki demonstrates how

amplitude panning laws work: the ipsilateral loudspeaker signal is combined with the

delayed contralateral signal for each ear. Relative amplitudes imply different phases

when summed, which in turn imply ITD. The study uses a binaural model to

illustrate that amplitude panning performs well, particularly at lower frequencies. A

binaural model is used for testing [167].

It is generally accepted that an equilateral triangle, whose apexes consist of

the two loudspeakers and listener constitutes the ideal reproduction scenario [182].

Wider angles (greater than 60 degrees) give rise to less stable phantom sources

[127]; in quadraphonic systems, the loudspeakers subtend 90 degrees, which is thus

problematic. Various methods exist for stereo source capture and artificial

spatialisation. Ultimately, the technique is limited to phantom sources between the

loudspeakers (with the exception of more complex approaches to enhancing the

spatial scene, such as transaural processing [68]) and a small sweet spot [127]

(restricted by the Precedence Effect [41]).

6.4 Vector Base Amplitude Panning (VBAP)

VBAP stems from constant gain amplitude panning, essentially extending stereo to

the full horizontal plane or full three-dimensional processing. It uses the nearest

loudspeakers (two for horizontal, three for full three dimensions) to the desired

source location for reproduction [165]. It offers a flexible, efficient solution.

 220

6.5 5.1

5.1 is a front-centric multi-channel system [182], often used with visual

presentations. It thus suffers from wide angles between front and surround

loudspeakers. It also suffers from sweet spot issues [200, 127]. An interesting

criticism is presented in [200]. In cinema reproduction, a listener sitting toward the

rear of the room may actually be behind one of the surround channels (they are

typically duplicated in large reproduction rooms). Therefore, any intended spatial

image is destroyed.

6.6 Ambisonics

Ambisonics offers a holistic approach; it considers capture, storage and flexible

reproduction of spatial audio [71, 70]. In [127], the theory is explained. Ambisonic

signals are stored in B-format, a flexible format which stores the velocity component

of the signal in various directions, as well as the overall pressure component. Simple

trigonometric formulae are used to represent the location of a source in spherical

geometry. For a source at angle A and elevation B (counter-clockwise), coordinates

are calculated thus (for first order encoding):

 (6.1)

 (6.2)

 (6.3)

B-format signals for the x, y and z directions, as well as the overall pressure

component can then be calculated:

 221

The scaling factor on W is used to ensure a more even distribution. It can be made

more general by considering the x, y and z position of the source [126]. A point at

angle 0, elevation 0 will be treated thus:

Furthermore, a point at angle 45 degrees (this is actually 315 degrees in the

appropriate counter clockwise scenario), 0 degree elevation implies:

The spatial distribution of the source is thus stored in the B-format file.

Alternatively, a soundfield microphone is used to capture this information.

From a decoding point of view, each loudspeaker is sent a combination of the

B-format components. Loudspeakers essentially spatially sample spherical

harmonics. Psychoacoustic phenomena are considered in decoding, with phase

information used in the low-frequency range and amplitude at higher frequencies

[151]. Therefore, filtering is required. The signal sent to an arbitrary loudspeaker can

be calculated using its relative location. For example, to decode to a square:

Loudspeaker at angle 45 degrees (front left: counter clockwise), elevation 0:

Loudspeaker at angle 315/-45 degrees (front right), elevation 0:

Loudspeaker at 135 degrees (back left), elevation 0:

Finally, loudspeaker at 225 degrees (back right), elevation 0:

 222

By increasing the number of B-format channels, higher-order Ambisonics can be

realised (second order uses 9 sources, third order 16). This improves spatialisation

accuracy and allows for a larger sweet spot. Due to its nature as a sound field

recreation tool, typically all loudspeakers work together in the reproduction of

Ambisonics. This increases any potential problems caused by the Precedence Effect.

Also, as signal phases may imply cancellations, introducing a listener to the sound

field can cause challenges [79]. Near-field compensation of loudspeaker bass

response is also required (all sources are assumed infinite, so finite distance

loudspeakers require compensation [151]).

6.7 Wave Field Synthesis (WFS)

WFS can be thought of at its most elemental as sound field reconstruction using a

‘wall of loudspeakers’. More accurately, it uses Huygen’s Principle to recreate a

propagating wave using secondary sources placed along the wavefront [41, 201].

WFS enhances spatial sound; a listener can walk towards a source, which gets

naturally louder as they do. There are no ‘sweet spot’ problems [206]. This is

particularly promising when the results of tests performed in [98 and 13] are

considered; neither Ambisonics nor VBAP can be relied upon for consistent spatial

localisation in the context of a distributed audience in a reverberant environment.

In [41], the potential of WFS is explicitly defined in the context of other

multi-channel setups: ‘WFS, on the other hand, aims at reproducing the true physical

attributes of a given sound field over an extended area of the listening room.’ Arrays

of loudspeakers are used in reproduction (for example, 192 loudspeakers are used in

the horizontal plane cinema example in [200]).

Three types of source can be represented:

 223

1 Virtual point sources outside the array. Crucially, this source will appear

to be in the same location for all listener positions.

2 Plane waves: infinite point sources (not a ‘real world’ scenario; in [41]

the analogy is drawn to the sun appearing to follow passengers when

travelling in a car, its angular direction not changing).

3 Virtual sources in front of speakers. Here, the wavefront converges onto

a fixed position. Although an exciting prospect, this technique is

inaccurate between loudspeaker array and target position.

In [201], the relationship and similar limitations of near-field corrected higher order

Ambisonics and WFS are noted.

From a recording point of view, several options exist, including close micing

and Virtual Panning Spots, using stereophonic techniques to represent extended

spatial sources [41]. Live recording of the sound field with microphones in

loudspeaker reproduction positions can provide a high fidelity reproduction (the

reproduction room should be anechoic). This is discussed from an acoustic

consultancy point of view in [52]. MPEG4 coding of sources using an object-

oriented paradigm is discussed in [41]; each source is stored separately.

Of particular interest are the challenges involved in implementing

environmental effects. In [41], the effect of the room is added using eight virtual

speakers setup around the array (i.e. sources created on the array). Early reflections

can be processed using impulse responses, geometric models or perceptual models

(as discussed in the previous chapter). In [12], implementation of room effects in the

software tool WONDER is discussed. A dry source requires attenuation and delay of

a signal to be spatialised for each loudspeaker. However, addition of room effects

can quickly intensify processing requirements. Essentially, each point in the virtual

 224

soundfield has a unique impulse response for each speaker, potentially leading to

massive amounts of data. As with HRTFs, discrete sampling is performed. Only

closest impulses are buffered in the reproduction system discussed for efficiency.

Discontinuities caused by impulse shifts are minimised using crossfades. Other

possibilities include separating early reflections (using a model or short FIRs) and

late reverberation. Problems with the reproduction room are highlighted in [226]. For

example, the evolution of a focused source’s early reflections will not originate from

the source, but from the combination of loudspeakers creating the source.

Despite the apparent potential of the technique, there are difficulties with

WFS implementation, as discussed in [206 and 226]. These include spatial aliasing:

spatial and spectral errors due to discretisation of the array. Above the alias

frequency, the time difference between two successive loudspeaker signals

interferes. In [226], OPSI is presented: Optimised Phantom Source Imaging in WFS.

It aims to avoid aliasing by using WFS under the alias frequency, and stereophonic

sources above.

Limitations of array dimensions can also have an effect (a finite array is used;

the theory is based on an infinite array). Diffraction waves originate from the edges

of the array: these appear as echoes. This effect can be reduced using a tapering

window to decrease the weight on loudspeakers towards the edge of the array. This

reduces the diffraction effects but also the listening area.

Reflections of the listening room also pose a problem (this issue is addressed

using inverse filtering in [67]). Horizontal-only arrays (often employed for practical

reasons) also imply limitations, as they result in no height information; also all room

impulse reflections will be put into the horizontal plane.

 225

An interesting application of WFS is discussed in [136 and 207]; essentially,

a headphone signal is generated using a BRIR. A circular WFS array is then used to

send transaurally-processed [68] point sources to ear locations. This somewhat

inverts the multi-channel binaural paradigm discussed later in this chapter. The

benefits of the approach are the removal of the necessity for dynamic crosstalk

cancellation filters (which essentially constitutes a HRTF interpolation process).

From an implementation point of view, development of the WFS application

WONDER is documented in [8, 10, 9, 12, and 11] and available from [227].

6.8 The Multi-channel Binaural Paradigm

Using binaural technology to represent multi-channel audio is a relatively intuitive

concept. Binaural techniques can be used to spatialise a sound source to the location

of a loudspeaker. If an appropriate interpolation algorithm is available, the listener,

or even the loudspeaker can change relative location. Furthermore, if accurate

binaural reverberation processing is available, a particular listening environment can

be virtualised, with source distance, motion (including Doppler Effect [144]) and

environmental processing. This is a promising prospect; the environmental

processing of an ideal mixing room and optimal user position can be recreated, for

example.

In [148], the concept is applied to Ambisonics. Benefits are highlighted: only

static HRTF processing is required, the number of HRTF filters required is constant,

and independent of the number of sound sources. Also, Ambisonic vector rotations

can be used to process head rotations; the Ambisonic scene, as opposed to the

binaural scene is rotated in a more efficient process. In a room model based on an

image model of early reflections, Ambisonic order is reduced for less important

reflections as part of an optimisation process. As discussed in chapter 3,

 226

implementation of the relevant algorithms can be found in [148]. This approach is

also discussed in [14], in the context of the BAP 1000 system, which uses a virtual

stereo control room and 9 HRTF sets appropriate for an advertised ‘90-95%’ of the

population.

More recently, attempts have been made to optimise the paradigm. In [95],

Jot suggests that the high level of control available in the binaural domain should be

used to essentially improve multi-channel formats. Accordingly, binaural B-format is

discussed (the technique is introduced in [94]). Essentially, minimum-phase HRTFs

are broken into B-format signals (an analysis of the complete HRTF dataset). Each

source in the reproduction is processed with a delay and encoded to B-format. All

sources can then be mixed and filtered with B-format HRTFs. Left and right outputs

can then be summed. Therefore, a source at a particular location is encoded using

Ambisonic formulae. The idea is furthered in [94], using discrete-panning functions.

An analysis-synthesis approach is presented in [73]. A spatial scene is

analysed and re-spatialised binaurally. A vector for each frequency bin of a multi-

channel source is used to derive locations for that bin. This analysis informs a HRTF

based STFT resynthesis. Similarly, Directional Audio Coding (DirAC) [164] takes

an analysis-synthesis approach. Input is analysed (again, in the frequency domain)

for directional and diffuse properties (the results of which can be stored as metadata).

The approach was developed for binaural representation in [116].

The approach used here is the more traditional multi-channel binaural

paradigm of virtual loudspeakers reproducing a multi-channel output. The novelty

introduced is the flexibility and complete user control. Sweet spot reproduction is not

assumed, as in [155]. Also, any multi-channel reproduction algorithm is possible; the

user is not limited in this way. The flexibility essentially transforms the tool into a

 227

multi-channel algorithm audition tool. Any algorithm can be tested from a point of

view of non-ideal loudspeaker placement, off-centre (Ambisonics is tested in this

way in [118])/dynamic listener locations, room size, etc.

In MPEG binaural surround technology [28], the virtual-loudspeaker

paradigm is utilised (and updated). In a process that optimises the process by using

parametric HRTFs, low bit rates with surround information for headphones is

achieved.

Although the primary focus of the system proposed is not auralisation

accuracy, commercial auralisation tools are perhaps worth mentioning, in the context

of virtual multi-channel processing. Such a discussion is inherently somewhat

postulation, due to the closed nature of the source code. CATT is a good example of

the state of the art [51]. It uses B-format impulses to allow dynamic user

walkthroughs. For binaural reproduction, a virtual-Ambisonic, sweet-spot approach

is taken. Odeon also appears to offer similar, if less detailed processing [156].

VRSonic’s tools appear to take a direct approach to HRTF auralisation, thus

increasing processing cost [219].

6.9 MultiBin

The virtual multi-channel approach is implemented as MultiBin. At the onset, a

generic approach to processing was applied. Usage scenarios are therefore

completely flexible: a single source can be moved around a listener in a desired

room, or a complex multi-channel algorithm can be tested for a slightly off-

centre/moving listener. Implementation and usage are discussed below.

 Head tracking is accounted for, the significance of which is discussed in

[199] in the context of modelling error in binaural systems. Interestingly, head

tracking was not found to have a significant effect on localisation for speech sources

 228

in [19], although its addition does appear to greatly reduce reversals. An example of

implementation of head tracking is discussed in [212]; the authors use a circular set

of infrared diodes on the head, which are picked up by a WII remote. Head tracking

can be ‘plugged in’ to MultiBin as hrtfearly includes it as a parameter (interaction

with hardware needs to be considered; implementation using Open Sound Control

[158], for example).

6.9.1 Implementation

Python was chosen to implement (initially to promptly prototype, but the language

proved very suitable for the task) the MultiBin application [169]. The nature of the

language allows for immediacy and flexibility in development (it is a dynamically-

typed, interpreted language). Crucially, Python code can interact with Csound code

through the csnd module, which wraps Csound API functions. Also, an abundance of

libraries exist for various tasks, including GUI development, which is relevant here.

The language is flexible, allowing various approaches to the task. An object-

oriented style is taken. The main class is, however, quite specific in its task, so

generic object design is somewhat sacrificed in this more heuristic approach. The

specific nature of the application merits this. The Tkinter library is used for GUI

development (it provides an interface to the Tk GUI toolkit [210]). Several didactic

websites have been referenced in the development of the application, most

significantly [171, 170 and 208, 209 for Tkinter].

Application code will now be discussed. As before, code is heavily

commented. Trivial aspects of development are not discussed. A broad overview of

developing a Tkinter application is offered, highlighting the idiosyncrasies of this

particular implementation, in the context of the goal of the application: flexible

 229

multi-channel/generic source binaural processing and exposition of the new Csound

opcodes.

The main application class inherits from Tkinter’s Frame class. The

constructor of the main class then calls the constructor of its parent. The frame is the

basic rectangular window, on which the complex layout can be built. An instance of

Csound is setup and associated with the instantiated object. The appropriate csd is

compiled and started. The self argument is a reference to self/the current instance of

the class, and is used throughout to initialise and access member variables/methods.

The GUI is then setup. A menu is created, added, and expanded. The various menu

choices are bound to commands (member functions), to be discussed shortly. The

various options for display are documented in the referenced citations. Similarly,

buttons are created for playback. A scale widget is used for both head rotation and

the level of late reverb. These widgets are all placed on the master/root widget.

Canvas and status labels are also added.

The grid method of widget organisation is employed; a row/column

approach. Default values for member variables are setup; the size of the canvas

depends on the y value of the room size (shoebox shapes are assumed). Correct

relative room wall ratios are maintained. The useful canvas area is defined as the

area in the room 10 centimetres from the walls (a source is assumed to occupy some

physical space; this also avoids image sources being at the same location as ‘real’

sources). This usable rectangle will be highlighted using a grey border (and will

inherently change with room size). Defaults are as per the Csound opcodes. Figure

6.1, below illustrates the main processing screen and border (the numbers represent

sound sources).

 230

Figure 6.1: MultiBin

Some care is required to make the head control/visual representation as interactive as

desired. Each point on the polygon that represents the head is understood as a

complex number, to allow for rotation. Near-field HRTF processing is dealt with by

not processing sources inside a 45 cm radius, as discussed in chapter 5. As with the

processing area, the relative size of this area changes with the room dimensions. This

implies that sources entering this area from the left and moving to the right will not

 231

appear to be located at the right of the listener until they exit this area. Hence, a clear

visual cue is offered (see figure 6.1, above). The location of the head is sent to

Csound, as well as an initial value of 0 for the head rotation and .3 for the late reverb

level. A score message is sent using the InputMessage API function, turning on

Csound instrument 100. This instrument essentially parses the aforementioned

values, passing them to global variables and adding some portamento to avoid zipper

noise; this is a consequence of the pixelated nature/limited resolution of the input

canvas, the portamento essentially adds a smoothing low-pass filter.

The final task for the initialisation function/constructor is to bind specific

mouse actions to objects/widgets on the canvas. Selecting, dragging, and deselecting

objects are all bound to specific member methods. Canvas objects are tagged with

the string ‘drag’ (the head object with ‘draghead’, as it is treated slightly differently).

The WM_DELETE_WINDOW protocol is used to call a function when the user closes the

window (which essentially destroys the master widget and stops Csound). The

initialisation function is presented below. Note that Python interprets code segments

by indentation.

def __init__(self, master = None):
master.title("MultiBin")

 Frame.__init__(self, master)

 #csound setup: turn on, wait for input!
 self.cs = csnd.Csound()
 self.cs.Compile("finaltable.csd")
 self.perf = csnd.CsoundPerformanceThread(self.cs)
 self.perf.Play()

 #create a Menu base
 self.menu = Menu(self)
 #add it
 self.master.config(menu = self.menu)
 #create menu
 self.filemenu = Menu(self.menu)
 #file menu
 self.menu.add_cascade(label = "File", menu = self.filemenu)
 #this choice is required before processing begins!
 self.filemenu.add_command(label = "New Scene(==Restart)",

 command = self.newscene)

 232

 self.filemenu.add_command(label = "New Source", command =
 self.newsrc)

 self.filemenu.add_separator()
self.filemenu.add_command(label = "'Ideal' Stereo",

 command = self.stereo)
 #ambisonics: layout 4 from bformdec1
 self.filemenu.add_command(label = "Ambi - Octogon",

 command = self.ambi4)
 self.filemenu.add_command(label = "VBAP - 8 Channel",

 command = self.vbap8)
 self.filemenu.add_separator()
 #clear
 self.filemenu.add_command(label = "Clear Recent",

 command = self.clearrecent)
 self.filemenu.add_command(label = "Clear All",

 command = self.clearall)
 self.filemenu.add_separator()
 self.filemenu.add_command(label = "Exit",

 command = self.end)
 self.helpmenu = Menu(self.menu)
 self.menu.add_cascade(label = "Help", menu = self.helpmenu)
 self.helpmenu.add_command(label = "About...",

 command = self.about)

 #button for source on/off, dial for head rotation
 self.playbut = Button(master, text = "Start Playback Instr",

 command = self.play)
 self.stopbut = Button(master, text = "Stop",

 command = self.stop)

 #scale widget for head rotation
 self.rotscale = Scale(master, orient = HORIZONTAL,

 label = "Head Rotation",
 from_ = -90.0, to = 90.0,

 length = 120, cursor = "exchange",
 resolution = .1,

 command = self.headrotate)

 #scale for output level of late reverb
 self.latescale = Scale(master, orient = HORIZONTAL,

 label = "Late Amp", from_ = 0,
 to = .99, length = 120,

 resolution = .01,
 command = self.lateamp)

 #status: hints for user
 self.statusstring = "default room: x: 10.00, y: 10.00, z:

 3.00"
 self.status = Label(master, text = self.statusstring,

 relief = SUNKEN, anchor = W)

 #canvas, default size for first run...
 self.canvas = Canvas(master, bg = "grey", width = 400,

 height = 400)

 #setup grid...
 self.playbut.grid(row = 0, column = 0)
 self.stopbut.grid(row = 0, column = 1)
 self.rotscale.grid(row = 0, column = 2)
 self.latescale.grid(row = 0, column = 3)
 self.canvas.grid(row = 1, column = 0, columnspan = 4)

 233

 self.status.grid(row = 2, column = 0, columnspan = 4,
 sticky = E + W)

 #set reverb...
 self.latescale.set(0.3)

 #defaults
 #roomarray data order: rmx, rmy, rmz, wlh, wll, wl1, wl2,

 wl3, flh, fll, fl1, fl2, fl3, clh, cll, cl1, cl2, cl3
 self.roomarray = [10.0, 10.0, 10.0, 3.0, .3, .1, .75, .95,

.9, .6, .1, .95, .6, .35, .2, .1, 1.0,
1.0, 1.0]

 self.sizex = 400.0
 self.sizey = self.sizex / self.roomarray[0] *

 self.roomarray[1]
 #useful canvas area...needs to be min .1m from wall
 #canvas goes from 1 - 401, add extra 1 to bottom right

 corner as rect is contained within this point
 self.rect = self.canvas.create_rectangle((.1 /

self.roomarray[0]) * self.sizex + 1,
(.1 / self.roomarray[1]) * self.sizey + 1,

 self.sizex + 2 - (.1 / self.roomarray[0]) * self.sizex,
 self.sizey + 2 - (.1 / self.roomarray[1]) * self.sizey,
 fill = "white", outline = "grey")
 #initialise
 self.headx = self.sizex / 2
 self.heady = self.sizey / 2
 #initialise to zero...for rotation
 self.rot = []
 for i in range (7):
 self.rot.append(complex(0, 0))
 #head best as last object, most recent will be selected

 first!
 self.range = self.sizex / self.roomarray[0] * .45
 self.oval = self.canvas.create_oval(self.headx - self.range,

self.heady - self.range, self.headx +
self.range, self.heady + self.range,
outline = "grey")

 #points for polygon of head...
self.head = self.canvas.create_polygon(self.headx + 5,

self.heady + 10, self.headx + 10, self.heady,
self.headx + 5, self.heady - 10, self.headx,
self.heady - 13, self.headx - 5, self.heady - 10,
self.headx - 10, self.heady, self.headx - 5,
self.heady + 10, fill = "green",
tags = "draghead", outline = "black")

 self.cs.SetChannel("xhead", self.roomarray[0] / 2)
 self.cs.SetChannel("yhead", self.roomarray[1] / 2)
 self.cs.SetChannel("rot", 0)
 self.cs.SetChannel("lateamp", 0.3)
 self.perf.InputMessage("i100 0 -1 %f %f" %(self.roomarray[0]

 / 2, self.roomarray[1] / 2))
 #link 'drag' to functions
 self.canvas.tag_bind('drag','<B1-Motion>', self.move)
 self.canvas.tag_bind('drag','<ButtonPress>', self.select)
 self.canvas.tag_bind('drag','<ButtonRelease>',

 self.deselect)
 self.canvas.tag_bind('draghead','<B1-Motion>',

 self.movehead)
 #closing window also ends csd...

 234

 self.master.protocol("WM_DELETE_WINDOW", self.end)

Widget/object movement on the canvas is perhaps the most significant process in the

application, so will be discussed next. The select method essentially gets the

location of the event triggering the function call, and changes the colour of the active

object. The object under the mouse pointer (current) is changed to a red colour to

illustrate selection.

def select(self, event):
 loc = event.widget
 item = loc.find_withtag("current")
 #red if selected!
 loc.itemconfig(item, fill = "red")

Similarly, deselecting an object restores its blue colour.

def deselect(self, event):
 loc = event.widget
 item = loc.find_withtag("current")
 loc.itemconfig(item, fill = "blue")

Source movement is a little more complex. Once again, an event triggers the

function. The location of this event is stored, with the window location changed to a

canvas location (the canvas can be scrolled). The coordinates of the object are then

replaced. It is crucial to maintain a structured system for labelling sources as they are

added/removed from the canvas. Items on the canvas are numbered sequentially as

they are created. Therefore, the active area rectangular is item 1, the near-field circle

item 2 and the head item 3 (see figure 6.1 above). Therefore, the relative source

number with regard to sources on screen is the item number – 3. Removing items

from the canvas does not reset the internal Tkinter counter. Therefore, removal of

sources needs to be considered. Users can remove all items to clear the current

canvas, or remove the most recently created objects. The unique ID of the object is

thus calculated. A count variable also stores the number of objects active on the

canvas. In this way, the internal object counter can be used with the active object

counter to ensure the correct unique ID is stored. The SetChannel function can then

 235

be used to send a message to Csound, which has been setup to listen for information

on particular named channels using the chnget opcode. The x and y coordinate

values are sent on channels labelled with the particular source number. The final

point worth noting is that y values are inverted for agreement between Tkinter and

the Csound opcodes. An appropriate accompanying csd file will be discussed

shortly.

def move(self, event):
 #widget that called the event
 loc = event.widget
 #set, in case of canvas scroll...
 x = loc.canvasx(event.x)
 y = loc.canvasy(event.y)

#find_withtag returns list (tuple) of matching items,
 in order created:
#only 1 item will be returned here (or if they are at same
 loc, most recently created)...

 item = loc.find_withtag("current")
 #text only has 2 coords...
 loc.coords(item, x, y)
 #choose value based on default room sizes/inputted size
 #head is item 2, oval 3, rectangle 1, then sources in order

 created...
 #if > no of items active, subtract no of removed...also

 subtract total removed...
if item[0] - 3 - self.allremoved > self.count:

 chno = item[0] - 3 - self.allremoved - self.removed
 else:
 chno = item[0] - 3 - self.allremoved

 self.cs.SetChannel("xsrc%d" %chno, (x / self.sizex) *

 self.rmx)
 #send inverted y to csound...
 y = self.sizey - y
 self.cs.SetChannel("ysrc%d" %chno, (y / self.sizey) *

 self.rmy)

The head will always be on the same ‘channel’, so a simpler move function suffices.

The coordinates of the head are updated, considering any rotation. The near-field

limitation cue also follows the head movement. Again, Csound receives information

on head movements from the software bus.

#a simpler move function, as head will always be on same channel
def movehead(self, event):

#widget that called the event
 loc = event.widget
 #set, in case of canvas scroll?...
 self.headx = loc.canvasx(event.x)
 #invert y throughout

 236

 self.heady = loc.canvasy(event.y)
 #y = self.sizey - y
 item = loc.find_withtag("current")[0]
 #head coords...include existing measured rotation...
 loc.coords(item, self.headx + self.rot[0].real, self.heady +

 self.rot[0].imag, self.headx + self.rot[1].real,
 self.heady + self.rot[1].imag,

 self.headx + self.rot[2].real,
 self.heady + self.rot[2].imag,

 self.headx + self.rot[3].real,
 self.heady + self.rot[3].imag,

 self.headx + self.rot[4].real,
 self.heady + self.rot[4].imag,

 self.headx + self.rot[5].real,
 self.heady + self.rot[5].imag,

 self.headx + self.rot[6].real,
 self.heady + self.rot[6].imag)

 #move range
 self.canvas.coords(self.oval, self.headx - self.range,

 self.heady - self.range,
 self.headx + self.range,

 self.heady + self.range)
 self.cs.SetChannel("xhead", (self.headx / self.sizex) *

 self.roomarray[0])
 #send inverted y to csound...
 y = self.sizey - self.heady
 self.cs.SetChannel("yhead", (y / self.sizey) *

 self.roomarray[1])

Csound playback is dealt with by turning on a source playback instrument

indefinitely. A member Boolean keeps track of playback status.

def play(self):
 self.perf.InputMessage("i1 0 -1")
 self.playing = 1

def stop(self):
 if self.playing:
 self.perf.InputMessage("i-1 0 -1")
 self.playing = 0

Head rotation is dealt with by reading the angle variable from the slider and sending

the value to Csound. Complex numbers are used to manipulate the polygon.

Essentially, each vertex of the polygon is represented by a point on the complex

plane. The location of the head on the canvas (its central point) is used as an offset.

A complex representation of the angle is used to rotate each point.

def headrotate(self, event):
degrees = self.rotscale.get()

 self.cs.SetChannel("rot", degrees)
 #rotate polygon...use complex maths here, as it more elegant
 offset = complex(self.headx, self.heady)
 radangle = math.radians(degrees)

 237

 compangle = cmath.exp(radangle * 1j)
 #angle, from centre of non rotated polygon, rotate by point at

 0, 0, add offset again at end...
 self.rot[0] = compangle * (complex(self.headx + 5,

 self.heady + 10) - offset)
 self.rot[1] = compangle * (complex(self.headx + 10,

 self.heady) - offset)
 self.rot[2] = compangle * (complex(self.headx + 5,

 self.heady - 10) - offset)
 self.rot[3] = compangle * (complex(self.headx,

 self.heady - 13) - offset)
 self.rot[4] = compangle * (complex(self.headx - 5,

 self.heady - 10) - offset)
 self.rot[5] = compangle * (complex(self.headx - 10,

 self.heady) - offset)
 self.rot[6] = compangle * (complex(self.headx - 5,

 self.heady + 10) - offset)
 #add offset again...
 self.canvas.coords(self.head, self.rot[0].real + self.headx,

 self.rot[0].imag + self.heady,
 self.rot[1].real + self.headx,

 self.rot[1].imag + self.heady,
 self.rot[2].real + self.headx,

 self.rot[2].imag + self.heady,
 self.rot[3].real + self.headx,

 self.rot[3].imag + self.heady,
 self.rot[4].real + self.headx,

 self.rot[4].imag + self.heady,
 self.rot[5].real + self.headx,

 self.rot[5].imag + self.heady,
 self.rot[6].real + self.headx,

 self.rot[6].imag + self.heady)

Amplitude control of the late reverberation is straightforward:

def lateamp(self, event):
 vol = self.latescale.get()
 self.cs.SetChannel("lateamp", vol)

When the window is closed, the Csound performace is stopped (the main thread

waits for the processing thread to finish before proceeding) and the main root widget

is destroyed.

def end(self):
 self.perf.Stop()
 self.perf.Join()

self.master.destroy()

Adding a new source is dealt with using a number of member functions. The

newspeaker function is a generic function used by other, more specific solutions. It

takes an x, y coordinate as its arguments. Firstly, the number of active sources is

incremented; then the visualisation of the object is placed on the canvas. A simple

 238

text number was considered the most intuitive representation. Therefore, the audio

associated with each source is clear. This representation also performs well from an

interactivity point of view.

A string is prepared as the Csound score command used to turn on the

processing instrument: an instance of hrtfearly. All parameters are passed to the

opcode. The source location is set on the appropriate listening channel and the score

message is sent. The global reverb instrument (using hrtfreverb) is turned on if not

already on.

#generic: new speaker
def newspeaker(self, x, y):
 self.count = self.count + 1
 no = str(self.count)

 self.canvas.create_text(x, y, text = no, fill = 'blue',

tags = 'drag')

 #invert y for csound
 y = self.sizey - y

 S = 'i101.{0} 0 -1 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9}

 {10} {11} {12} {13} {14} {15} {16} {17} {18} {19} {20}'
 .format(self.count, (x / self.sizex) * self.roomarray[0],

(y / self.sizey) * self.roomarray[1], self.roomarray[0],
self.roomarray[1], self.roomarray[2], self.roomarray[3],
self.roomarray[4], self.roomarray[5], self.roomarray[6],
self.roomarray[7], self.roomarray[8], self.roomarray[9],
self.roomarray[10], self.roomarray[11],
self.roomarray[12], self.roomarray[13],
self.roomarray[14], self.roomarray[15],
self.roomarray[16], self.roomarray[17])

 #set channel
 self.cs.SetChannel("xsrc%d" %self.count, (x / self.sizex) *

 self.roomarray[0])
self.cs.SetChannel("ysrc%d" %self.count, (y / self.sizey) *

 self.roomarray[1])
 self.perf.InputMessage(S)

#turn on global late reverb, if not already on (may have added
and removed sources!)

 if self.count == 1:
 if self.reverb == 0:
 self.perf.InputMessage("i102 0 -1")
 self.reverb = 1
 print "reverb"

This generic member function is used in all cases of source addition. An instance of

the location class is used to add a single source. This class inherits from the

 239

tkSimpleDialog.Dialog class. The location class essentially overrides the

appropriate methods of the parent class for use here. The body method describes the

GUI, adding a choice for direct or angular source location input. Again, the grid

method is used to setup the GUI (note an array is used to elegantly store and process

elements). The angle/distance entry option is focused upon by default. Each of the

radio buttons calls a function. The rect function en/disables the appropriate inputs

for rectangular input. The polar function acts similarly for angle/distance input. The

radio buttons are linked by association with the same variable. The apply method

override essentially defines the functionality of the ‘ok’ button: check a data flag,

read the Entry boxes and return a list of appropriate location information, including

the mode of acquisition.

class location(tkSimpleDialog.Dialog):

flag = 0

 def body(self, master):

 self.mode = IntVar()
 self.r1 = Radiobutton(master, text = "Angle, Distance

 Input", value = 1, variable =
 self.mode, command = self.rect)

 #need to do this separately to return correct type
 self.r1...

 self.r1.grid(row = 0, column = 0, columnspan = 2)
 Label(master, text="OR").grid(row = 0, column = 2)
 Radiobutton(master, text = "X, Y Coordinates",

value = 2, variable = self.mode,
command = self.polar).grid(row = 0,
column = 3, columnspan = 2)

Label(master, text="Note: All values must fit on
canvas/in room specified, and will be truncated

 accordingly!").grid(row = 1, columnspan = 4)
 Label(master, text="Distance from Centre:").grid(row =

2, column = 0)
 Label(master, text="Angle:").grid(row = 3, column = 0)
 Label(master, text="X:").grid(row = 2, column = 3)
 Label(master, text="Y:").grid(row = 3, column = 3)
 self.r1.select()

 self.e = []
 for i in range (4):
 self.e.append(Entry(master, width = 10))
 self.e[0].insert(0, "1")
 self.e[1].insert(0, "0")
 self.e[2].insert(0, "100")

 240

 self.e[3].insert(0, "100")
 for i in range (2):
 self.e[i].grid(row = i + 2, column = 1)
 for i in range (2):
 self.e[i + 2].grid(row = i + 2, column = 4)

 for i in range (2):
 self.e[i + 2].configure(state = DISABLED)

 #initial focus
 return self.e[0]

 def apply(self):
 self.flag = 1
 dist = float(self.e[0].get())
 angle = float(self.e[1].get())
 x = float(self.e[2].get())
 y = float(self.e[3].get())
 temp = self.mode.get()
 #fill in array...
 if temp == 1:
 self.locationdata = 1, dist, angle
 elif temp == 2:
 self.locationdata = 2, x, y

 def rect(self):
 for i in range (2):
 self.e[i].configure(state = NORMAL)
 for i in range (2):
 self.e[i+ 2].configure(state = DISABLED)

 def polar(self):
 for i in range (2):
 self.e[i].configure(state = DISABLED)
 for i in range (2):
 self.e[i+ 2].configure(state = NORMAL)

The newsrc method uses this instance of the location class to add a source (if

details have been submitted; avoiding problems with the ‘cancel’ button). The mode

is extracted from the returned data, a polar source is dealt with by another method, a

direct source is stored and validated (error checking is performed here, where other

class parameters are known). Finally, the newspeaker method is used as above.

def newsrc(self):
#default add source: in front of listener

 self.src = location(self)
 if self.src.flag:
 mode = self.src.locationdata[0]
 if mode == 1:
 self.newpolar(self.src.locationdata[2],

 self.src.locationdata[1])
 #simpler scenario...
 elif mode == 2:
 self.srcx = self.src.locationdata[1]
 self.srcy = self.src.locationdata[2]

 241

 #invert y for pixel location
 self.srcy = self.sizey - self.srcy
 #validate location, leave other validation up to

 csound...wall params...room limits...
 #src must be minimum 10 cm from wall, as per csound
 if self.srcx > self.sizex - (.1 / self.roomarray[0]) *

 self.sizex:
 self.srcx = self.sizex - (.1 / self.roomarray[0])

* self.sizex
 if self.srcx < (.1 / self.roomarray[0]) * self.sizex:
 self.srcx = (.1 / self.roomarray[0]) * self.sizex
 if self.srcy > self.sizey - (.1 / self.roomarray[1]) *

 self.sizey:
 self.srcy = self.sizey - (.1 / self.roomarray[1])

* self.sizey
 if self.srcy < (.1 / self.roomarray[1]) * self.sizey:
 self.srcy = (.1 / self.roomarray[1]) * self.sizey

 self.newspeaker(self.srcx, self.srcy)

A polar source input is dealt with by the newpolar method. The location of the point

is calculated on the unit circle, the distance and room geometry then decide where it

should be located on the canvas.

def newpolar(self, angle, distance):
radangle = math.radians(angle)

 #angle measured from centre, clockwise...
 #sin gives x coord...cos y...
 #srcx and srcy are temp variables used for each source

self.srcx = math.sin(radangle)
 self.srcy = math.cos(radangle)
 #radius: same if calculated from x or y params, as per setup
 mult = self.sizex / self.rmx * distance
 self.srcx *= mult
 self.srcy *= mult
 #relative to listener/centre
 self.srcx += self.sizex / 2
 self.srcy += self.sizey / 2

The next three methods implement loudspeaker setups for multi-channel setups;

content for which can be easily generated in Csound (examples will be given below).

An Ambisonic scenario is created by setting up eight virtual loudspeakers (an

octagon layout) with an appropriate layout to the geometry of the room [42].

Similarly, an eight-channel VBAP scenario can be setup [50]. Finally, an ‘ideal’

sweet spot stereo setup is offered (a user may then move out of the sweet spot, an

insightful exercise), which could be used, for example, to emulate a control room.

 242

#each default setup will call a unique function...
#need different menu for different possible ambi, vbap setups in
csound...
#mode 4 Ambisonics
def ambi4(self):

self.clearall()
 #local variables here
 #angles: anticlockwise
 ang = -22.5
 if self.roomarray[0] < self.roomarray[1]:
 dist = self.roomarray[0] / 3
 else:
 dist = self.roomarray[1] / 3
 for i in range(1, 9):
 self.newpolar(ang, dist)
 #invert y for pixel location
 self.srcy = self.sizey - self.srcy
 self.newspeaker(self.srcx, self.srcy)
 ang -= 45

def vbap8(self):
 self.clearall()
 #from manual example...
 ang = 15
 if self.roomarray[0] < self.roomarray[1]:
 dist = self.roomarray[0] / 3
 else:
 dist = self.roomarray[1] / 3
 for i in range(1, 9):
 self.newpolar(ang, dist)
 #invert y for pixel location
 self.srcy = self.sizey - self.srcy
 self.newspeaker(self.srcx, self.srcy)
 if i == 4:
 ang += 30
 else:
 ang += 50

#simple, externalised stereo
def stereo(self):
 self.clearall()
 if self.roomarray[0] < self.roomarray[1]:
 dist = self.roomarray[0] / 3
 else:
 dist = self.roomarray[1] / 3
 self.newpolar(30, dist)
 #invert y for pixel location
 self.srcy = self.sizey - self.srcy
 self.newspeaker(self.srcx, self.srcy)
 self.newpolar(-30, dist)
 self.srcy = self.sizey - self.srcy
 self.newspeaker(self.srcx, self.srcy)

Methods to clear sources from the canvas are defined next. The most recent canvas

item is cleared by clear (a message is printed for the user). Again, this is a generic

method, used by clearrecent to clear the most recent source, and clearall to

 243

clear the canvas completely (this method also stops playback). The variables keeping

track of the number of removed sources (to be used with the source interactivity, as

above) are updated appropriately.

def clear(self):
#last element of array = [-1]

 recent = self.canvas.find_all()[-1]
 self.canvas.delete(recent)
 self.perf.InputMessage("i-101.%d 0 -1" %self.count)
 print "i-101.%d 0 -1 SENT" %self.count

def clearrecent(self):
 print self.count
 if self.count > 0:
 self.clear()
 self.count -= 1
 self.removed += 1

def clearall(self):

self.stop()
 while self.count > 0:
 self.clear()
 self.count -= 1
 self.allremoved += 1
 self.allremoved += self.removed
 self.removed = 0

A new scene can also be created. The method implementing this functionality:

newscene again uses a class based on the Dialog class from tkSimpleDialog. The

‘cancel’ scenario is treated in the same manner as the location class. The class,

room, uses familiar tools to generate the GUI. A radio button is used to optionally

include complex surface parameters (default input simply involves room geometry).

The associated function simply dis/allows access to these complex parameters. The

‘ok’ apply method simply reads all data, storing it in an array.

#dialog for room creation
class room(tkSimpleDialog.Dialog):

flag = 0

 def body(self, master):
 self.complex = IntVar()
 Checkbutton(master, variable = self.complex, text =

"Show Complex Params?", command =
self.check).grid(row = 0, column = 0)

 Label(master, text = "Room X:").grid(row = 2,
 column = 0)

 Label(master, text = "Room Y:").grid(row = 3,

 244

 column = 0)
 Label(master, text = "Room Z:").grid(row = 4,

 column = 0)

 #empty list
 self.r = []
 for i in range (3):
 self.r.append(Entry(master, width = 10))
 self.r[0].insert(0, "10")
 self.r[1].insert(0, "10")
 self.r[2].insert(0, "3")
 for i in range (3):
 self.r[i].grid(row = i + 2, column = 1)
 Label(master, text = "High Ab Coef:").grid(row = 1,

 column = 2)
 Label(master, text = "Low Ab Coef:").grid(row = 2,

column = 2)
Label(master, text = "Band 1(cf: 250Hz):").grid(row = 3,

column = 2)
 Label(master, text = "Band 2(cf: 1000Hz):").grid(row =

4, column = 2)
 Label(master, text = "Band 3(cf: 4000Hz):").grid(row =

5, column = 2)
 Label(master, text = "Walls").grid(row = 0, column = 3)

 self.w = []
 for i in range (5):
 self.w.append(Entry(master, width = 10))
 self.w[0].insert(0, ".3")
 self.w[1].insert(0, ".1")
 self.w[2].insert(0, ".75")
 self.w[3].insert(0, ".95")
 self.w[4].insert(0, ".9")
 for i in range (5):
 self.w[i].grid(row = i + 1, column = 3)

 Label(master, text = "Floor").grid(row = 0, column = 4)
 self.f = []
 for i in range (5):
 self.f.append(Entry(master, width = 10))
 self.f[0].insert(0, ".6")
 self.f[1].insert(0, ".1")
 self.f[2].insert(0, ".95")
 self.f[3].insert(0, ".6")
 self.f[4].insert(0, ".35")
 for i in range (5):
 self.f[i].grid(row = i + 1, column = 4)

 Label(master, text = "Ceiling").grid(row = 0,

 column = 5)
 self.c = []
 for i in range (5):
 self.c.append(Entry(master, width = 10))
 self.c[0].insert(0, ".2")
 self.c[1].insert(0, ".1")
 self.c[2].insert(0, "1.0")
 self.c[3].insert(0, "1.0")
 self.c[4].insert(0, "1.0")
 for i in range (5):
 self.c[i].grid(row = i + 1, column = 5)

 245

 #disable extra parameters by default
 for i in range (5):
 self.w[i].configure(state = DISABLED)
 self.f[i].configure(state = DISABLED)
 self.c[i].configure(state = DISABLED)

 #initial focus
 return self.r[0]

 def apply(self):
 #avoid error on cancel with flag...
 self.flag = 1
 self.rmdata = []
 for i in range (3):
 self.rmdata.append(float(self.r[i].get()))
 for i in range (5):
 self.rmdata.append(float(self.w[i].get()))
 for i in range (5):
 self.rmdata.append(float(self.f[i].get()))
 for i in range (5):
 self.rmdata.append(float(self.c[i].get()))

 def check(self):
 if self.complex.get() == 0:
 for i in range (5):
 self.w[i].configure(state = DISABLED)
 self.f[i].configure(state = DISABLED)
 self.c[i].configure(state = DISABLED)
 else:
 for i in range (5):
 self.w[i].configure(state = NORMAL)
 self.f[i].configure(state = NORMAL)
 self.c[i].configure(state = NORMAL)

The newscene method stops playback, and declares an instance of the room class.

Once the ‘ok’ button has been selected, all sources are cleared, late reverb is turned

off, the global channel instrument is turned off and all room data is stored. The

canvas is then reconfigured and all channels and variables are reset accordingly.

#get parameters...
def newscene(self):

#stop playback
self.stop()

 self.rm = room(self)
 #if not cancel...
 if self.rm.flag:
 self.clearall()
 #turn off reverb
 if self.reverb == 1:
 self.perf.InputMessage("i-102 0 -1")
 self.reverb = 0
 print "reverb off"
 #globals off
 self.perf.InputMessage("i-100 0 -1")

for i in range(18):

 246

 self.roomarray[i] = self.rm.rmdata[i]

self.sizey = self.sizex / self.roomarray[0] *
 self.roomarray[1]

 self.canvas.configure(width = self.sizex, height =
 self.sizey)

 #useful canvas area...needs to be min .1m from wall
 self.canvas.coords(self.rect, (.1 / self.roomarray[0]) *

 self.sizex + 1, (.1 /
 self.roomarray[1]) * self.sizey + 1,

 self.sizex + 2 - (.1 /
 self.roomarray[0]) * self.sizex,

 self.sizey + 2 - (.1 /
 self.roomarray[1]) * self.sizey)

self.canvas.itemconfigure(self.rect, fill = "white",

 outline = "grey")
 #initialise
 self.headx = self.sizex / 2
 self.heady = self.sizey / 2
 #reset rotation
 self.rotscale.set(0)
 #reset amp
 self.latescale.set(0.3)
 #move 'head' to middle
 self.canvas.coords(self.head, self.headx + 5,

 self.heady + 10, self.headx + 10,
 self.heady, self.headx + 5,

self.heady - 10, self.headx,
self.heady - 13, self.headx - 5,
self.heady - 10, self.headx - 10,
self.heady, self.headx - 5,
self.heady + 10)

 #near field range
 self.range = self.sizex / self.roomarray[0] * .45
 self.canvas.coords(self.oval, self.headx - self.range,

 self.heady - self.range,
 self.headx + self.range,
 self.heady + self.range)

 #head back to middle!
 self.cs.SetChannel("xhead", self.roomarray[0] / 2)
 self.cs.SetChannel("yhead", self.roomarray[1] / 2)
 #rotation back to 0
 self.cs.SetChannel("rot", 0)
 self.statusstring = ("x: %.2f, y: %.2f z: %.2f"

 %(self.roomarray[0],
 self.roomarray[1],
 self.roomarray[2]))

 self.status.config(text = self.statusstring)
 self.status.update_idletasks()
 # globals back on
 self.perf.InputMessage("i100 0 -1 %f %f"

%(self.roomarray[0] / 2,
self.roomarray[1] / 2))

Initialising an instance of the main class involves creating a Tk root widget. This then

becomes the master widget. The main loop is then processed.

app = Application(Tk())

 247

app.mainloop()

6.9.2 MultiBin Instructions

A brief user guide for MultiBin is now offered, including some examples of suitable

csd files. As discussed, the application can be used to create a virtual shoebox room,

with multi-band surface filters. Any number of sources can be placed in this room.

Sources are represented by numbers on the canvas, which correspond to the channel

on which they are listening for audio from Csound. Source and listener position are

dynamically controllable by selecting and dragging. A particular application is the

audition of multi-channel material. Ambisonics, VBAP and Stereo are offered as

defaults; others can be setup using the new source options. Usage is summarised in

figure 6.2.

Figure 6.2: MultiBin usage

 248

Python really only supplies the control, GUI and interaction with Csound. All audio

processing is performed by Csound. hrtfearly and hrtfreverb are the core

processing tools. Users can follow the templates below to generate appropriate

content. Specifically, users need to supply details of the playback instrument in an

instrument1.inc file. No other alteration is needed. The MultiBin application uses

MultiBin.csd for all other processing. instrument1.inc should simply create/playback

the audio to be controlled by MultiBin (examples are given below). In MultiBin.csd,

instrument 100 receives head location, a head rotation value and a diffuse-field

reverberation level. Portamento is added to all control values (suitable defaults are

offered); due to the discrete pixel-based control, as above. The port opcode takes

the signal, a timing control (the half-time of the function) and an initial value.

instr 100

;global channel instruments, same for each instrument...
khx chnget "xhead"
khy chnget "yhead"
krot chnget "rot"
kamp chnget "lateamp"
gkhxp port khx, .15, p4
gkhyp port khy, .15, p5
gkrotp port krot, .15
;slightly lower port ok for amp...
gkampp port kamp, .05, 0.3

endin

Instrument 101 spatially processes the direct source and early reflections for each

source. It listens for appropriate x and y source location values, as well as the

appropriate audio source (defined in the external instrument 1). Again, appropriate

portamento is added. All audio is added to a global variable for processing by the

diffuse field instrument. Global variables store the low and high frequency reverb

time, as well as the mean free path, again to be used by the diffuse field instrument.

The outputs from MultiBin are then used by the hrtfearly opcode (at a sampling

rate of 44.1 kHz, two-dimensional processing and eight buffer crossfades).

 249

instr 101

Schnlx sprintf "xsrc%d", p4
Schnly sprintf "ysrc%d", p4
Schnin sprintf "in%d", p4

ksx chnget Schnlx
ksy chnget Schnly

ksxp port ksx, .15, p5
ksyp port ksy, .15, p6

ain chnget Schnin
;add all for late o/p
gainput = ain + gainput

aearlyl, aearlyr, gilow, gihigh, gimfp hrtfearly ain, ksxp, ksyp,

p9/2, gkhxp, gkhyp, p9/2, "datal.raw", "datar.raw", 0, 8,
44100, giorder, 0, gkrotp, p7, p8, p9, p10, p11, p12, p13,
p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24

 outs aearlyl, aearlyr

endin

Finally, instrument 102 processes the late reverberant diffuse field. It uses the global

outputs from the hrtfearly instrument for low and high frequency reverb time and

mean free path. It also uses the global audio bus, which it zeros at each pass. The

appropriate delay is also added to the late reverb here.

instr 102

al, ar, idel hrtfreverb gainput, gilow, gihigh, "datal.raw",

"datar.raw", 44100, gimfp, giorder
alatel delay al * gkampp, idel
alater delay ar * gkampp, idel
 outs alatel, alater

;zero global in
gainput = 0

endin

Global variables for low and high frequency reverb time, mean free path, audio bus

and processing order (set at 1) are also setup in the orchestra, as well as the required

stereo output. In the score, processing is turned on for 10 minutes by default.

Instrument 1 is declared in MultiBin.csd:

instr 1

#include "instrument1.inc"

endin

 250

Therefore, instrument1.inc is expected, and defines audio input. This is the only

required user input, and is designed with simplicity in mind. For example, four wav

files, read using loscil can be setup as below:

i1 ftgen 1,0,0,1,"sample.wav",0,0,0
i2 ftgen 2,0,0,1,"speech.wav",0,0,0
i3 ftgen 3,0,0,1,"pianoarp3.wav",0,0,0
i4 ftgen 4,0,0,1,"noise.wav",0,0,0

a1 loscil 20000, 1, 1, 1, 1
a2 loscil 20000, 1, 2, 1, 1
a3 loscil 20000, 1, 3, 1, 1
a4 loscil 20000, 1, 4, 1, 1

; fade out...
k1 linsegr 1,1,1,0.1,0

chnset a1*k1, "in1"
chnset a2*k1, "in2"
chnset a3*k1, "in3"
chnset a4*k1, "in4"

It is important to highlight that channel label numbers match the numbers on the

GUI: GUI source 1 listens on the channel ‘in1’ (more accurately, its reverb

instruments listen for their matching channels), etc. An Ambisonic setup is simpler,

as it just reads a pre-prepared file:

a1, a2, a3, a4, a5, a6, a7, a8 soundin "ambi.wav"
; fade out...
k1 linsegr 1,1,1,0.1,0

chnset a1*k1, "in1"
chnset a2*k1, "in2"
chnset a3*k1, "in3"
chnset a4*k1, "in4"
chnset a5*k1, "in5"
chnset a6*k1, "in6"
chnset a7*k1, "in7"
chnset a8*k1, "in8"

So, add an Ambisonic setup, and press play! VBAP works similarly:

a1, a2, a3, a4, a5, a6, a7, a8 soundin "vbap.wav"
; fade out...
k1 linsegr 1,1,1,0.1,0

chnset a1*k1, "in1"
chnset a2*k1, "in2"
chnset a3*k1, "in3"
chnset a4*k1, "in4"
chnset a5*k1, "in5"

 251

chnset a6*k1, "in6"
chnset a7*k1, "in7"
chnset a8*k1, "in8"

Note that real-time processing of eight sources, all with first order reflections and

late reverb may not be possible, depending on processing power. Simply change the

order of processing to 0 in MultiBin.csd to process only direct sources and late

reverberation. Note, due to opcode optimisation, that static scenes will be

significantly more efficient. The Ambisonic and VBAP wav files were created with

simpleambi.csd and simplevbap.csd in the ‘Chapter6’ folder respectively. It is hoped

that this discussion illustrates the ease with which arbitrary source material may be

employed.

6.9.3 Creative Use

The application, although generic, is primarily intended for creative use. Spatial

audio is becoming an ever more relevant aspect of composition (as stated by Blauert,

‘there is no such thing as non-spatial hearing’ [21]). In [14], spatial composition (and

‘spatial choreography’) is discussed. Historically, location based polychoral music is

referenced as a first example of spatial music, followed by location-based

composition (essentially reverberation based), leading to the fine degree of control of

spatialisation afforded by modern techniques. The dichotomy of the task of creative

use of technology is highlighted; comprehension, correct use and optimisation of

spatialisation can be an extremely technical endeavour. The composer must take care

not to loose sight of the ultimate creative goal. It is, however, this author’s opinion

that the developing nature of the research area also demands creativity on the behalf

of the technical researcher; there is not yet one all-encompassing solution.

In [38], the authors also discuss using HRTFs compositionally. Perceptual

difficulties with HRTF processing (reversals, externalisation) are discussed from the

 252

point of view of the composers ‘spatial tessitura’ and ideas like spatial modulation

are suggested. Only HRTF processing is used here; the findings are similar to those

of this work which inspired and informed the development of binaural reverberation.

The author (in [38]) specifically mentions that reverberation (even when added

before spatialisation, in a more artificial processing chain than the idealisation

realised here) greatly improves externalisation. The benefits of HRTF processing

over amplitude panning in headphones are epitomised succinctly in [38], where

amplitude panning is described as creating a potential imbalance or ‘vacuum’.

Primarily, MultiBin serves as a functional composition aid. Multi-channel

works can be auditioned on headphones, removing time and expense from multi-

channel composition (which may have previously led to composers discounting

multi-channel composition by necessity). As discussed, audition of any multi-

channel setup is possible (even WFS, as is presented in [218]), in a dynamic, user

driven context. Virtual WFS also allows the processing of a dry source only, with the

application of less computationally intensive environmental processing (replacing

the need for multiple impulse responses).

Any form of spatial sound design is obviously another application. The

interactivity offered also implies that MultiBin, with appropriate sources, can be

considered as an autonomous binaural work.

6.10 Conclusion

An overview of multi-channel spatialisation is offered in this chapter, as well as an

insight into how multi-channel algorithms can be processed binaurally. This

approach is implemented in the MultiBin application, which allows dynamic source

and listener locations in a user-defined environment. In contrast to other techniques,

it does not attempt to minimise or optimise the multi-channel representation. Nor

 253

does it assume sweet spot user location. Uses of the application are discussed,

focusing on the dynamic audition of multi-channel loudspeaker setups.

MultiBin exploits the integrated architecture of the reverb opcodes; the user-

defined room parameters informing both the early reflections as well as the overall

late reverb. It is hoped that the application will encourage creative experimentation

in multi-channel audio (and indeed spatial audio more generally), which would

perhaps not have been possible with hardware and other restrictions that have now

been overcome.

 254

 255

Chapter 7. Conclusions

Overall conclusions will now be drawn. From a point of view of novel contributions

of this work, four distinct aspects should be considered: (i) algorithm development,

(ii) analysis, insight and critique of the minimum-phase HRTF assumption and phase

unwrapping threshold technique, (iii) transparency of algorithm implementation,

directly addressing the often neglected subtleties involved, and (iv) application of the

techniques developed in a flexible multi-channel binaural tool.

Algorithm development was discussed in chapters 2 (HRTF modelling and

interpolation) and 5 (binaural reverberation). Two new approaches to HRTF

interpolation, Phase Truncation and a Functional Model were presented. Both aim to

use empirical data directly, with no obligation to prepare, compress or process

empirical HRTF data. A thorough literature review motivates the techniques used.

Phase Truncation uses a nearest measured phase paradigm with user-definable

efficient brief crossfades to avoid any discontinuities. The Functional Model extracts

a low-frequency spectral scaling factor from a HRTF dataset and uses it to improve

ITD accuracy (a theoretically psychoacoustically-ideal model). Although initially

this data extraction appears to imply a caveat to direct data use, the scaling curves of

the generic MIT HRTF dataset can be used generally if required. Crucially, the

algorithms both perform better than a minimum-phase based approach in testing.

Binaural reverberation development was again motivated by a comprehensive

literature review. The standard approach of processing early reflections and later

reverberation separately is employed. Improved accuracy is afforded to early

reflections and an FDN model is adopted and developed for later reverberation.

 256

Interaural coherence is added to the parametric scenario presented. Details of

dynamic FDN initialisation and use are also offered.

The assumption that HRTFs can be represented as minimum-phase plus delay

systems was reviewed and challenged in chapter 2. The approach is clearly

problematic for a number of source locations. Both objective and subjective testing

confirm the problems with using the approximation in a spatialisation context.

Similarly, the typically employed threshold based phase unwrapping

technique was scrutinised in the context of HRTF processing. The literature suggests

that the method is often used. However, it is by no means infallible. Several

examples of failures of the algorithm when applied to the MIT HRTF dataset were

presented. It is concluded that use of the method with a complex signal set such as a

HRTF database should be carefully considered.

From an implementation point of view, fine detail of the algorithms presented

was offered. Great care has been taken to prepare transparent, usable, efficient

solutions. Both command-line and real-time solutions were offered for the HRTF

algorithms. Csound implementations were developed (and indeed early incarnations

of the solutions have been in use for a number of years) in the hope that the work

will not remain purely theoretical, but will be widely disseminated. The

reverberation opcodes epitomise the development paradigm employed, offering an

integrated solution with a minimal number of required parameters. Although valid as

independent processes (the late-reverberation opcode is particularly useful in this

context), the later reverberation process can directly use outputs of the early

reflection opcode. Furthermore, advanced parameters can be utilised by more expert

users.

 257

The multi-channel binaural tool presented in chapter 6 further highlights the

usability of the algorithms presented. It offers tangible applications of the new suite

of binaural processes, primarily the audition of multi-channel setups in headphones.

The novel flexibility offered by the user friendly proof-of-concept software

presented illustrates the potential of the paradigm.

The vast literature on the topics covered was found to lack detail at times,

and even appear contradictory. Overall, it is hoped that a sense of clarity, perspective

and focus has been offered. Ultimately, it is hoped that the software development

and publications will encourage creative work in the area of spatial audio. The

audition of multi-channel setups in headphones is the obvious primary use of the

algorithms; however, perhaps binaural composition now also merits further attention.

7.1 Possibilities for Further Development

The multi-disciplinary and ever-expanding nature of virtual environmental

processing implies several potential outlets for further development. Although

comprehensive and autonomous in nature, the algorithms presented could benefit

from further research in fields such as source directionality. As discussed in [187],

this is a complex process, dictated strongly by modes in musical instruments. On a

related topic, source shape could be considered. Auralisation of arbitrary shapes, as

opposed to point sources is discussed in [9]. From the point of view of the MultiBin

application, loudspeaker responses could be considered [39]. Also of interest for the

MultiBin application is the possibility of three-dimensional GUI environments,

moving towards multi-modal virtual-reality simulation [157]. This, in turn, suggests

potential application in several fields, such as medicine (spatial rehabilitation),

architecture (pre-design of structures), multimedia (next-generation entertainment),

etc. Ultimately, however, further processing leads to increased processing

 258

requirements. The systems developed offer efficient and insightful solutions to the

core requirements of virtual environmental processing.

From a programming point of view, a more generalised approach offering a

library and API that would allow configuration for use with other datasets is being

considered. From the point of view of the existing Python code (the MultiBin

application), perhaps a system to allow the parsing of a more general source

instrument could be considered.

 259

Bibliography

1 Ajdler, T., Faller, C., Sbaiz, L. and Vetterli, M. Interpolation of Head

Related Transfer Functions Considering Acoustics, AES, 118
th

Convention, 2005

2 Ajdler, T., Faller, C., Sbaiz, L. and Vetterli, M. Sound Field Analysis

along a Circle and Its Applications to HRTF Interpolation, JAES, 56 (3),

2008

3 Algazi, V., Avendano, C. and Duda, R. Estimation of a Spherical-head

Model from Anthropometry, JAES, 49(6), 2001

4 Algazi, V., Duda, R. and Thompson, D. The CIPIC Database, IEEE,

WASPAA, 2001

5 Algazi, V., Duda, R. and Thompson, D. The Use of Head-and-Torso

Models for Improved Spatial Sound Synthesis, AES, 113
th

 Convention,

2002

6 Allen, J. and Berkley, D. Image Model for Efficiently Simulating Small-

room Acoustics, JASA, 65 (4), 1979

7 Avendano, C., Duda, R. and Algazi, V. Modelling the Contralateral

HRTF, AES, 16
th

 Conference, 1999

8 Baalman, M. Application of Wave Field Synthesis in Electronic Music

and Sound Installations, LAC, 2004

9 Baalman, M. swonder3Dq: Auralisation of 3d Objects with Wave Field

Synthesis, LAC, 2006

10 Baalman, M. Updates of the WONDER Software Interface for using

Wave Field Synthesis, LAC, 2005

11 http://www2.ak.tu-berlin.de/~mbaalman/, accessed August 2010

12 Baalman, M., Hohn, T., Schampijer, S. and Koch, T. Renewed

Architecture of the sWONDER Software for Wave Field Synthesis on

Large Scale Systems, LAC, 2007

13 Bates, E., Kearney, G., Boland, F. and Furlong, D. Localization

Accuracy of Advanced Spatialization Techniques in Small Concert

Halls, ASA, 153
rd

 Meeting, 2007

14 Begault, D. 3-D Sound for Virtual Reality and Multimedia, NASA, 2000

 260

15 Begault, D. Audible and Inaudible Early Reflection: Thresholds for

Auralization System Design, AES, 100
th

 Convention, 1996

16 Begault, D. Auditory and Non-auditory Factors that Potentially Influence

Virtual Acoustic Imagery, AES, 16
th

 Conference, 1999

17 Begault, D. Perceptual Effects of Synthetic Reverberation on Three-

Dimensional Audio Systems, JAES, 40 (11), 1992

18 Begault, D., Godfroy, M., Miller, J., Roginska, A., Anderson, M. and

Wenzel, E. Design and Verification of HeadZap, a Semi-automated

HRIR Measurement System, AES, 120
th

 Convention, 2006

19 Begault, D., Wenzel, E. and Anderson, M. Direct Comparison of the

Impact of Head Tracking, Reverberation and Individualized Head-

Related Transfer Functions on the Spatial Perception of a Virtual Speech

Source, JAES, 49 (10), 2001

20 Bitzer, J. and Extra, D. Artificial Reverberation: Comparing Algorithms

by Using Binaural Analysis Tools, AES, 121
st
 Convention, 2006

21 Blauert, J. Spatial Hearing, MIT Press, Massachusetts, 1997

22 Borish, J. An Auditorium Simulator for Domestic Use, JAES, 33 (5),

1985

23 Borish, J. Extension of the Image Model to Arbitrary Polyhedra, JASA,

75 (6), 1984

24 Bor , C. A VST Reverberation Effect Plugin based on Synthetic Room

Impulse Responses, DAFx, 2009

25 Boulanger, R. (ed.) The Csound Book, MIT Press, Massachusetts, 2000

26 Boulanger, R. and Lazzarini, V. (eds.) The Audio Programming Book,

MIT Press, Massachusetts, 2010

27 Bregman, A. Auditory Scene Analysis, MIT Press, Massachusetts, 1990

28 Breebaart, J., Herre, J., Villemoes, L., Jin, C., Kjörling, K., Plogsties, J.

and Koppens, J. Multi-channel Goes Mobile: MPEG Surround Binaural

Rendering, AES, 29
th

 Conference, 2006

29 Breebaart, J. and Kohlrausch, A. The Perceptual (Ir)relevance of HRTF

Magnitude and Phase Spectra, AES, 110
th

 Convention, 2001

30 Breebaart, J., Nater, F. and Kohlrausch, A. Parametric Binaural

Synthesis: Background, Applications and Standards, International

Conference on Acoustics, 2009

 261

31 Burkhard, M. and Sachs, R. Anthropometric Manikin for Acoustic

Research, JASA, 58(1), 1975

32 Busson, S., Nicol, R. and Katz, B. Subjective Investigations of the

Interaural Time Difference in the Horizontal Plane, AES, 118
th

Convention, 2005

33 Carty, B. Artificial Simulation of Audio Spatialisation: Developing a

Binaural System, Maynooth Musicology, 1, 2008

34 Carty, B. Binaural Processing: A Sample Application, in Boulanger, R.

and Lazzarini, V. (eds.), The Audio Programming Book, MIT Press,

2010

35 Carty B. HRTFmove, HRTFstat, HRTFmove2: Using the new HRTF

Opcodes, The Csound Journal, 2008

36 Cheng, C. Visualisation, Measurement, and Interpolation of Head-related

Transfer Functions (HRTFs) with Applications in Electroacoustic Music,

Doctoral Dissertation, University of Michigan, 2001

37 Cheng, C. and Wakefield, G. Introduction to Head-related Transfer

Functions (HRTFs): Representation of HRTFs in Time, Frequency, and

Space, AES, 107
th

 Convention, 1999

38 Cheng, C. and Wakefield, G. Moving Sound Source Synthesis for

Binaural Electroacoustic Music using Interpolated Head-related Transfer

Functions (HRTFs), CMJ, 25 (4), 2001

39 http://www.clfgroup.org/, accessed August 2010

40 Cook, P. Music, Cognition, and Computerized Sound, MIT Press,

Massachusetts, 1999

41 Corteel, E. and Caulkins, T. Sound Scene Creation and Manipulation

using Wave Field Synthesis, IRCAM

42 http://www.csounds.com/manual/html/bformdec1.html, accessed August

2010

43 http://www.csounds.com/manual/html/eqfil.html, accessed August 2010

44 http://www.csounds.com/manual/html/csound5extending.html, accessed

August 2010

45 http://www.csounds.com/manual/html/ControlFltkIntro.html, accessed

August 2010

46 http://www.csounds.com/manual/html/hrtfmove.html, accessed August

2010

 262

47 http://www.csounds.com/manual/html/hrtfmove2.html, accessed August

2010

48 http://www.csounds.com/manual/html/hrtfstat.html, accessed August

2010

49 http://www.csounds.com/manual/html/tone.html, accessed August 2010

50 http://www.csounds.com/manual/html/vbap8move.html, accessed

August 2010

51 Dalenbäck, B. and Strömberg, M. Real Time Walkthrough Auralization-

The First Year, Institute of Acoustics, 28 (2), 2006

52 de Vries, D. and Baan, J. Auralization of Sound Fields by Wave Field

Synthesis, AES, 106
th

 Convention, 1999

53 Dodge, C. and Jerse, T. Computer Music: Synthesis, Composition and

Performance, Schirmer, NY, 1997

54 Doukhan, D. and Sédès, A. CW_binaural~: A Binaural Synthesis

External for Pure Data, PD Convention, 2009

55 Duda, R. and Martens, W. Range Dependence of the Response of a

Spherical Head Model, JASA, 104(5), 1998

56 Duraiswami, R., Zotkin, D. and Gumerov, N. Interpolation and Range

Extrapolation of HRTFs, International Conference on Acoustics, Speech

and Signal Processing, 2004

57 Evans, M., Angus, J. and Tew, A. Analysing Head-related Transfer

Function Measurements using Surface Spherical Harmonics, JASA,

104(4), 1998

58 http://www.eventide.com/AudioDivision.aspx, accessed August 2010

59 Everest, F. Master Handbook of Acoustics, McGraw-Hill, 2000

60 Faller, C. and Merimaa, J. Source Localization in Complex Listening

Situations: Selection of Binaural Cues based on Interaural Coherence,

JASA, 116 (5), 2004

61 Farina, A. and Ugolotti, E. Automatic Measurement System for Car

Audio Applications, AES, 104
th

 Convention, 1998

62 http://www.fftw.org/, accessed August 2010

63 http://www.fftw.org/benchfft/, accessed August 2010

 263

64 http://www.fftw.org/fftw3_doc/, accessed August 2010

65 Freeland, F., Biscainho, L. and Diniz, P. Efficient HRTF Interpolation in

3D Moving Sound, AES, 22
nd

 Conference, 2002

66 Frigo, M. and Johnson, S. The Design and Implementation of FFTW3,

IEEE Proceedings, 93 (2), 2005

67 Fuster, L., López, J. González, A. and Faus, P. Time and Frequency

Domain Room Compensation Applied to Wave Field Synthesis, DAFx,

2005

68 Gardner, W. 3-d Audio using Loudspeakers, PhD Dissertation, MIT,

1997

69 Gardner, W. Efficient Convolution without Input/Output Delay, AES,

97
th

 Convention, 1994

70 Gerzon, M. Ambisonics in Multichannel Broadcasting and Video, JAES,

33 (11), 1985

71 Gerzon, M. Periphony: With-height Sound Reproduction, JAES, 21 (1),

1973

72 Gilkey, R. and Anderson, T. Binaural and Spatial Hearing in Real and

Virtual Environments, Laurence Erlbaum Associates, New Jersey, 1997

73 Goodwin, M. and Jot, J. Binaural 3-d Audio Rendering based on Spatial

Audio Scene Coding, AES, 123
rd

 Convention, 2007

74 Grantham, D. Detection and Discrimination of Simulated Motion of

Auditory Targets in the Horizontal Plane, JASA, 79 (6), 1986

75 Griesinger, D. Practical Processors and Programs for Digital

Reverberation, AES, 7
th

 International Conference, 1989

76 Hacihabibo lu, H., Günel, B and Kondoz, A. Head-related Transfer

Function Filter Interpolation by Root Displacement, IEEE, WASPAA,

2005

77 Hartung, K., Braasch, J. and Sterbing, S. Comparison of Different

Methods for the Interpolation of Head-related Transfer Functions, AES,

16
th

 Conference, 1999

78 Hoffmann, P. and Møller, H. Audibility of Spectral Differences in Head-

related Transfer Functions, AES 120
th

 Convention, 2006

79 Hollerweger, F. An Introduction to Higher-order Ambisonic,

http://flo.mur.at/writings, 2008, accessed August 2010

 264

80 Howard, D. and Angus, J. Acoustics and Psychoacoustics, Focal Press,

Oxford, 2006

81 Huopaniemi, J. Virtual Acoustics and 3d Sound in Multimedia Signal

Processing, PhD Dissertation, Helsinki University of Technology, 1999

82 Huopaniemi, J. and Karjalainen, M. Review of Digital Filter Design and

Implementation Methods for 3-d Sound, AES, 102
nd

 Convention, 1997

83 Huopaniemi, J., Zacharov, N. and Karjalainen, M. Objective and

Subjective Evaluation of Head-related Transfer Function Filter Design,

AES, 105
th

 Convention, 1998

84 Hynninen, J. and Zacharov, N. GuineaPig-A Generic Subjective Test

System for Multichannel Audio, AES, 106
th

 Convention, 1999

85 ITU-R BS. 1284-1 General Methods for the Subjective Assessment of

Sound Quality

86 ITU-R BS. 1534-1 Method for the Subjective Assessment of

Intermediate Quality Level of Coding Systems

87 Jensen, R. and Welti, T. The Importance of Reflections in a Binaural

Impulse Response, AES, 114
th

 Convention, 2003

88 Jot, J. An Analysis/Synthesis Approach to Real-time Artificial

Reverberation, IEEE, ICASSP, 1992

89 Jot, J. Efficient Models for Reverberation and Distance Rendering in

Computer Music and Virtual Audio Reality, ICMC, 2007

90 Jot, J., Cerveau, L. and Warusfel, O. Analysis and Synthesis of Room

Reverberation Based on a Statistical Time-frequency Model, AES, 103
rd

Convention, 1997

91 Jot, J. and Chaigne, A. Digital Delay Networks for Designing Artificial

Reverberators, AES, 90
th

 Convention, 1991

92 Jot, J., Larcher, V. and Pernaux, J. A Comparative Study of 3-d Audio

Encoding and Rendering Techniques, AES, 16
th

 Conference, 1999

93 Jot, J., Larcher, V., Warusfel, O. Digital Signal Processing Issues in the

Context of Binaural and Transaural Stereophony, AES, 98
th

 Convention,

1995

94 Jot, J., Walsh, M. and Philip, A. Binaural Simulation of Complex

Acoustic Scenes for Interactive Audio, AES, 121
st
 Convention, 2006

95 Jot, J. and Wardle, S. Approaches to Binaural Synthesis, AES, 105
th

Convention, 1998

 265

96 Kaman, Z. and Oppenheim, A. Computation of the One-dimensional

Unwrapped Phase, IEEE, DSP Conference, 2007

97 Karjalainen, M. and Järvaläinen, H. More about this Reverberation

Science: Perceptually Good Late Reverberation, AES, 111
th

 Convention,

2001

98 Kearney, G., Bates, E., Boland, F. and Furlong, D. A Comparative Study

of the Performance of Spatialization Techniques for a Distributed

Audience in a Concert Hall Environment, AES, 31
st
 Conference, 2007

99 Kearney, G., Masterson, C., Adams, S. and Boland, F. Towards Efficient

Binaural Room Impulse Response Synthesis, EAA Auralization

Symposium, 2009

100 Kelley, A. and Pohl, I. A Book on C, Benjamin Cummings Publishing,

CA, 1995

101 Kendall, G. A 3d Sound Primer: Directional Hearing and Stereo

Reproduction, CMJ, 19 (4), 1995

102 Kendall, G. and Martens, W. Simulating the Cues of Spatial Hearing in

Natural Environments, ICMC, 1984

103 Kendall, G., Martens, W., Freed, D., Ludwig, D. and Karstens, R. Image

Model Reverberation from Recirculating Delays, AES, 81
st
 Convention,

1986

104 Kendall, G., Martens, W. and Wilde, M. A Spatial Sound Processor for

Loudspeaker and Headphone Reproduction, AES, 8
th

 Conference, 1990

105 Kistler, D. and Wightman, F. A Model of Head-related Transfer

Functions based on Principal Components Analysis and Minimum-phase

Reconstruction, JASA, 91(3), 1992

106 Krokstad, A., Strøm, S. and Sørsdal, S. Calculating the Acoustical Room

Response by the use of a Ray Tracing Technique, JSV, 8 (1), 1968

107 Kudo, A., Hokari, H. and Shimada, S. A Study on Switching of the

Transfer Functions Focusing on Sound Quality, Acoustical Science and

Technology, 26 (3), 2005

108 Kuhn, G. Model for the Interaural Time Difference in the Azimuthal

Plane, JASA, 62(1), 1977

109 Kulkarni, A. and Colburn, H. Infinite-impulse-response Models of the

Head-related Transfer Function, JASA, 116 (4), 2004

 266

110 Kulkarni, A., Isabelle, S. and Colburn, H. On the Minimum-phase

Approximation of Head-related Transfer Functions, IEEE, ICASSP,

1995

111 Kulkarni, A., Isabelle, S. and Colburn, H. Sensitivity of Human Subjects

to Head-related Transfer Function Phase Spectra, JASA, 105 (5), 1999

112 Kuster, M. Multichannel Room Impulse Response Rendering on the

Basis of Undetermined Data, JAES, 57 (6), 2009

113 Kuttruff, K. Auralization of Impulse Responses Modeled on the Basis of

Ray-Tracing Results, JAES, 41 (11), 1993

114 Kuttruff, H. Room Acoustics, Spon Press, London, 2009

115 Laasko, T., Välimäki, V., Karjalainen, M. and Laine, U. Splitting the

Unit Delay, IEEE Signal Processing Magazine, 1996

116 Laitinen, M. and Pulkki, V. Binaural Reproduction for Directional Audio

Coding, IEEE, WASPAA, 2009

117 Landone, C. and Sandler, M. 3-d Sound Systems: A Computationally

Efficient Binaural Processor, IEE, Audio and Music Technology, 1998

118 Landone, C. and Sandler, M. Applications of Binaural Processing to

Surround Sound Reproduction in Large Spaces, IEEE, Circuits and

Systems, 2000

119 Landone, C. and Sandler, M. Digital Filtering for 3d Binaural Sound,

IEE, Digital Filters, 1998

120 Larcher, V., Jot, J., Guyard, J. and Warusfel, O. Study and Comparison

of Efficient Methods for 3D Audio Spatialization, AES, 108
th

Convention, 2000

121 Lazzarini, V. Extensions to the Csound Language: from User-Defined to

Plugin Opcodes and Beyond, LAC, 2005

122 http://www.lexiconpro.com/, accessed August 2010

123 http://www.mega-nerd.com/libsndfile/, accessed August 2010

124 http://recherche.ircam.fr/equipes/salles/listen/index.html, accessed

August 2010

125 Lorho, G. and Zacharov, N. Subjective Evaluation of Virtual Home

Theatre Sound Systems for Loudspeakers and Headphones, AES, 116
th

Convention, 2004

 267

126 Malham, D. Spatial Hearing Mechanisms and Sound Reproduction,

http://www.york.ac.uk/inst/mustech/3d_audio/ambis2.htm, 2008,

accessed August 2010

127 Malham, D. and Myatt, A. 3-d Sound Spatialization using Ambisonic

Techniques, CMJ, 19 (4), 1995

128 http://www.mathworks.com/products/matlab/, accessed August 2010

129 http://www.mathworks.com/access/helpdesk/help/techdoc/ref/unwrap.ht

ml, accessed August 2010

130 Matsumoto, M., Yamanaka, S. Tohyama, M., and Nomura, H. Effect of

Arrival Time Correction on the Accuracy of Binaural Impulse Response

Interpolation, JAES, 52 (1/2), 2004

131 McGovern, S. A Model for Room Acoustics, 2003

132 McGovern, S. Fast Image Method for Impulse Response Calculations of

Box-shaped Rooms, Applied Acoustics, 70 (1), 2009

133 Meesawat, K. and Hammershøi, D. An Investigation on the Transition

from Early Reflections to a Reverberation Tail in a BRIR, ICAD, 2002

134 Meesawat, K. and Hammershøi, D. The Time when the Reverberation

Tail in a Binaural Room Impulse Response Begins, AES, 115
th

Convention, 2003

135 Mehrgardt, S. and Mellert, V. Transformation Characteristics of the

External Human Ear, JASA, 61 (6), 1977

136 Menzel, D., Wittek, H., Theile, G and Fastl, H. The Binaural Sky: A

Virtual Headphone for Binaural Room Synthesis, Tonnmeister

Symposium, 2005

137 Menzer, F. and Faller, C. Binaural Reverberation using a Modified Jot

Reverberator with Frequency-dependent Interaural Coherence Matching,

AES, 126
th

 Convention, 2009

138 Menzer, F. and Faller, C. Obtaining Binaural Room Impulse Responses

from B-format Impulse Responses, AES, 125
th

 Convention, 2008

139 Minnaar, P., Christensen, F., Møller, H., Olesen, S. and Plogsties, J.

Audibility of All-pass Components in Binaural Synthesis, AES, 106
th

Convention, 1999

140 Minnaar, P., Plogsties, J. and Christensen, F. Directional Resolution of

Head-related Transfer Functions Required in Binaural Synthesis, JAES,

53 (10), 2005

 268

141 Minnaar, P., Plogsties, J., Olesen, S., Christensen, F., and Møller, H. The

Interaural Time Difference in Binaural Synthesis, AES, 108
th

Convention, 2000

142 http://sound.media.mit.edu/resources/KEMAR.html, accessed August

2010

143 Moore, B. An Introduction to the Psychology of Hearing, Emerald,

Bingley, 2004

144 Moore, F. Elements of Computer Music, Prentice Hall, NJ, 1990

145 Moorer, J. About this Reverb Business, CMJ, 3 (2), 1979

146 Mouba, J. and Marchand, S. A Source

Localization/Separation/Respatialization System based on Unsupervised

Classification of Interaural Cues, DAFx, 2006

147 Murphy, D., Beeson, M., Shelley, S., Moore, A. and Southern, A. Hybrid

Room Impulse Response Synthesis in Digital Waveguide Mesh based

Room Acoustics Simulation, DAFx, 2008

148 Musil, T., Noisternig, M. and Höldrich, R. A Library for Realtime 3d

Binaural Sound Reproduction in Pure Data (PD), DAFx, 2005

149 Nam, J., Abel, J. and Smith, J. A Method for Estimating Interaural Time

Difference for Binaural Synthesis, AES, 125
th

 Convention, 2008

150 Naylor, G. and Rindel, J. Predicting Room Acoustical Behaviour with

the ODEON Computer Model, ASA, 124
th

 Meeting, 1992

151 Nettinsmeier, J. AMBI@Home-The Search for Extra-frontal

Intelligence, LAC, 2008

152 Nielsen, S. Auditory Distance Perception in Different Rooms, JAES, 41

(10), 1993

153 Nishino, T., Ikeda, M., Takeda, K. and Itakura, F. Interpolating Head

Related Transfer Functions, Western Pacific Regional Acoustics

Conference, 2000

154 Nishino, T., Kajita, S., Takeda, K. and Itakura, F. Interpolating Head

Related Transfer Functions in the Median Plane, IEEE, WASPAA, 1999

155 Noisternig, M., Musil, T., Sontacchi, A. and Höldrich, R. A 3d Real

Time Rendering Engine for Binaural Sound Reproduction, ICAD, 2003

156 ODEON Room Acoustics Modelling Software Product Data

 269

157 Olaiz, N., Arumí, P., Mateos, T. and Garcia, D. 3d-audio with CLAM

and Blender’s Game Engine, LAC, 2009

158 http://opensoundcontrol.org/, accessed August 2010

159 Oppenheim, A. and Schafer, R. Discrete-time Signal Processing,

Prentice-hall, New Jersey, 1999

160 Pallant, J. SPSS Survival Manual, Open University, Press, Buckingham,

2001

161 Perrott, D. and Musicant, A. Minimum Auditory Movement Angle:

Binaural Localization of Moving Sound Sources, JASA, 62 (6), 1977

162 Peterson, K., d_fftroutine.c, Pure Data 0.41.4-extended, MIT Media Lab,

1986

163 Plogsties, J., Olesen, S., Minnaar, P., Christensen, F. and Møller, H.

Audibility of All-pass Components in Head-related Transfer Functions,

AES, 108
th

 Convention, 2000

164 Pulkki, V. Spatial Sound Reproduction with Directional Audio Coding,

JAES, 55 (6), 2007

165 Pulkki, V. Virtual Sound Source Positioning Using Vector Base

Amplitude Panning, JAES, 45 (6), 1997

166 Pulkki, V. and Karjalainen, M. Localization of Amplitude-panned

Virtual Sources 1: Stereophonic Panning, JAES, 49 (9), 2001

167 Pulkki, V., Karjalainen M. and Huopaniemi, J. Analyzing Virtual Sound

Source Attributes using a Binaural Auditory Model, JAES, 47 (4), 1999

168 Pulkki, V. and Merimaa, J. Spatial Impulse Response Rendering: A Tool

for Reproducing Room Acoustics for Multi-channel Listening, Waves

Inc.

169 http://www.python.org/, accessed August 2010

170 http://www.python.org/doc/, accessed August 2010

171 http://www.swaroopch.com/notes/Python, accessed August 2010

172 Queiroz, M. and de Sousa, G. Structured IIR Models for HRTF

Interpolation, ICMC, 2010

173 http://compmus.ime.usp.br/hrtfinterpolation, accessed August 2010

174 Rakerd, B. and Hartmann, W. Localization of Sound in Rooms, 2: The

Effect of a Single Reflecting Surface, JASA, 78 (2), 1985

 270

175 Regalia, P. and Mitra, S. Tunable Digital Frequency Response

Equalization Filters, IEEE, ICASSP, 1987

176 Röber, N., Andres, S. and Masuch, M. HRTF Simulations through

Acoustic Raytracing, Technischer Report, Fakultät für Informatik,

177 Otto-von-Guericke Universität, Magdeburg, 2006

178 Rocchesso, D. Introduction to Sound Processing,

http://profs.sci.univr.it/~rocchess/SP/sp.pdf, 2003, accessed August 2010

179 Rocchesso, D. The Ball within the Box: A Sound-Processing Metaphor,

CMJ, 19 (4), 1995

180 Rubak, P. Headphone Signal Processing System for Out-of-head

Localization, AES, 90
th

 Convention, 1991

181 Rumori, M. Girafe-A Versatile Ambisonics and Binaural System,

Ambisonics Symposium, Graz, 2009

182 Rumsey, F. and McCormick, T. Sound and Recording, Focal Press,

Oxford, 2002

183 Runkle, P., Blommer, M. and Wakefield, G. A Comparison of Head

Related Transfer Function Interpolation Methods, IEEE, WASPAA,

1995

184 Sandvad, J. Dynamic Aspects of Auditory Virtual Environments, AES,

100
th

 Convention, 1996

185 Sandvad, J. and Hammershøi, D. Binaural Auralization. Comparison of

FIR and IIR Filter Representation of HIRs, AES, 96
th

 Convention, 1994

186 Savioja, L. Modeling Techniques for Virtual Acoustics, PhD Thesis,

Helsinki University of Technology, 2000

187 Savioja, L., Huopaniemi, J., Lokki, T. and Väänänen, R. Creating

Interactive Virtual Acoustic Environments, JAES, 47 (9), 1999

188 Schafer, R. and Rabiner, L. A Digital Signal Processing Approach to

Interpolation, IEEE Proceedings, 61 (6), 1973

189 Schroeder, M. Natural Sounding Artificial Reverberation, JAES, 10 (2),

1962

190 Seo, J., Shim, H., Yoo, J. and Sung, K. Artificial Reverberation

Algorithm to Control Distance and Direction of Sound Source for Multi-

channel Audio System, AES, 119
th

 Convention, 2005

 271

191 Shaw, E. Acoustical Features of the Human External Ear, in Gilkey, R.

and Anderson, T. Binaural and Spatial Hearing in Real and Virtual

Environments, Laurence Erlbaum Associates, New Jersey, 1997

192 Slaney, M. An Efficient Implementation of the Patterson-Holdsworth

Auditory Filter Bank, Apple Computer, 1993

193 https://ccrma.stanford.edu/~jos/pasp/pasp.html, accessed August 2010

194 https://ccrma.stanford.edu/~jos/sasp/sasp.html, accessed August 2010

195 https://ccrma.stanford.edu/~jos/sasp/FFT_versus_Direct_Convolution.ht

ml#21440, accessed August 2010

196 https://ccrma.stanford.edu/~jos/sasp/Phase_Interpolation_Peak.html,

accessed August 2010

197 http://sndobj.sourceforge.net/, accessed August 2010

198 http://support.ircam.fr/forum-ol-doc/spat/3.0/spat-3-ref/co/spat-3.html,

accessed August 2010

199 Sontacchi, A., Noisternig, M., Majdak, P. and Höldrich, R. An Objective

Model of Localization in Binaural Sound Reproduction Systems, AES,

21
st
 Conference, 2002

200 Sporer, T. Wave Field Synthesis-Generation and Reproduction of

Natural Sound Environments, DAFx, 2004

201 Spors, S., Rabenstein, R. and Ahrens, J. The Theory of Wave Field

Synthesis Revisited, AES, 124
th

 Convention, 2008

202 Stautner, J. and Puckette, M. Designing Multi-Channel Reverberators,

CMJ, 6 (1), 1982

203 Steiglitz, K. A Digital Signal Processing Primer, Addison-wesley, CA,

1996

204 Stewart, R. and Murphy, D. A Hybrid Artificial Reverberation

Algorithm, AES, 122
nd

 Convention, 2007

205 Stewart, R. and Sandler, M. Real-time Panning Convolution

Reverberation, AES, 123
rd

 Convention, 2007

206 Thiele, G. Wave Field Synthesis-A Promising Spatial Audio Rendering

Concept, DAFx, 2004

207 Theile, G. and Wittek, H. Wave Field Synthesis-A Promising Spatial

Audio Rendering Concept, Journal of the Institute of Image and

Television Engineers, 2007

 272

208 http://effbot.org/tkinterbook/, accessed August 2010

209 http://infohost.nmt.edu/tcc/help/pubs/tkinter/, accessed August 2010

210 http://www.tcl.tk/, accessed August 2010

211 Tsakostas, C. and Floros, A. Real-time Spatial Representation of Moving

Sound Sources, AES 123
rd

 Convention, 2007

212 Ubilla, M., Domingo, M. and Cadiz, R. Head Tracking for 3d Audio

using the Nintendo WII Remote, ICMC, 2010

213 Välimäki, V. and Laasko, T. Suppression of Transients in Time-varying

Recursive Filters for Audio Signals, IEEE, ICASSP, 98

214 Väljamäe, A., Larsson, P., Västfjäll, D. and Kleiner, M. Auditory

Presence, Individualized Head-Related Transfer Functions, and Illusory

Ego-Motion in Virtual Environments, Presence Workshop, 2004

215 Viste, H. Binaural Localization and Separation Techniques, PhD

Dissertation, Lausanne EPFL, 2004

216 Viste, H. and Evangelista, G. Binaural Source Localization, DAFx, 2004

217 Viste, H. and Evangelista, G. On the Use of Spatial Cues to Improve

Binaural Source Separation, DAFx, 2003

218 Völk, F., Konradl, J. and Fastl, H. Simulation of Wave Field Synthesis,

Acoustics, 2008

219 http://vrsonic.com/, accessed August 2010

220 http://www.waves.com/, accessed August 2010

221 Wenzel, E., Arruda, M., Kistler, D. and Wightman, F. Localization using

Non-individualised Head-related Transfer Functions, JASA, 94 (1), 1993

222 Wenzel, E. and Foster, S. Perceptual Consequences of Interpolating

Head-related Transfer Functions during Spatial Synthesis, IEEE,

WASPAA, 1993

223 Wenzel, E., Miller, J. and Abel, J. A Software-based system for

Interactive Spatial Sound Synthesis, ICAD, 2000

224 Wenzel, E., Miller, J. and Abel, J. Sound Lab: A Real-time, Software-

based System for the Study of Spatial Hearing, AES, 108
th

 Convention,

2000

 273

225 Wightman, F. and Kistler, D. The Dominant Role of Low-frequency

Interaural Time Differences in Sound Localization, JASA, 91 (3), 1992

226 Wittek, H. Perceptual Differences between Wavefield Synthesis and

Stereophony, PhD Dissertation, University of Surrey, 2007

227 http://sourceforge.net/projects/swonder/, accessed August 2010

228 Woodworth, R. and Schlosberg, G. Experimental Psychology, Holt,

Rinehard and Winston, New York, 1962

229 Xiang, P., Camargo, D. and Puckette, M. Experiments on Spatial

Gestures in Binaural Sound Display, ICAD, 2005

230 Zacharov, N. and Huopaniemi, J. Results of a Round Robin Subjective

Evaluation of Virtual Home Theatre Sound Systems, AES, 107
th

Convention, 1999

231 Zhang, M., Tan, K. and Er, M. Three-Dimensional Sound Synthesis

Based on Head Related Transfer Functions, JAES, 46 (10), 1998

232 Zieli ski, S., Rumsey, F. and Bech, S. On Some Biases Encountered in

Modern Audio Quality Listening Tests-A Review, JAES, 56 (6), 2008

233 Zotkin, D., Duraiswami, R. and Davis, L. Creation of Virtual Auditory

Spaces, IEEE, ICASSP, 2002

234 Zotkin, D., Duraiswami, R. and Davis, L. Rendering Localized Spatial

Audio in a Virtual Auditory Space, IEEE Transactions on Multimedia, 6

(4), 2004

235 Zotkin, D., Hwang, J. Duraiswami, R. and Davis, L. HRTF

Personalization using Anthropometric Measurements, IEEE, WASPAA,

2003

