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Abstract

In this thesis we study piecewise smooth and switched positive systems and inves-

tigate the monotonicity properties of such systems. We describe many examples of

such systems, particulary drawing from the mathematical biology literature, in or-

der to motivate the work in later chapters. We describe the mathematical theory

behind our work in Chapters 3 and 4. In particular we review the theory of LTI

systems, positive LTI systems and monotone systems, indicating how monotonicity

can be used to determine the asymptotic behaviour of positive LTI systems. We

also discuss issues which arise in the study of piecewise smooth and switched linear

systems and review solution concepts for such systems. In Chapter 5, we extend

the Kamke conditions for smooth monotonic systems to piecewise smooth systems,

and in certain cases show that they are equivalent to the monotonicity of the system.
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Chapter 1

Introduction and Overview

In this Chapter, we introduce the topics under consideration in this thesis and we

provide an overview of the remainder of the work.

1.1 Introductory Remarks

Many mathematical models of physical processes entail non-smooth dynamical sys-

tems. Non-smoothness can occur in a variety of ways. For example as impulse effects

(such as models for a ball bouncing with instantaneous impact dynamics), and also

in the switching between different modes in hybrid and switched systems [47]. Piece-

wise systems are often used to make approximations of nonlinear systems [13], [14].

Non-smooth and discontinuous dynamics are found in many applications including

but not limited to

- the modelling of rigid bodies, for example in robotics [32], [51]

- models of genetic regulatory networks [14]

- the modelling of cardiac arrhythmias [29]

- DNA replication [31].
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1.1 Introductory Remarks

Different paradigms have been developed for the study of non smooth dynamical

systems. These have been described in survey papers such as [20] and [9]. They

include impulsive differential equations and discontinuous differential equations, as

well as various hybrid system formalisms including switched sytems, which we will

discuss extensively in this thesis.

Hybrid systems are dynamical systems which exhibit both continuous and dis-

crete dynamic behaviour and are of great practical importance. They are charac-

terised by periods of smooth evolution interrupted by discrete state transitions, e.g.

the impact of a bouncing ball, the switching of gears in a car, or even in certain

models in biology. They typically involve a continuous variable x = (x1, ..., xn) ∈ Rn

and a discrete variable q ∈ Q where Q is a finite or countable set. The values of the

discrete variable represent modes of operation. Within each mode the system dy-

namics are typically given by a continuous flow defined by a differential or difference

equation.

The analysis of hybrid systems is generally more difficult than that of a purely

continuous or discrete system as the discrete dynamics can affect the continuous evo-

lution and vice versa. In fact, it is the interaction between discrete and continuous

dynamics that gives the subject its special flavour. For example, one major concern

in the study of dynamical systems is the stability of the system. In a hybrid system,

even when the stability of component systems is easy to verify, it is far from trivial

to determine the stability of the system as a whole. Discontinuities and impulses

play a central role in the properties of such systems. The bouncing ball in Example

2.1.1 of Chapter 2 is a simple example of a hybrid system with single discrete state

and a continuous state of dimension two. Even such a simple system can display

peculiar behaviour. In Chapter 4, we discuss potential issues with hybrid systems,

one of which is the appearance of Zeno behaviour, which Example 2.1.1 exhibits.

2



1.1 Introductory Remarks

Zeno behaviour is, loosely, an infinite number of discrete state transitions occuring

in a finite amount of time. Of course, in practice, the ball will stop bouncing after a

finite number of bounces since the impacts with the ground are neither instantaneous

nor perfectly elastic.

A subclass of hybrid systems that is of particular relevance to us is the class of

"state-dependent switched systems". State-dependent switched systems are ones in

which the state space is partitioned into different regions, with dynamics differing

according to the region. Much work has been done in formulating solution concepts

for such systems, most notably by the Russian mathematician Filippov, whose work

we shall be drawing from in Chapters 4 and 5. Filippov first introduced the idea of

replacing the system of differential equations with a differential inclusion, [17]. In

such systems one has to be careful at the boundary, and sometimes the only solu-

tions which make sense are "Filippov solutions". These can give rise to interesting

behaviour, such as the appearance of sliding modes, in which the trajectory "slides"

along the boundary. Such sliding modes are of importance in Control Theory.

Two properties we shall be concerned with are positivity and monotonicity. Pos-

itive systems are those in which the state variables only take on non negative values.

Many examples in biology are positive to ensure that the variables are physically

meaningful. Monotonicity means that the ordering of initial states is preserved.

This is a very powerful property as it allows us to obtain results concerning the

asymptotic behaviour of the system, see for example [5], [4]. Monotone dynamical

systems have long been studied, and the theory in its modern form was developed

by M.W. Hirsch in a series of papers called "Systems of differential equations that

are competitive or cooperative". Monotonicity appears in many practical examples,

and for this reason its study is particularly important; see [49] for theoretical re-

sults concerning monotone systems and an application to modelling the control of
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1.2 Overview

protein synthesis in the cell. We are interested in investigating monotonicity for

state-dependent positive switched systems.

1.2 Overview

We shall begin the thesis by setting the context for much of the later work. The topics

under consideration in this thesis are relevant to a number of different application

domains. For this reason, in Chapter 2, numerous practical applications of switched,

piecewise smooth and hybrid systems are provided in order to motivate our later

discussion, including models from the biological and medical sciences.

In Chapters 3 and 4 we discuss the mathematical background which is needed

for our later discussion. Chapter 3 contains well known definitions and results per-

taining to linear time invariant (LTI) and positive LTI systems, and we describe the

link between positivity and monotonicity in LTI systems here.

In Chapter 4 the discussion is centred on piecewise smooth and switched linear

systems in particular. Some basic definitions are given. We then go on to discuss

some issues which arise in the study of piecewise smooth and switched systems. It

is at this point that we give more precise solution concepts for such systems, intro-

ducing differential inclusions and the notion of a Filippov solution. The discussion

then goes on to recall results in the stability of switched linear systems under ar-

bitrary switching, and in particular results which are specific to switched positive

linear systems. This includes recent work [30], [37] on the problem of the existence

of a common linear copositive Lyapunov function for a positive switched system and

what this means for the stability of such as a system.

In Chapter 5, we introduce new results in the monotonicity of piecewise smooth

and positive switched systems for the simple case where Rn+ is partitioned into two

4



1.2 Overview

regions by means of a hyperplane through the origin. We reformulate the Kamke

conditions for this new situation and, using similar arguments as in [49], we show

that the Piecewise-Kamke conditions are equivalent to monotonicity in certain cases.

5



Chapter 2

Non-Smooth Systems - a Practical

Motivation

In this chapter, we set the scene for the later work by describing numerous practical

examples of piecewise smooth, hybrid and positive switched systems, drawing exten-

sively from the mathematical biology literature, where these systems are often used

as a modelling tool.

2.1 Simple Examples of Hybrid and Piecewise

Smooth Systems

Example 2.1.1. A bouncing ball

In Chapter 1, we mentioned that impacting systems often give rise to non-smooth

dynamics [26]. The simplest example of such a system is a bouncing ball. Newton’s

laws of motion govern the continuous dynamics of the dropping ball, which is dropped

from some initial height h. We consider the ball as a point mass. The continuous

state is represented by

6



2.1 Simple Examples of Hybrid and Piecewise Smooth Systems

h

x1

v=−rx2
x1=0x1=h

Figure 2.1: A bouncing ball

x =

x1

x2

 ∈ R2

where x1 denotes the vertical position of the ball and x2 = v its vertical velocity.

Between each bounce it displays continuous dynamics while at each impact its ve-

locity undergoes an abrupt change. Since we are assuming Newton’s laws apply, the

reversed velocity is a coefficient 0 ≤ r ≤ 1 times the incoming velocity.

So, when x1 > 0, the dynamics for this system are given by

ẋ1 = x2 (2.1)

ẋ2 = −g,

where g is acceleration due to gravity. When x1 = 0, corresponding to the ball

hitting the ground, the state vector is reset abruptly according to:

x+
1 = x1 (2.2)

x+
2 = −rx2,

7



2.2 Four Examples from Mathematical Biology

i.e. when the height of the ball is zero, its velocity is reversed and decreased by a

factor of r. This is a simple example of a system with state reset, or an impulse

effect.

Example 2.1.2. Gear shifting in a motor vehicle

A simple and well known example of a hybrid system is the longitudinal motion

of a car. Denote its position and velocity by x1 and x2 respectively, and the selected

gear by q ∈ Q := {−1, 0, 1, 2, 3, 4, 5}, where −1 is reverse and 0 is neutral. Position

and velocity are both continuous state variables while the engaged gear q is discrete.

We also have a control input a ∈ [amin, amax] which represents the position of the

accelerator pedal. The dynamics for this system are given by

ẋ1 = x2

ẋ2 = f(a, q),

where f : R×Q→ R defines the continuous dynamics in each mode. Typically

we will have

∂f

∂a
< 0, f(a, q) < 0 for q = −1

∂f

∂a
= 0, f(a, q) = 0 for q = 0

∂f

∂a
> 0, f(a, q) > 0 for q ≥ 1.

2.2 Four Examples from Mathematical Biology

Positive and monotone systems arise frequently in biology. In this section, we de-

scribe several examples to show that systems with non-smooth dynamics also arise

in this context.

8



2.2 Four Examples from Mathematical Biology

Example 2.2.1. Cardiac Arrhythmia

A cardiac arrhythmia is a term for any of a large and heterogeneous group of

conditions in which there is abnormal electrical activity in the heart. The heartbeat

may be too fast or too slow, and may be regular or irregular. We will consider ar-

rhythmias which occur when cells act out of sequence, either by firing autonomously,

or by refusing to respond to a stimulus from other cells such as the atrioventricular

node (AV node).

The AV node is a part of the electrical control system of the heart that co-

ordinates heart rate. It is an area of specialized tissue between the atria and the

ventricles of the heart which conducts the normal electrical impulse from the atria

to the ventricles.

We will now describe a piecewise smooth model of the heart in which disconti-

nuities correspond to skipped heartbeats [15], [29]. Our presentation closely follows

that of Keener and Sneyd, [29]. In these works, the authors view the AV node as a

collection of cells subjected to a periodic signal φ(t) arriving from the atria, with pe-

riod T . These cells are excitable and once their potential reaches a certain threshold

θ(t) they fire electrical impulses into the ventricles. Immediately after firing, the cells

enter a refractory period but then gradually recover. The threshold is dramatically

increased in order to facilitate the recovery of the cells, but then decreases back to

its steady state as recovery proceeds.

Once the input signal reaches its threshold, firing occurs, so that at the nth firing

time, denoted by tn, we have that

φ(tn) = θ(tn).

9



2.2 Four Examples from Mathematical Biology

Denote the instances before and after firing by t− and t+ respectively. So θ(t+)−

θ(t−) denotes the jump in the threshold caused by the firing of an action potential (a

short-lasting event in which the electrical membrane potential of a cell rapidly rises

and falls). So, we assume that after firing at time tn,

θ(t+n ) = θ(t−n ) + ∆θ

where ∆θ is some constant. In other models, it is possible to consider ∆θ as

a decreasing funtion of θ(t−n ), but for our purposes we will be content to leave it

constant, as in [29].

After firing, the threshold slowly relaxes according to

θ(t) = θ0 + (θ(t+n )− θ0)e−γ(t−tn), t > tn,

where θ0 denotes the base threshold and γ represents the decay rate. (Note that

θ(t)→ θ0 as t→∞).

To find the next firing time, tn+1, we find the smallest solution of

φ(tn+1) = θ0 + (θ(t+n )− θ0)e−γ(tn+1−tn).

We can rearrange this as

F (tn+1) = F (tn) + ∆θeγtn = G(tn),

where

F (t) = (φ(t)− θ0)eγt.

Discontinuity in the map tn 7→ tn+1 arises because firing occurs later and later

in the cycle until a beat is skipped and the subsequent firing occurs in the next

10



2.2 Four Examples from Mathematical Biology

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

t

skipped heartbeat

t
1

t
2

t
3

G(t)

F(t)

Figure 2.2: Plot of F (t) and G(t) with ∆θ = 1, γ = 0.55 and φ(t) = sin4(πt).

cycle, see Figure 2.2. For t to be a firing time, it must be the smallest t such that

F (t) = G(tn). At such a t, we have F ′(t) > 0. Hence we can discount times t for

which F ′(t) < 0 as possible firing times. Figure 2.2 shows a plot of F (t) and G(t)

using φ(t) = sin4(πt) as an example. Given tn, we find the next time t such that

F (t) = G(tn) as in the diagram. Notice that the input is subthreshold in the interval

[2, 3], so the AV node fails to fire an electrical impulse into the ventricles and we get

a skipped heartbeat.

Even though the map tn 7→ tn+1 is only implictly defined, it is possible to repre-

sent it graphically using the rescaled firing time variable

ψn :=
tn − knT

T
, 0 ≤ ψn ≤ 1,

where kn is the largest integer less than tn
T . So we can rewrite (10) as

f(ψn+1) = (f(ψn) + ∆θeγTψn)eγT∆kn

11



2.2 Four Examples from Mathematical Biology

where

f(ψ) = (Φ(ψ)− θ0)eγTψ,

Φ(ψ) = φ(Tψ)

and

∆kn = kn+1 − kn.

We can represent the dynamics of the map H : ψn 7→ ψn+1 with a cobweb di-

agram. Given an initial value ψ0, compute H(ψ0) and reflect in the main diagonal

to get ψ1. Repeat the process to find subsequent values of ψn. We present plots

of the map H for varying values of the parameter γ in Figures 2.3-2.7. Following

Keener and Sneyd, we restrict ourselves to the attracting range of the map on the

unit interval. For large values of γ, the recovery from inhibition is fast, and there

is a unique fixed point corresponding to a regular heartbeat in which the AV node

fires everytime it receives a stimulus. All initial values ψ0 are eventually attracted

to it via the cobweb process. This is shown in Figure 2.3.

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

n

n+
1

 

 
data 1
data 2
data 3
data 4

1

2 3 4 5

Figure 2.3: Plot of the map ψn 7→ ψn+1 with γ = 0.8 and ∆θ = 1.

As we decrease γ, a second branch to the map appears, yet we retain our fixed

point. This is the case in Figure 2.4 where γ = 0.693. Note the discontinuity in the

12



2.2 Four Examples from Mathematical Biology

0.3 0.35 0.4 0.45 0.5
0.3

0.35

0.4

0.45

0.5

n

n+
1

1

2
3

4
5

Figure 2.4: Plot of the map ψn 7→ ψn+1 with γ = 0.693 and ∆θ = 1.

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

n

n+
1

 

 

1

2

3

4

5

6

Figure 2.5: Plot of the map ψn 7→ ψn+1 with γ = 0.65 and ∆θ = 1.

map H.

Decreasing γ even further, the second branch grows and we lose our fixed point.

Subsequent firings occur later and later in the period until one beat is skipped and

the next firing after the skipped beat occurs relatively early in the cycle. See Figures

2.5 and 2.6. The maps in these Figures are clearly discontinuous.

However, if we decrease γ even further, the second branch crosses the main

13



2.2 Four Examples from Mathematical Biology

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
0.3
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0.42
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0.46
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n

n+
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Figure 2.6: Plot of the map ψn 7→ ψn+1 with γ = 0.55 and ∆θ = 1.

diagonal and we get another fixed point. In Figure 2.7, there is a discontinuity corre-

sponding to a skipped heartbeat after the first firing, but then all further iterations

of the map are attracted to the fixed point, and we get a regular heartbeat.

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

n

n+
1

Figure 2.7: Plot of the map ψn 7→ ψn+1 with γ = 0.45 and ∆θ = 1.

For this model, the pattern of skipped beats is sensitive to changes in γ but,

according to the theory of discontinuous maps in [15], it will in general be periodic

for all values of γ.

Note: This is an example of a discontinuous positive dynamical system on a

subset of [0, 1]. ψn tells us at what point in the period the nth firing occurs. The

14



2.2 Four Examples from Mathematical Biology

discontinuity occurs since the map tn 7→ tn+1 is discontinuous.

Example 2.2.2. Fitzhugh-Nagumo model and piecewise linear systems

Before talking about the Fitzhugh-Nagumo model and its variations, we need to

mention the famous model on which they are based. A model of huge importance in

mathematical biology is the Hodgkin-Huxley model. This model was first described

in landmark work in 1952 by Alan Lloyd Hodgkin and Andrew Huxley in order to de-

scribe how action potentials in neurons are initiated [23]. The model is comprised of

a set of nonlinear coupled ordinary differential equations that approximate the elec-

trical characteristics of excitable cells such as neurons and cardiac myocytes (muscle

cells).

A modern description of the Hodgin-Huxley model is given in [29]. This gives

rise to a 4 dimensional nonlinear coupled system of ordinary differential equations.

However, it is quite a complicated model due to all the nonlinearities, and various

simpler models have been proposed which capture its essential features. The most

famous of these is the Fitzhugh-Nagumo model.

Fitzhugh and Nagumo found that they were able to reduce the model from a 4

dimensional model to a 2 dimensional one. This leads to the following model with

only two variables which retains many of the qualitative features of the Hodgkin-

Huxley model which are observed experimentally:

dv

dt
= f(v)− w − I

dw

dt
= βv − γw,

where β and γ are constants. f(v) is typically chosen to be the cubic polynomial

f(v) = v(v − α)(1− v)

15



2.2 Four Examples from Mathematical Biology

where 0 < α < 1.

However this is not the only possible choice for f(v). Many piecewise linear

choices have been used to approximate the classical cubic polynomial. The piecewise

linear models preserve the essential features of the original model. This gives them

certain advantages in that it allows for explicit calculations in the linear parts using

standard techniques, which may not be possible with the original model. It is then

possible to connect the solutions at the boundaries. One such model was proposed

by McKean in 1970 in which

f(v) =



−v if v < α
2 ,

v − α if α2 < v < 1+α
2 ,

1− v if v > 1+α
2 .

McKean’s variants were introduced in order to study nerve conduction.

Yet another piecewise linear variant of the Fitzhugh Nagumo model is the Pushchino

model, so called because it has been developed in Pushchino, Russia. The Pushchino

model was originally proposed as a model for the ventricular action potential. In

this model we have:

dv

dt
= f(v)− w

dw

dt
=

1

τ(v)
(v − w),

where

f(v) =



−30v if v < v1,

γv − 0.12 if v1 < v < v2,

−30(v − 1) if v > v2,
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τ(v) =


2 if v < v1,

16.6 if v > v1,

with v1 = 0.12
30+γ and v2 = 30.12

30+γ , and γ a constant.

Later on we shall be investigating some of the theoretical properties of this kind

of piecewise linear system.

Example 2.2.3. Gene regulatory networks

Within each organism there is a series of complex interactions between genes

and their products, proteins and RNA, and a variety of small signalling molecules.

The basic functions of the cell are tightly linked to the dynamics of this network of

interactions. These networks, gene regulatory networks, have been well studied in

mathematical biology. Many models involve nonlinear terms which can be approxi-

mated by piecewise linear or affine terms. We shall describe one such model here.

A B

a b

Figure 2.8: Example of a gene regulatory network with two proteins, A and B.

Following [14], [13], [43], [12] let x = (x1, x2, . . . , xn)′ ∈ Rn represent a vector of

cellular protein concentrations. We will assume that x takes its values in a bounded
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hyperrectangular region Ω ∈ Rn, where Ω = Ω1 × Ω2 × · · · × Ωn. Furthermore each

Ωi is given by Ωi = [0,maxi] where maxi denotes the maximum concentration for xi.

For each protein i we associate threshold concentrations θkii ∈ Ωi, ki ∈ {1, 2, . . . , pi},

1 ≤ i ≤ n. We will assume that the θkii are ordered as follows: θ1
i < θ2

i < ... < θpii .

When the concentration of protein i crosses a threshold, the mode of regulation of

the synthesis or degradation of the other proteins or of protein i itself may change,

and this change can be abrupt.

Example 2.2.4. In Figure 2.8 we have a schematic diagram of a simple example

of a gene regulatory network with two genes, a and b, coding for proteins A and B.

Protein A inhibits the expression of gene b above the threshold concentration θ1
a and

inhibits gene a above the threshold concentration θ2
a. Protein B activates gene b above

the concentration θ1
b and inhibits gene a above the concentration θ2

b .

The dynamics of the system are governed by the system of ordinary differential

equations

ẋi = fi(x)− νixi, (2.3)

for 1 ≤ i ≤ n. These equations define the rate of change of each concentration

xi as the difference of the rate of synthesis fi(x) and rate of degradation νixi of the

protein. We can rewrite equations (38) in vector format as follows:

ẋ = f(x)− νx

where f = (f1, f2, ..., fn)′ and ν = diag(ν1, ν2, ..., νn).

The key observation is that rate of activation of a gene often follows a steep

sigmoidal curve; the activity of a gene changes in a switch-like manner once the

18



2.2 Four Examples from Mathematical Biology

concentration of a regulatory protein i reaches a certain threshold level. This allows

us to approximate the fi, 1 ≤ i ≤ n using step functions,

s+(xi, θ
ki
i ) =


1 if xi > θkii

0 if xi < θkii ,

s−(xi, θ
ki
i ) = 1− s+(xi, θ

ki
i ).

This approximation generates a piecewise affine system which we describe below.

Notice that the step functions s+(xi, θ
ki
i ) and s−(xi, θ

ki
i ) are not defined at thresh-

old concentrations, i.e. when xi = θkii for some ki ∈ {1, ..., pi}.

We now describe the piecewise linear approximation to (2.3) in the state space

Ω. The first step is to partition Ω into hyper-rectangular regions, which we call

domains, using the (n-1) dimensional hyperplanes defined by

xi = θkii , (2.4)

with 1 ≤ i ≤ n and ki ∈ {1, ..., pi}, see figure 9.

As in [14], we will distinguish between two distinct classes of domain; on the

one hand we will call a domain D ∈ D a regulatory domain if none of the variable

assumes a threshold value. Otherwise we will call D a switching domain. Each

switching domain lies in the boundary of some set of regulatory domains. More

formally, we define regulatory and switching domains as follows:

Definition 2.2.1. Regulatory domain: D ∈ D is a regulatory domain if given any

x ∈ D we have xi 6= θkii for all i ∈ {1, ..., n} and for all ki ∈ {1, ..., pi}. Denote the

set of regulatory domains by Dr ⊂ D.
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D1 D2 D3 D4 D5

D6 D7 D8 D9 D10

D11 D12 D13D14D15

D16 D17 D18 D19D20

D21 D22 D23 D24D25

0 a
1 a

2 maxa

maxb

b
1

b
2

Genes a and b expressed

Gene a expressed only
Gene b expressed only

Genes a and b inhibited

Figure 2.9: State space Ω.

Definition 2.2.2. Switching domain: D ∈ D is a switching domain if for some

x ∈ D there exist i ∈ {1, ..., n} and ki ∈ {1, ..., pi} such that xi = θkii . Denote the set

of switching domains by Ds ⊂ D.

Figure 2.9 shows the state space Ω partitioned into regulatory and switching do-

mains for Example 2.2.4.

In a regulatory domain, D ∈ Dr, the rate of synthesis fi(x) reduces to some con-

stant. Hence, the state equations simplify to linear, uncoupled differential equations

ẋi = µDi − νDi xi (2.5)

for 1 ≤ i ≤ n. These can be rewritten in vector form as

ẋ = µD − νDx (2.6)
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where µD = (µD1 , µ
D
2 , ..., µ

D
n )′ and νD = diag(νD1 , ν

D
2 , ..., ν

D
n ).

Suppose x0 ∈ D is an initial condition for (2.6) and ψ(t) is a continuously

differentiable function such that ψ(0) = x0. Then ψ(t) is a solution to (2.6) on some

time interval [0, τ), τ > 0, if

ψ(t) ∈ D,

ψ̇(t) = µD − νDψ(t)

for all t ∈ [0, τ). In fact given any initial x0 ∈ D and τ > 0 there exists a unique

ψ(t) that is the unique solution to (2.6) on [0, τ ] and this solution is given by

ψ(t) = φ(D) + eν(t−t0)(ψ(to)− φ(D)),

where φ is the function defined by

φ : Dr 7→ Ω

φ(D) = (φ1(D), φ2(D), ..., φn(D)),

and φi(D) = µDi /ν
D
i for 1 ≤ i ≤ n (equilibrium points of (2.4), i.e. when ẋi = 0).

x = φ(D) is known as a target equilibrium. Solutions ψ(t) to (2.6) monotonically

converge towards φ(D). If φ(D) ∈ D then it is a stable equilibrium of the system and

as t → ∞ all solutions starting in D will approach it and remain in D. However, a

potential problem arises when φ(D) /∈ D. As is shown in [14], the feedback structure

of the regulatory network often tends to drive the concentrations toward a threshold

level, i.e. toward a switching domain. Solutions will eventually leave D. The issue is

that (2.6) is not defined in the switching domains. If a solution trajectory arriving

at a switching domain from some regulatory domain can be continued to an adjacent

regulatory domain then the problem can be overcome easily. However if this is not
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D1

D13

0 a
1 a

2 maxa

maxb

b
1

b
2

D13

D16

D14

D25

Figure 2.10: Potential problems at the threshold boundaries.

the case, one way of describing the dynamics is to extend the differential equations

to differential inclusions, using techniques first proposed by Filippov. We will be

discussing Filippov solutions and the circumstances in which they are used in detail

in the next chapter.

These ideas are best described with a simple example. In Figure 2.10 the focal

point φ(D13) for the regulatory domain D13 lies in D25. A solution trajectory in D13

will eventually cross a threshold concentration on its path toward φ(D13). In this

example, the solution arriving at D14 from D13 can easily be continued into D15,

even though (2.6) is not defined in D14. A problem arises in D16 since the vector

fields in D11 and D21 both point toward D16. Filippov solutions are required to

overcome this problem.

Example 2.2.5. DNA Replication

Another practical application of the theory of discontinuous / non smooth sys-

tems is in the mathematical modelling of DNA replication, one of the most funda-

mental processes in the life of a cell. DNA has a double-stranded structure, with the
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two strands intertwined toegether to form the characteristic double-helix. During

DNA replication, each strand acts as a template for the reproduction of the com-

plementary strand and after replication, two identical copies of the original DNA

molecule have been created.

At the beginning of the replication, the two strands are forced apart when the

hydrogen bonds holding them together are broken. This results in two separate an-

tiparallel strands. This process of unwinding is initiated at particular points in the

DNA known as origins, and the two strands form a replication fork. The replication

forks move along the genome, and the DNA is replicated. It is possible to model

the movement of the replication forks and the replication of the DNA using a hybrid

system as described in [31].

The continuous variables of the system are:

Xi ∈ R − position of origin i in genome,

Li ∈ R − position of left fork of origin i,

Ri ∈ R − position of right fork of origin i,

where i ∈ {1, ..., N} refers to one of the N origins along the genome.

We also have a discrete variable qi(t) for which there are six possible values..

qi(t) ∈ {PreR, PassR, PostR,RLF,RF,LF}, i ∈ {1, ..., N}.

The six discrete states are
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PreR − pre-replicative state (intitial value of the variable qi before replication begins)

PassR − passive replication,

PostR − post replicative state,

RLF − right and left fork active,

RF − only right fork active,

LF − only left fork active.

Each fork moves with velocity v(x), which depends on the current position of the

fork within the genome. The continuous dynamics of the system are given by

Ṙi(t) =


v(Xi(t) +Ri(t)) if qi(t) ∈ {RLF,RF}

0 if qi(t) /∈ {RLF,RF},

L̇i(t) =


v(Xi(t)− Li(t)) if qi(t) ∈ {RLF,LF}

0 if qi(t) /∈ {RLF,LF}.

Before describing the discrete dynamics let us define LN(i) and RN(i) as follows:

LN(i) = max{j < i : qj /∈ {PreR, PassR, PostR}}

RN(i) = min{j > i : qj /∈ {PreR, PassR, PostR}}.

LN(i) refers to the nearest origin to the left which has either left, right or both

forks active in the replication process. RN(i) is analogously defined but refers to the

nearest origin to the right with active fork(s).

The rules governing the discrete dynamics of the system are now given by
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PreR→ PassR : XLN(i) +RLN(i) ≥ Xi or XRN(i) + LRN(i) ≤ Xi, (2.7)

RLF → RF : XLN(i) +RLN(i) ≥ Xi − Li, (2.8)

RLF → LF : XRN(i) − LRN(i) ≤ Xi +Ri, (2.9)

RF → PostR : XRN(i) − LRN(i) ≤ Xi +Ri, (2.10)

LF → PostR : XLN(i) +RLN(i) ≥ Xi − Li, (2.11)

PreR→ RLF : t ≥ Ti, (2.12)

where Ti is the firing time of origin i. It is assumed in [31] to follow an exponen-

tial distribution.

In other words, (2.7) says that the origin i will go from a pre-replicative state to a

passive replicative state when the position of the right fork of the previous active

origin reaches the position of the origin i, or else when the position of the left fork

of the previous active origin reaches the position of the origin i. By active origin, we

mean one in which either the right, left or both forks of that origin are active.

Similarly, (2.8) says that the origin i goes from a state where both forks are active to

a state when only the right fork is active when the right fork of the previous active

origin reaches the position of the left fork of origin i. (2.9)-(2.12) are similiar to

(2.8).

A thorough analysis of this system can be found in [31].

2.3 Concluding Remarks

We have described several models which are non smooth in their description of prac-

tical situations. We have seen how impacting systems can give rise to non smooth

systems in Example 2.1.1 and in Examples 2.2.2 and 2.2.3, we saw how nonlinear sys-

tems can be approximated by piecewise linear sytems. In the forthcoming Chapters
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we shall describe the aspects of the mathematical theory behind these motivational

examples.

26



Chapter 3

LTI Systems, Positivity and

Monotonicity

In this chapter, we review the theory of LTI systems and some key stability results

for such systems. We also discuss positive systems and monotonicity.

3.1 Brief Review of Linear Time Invariant (LTI)

Systems

The theory of LTI systems is well-developed and has been applied extensively in

control engineering [27], [45]. We shall now briefly describe such systems and then

talk about some of their key properties, such as stability.

First of all, let us consider the first order linear differential equation

ẋ = ax (3.1)

where a ∈ R. The general solution to (3.1) is given by

x(t) = x0e
at (3.2)
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where x0 = x(0) is an initial condition for (3.1).

The natural generalisation of (3.1) is what is what we call a linear time invariant

(LTI) system. Standard references for linear systems include [45] and [41].

Definition 3.1.1. Let A ∈ Rn×n be given. The linear system associated with A is

given by

ẋ(t) = Ax(t). (3.3)

ẋ(t) represents the derivative of the state vector x(t) where x(t) ∈ Rn. The

components of the state vector, x1(t), x2(t), ...xn(t) are known as the state variables.

So we may write

ẋ =
dx

dt
=


dx1
dt

...

dxn
dt

 . (3.4)

We now recall the definition of the matrix exponential which is fundamental in

the study of (3.3).

Definition 3.1.2. Suppose A ∈ Rn×n. The matrix exponential eA is given by

eA =
∞∑
k=0

Ak

k!
. (3.5)

eA is well-defined for all matrices A ∈ Rn×n - see for example Theorem 5.6.13,

page 300 of [25].

Definition 3.1.3. Suppose A ∈ Rn×n. Then for t ∈ R,

eAt =

∞∑
k=0

Aktk

k!
. (3.6)
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The power series in Definition (3.1.3) is convergent everywhere so the matrix

exponential is well defined for all t ∈ R.

The form of the solution to (3.1) extends to (3.3) using the matrix exponential.

In fact we have the following theorem:

Theorem 3.1.1. (The Fundamental Theorem for Linear Systems)

Suppose A ∈ Rn×n. Then given any x0 ∈ Rn, the initial value problem

ẋ = Ax

x(0) = x0

has a unique solution defined on (−∞,∞) given by

x(t) = eAtx0. (3.7)

Henceforth we shall write x(t, x0) to denote the solution of (3.7) if we are talking

about a specific initial condition x0 for our LTI system.

An important concept in the study of any dynamical system is stability. xe ∈ Rn

is an equilibrium point of (3.3) if Axe = 0. Loosely, we say that xe is a stable equi-

libirum point (in the sense of Lyapunov) if any solution starting near xe stays near

xe for all time t. Note that the LTI system ẋ(t) = Ax(t) always has an equilibrium

point at the origin.

More concretely, given the LTI system

ẋ(t) = Ax(t) (3.8)

x(0) = x0

we have the following definitions of stability: [48]

Definition 3.1.4. Given the LTI system (3.8) , the origin is a stable equilibrium

point (in the sense of Lyapunov) if for every ε > 0 there exists δ = δ(ε) > 0 such

that if ||x0|| < δ, then ||x(t, x0)|| < ε for all t ≥ 0.
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However, stability in the sense of Lyapunov is a weak condition. While it requires

that an initial state which starts "near enough" to the origin stays "near enough"

for all time, it does not imply that solutions will tend to the origin.

Definition 3.1.5. (Global Asymptotic Stability) Given the LTI system (3.8), the ori-

gin is a globally asymptotically stable equilibrium point if it is stable, and in addition,

lim
t→∞

x(t, x0) = 0 for all x0 ∈ Rn.

Loosely, asymptotic stability says that any solution starting near enough to the

origin will not only stay near to it, but will eventually converge to it. The third

type of stability we shall look at is exponential stability. An exponentially stable

equilibrium point is asymptotically stable and solutions will converge to it at a rate

at least as fast as a decaying exponential function.

Definition 3.1.6. (Global Exponential Stability) Given the LTI system (3.8), the

origin is a globally exponentially stable equilibrium point if there exist α, β ∈ R,

β < 0, such that ||x(t, x0)|| ≤ α||x0||eβt, for t ≥ 0 for all x0 ∈ Rn.

The infimum of the values β which satisfy Definition 3.1.5 is often called the rate

of exponential convergence.

We call (3.8) globally asymptotically stable, or say that the origin is globally asymp-

totically stable if (3.7) is stable and given any initial condition x(0) = x0 we have

that lim
t→∞

x(t, x0) = 0. For finite dimensional LTI systems, global asymptotic stabil-

ity and global exponential stability are equivalent. [45].

The following classical result characterises the asymptotic stability of (3.3) in

terms of A.

Theorem 3.1.2. An LTI system ẋ(t) = Ax(t) is asymptotically stable if and only if

Re(λ) < 0 for all eigenvalues λ of A.
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A matrix A in which every eigenvalue has negative real part is known as a Hurwitz

matrix. Theorem 3.1.2 shows that (3.3) is globally asymptotically stable if and only

if A is Hurwitz.

3.2 Lyapunov Stability

Very important results in the stability of dynamical systems were established by the

Russian mathematician and physicist Aleksandr Mikhailovich Lyapunov. The con-

cepts we discuss in the following paragraphs come from his PhD thesis "The general

problem of the stability of motion" which he successfully defended on the 12th of

September 1892 in Moscow. It is now that we will introduce the concept of a Lya-

punov function and then state without proof a result known as Lyapunov’s theorem.

The idea is to determine the stability of a system by examining the time evolution

of a single scalar function which is usually denoted V (x(t)), along any trajectory

x(t) of the system. In general, it is not an easy task to find such a function, but it

turns out that it is much more straightforward for LTI systems, which is all we are

interested in for the moment.

V (x(t)) represents an implicit function of time. Assuming that V (x) is differen-

tiable, along trajectories of (3.3) we have that

V̇ (x) =
dV (x)

dt
=
∂V

∂x
ẋ =

∂V

∂x
Ax,

where we have made use of the chain rule. Lyapunov showed that we can deter-

mine the stability of a time invariant system by finding a function V (x), with certain

properties, now known as a Lyapunov function. Lyapunov functions can be used to

establish stability for general nonlinear systems. To highlight the flavour of these

results, we present the following Theorem for LTI systems.

Theorem 3.2.1. Suppose we have an LTI system ẋ = Ax where A ∈ Rn×n. If we
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can find a function continuously differentiable V : Rn 7→ R which satisfies

V (x) > 0 for x 6= 0

V (0) = 0

V̇ (x) ≤ 0, (3.9)

then the system is stable.

If in addition, we have that

V̇ (x) < 0

for all x 6= 0 then the system is asymptotically stable.

In fact, for an LTI system ẋ(t) = Ax(t), we may choose a quadratic Lyanunov

function of the form

V (x) = xTPx

where P = P T > 0 is a positive definite matrix, meaning that V (x) > 0 for all x 6= 0.

Differentiating V (x) = xTPx along solutions of ẋ = Ax, we get

V̇ (x) = ẋTPx+ xTPẋ

from which it follows that

V̇ (x) = xT (ATP + PA)x.

So the condition

V (x) < 0, x 6= 0

becomes

ATP + PA < 0,

i.e. if we can find a positive definite matrix P such that

ATP + PA < 0,

then the system is asymptotically stable. The following theorem [25], [45] is due to

Lyapunov and was first published in his famous doctoral thesis.
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Theorem 3.2.2. (Lyapunov’s Theorem)

Let A ∈ Rn×n be Hurwitz.

Then for all Q = QT ∈ Rn×n where Q > 0 (Q is positive definite), there exists

P ∈ Rn×n with P = P T > 0 such that ATP + PA = −Q.

Furthermore, P is given by

P =

∫ ∞
0

(eAt)TQeAtdt.

Conversely, if for some Q > 0 there exists P = P T > 0 where Q,P ∈ Rn×n such that

ATP + PA = −Q then A is Hurwitz.

Let us now take a look at an example to illustrate this result. Suppose we have

a system given by

ẋ(t) = Ax(t)

where A is given by

A =

−1 2

0 −3

 .

The eigenvalues of A are

λ1 = −1

λ2 = −3

so this system is asymptotically stable, which we shall now verify using Lyapunov’s

theorem. Let

Q =

1 0

0 1

 > 0.

Can we find a matrix P ∈ R2×2 with

P = P T > 0

that satisfies

ATP + PA = −Q?
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Suppose P is given by

P =

p1 p2

p2 p3

 .

If we solve the equation

ATP + PA = −Q

for P we get that

p1 =
1

2

p2 =
1

4

p3 =
1

3

which gives

P =

1
2

1
4

1
4

1
3

 > 0.

Hence, we have verified that A is indeed Hurwitz.

3.3 Positive LTI Systems

We shall now describe a class of linear systems known as positive linear time in-

variant systems. In the remainder of this thesis, positive systems will play a central

role. Positive systems are, by definition, systems in which the state variables take

on only non-negative values. Because of this, they appear often in the modelling of

many systems in biology and economics, such as Example 2.2.3 in Chapter 2, which

considered gene regulatory networks. It makes sense in that example to restrict our-

selves to non-negative values since the concentration of a protein cannot be negative.

Several aspects of the theory of positive systems have been considered. These include
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the Positive Realisation problem, the question of positive stabilisation and issues re-

lated to reachability and controllability [44], [33], [3], [46]. Positive systems possess

many strong stability properties. In particular, these systems are very robust with

respect to the introduction of time-delays. This is shown in [22]. Extensions of the

results in this paper to classes of nonlinear positive systems can be found in [38], [4].

We now give a brief review of these systems, beginning with a brief discussion on

non-negative matrices.

3.3.1 Perron-Frobenius Theory

The theory of positive LTI systems has its roots in Perron-Frobenius theory of non-

negative matrices so it is worth having a brief discussion on this theory [39]. Accord-

ing to Carl D. Meyer, "In addition to saying something useful, the Perron-Frobenius

theory is elegant. It is a testament to the fact that beautiful mathematics eventually

tends to be useful, and useful mathematics eventually tends to be beautiful". This

is especially true in the case of positive systems, whose theory is underpinned by

Perron-Frobenius theory. It deals with positive and nonnegative matrices, and the

key issue is to investigate the spectral properties of these matrices.

A matrix A ∈ Rn×n is nonnegative (positive) if aij ≥ 0 (aij > 0), 1 ≤ i, j ≤ n.

For A,B ∈ Rn×n we write A ≥ B if aij ≥ bij , and we write A > B if aij > bij ,1 ≤

i, j ≤ n.

Definition 3.3.1. The nonnegative cone (or positive orthant) in Rn, denoted by Rn+,

is the set of all n-tuples with non-negative coordinates, i.e. Rn+ = {x ∈ Rn : xi ≥

0, 1 ≤ i ≤ n}.

This cone generates a partial ordering on Rn given by y ≤ x if x− y ∈ Rn+. This

is true if and only if yi ≤ xi for all i. We will write y < x if y ≤ x and y 6= x and we

will write y � x if yi < xi for all i.
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3.3 Positive LTI Systems

An important result in the theory of positive matrices, due to Perron, is the

following, known as the Perron Theorem. Before stating the theorem, we first recall

the definition of the spectral radius of a matrix.

Definition 3.3.2. Suppose A ∈ Rn×n with eigenvalues λ1, λ2, ..., λn. The spectral

radius ρ(A) of A is given by

ρ(A) = max
1≤i≤n

|λi|.

Theorem 3.3.1. (Perron Theorem for positive matrices)

Suppose A ∈ Rn×n and A is positive. Then the following are true:

(i) ρ(A) ∈ σ(A) where σ(A), the spectrum of A is the set of all eigenvalues of A.

(ii) The algebraic multiplicity of ρ(A) is 1, i.e. ρ(A) is a simple root of the char-

acteristic polynomial of A, and the eigenspace associated with ρ(A) therefore has

dimension one.

(iii) There exists a unique vector p, known as the Perron vector, which satisfies

p � 0 (3.10)

Ap = ρ(A)p (3.11)

||p|| = 1 (3.12)

(iv) Except for positive multiples of p, there does not exist any other nonnegative

eigenvector of A. Any other eigenvector must have one negative or non-real compo-

nent.

(v) ρ(A) = max
x∈N

f(x) where f(x) = min
1≤i≤n, xi 6=0

(Ax)i
xi

and N = {x : x ≥ 0 with x 6= 0}.

This is known as the Collatz-Wielandt formula.

However, some of these results break down if we try and generalise to general

nonnegative matrices. Frobenius was successful in extending these results to irre-

ducible matrices, a subclass of nonnegative matrices, [19]. This extension of the

Perron Theorem is what we now call the Perron-Frobenius theorem, a celebrated

result in the theory of nonnegative matrices.
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Definition 3.3.3. A matrix A ∈ Rn×n is called block upper triangular if it is of the

form 
A1 ∗

. . .

0 Am


where A1, ..., Am are square matrices lying along the diagonal, the entries below

A1, ..., Am are 0 and ∗ denotes arbitrary entries lying above A1, ..., Am.

An example of a block upper matrix is the matrix

1 2 6 7 8

3 4 2 7 3

0 0 5 1 2

0 0 0 6 7

0 0 0 8 9


.

In this case, we have A1 =

1 2

3 4

, A2 =

(
5

)
and A3 =

6 7

8 9

.

Definition 3.3.4. A permutation matrix is a matrix that has exactly one entry 1 in

each row and each column and zeros elsewhere.

Definition 3.3.5. A matrix A ∈ Rn×n is reducible if there exists a permutation

matrix P [25] such that the matrix P TAP is block upper triangular. If A is not

reducible, then A is called irreducible.

We are now ready to state the Perron-Frobenius theorem:

Theorem 3.3.2. (Perron-Frobenius Theorem for nonnegative matrices)

Suppose A ∈ Rn×n and A is nonnegative and irreducible. Then the following are

true:
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3.3 Positive LTI Systems

(i) ρ(A) ∈ σ(A).

(ii) The algebraic multiplicity of ρ(A) is 1.

(iii) There is a unique vector p which satisfies

p � 0 (3.13)

Ap = ρ(A)p (3.14)

||p|| = 1 (3.15)

(iv) There are no nonnegative eigenvectors for A except for positive multiples of p,

regardless of the eigenvalue.

(v) The Collatz-Wielandt formula holds.

3.3.2 Positive Systems And Stability

Definition 3.3.6. The linear system

ẋ(t) = Ax(t) (3.16)

is said to be positive if for any initial condition x0, with x0 ≥ 0, we have x(t, x0) ≥ 0

for all t ≥ 0.

Definition 3.3.7. A matrix A = (aij) is said to be a Metzler matrix if its off-diagonal

elements are nonnegative, i.e. if aij ≥ 0 if i 6= j.

To determine whether a system given by ẋ(t) = Ax(t) is positive or not is straight-

forward and can now be summarised in the following well-known theorem [16]:

Theorem 3.3.3. A linear system ẋ(t) = Ax(t) is positive if and only if A is a

Metzler matrix.

Proof. Suppose ẋ(t) = Ax(t) is a positive system. Let x(0) = ej , ej is the vector

with one in the jth position and zeros elsewhere. So ẋ(0) = Aej (the jth column of
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3.3 Positive LTI Systems

A). Since ẋ(t) = Ax(t) is positive and the trajectory of a positive system cannot

leave Rn+, we must have that ẋi(0) ≥ 0 for i 6= j. It follows that A is Metzler.

Conversely, suppose A is Metzler. Suppose xi(t) = 0 for some t ≥ 0 and x(t) ≥ 0.

Since aij ≥ 0 for i 6= j, we have that ẋi(t) ≥ 0, i.e. we have that the vector ẋ(t) does

not point outside of Rn+ whenever x(t) is on the boundary of Rn+.

Hence ẋ(t) = Ax(t) is a positive system.

The following result summarises a number of equivalent properties for positive

LTI systems [36].

Proposition 3.3.1. Let A ∈ Rn×n be Metzler. The following statements are equiv-

alent:

(a) The LTI system (3.16) is stable;

(b) A is Hurwitz;

(c) There exists P > 0 such that ATP + PA < 0;

(d) There exists a diagonal matrix D > 0 such that ATD +DA < 0;

(e) There exists a vector v ∈ Rn+ with Av � 0;

(f) A−1 < 0;

(g) For any diagonal matrix D > 0, the system ẋ(t) = DAx(t) is stable.

The property expressed in condition (g) in Proposition (3.3.1) is known as D-

stability [36]. This shows that the stability of positive LTI systems is robust with

respect to parameter variations. Specifically, if A is scaled by a positive diagonal

matrix, then stability is preserved. D-stability has been considered in [2], [28]. [2]

provides a neat characterisation of diagonal stability in general. However, unfortu-

nately the conditions provided in the paper are far from easy to test in practice.

In addition, positive LTI systems are robust with respect to delay [22].
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3.3.3 Lyapunov Functions

Since a positive LTI system is characterised by the fact that trajectories starting in

the nonnegative orthant must remain in the nonnegative orthant for all time, it is

natural to consider functions which satisfy the requirements of Lyapunov functions

in Rn+ when considering positive systems. These functions are known as copositive

Lyapunov functions. We now introduce the class of linear copositve Lyapunov func-

tions, which will appear extensively in the next chapter when we will be giving results

concerning the stability of switched linear systems.

Definition 3.3.8. A function V (x) = vTx is a linear copositive Lyapunov function

for (3.16) if and only if the vector v ∈ Rn satisfies:

v � 0

AT v � 0.

Under these conditions,

V (x) > 0 for all x ∈ Rn+, x 6= 0,

V̇ (x) < 0 for all x ∈ Rn+, x 6= 0.

The matrix A is Metzler if and only if AT is Metzler. Proposition 3.3.1 implies

that (3.16) is asymptotically stable if and only if there exists a vector v in Rn with

AT v � 0. It follows from this that (3.16) is asymptotically stable if and only if it

has a linear copositive Lyapunov function.

3.4 Monotonicity

A key property of positive LTI systems is monotonicity. The concept of monotonicity

is also important in many nonlinear extensions and it will be central to much of our

later work in this thesis. A monotone system is essentially an order preserving

system. A concrete definition is now given:
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Definition 3.4.1. Suppose we have a dynamical system given by ẋ(t) = f(x(t))

where f : D → Rn is C1 and x(0) = x0 ∈ D, where D ⊂ Rn is open. x(t, x0)

denotes the solution of this system satisfying x(0, x0) = x0. We say that this system

is a monotone system if given any x0, y0 ∈ D such that x0 ≤ y0 we have that

x(t, x0) ≤ x(t, y0) for all t ≥ 0, for which both solutions exist.

Theorem 3.4.1. If A ∈ Rn×n is Metzler then the system given by ẋ(t) = Ax(t) is

monotone.

Proof. Suppose we have x0, y0 ∈ Rn with x0 ≤ y0.

Then y0 − x0 ≥ 0 so that

x(t, y0 − x0) ≥ 0

for all t ≥ 0.

But

x(t, y0 − x0) = x(t, y0)− x(t, x0)

by linearity. Hence

x(t, x0) ≤ x(t, y0) (3.17)

for all t ≥ 0.

This result states that any positive LTI system is automatically monotone. An

important generalisation of positive LTI systems is the class of positive cooperative

systems. These are important because of their applications in economics, biology

and ecology [49]. Cooperative systems generate monotone flows in the forward time

direction. References [1], [42], [34] are concerned with extending significant aspects

of the theory of positive LTI systems to cooperative systems

Definition 3.4.2. A C1 vector field f : D → Rn is said to be cooperative on W ⊂ D

if the Jacobian ∂f
∂x (a) is a Metzler matrix for all a ∈W .
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3.4 Monotonicity

Note that in general, a cooperative system need not be positive.

Let us now look at a set of conditions known as the Kamke conditions, after the

German mathematician Erich Kamke (1890-1961) who specialised in the theory of

differential equations. Given a function f , with associated dynamical system, it can

be shown that the monotonicity of the system is equivalent to the Kamke conditions

being satisfied. The Kamke conditions are as follows:

Definition 3.4.3. If f : D → Rn is continuously differentiable on some open set

D ⊂ Rn, we say that the Kamke conditions are satisfied if

x, y ∈ D,x ≥ y and xi = yi for some i ∈ {1, ..., n} implies (f(x))i ≥ (f(y))i.

Proposition 3.4.1. Let f : D → Rn be C1. The system ẋ(t) = f(x(t)) is monotone

if and only if it satisfies the Kamke conditions. [49]

We will be dealing exclusively in the positive orthant, i.e. when D is a neigh-

bourhood of Rn+. This is a natural choice for dealing with applications, for example,

in the study of population dynamics (due to the positive invariance of a popula-

tion’s density). Part of the later work will be extending the Kamke conditions to the

piecewise smooth case and investigating their relation to monotonicity in this setting.

It is worth noting that monotonicity can be used to establish conditions for

asymptotic stability [4], [5], [10]. These papers consider nonlinear and switched

systems. We now indicate how monotonicity can be used to establish asymptotic

stability by outlining the argument for positive LTI systems.

Suppose we have a system given by ẋ(t) = Ax(t) where A is Metzler and non-

singular ( so that the origin is its only equilibrium). Suppose we have a vector v ∈ Rn+

with

v � 0
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such that

Av � 0.

It can be shown that this implies that the trajectory x(t, v) is strictly decreasing for

all t. This together with

0 ≤ x(t, v) ≤ v

for all t, and the fact that A is non-singular implies

x(t, v)→ 0 as t→∞.

Linearity now implies

x(t, λv)→ 0 as t→∞

for all λ > 0.

Now for any x0 ∈ Rn+, choose λ such that λv ≥ x0.

Finally, monotonicity implies

x(t, x0)→ 0 as t→∞

for all x0 ∈ Rn+.
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Chapter 4

Properties of Piecewise Smooth

and Switched Linear Systems

In this Chapter we review some fundamental facts from the the theory of piecewise

smooth systems [15], paying particular attention to switched linear systems, and dis-

cuss some basic issues relating to them, such as the definition of solutions and stability

of such systems.

4.1 Basic Definitions

In Chapter 2, we described a variety of non-smooth systems. Here, we specialise

to the class of switched linear systems that shall be our primary concern for the

remainder of this thesis. Broadly speaking, the class of switched linear systems, and

more generally, switched systems, may be divided into two subclasses; a switched

system can be time-dependent or state-dependent [35], [47].

Given a finite collection of matrices A = {A1, ..., Ak}, a time-dependant switched
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linear system is a system of the form

ẋ(t) = Aσ(t)x(t), t ≥ 0, (4.1)

σ : R+ → {1, ..., k}.

We call σ the switching signal, and the points of discontinuity, t1, t2, ... of σ are

known as the switching instants.

The second class of switched systems is the class of state-dependent switched

systems. Loosely speaking, these take the general form

ẋ(t) = Aσ(x(t))x(t), t ≥ 0, (4.2)

where σ maps states to indices in {1, ..., k}. These shall play a significant role in

our later discussions. We now give an informal introduction, with a more formal

treatment in Section 4.2. In a system with state-dependent switching, we partition

the state space into a finite or infinite number of operating regions using a family of

switching surfaces. There may also be a reset map which assigns a new value to the

state at each switching instance. For the most part, we shall not consider impulse

effects here. Thus we are only interested in continuous solutions. It is the value of

the state variable at any time instant that determines which subsystem is active.

In both cases, a switched linear system is obtained from k LTI systems of the

form

ẋ = Aix,

1 ≤ i ≤ k, where we have only one system active at any one time instant.

A solution of (4.1), in the time-dependent case is a function x : R+ 7→ Rn, with

x(0) = x0, which is piecewise continuously differentiable and such that there is a
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ℝn ẋ=A1 x ẋ=A2 x

ẋ=A3 x
ẋ=A4 x

Figure 4.1: Partitioned state space - State-dependent switched system

switching signal σ which satisfies

ẋ(t) = Aσ(t)x(t)

for all t except at the switching instances of σ. Because of the fact that in between

successive switching instances, (4.1) behaves like an LTI system, we have for each

switching signal σ, and each initial condition x0 = x(0), the existence of a unique

continuous, piecewise differentiable solution x(t). This solution is given by

x(t) = eA(tk)(t−tk)eA(tk−1)(tk−tk−1)...eA(t1)(t2−t1)eA(0)(t1)x0,

where t1 < t2 < ... is the sequence of switching instances and tk is the largest

switching instant smaller than t.

4.2 Issues with State-Dependent Switching

A number of issues may arise in state-dependent switched systems which do not

occur in time-dependent switched systems. It is worth describing some of these is-

sues in detail as we shall be concerned with state-dependent switched systems in

Chapter 5. Example 2.1.1 from Chapter 2, where we discussed the example of the
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4.2 Issues with State-Dependent Switching

bouncing ball can be viewed as an example of such a system. In this example, we

meet a particular type of phenonemon, known as Zeno behaviour, where the state

crosses the switching surface infinitely often in a finite amount of time. Further on in

this discussion we shall revisit Example 2.1.1 to illustrate the occurence of Zeno be-

haviour. Except for our discussion of this example, we shall not consider state resets.

A key issue with state-dependent switching is that the differential equation defin-

ing the system may not be continuous. In such cases, classical C1 solutions may not

exist [9]. This leads us to consider alternative solution concepts. Of critical im-

portance in this area is the notion of a Filippov solution, named after the Russian

mathematician, Vladimir Filippov. Differential equations are replaced with differen-

tial inclusions, and so single solutions are replaced with a set of possible solutions.

We shall briefly describe solutions of state-dependent switched systems, differential

inclusions and then link them together with the notion of a Filippov solution.

4.2.1 Caratheodory Solutions

Suppose we are given the ordinary differential equation

ẋ(t) = f(x(t)) (4.3)

where x(0) = x0. A classical solution to this ODE on [0, T ] is a function

x : [0, T ] 7→ Rn

which is continuously differentiable (C1) and satisfies (4.3) for all t ∈ [0, T ]. Exis-

tence and uniqueness of classical solutions is guaranteed under a variety of conditions,

including f being C1 or satisfying a Lipschitz condition [7], [8]. An important ques-

tion in the context of this work is whether or not there exists a solution to (4.2)

when f is discontinuous.
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Example 4.2.1. (A discontinuous vector field with nonexistence of classical solu-

tions) [9]

Consider the vector field f : R→ R defined by

f(x) =


−1 if x > 0

1 if x ≤ 0.

(4.4)

Suppose there exists a continuously differentiable function x : [0, t1] → R such

that ẋ(t) = f(x(t)) on [0, t1] and x(0) = 0. Then ẋ(0) = f(x(0)) = 1. So there

exists δ > 0 such that x(t) > 0 for t ∈ (0, δ). For such t, ẋ = f(x(t)) = −1 which

contradicts the fact that ẋ is continuous at 0. So no classical solution to (16) starting

at zero exists.

Here we have an example of a discontinuous dynamical system which does not

have a classical solution. It is natural to ask under what conditions a solution would

exist. A first step towards addressing this is the concept of a Caratheodory solution.

A Caratheodory solution of (4.3) defined on [0, T ] is an absolutely continuous map

x : [0, T ] 7→ Rn

that satisfies (4.3) for almost all t ∈ [0, T ], i.e. for all t ∈ [0, T ] except for a set of

Lebesgue measure zero. Equivalently, it is an absolutely continuous map

x : [0, T ] 7→ Rn

which satifies x(0) = x0 and

x(t) = x0 +

∫ t

0
f(x(s))ds

for t ∈ [0, T ].

Example 4.2.2. (A system with Caratheodory solutions but no classical solutions)

[9]

Consider the vector field f : R→ R defined by
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f(x) =



1 if x > 0

1
2 if x = 0

−1 if x < 0.

(4.5)

The associated system ẋ(t) = f(x(t)) has no classical solution with initial con-

dition x(0) = 0. This can be shown similarly to the previous example. However, it

has two Caratheodory solutions x(t) = t and x(t) = −t defined on [0,∞). They both

violate the differential equation when t = 0, i.e. on a set of measure zero.

4.2.2 Differential Inclusions

A key concept in the study of discontinuous differential equations is the notion of

a differential inclusion. A differential inclusion is a generalisation of an ordinary

differential equation and takes the form

ẋ(t) ∈ F (x(t)) (4.6)

t ∈ [0, T ]

x(0) = x0.

The function F is an example of what is known as a set valued map. Given

a point, a set-valued map assigns a set to that point. In general, a differential

inclusion will have several solutions for a given initial condition. Note that if the set

F (x) consists of a single point for all x then the differential inclusion becomes an

ordinary differential equation. F is sometimes known as a multivalued function.

4.2.3 Filippov Solutions

Consider a state-dependent switched system with switching surface Ω. Recall that

we assume the state does not jump at switching instants. If the vector fields in

adjacent regions point in the same direction relative to the switching surface, then
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once the continuous trajectory hits Ω it will continue on to the other side, and we

obtain a solution in the sense of Caratheodory. See Figure 4.2.

However, on the other hand, if the vector fields both point toward Ω, a potential

problem arises. This is due to the fact that once the trajectory reaches the switching

surface Ω, it is confined there by the orientation of the vector fields. This was resolved

by the Russian mathematician Vladimir Filippov, when he introduced the notion of

what is now known as a Filippov solution.

The key idea behind Filippov solutions is the replacement of ODEs with differential

inclusions of the form (4.6). We associate a differential inclusion to the discontinuous

O.D.E. as follows. Given a point x ∈ Rn, we set:

F (x) =
⋂

µ(N)=0

∩ε>0co(f(x+Bε\{N})). (4.7)

where Bε is the ball about 0 of radius ε, co denotes the convex hull and µ(N) is

Lebesgue measure. Filippov solutions of the ODE with right hand side given by f

are solutions of the differential inclusion (4.6) with F given by (4.7). Formally, a

Filippov solution is an absolutely continuous function

x : [0, T ] 7→ Rn,

which satisfies the differential inclusion (4.6) for almost all t ∈ [0, T ].

If f is continuous at x, then

F (x) = {f(x)}.

On the other hand, at points of discontinuity, F is defined by looking at the closed

convex hull of the values of f as we approach x.

Using the theory of differential inclusions, it can be shown [17] that solutions to

the differential inclusion defined in (4.7) exist under relatively mild conditions on f .
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12 2
1

(a) (b)

 

x

Figure 4.2: (a) Vector field crossing Ω (b) A sliding mode

To illustrate the idea of a Filippov solution, let us divide Rn into two open

regions, Ω1 and Ω2, by means of a switiching surface Ω (which will be assumed to

be a smooth manifold).

If x ∈ Ω1 or x ∈ Ω2 then ẋ = f1(x) or ẋ = f2(x) respectively. Assume that f1

and f2 extend continuously to Ω̄1 and Ω̄2 respectively.

According to Filippov, on Ω, x(.) is a solution of the switched system if it satifies

the differential inclusion

ẋ ∈ F (x)

where

F (x) := {αf1(x) + (1− α)f2(x) : α ∈ [0, 1]}if x ∈ Ω. (4.8)

If the vector fields on both sides of the switching surface point towards Ω, then

the solution must be confined to Ω and so the only possibility is that it will ’slide’ on

Ω. This is the reason that this kind of solution is known as a sliding mode. In this

example, there is a unique convex combination of f1(x) and f2(x) that is tangent

to Ω at the point x, which determines the instantaneous velocity of the trajectory
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starting at x.

Sliding modes may or may not be desirable in practice. On the one hand, they

can be interpreted as infinitely fast switching between systems, which may lead to

excessive wear of equipment. On the other hand, they can be created to solve control

problems which may not be solvable otherwise. [35]

To illustrate the concept of sliding modes, we present the following example from

[35].

Example 4.2.3. Consider the following state-dependent switched linear system:

ẋ =


Ax if x2 ≥ x1

Bx if x2 < x1

(4.9)

where A =

 0 1

−1 0

, B =

−1 0

0 −λ

, x =

x1

x2

 ∈ R2 and λ ∈ R.

Let us now determine for what values of λ a sliding mode occurs. Our main focus

in this regard is the behaviour of the system on the bounding line

x1 = x2

between the two operating regions ΩA and ΩB. Let us take the convex combination

α

 0 1

−1 0


1

1

+ (1− α)

−1 0

0 −λ


1

1

 =

 2α− 1

−λ+ α(λ− 1)

 (4.10)

of Ax and Bx where x ∈ Ω, 0 ≤ α ≤ 1, and for convenience we choose

x =

1

1

 .
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In order for this convex combination to lie on Ω, we must have that

2α− 1 = −λ+ α(λ− 1),

which means that

α =
1− λ
3− λ

.

Suppose λ > 1. Then α /∈ [0, 1] which means that no convex combination of Ax,

Bx lies on Ω in this case. Also, if x2 = x1 + ε, trajectories point away from the

surface. If λ < 1, α ∈ [0, 1] which ensures that our convex combination (4.10) lies

on the bounding line Ω. So a sliding mode occurs in the first quadrant if λ < 1.

For λ > −1, the corresponding trajectory approaches the origin along the switching

line, while for λ < −1 it goes away from the origin. The former is known as a stable

sliding mode, and the latter, an unstable sliding mode.

4.2.4 Zeno Behaviour

Zeno behaviour, named after the well-known Zeno paradox, has been characterised,

in the context of hybrid systems, as an infinite number of discrete state transitions

occuring in a finite amount of time.. The simplest example is that of the bouncing

ball, which we encountered in Chapter 1. Following [35] we normalise the gravita-

tional constant so that (2.1) becomes

ẋ1(t) = x2(t) (4.11)

ẋ2(t) = −1.

Integrating (4.11) results in

x2(t) = −(t− t0) + x2(t0)

x1(t) = −(t− t0)2

2
+ x2(t0)(t− t0) + x1(t0).
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Letting initial conditions be t0 = 0, x1(0) = 0 and x2(0) = 1 we get

x2(t) = −t+ 1

x1(t) = − t
2

2
+ t.

When t = 2, we get x1 = 0 so t = 2 is the first switching time. Using (2.2) we

get x2(2) = r, where r is the coefficient of restitution.

If we repeat this using t0 = 2, x1(2) = 0 and x2(2) = r as initial conditions we

get

x2(t) = −t+ 2 + r

x1(t) = −(t− 2)2

2
+ (t− 2)r.

The next switching time is then t = 2 + 2r and using (2.2) again, we get that

x2(2 + 2r) = r2.

If we continue in this fashion we get the sequence of switching times

2, 2 + 2r, 2 + 2r + 2r2, 2 + 2r + 2r2 + 2r3, ...

It is easy to show that the sequence of times has a finite accumulation point, given

by
∞∑
k=0

2rk =
2

1− r
.

Prior to this time, the ball makes an infinite number of bounces, i.e. an infinite

number of switching events occur in a finite amount of time. In practice, however,

the ball will only make a finite number of bounces before stopping.
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4.3 Stability for Switched Linear Systems under

Arbitrary Switching

Stability is a big issue in the study of switched linear systems. Switching between

stable component systems can render the overall system unstable. We now discuss

some issues and results for arbitrary switched systems.

Suppose we are given a family of stable subsystems

ẋ(t) = Aix(t), (4.12)

1 ≤ i ≤ m. Several questions about stability arise. A fundamental problem in the

study of switched linear systems is to determine whether the system (4.1), com-

posed of the family (4.12), is stable for all switching signals σ. Notions of stability,

analogous to those for LTI systems, may be defined for switched linear systems.

Definition 4.3.1. The origin is a uniformly stable equilibrium of (4.1) if given any

ε > 0, there is some δ > 0 such that ||x0|| < δ implies ||x(t, x0)|| < ε for t ≥ 0, for

all solutions x(t, x0) of the system.

Definition 4.3.2. The origin is a uniformly exponentially stable equilibrium of (4.1)

if there exists M,β ∈ R, with M ≥ 1, β > 0 such that

||x(t, x0)|| ≤Me−βt||x0||

for t ≥ 0, and for all solutions x(t, x0) of the system.

Note that, in the previous definitions, δ, and the constant β must be independent

of switching rule.

As we have seen in the previous chapter, quadratic Lyapunov functions play a

vital role in the study of the stability of LTI systems, and their role is well understood.
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It is therefore logical to begin our study of the stability of switched linear systems

with a discussion on the common quadratic Lyapunov function (CQLF) existence

problem. Suppose we are given a collection {A1, ..., Am} of Hurwitz matrices, with

associated stable LTI systems ẋ(t) = Aix(t), 1 ≤ i ≤ m, the aim is to discover

whether or not this collection has a common quadratic Lyapunov function. That is,

can we find a function V (x) = xTPx, where P is symmetric and postive definite, and

PAi +ATi P is negative definite for all i. If this is possible, then V(x) is a quadratic

Lyapunov function for each individual subsystem.

Theorem 4.3.1. Suppose we have a familyM = {A1, ..., Am} of Hurwitz matrices,

with associated switched linear system (4.1). If there exists a CQLF for M then

(4.1) is exponentially stable under arbitrary switching.

Given a two-dimensional switched linear system, there exist simple necessary and

sufficient conditions for the existence of a CQLF [35]:

Proposition 4.3.1. The linear systems ẋ(t) = Ax(t) and ẋ(t) = Bx(t), with

x(0) = x0, x ∈ R2 and A,B ∈ R2×2 have a CQLF if and only if all pairwise

convex combinations of the matrices A, B, A−1 and B−1 are Hurwitz.

In general, the existence of a CQLF is not a necessary condition for the expo-

nential stability of a switched linear system [11]. In addition, there is no simple

algebraic condition to determine whether or not there exists a CQLF for a family of

LTI systems. There do exist partial results for special cases, some which we shall

now describe.

Following [47] we view the mapping P 7→ PA + ATP as a linear function on

Sn×n, the space of real symmetric n × n matrices. Formally we have a map LA

defined by the real n× n matrix A as:

LA : Sn×n → Sn×n

LA(P ) = PA+ATP.
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The map LA has the following properties:

(i) If A has eigenvalues {λi} with associated eigenvectors {vi}, then LA has eigen-

values {λi + λj} with eigenvectors {vivTj + vjv
T
i } for all i ≤ j. Since λi + λj 6= 0 for

a Hurwitz matrix A, it follows that LA is invertible for a Hurwitz matrix A.

(ii) A is Hurwitz if and only if there exists P > 0 such that LA(P ) < 0.

Next, define PA to be the set

PA = {P > 0 : LA(P ) < 0}.

It follows that the function V (x) = xTPx is a quadratic Lyapunov function for A if

and only if P ∈ PA. Note that PA is an open convex cone since if P,Q ∈ PA, then

aP + bQ ∈ PA, where a, b > 0, since

aP + bQ > 0

and

LA(aP + bQ) = (aP + bQ)A+AT (aP + bQ)

= a(PA+ATP ) + b(QA+ATQ)

< 0,

by linearity and that fact that the positive definite matrices form a convex cone. The

following result follows from Theorem 3.2.2 (Lyapunov’s Theorem).

Proposition 4.3.2. Suppose A ∈ Rn×n. Then PA is nonempty if and only if A is

Hurwitz.

The problem of finding a CQLF for the collection of matrices {A1, ..., Am} is

equivalent to determining whether or not PA1 ∩ ...∩PAm is nonempty. Observe now

that if A ∈ Rn×n is invertible, the cones PA and PA−1 are identical. For if P ∈ PA,

then

PA+ATP < 0
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which implies that

(AT )−1P + PA−1 = (A−1)T (PA+ATP )A−1 < 0,

by congruence, i.e. PA ⊂ PA−1 . The result then follows by symmetry. Also observe

that if R ∈ Rn×n is nonsingular we have

PR−1AR = RTPAR ≡ {RTPR : P ∈ PA}.

These two observations result in the following:

Proposition 4.3.3. Suppose M = {A1, ..., Am} is a family of Hurwitz matrices.

Then the following are equivalent:

(i) There exists a CQLF for the systems given by the elements ofM

(ii) There exists a CQLF for the systems given by the the elements of {A−1
1 , ..., A−1

m }.

(iii) There exists a CQLF for the systems given by the elements of {R−1A1R, ..., R
−1AmR}.

The third condition in the last proposition says that CQLF existence is invariant

under a change of coordinates.

It is possible in certain special cases to guarantee the existence of a CQLF for

a set of systems generated by M = {A1, ..., Am}. It has been shown [47] that if

all matrices in M are in upper triangular form, that there exists a CQLF for the

systems generated byM. In addition, the matrix P which defines the CQLF can be

chosen to be diagonal. We also have the following similar result: [40]

Theorem 4.3.2. The set of systems generated by M has a CQLF if there exists a

nonsingular matrix U ∈ Cn×n such that every U−1AiU is upper (lower) triangular

for Ai ∈M.

Note that the matrix U in this theorem can be complex.
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Recall that the matrix A ∈ Rn×n is normal if AAT = ATA. The matrix S ∈ Rn×n

is skew-symmetric if ST = −S.

Now, the system ẋ(t) = Ax(t) has the Lyapunov function V (x) = xTx if

LA(I) = AT +A < 0, (4.13)

where I is the n×n identity matrix. So if the collectionM is composed of matrices

which satisfy (4.13), then the function V (x) = xTx is a CQLF for the switched

system generated byM. (4.13) is satisfied if A is normal and Hurwitz. Also, given a

matrix A ∈ Rn×n which satisfies (4.13), we have that A+ S must also satisfy (4.13)

where S ∈ Rn×n is skew-symmetric.

4.4 Numerical Methods

Given a family {A1, ..., Am} of Hurwitz matrices, one advantage of considering com-

mon quadratic Lyapunov functions V (x) = xTPx in which the matrix P = P T > 0

satisfies

ATi P + PAi < 0 (4.14)

is that there are efficient numerial methods for solving such inequalities. (4.14)

is an example of a system of linear matrix inequalities (LMI). We call the system

(4.14) feasible if a solution P exists and infeasible otherwise. So if one wants to

check whether or not a set of Hurwitz matrices possesses a CQLF, it amounts to

checking whether or not a system of LMIs is feasible. To do this, there are solvers

for LMIs built on convex optimisation algorithms which are capable of solving this

kind of problem [47], [35]. Conversely the following result can be used to verify the

non-existence of a CQLF for a system of LTIs.

Proposition 4.4.1. Suppose {A1, ..., Am} is a family of Hurwitz matrices. A CQLF

does not exist for the LTI systems generated by the matrices Ai, 1 ≤ i ≤ m if and only
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if there exist positive semi definite matrices Ri, 1 ≤ i ≤ m, not all zero, satisfying

m∑
i=1

(ATi Ri +RiAi) ≥ 0

There are two main disadvantages associated with using a numerical approach.

First of all, LMIs do not provide much insight into why a CQLF may or may not

exist for a set of LTI systems. Secondly, methods based on solving LMIs are not very

effective if m is very large, or if there are an infinite number of subsystems.

4.5 Linear Copositive Lyapunov Functions and

the Stability of Switched Positive Systems.

Our discussion to date has been on general switched systems. Let us now discuss

results which are specific to positive systems. Recently, several authors have studied

copositive Lyapunov functions for such systems [30], [37]. Most of this has been on

linear or quadratic functions [6], [18], [21] . Let us recall the definition of a common

linear copositive Lyapunov function [30].

Definition 4.5.1. Suppose A1, ..., Am ∈ Rn×n is Metzler. V : Rn → R given by

V (x) = vTx. V (x) is a common linear copositive Lyapunov function for the positive

LTI system ẋ = Ax, where A ∈ {A1, ..., Am}, if and only if

(i) v � 0;

(ii) ATi v � 0, 1 ≤ i ≤ m.

Now we shall consider a set of linear positive systems, and quote necessary and

sufficient conditions for the existence of a common linear copositive Lyapunov func-

tion. Let us first look at state dependent switching systems. Assume that the state

space may be partitioned using simplicial cones, of which we now provide the defi-

nition:
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Definition 4.5.2. A simplicial cone C in Rn is a cone generated by a non singular

generating matrix Q ∈ Rn×n as follows:

C := {x : x =
n∑
i=1

αiQ
(i), αi ≥ 0, i = 1, ...n}, (4.15)

where Q(i) is the ith column of Q.

We now consider a set of such cones Cj with nonnegative generating matrices Qj ,

j = 1, ...N . We quote the following result from [30], which leads directly to elegant

conditions for the existence of a common linear copositive Lyapunov function. This

result may be applied to state dependent systems of the form

ẋ(t) ∈ A(x),

where

A(x) = {Ajx : x ∈ Cj}.

Theorem 4.5.1. Suppose we are given m Metzler and Hurwitz matrices, A1, ...Am ∈

Rn×n and m closed simplicial cones Cj, as defined in (4.15), such that

Rn+ =
m⋃
j=1

Cj ,

Then precisely one of the following statements is true:

(i) There is a positive vector v ∈ Rn such that vTAjx < 0 for all non-zero x ∈ Cj

and j = 1, ...,m.

(ii) There are vectors wj ≥ 0 not all zero such that
m∑
j=1

Bjwj ≥ 0, where Bj := AjQj.

The authors of [30] then move on from state dependent switching to discuss

arbitrarily switching systems. A special case of the previous result is when Qj is the

identity matrix for 1 ≤ j ≤ m, which is the case when we are looking for a common

linear copositive Lyapunov function for a finite set of positive LTI systems. They

provide the following lemma which is used in the proof of the main result of the

paper [30].
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Lemma 4.5.1. Given m Metzler and Hurwitz matrices A1, ..., Am ∈ Rn×n, the fol-

lowing statements are equivalent:

(i) There is a non-zero v ≥ 0 such that vTAj ≤ 0 for all j = 1, ...,m.

(ii) There are no wj � 0 such that
m∑
j=1

Ajwj = 0.

Before stating the next result we need some additional notation. Denote the set

of all possible mappings

σ : {1, ...n} → {1, ...,m}

by Sn,m for all n,m ∈ N \ {0}. Next given matrices Aj , 1 ≤ j ≤ m, construct the

following matrices:

Aσ(A1, ..., Am) :=

(
A

(1)
σ(1) A

(2)
σ(2) . . . A

(m)
σ(m)

)
,

where σ ∈ Sn,m and A(i)
σ(i) is the ith column of the matrix Aσ(i).

Theorem 4.5.2. Given a finite number of Hurwitz and Metzler matrices A1, ..., Am ∈

Rn×n, the following statements are equivalent:

(i) There is a strictly positive vector v ∈ Rn such that vTAj � 0, 1 ≤ j ≤ m.

(ii) Aσ(A1, ..., Am) is Hurwitz for all σ ∈ Sn,m.

This result tells us when a switched system formed by m subsystems has a com-

mon linear copositive Lyapunov function. Given m positive LTI systems, they will

have a common linear copositive Lyapunov function V (x) = vTx if and only if

Aσ(A1, ..., Am) is Hurwitz for all σ ∈ Sn,m. Note that V (x) = vTx decreases every-

where.

Example 4.5.1. To illustrate this result, we include the following numerical example
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from [30]. Suppose we have three Metzler and Hurwitz matrices given by

A1 =


−12 6 6

1 −10 2

5 3 −10



A2 =


−12 4 0

6 −10 9

4 3 −13



A3 =


−9 2 8

6 −10 4

3 0 −11

 .

Aσ(A1, ..., A3) is Hurwitz for all σ ∈ S3,3 so we can conclude that a switched linear

postive system composed of A1, A2 and A3 will be asymptotically stable under arbi-

trary switching.
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Chapter 5

Some new results in piecewise

monotone systems.

In Chapter 2, we discussed monotone systems and their importance in many appli-

cations. Monotonicity is a key property of positive LTI systems and in this chapter

we investigate monotonicity for positive systems that are piecewise linear.

5.1 Introductory Remarks

Monotone systems are systems in which the flow preserves an ordering of the initial

states. As we have already seen in Chapter 3, monotonocity is a key property of

positive LTI systems and can be used to derive stability results for such systems.

The concept of monotonicity comes into its own in the case of nonlinear systems

and there exist many powerful theoretical results in this setting [49]. Monotonicity

has been used to determine the asymptotic behaviour of certain nonlinear models in

biology, for example to model the control of protein synthesis in the cell [49], and in

epidemiology and population dynamics, for example in the modelling of mutualistic
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interactions [24]. We aim to extend monotonicity results pertaining to positive LTI

systems to piecewise systems with state-dependent switching.

As has been mentioned, a monotone system is an order preserving system. More

formally, recall the system given by

ẋ(t) = f(x(t))

is monotone if

x0 ≤ y0

implies

x(t, x0) ≤ x(t, y0)

for all t ≥ 0 for which both solutions are defined.

The aim of the work in this chapter is to investigate when a piecewise linear

system is monotone. We consider switched systems composed of monotone sub-

systems. However, such switched systems are not necessarily monotone, something

which we shall elaborate on in the following discussion. We first reformulate the

Kamke conditions for a special class of piecewise smooth systems. Following on from

this, we investigate the relationship between the Kamke conditions and monotonicity.

5.2 Piecewise Monotone Systems

We will now introduce the class of piecewise monotone systems. In general, this class

is obtained by partitioning Rn+ by open regions Ωi, i = 1, ..., p, such that

Rn+ =

p⋃
i=1

Ω̄i

Ωi ∩ Ωj = ∅
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ℝ2 A

B



Figure 5.1: Bimodal system in R2.

for all i 6= j.

Dynamics in Ωi are given by

ẋ = fi(x)

where the system generated by each fi is monotone and positive. So, in particular,

each fi is cooperative in the sense described in Chapter 3. As we have seen in Chap-

ter 4, such systems often give rise to discontinuous vector fields and care is needed

in defining solutions.

5.2.1 A simple class of piecewise linear systems

We are now going to focus our attention on a simple special class of such systems.

We shall be considing linear bimodal systems in which we partition Rn+ into two

regions by means of a hyperplane through the origin, see Figure 5.1. Formally we

are considering the following type of system:

Given A,B ∈ Rn×n, with A and B Metzler, and a vector c ∈ Rn, define Ω, ΩA
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and ΩB as follows:

Ω = {x ∈ Rn+ : cTx = 0},

ΩA = {x ∈ Rn+ : cTx < 0},

ΩB = {x ∈ Rn+ : cTx > 0}.

Ω is a hyperplane through the origin. The system dynamics are governed by the

differential equation

ẋ(t) = f(x(t)) =


Ax(t) if x ∈ ΩA

Bx(t) if x ∈ Ω̄B.

(5.1)

where A,B ∈ Rn×n, and Ω̄B is the closure of ΩB, i.e.

Ω̄B = {x ∈ Rn+ : cTx ≥ 0}.

As the system (5.1) may well be discontinuous on Ω, it is important at this point

to be precise with our solution concepts.

5.3 Solution Concepts

In Chapter 4, we discussed solution concepts for state dependent switched systems

and piecewise smooth systems. In the regions ΩA and ΩB, solutions to (5.1) are

simply given by the solution to ẋ = Ax as long as the trajectory stays in ΩA, and

the solution to ẋ = Bx for as long as the solution remains in ΩB. However, we must

be careful when talking about solutions on the switching surface Ω. As discussed

above we replace (5.1) with the differential inclusion

ẋ(t) ∈ F (x(t)), (5.2)

where

F (x) = ∩ε>0co(f(x+Bε\{x})). (5.3)

67



5.3 Solution Concepts

In our case, this becomes

F (x) = co{Ax,Bx},

the closed convex hull of Ax,Bx, where x ∈ Ω, and

F (x) =


{Ax} if x ∈ ΩA

{Bx} if x ∈ ΩB.

For our setup, this means that solutions are defined as follows:

(i) If our initial conditions are in either ΩA or ΩB, then we use the standard

definition for the solution of an LTI system, i.e. if x0 ∈ ΩA or x0 ∈ ΩB, then

x(t, x0) = eAtx0 or x(t, x0) = eBtx0, for as long as we stay in ΩA or ΩB.

(ii) We must be more careful on the bounding hyperplane Ω.

(a) If solutions approach Ω from one side and leave Ω from the other side, then the

trajectory continues across the switching surface and carries on into the next region.

(b) If the vector fields on both sides of Ω are pointing towards Ω, in the sense that

cTAx > 0

cTBx < 0,

then in this case, our solution takes the form of a sliding mode. We take the convex

combination of the vector fields given by ẋ(t) = Ax(t) and ẋ(t) = Bx(t) which lies

on Ω and the trajectory continues along, confined to Ω, thus generating a sliding

mode. Dynamics on the surface are given by

ẋ = αAx+ (1− α)Bx

where we have solved

cT (αAx+ (1− α)Bx) = 0

68



5.3 Solution Concepts

ℝ2 A

B



Figure 5.2: Situation (c)

for α.

(c) Suppose the vector fields on either side of Ω are pointing away from Ω, in the

sense that

cTAx < 0

cTBx > 0

In this case, solutions are not unique. For this reason we do not consider this

situation in this thesis.

We now present a simple example of the occurence of sliding modes for our system

class in R2.

Example 5.3.1. Sliding Modes in R2.

Let cT = (1− 1). For a sliding mode to occur, we need

cTAx > 0,

cTBx < 0,

69



5.3 Solution Concepts

i.e.

(1− 1)

a11 a12

a21 a22


1

1

 > 0

(1− 1)

b11 b12

b21 b22


1

1

 < 0. (5.4)

Hence we obtain a sliding mode if

a11 + a12 > a21 + a22,

b11 + b12 < b21 + b22.

We could, for example, choose A and B as follows:

A =

−1 3

2 −1

 , B =

−1 3

5 −2

 .

5.3.1 Monotonicity for (5.1)

Now that we have discussed our solution concepts for (5.1), we can consider mono-

tonicity for this system. The fact that A and B are Metzler matrices implies that

the system is monotone in each individual operating region in the following sense.

Suppose we have x0, y0 ∈ ΩA (ΩB) with

x0 ≤ y0,

then

x(t, x0) ≤ x(t, y0)

for as long as x(t, x0), x(t, y0) ∈ ΩA (ΩB). This follows from the fact that in ΩA

(ΩB), solutions starting at x0 are given by x(t, x0) = eAtx0 (x(t, x0) = eBtx0).

However we have no guarantee that the piecewise system (5.1) will be monotone.

In particular, it can happen that x0 ∈ ΩA, y0 ∈ ΩB with

x0 ≤ y0
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but

x(t, x0) � x(t, y0),

for t ≥ 0. The following example shows that if we choose two ordered initial points,

one in ΩA and the other in ΩB, the ordering is not necessarily preserved.

Example 5.3.2. Given c = (1,−1) ∈ R2, let Ω be given as above, i.e. Ω = {x ∈

Rn+ : cTx = 0}. Define A,B ∈ R2×2 as follows:

A =

−2 0

1 −2



B =

1 0

3 −2


Let the dynamics be governed by

ẋ(t) =


Ax(t) if x ∈ ΩA

Bx(t) if x ∈ Ω̄B.

. (5.5)

Since A and B are Metzler, the two subsystems given by ẋ(t) = Ax(t) on ΩA, ẋ(t) =

Bx(t) on ΩB are locally monotone in the sense we described earlier. Now, choose

x0 = (1, 5
4) ∈ ΩA and y0 = (1, 3

4) ∈ ΩB as our initial conditions. We have x0 ≥ y0.

However, Ax0 = (−2,−1
2) and By0 = (1, 3

2), and it is clear from the direction of the

vector field at these two points that the system (5.5) cannot be monotone. See Figure

5.3.

The above discussion gives sense to the following question. Under what conditions

will the piecewise smooth system (5.1) be monotone? The remainder of this chapter

will be centred on investigating this question.
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Figure 5.3: Matlab simulation for Example 5.3.2.

5.4 The Kamke Conditions

Let us now divert our attention to the Kamke conditions. For smooth systems, the

Kamke conditions are equivalent to monotonocity [49]. For the convenience of the

reader, we now recall the formal definition of the Kamke conditions for smooth sys-

tems.

Definition 5.4.1. If f : Rn 7→ Rn is continuously differentiable on some open set

D ⊂ Rn, we say that the Kamke conditions are satisfied if for all x, y ∈ D with x ≥ y

and xi = yi for some i ∈ {1, ..., n} we have (f(x))i ≥ (f(y))i.

We wish to reformulate these conditions for the system (5.1). Our reformulation

is as follows:

5.4.1 The P-K conditions

Definition 5.4.2. We say (5.1) satisfies the P-K conditions (Piecewise-Kamke) if

the following hold:

(i): x ∈ ΩA and y ∈ ΩB, x ≤ y and xi = yi implies

(Ax)i ≤ (By)i.
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(ii) x ∈ ΩA and y ∈ ΩB, x ≥ y and xi = yi implies

(Ax)i ≥ (By)i.

Note that as both A and B are Metzler, if x and y are either both in ΩA (or

ΩB) then the Kamke conditions, as given in Definition 5.4.1, hold. Also note that if

follows from the P-K conditions that x ≤ y, xi = yi, x, y ∈ Rn+ implies

fi(x) ≤ fi(y).

We next investigate what restrictions must be placed on the matrices A and B to

ensure that the P-K conditions hold for the system (5.1). In order to do this, we

define the sets Ic0, Ic+ and Ic− as follows.

Definition 5.4.3. Given a vector c ∈ Rn, form the following sets:

Ic0 := {i ∈ {1, ...n} : ∃j1, j2 s.th. j1 6= i, j2 6= i, j1 6= j2, cj1cj2 < 0},

Ic+ := {i ∈ {1, ...n} : cj ≥ 0, j 6= i},

Ic− := {i ∈ {1, ...n} : cj ≤ 0, j 6= i}

Let us clarify this definition with the following examples:

Example 5.4.1. (i) c = (3,−5, 2,−9). Then

Ic0 = {1, 2, 3, 4}, (5.6)

Ic+ = Ic− = ∅. (5.7)

(ii) c = (4, 5, 2,−4). Then

Ic0 = {1, 2, 3}, (5.8)

Ic+ = {4}. (5.9)

We now state and prove the following proposition which tells us precisely when

the P-K conditions hold for (5.1). We assume that there exists x � 0 such that

cTx = 0. This means that for i ∈ Ic+, there exists j 6= i with cj > 0. Also, for i ∈ Ic−,

there exists j 6= i with cj < 0.
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5.4 The Kamke Conditions

Proposition 5.4.1. The system (5.1) above satisfies the P-K conditions if and only

if the following three conditions are satisfied:

(i) ∀x ∈ Ω, i ∈ Ic+ we have (Ax)i ≤ (Bx)i;

(ii) ∀x ∈ Ω, i ∈ Ic− we have (Ax)i ≥ (Bx)i;

(iii) ∀x ∈ Ω, i ∈ Ic0 we have (Ax)i = (Bx)i.

Proof. Assume that (i), (ii), and (iii) hold. We shall show the the P-K conditions in

Definition 5.4.2 hold. There are two cases to consider.

Case (i) Suppose we have x ∈ ΩA, y ∈ ΩB with x ≤ y and xi = yi. In this case

we have

cTx < 0

cT y > 0

which implies

cT (y − x) = c1(y1 − x1) + ...+ cn(yn − xn) > 0.

This implies that i ∈ Ic+ ∪ Ic0. To see this, note that if i ∈ Ic− this would mean

that

cT (y − x) = c1(y1 − x1) + ...+ ci(yi − xi)︸ ︷︷ ︸
=0

+...+ cn(yn − xn) ≤ 0.

Since i ∈ Ic+ ∪ Ic0, it follows that

(Az)i ≤ (Bz)i (5.10)

for any z ∈ Ω.

Write

x(α) = (1− α)x+ αy (5.11)

= x+ α(y − x) (5.12)
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5.4 The Kamke Conditions

where α ∈ [0, 1]. By continuity, there exists some α0 ∈ (0, 1) such that x(α0) ∈ Ω.

By (5.10) we have

(Ax(α0))i ≤ (Bx(α0))i.

Claim 1

(Ax)i ≤ (Ax(α0))i.

Proof of Claim 1: By (5.12), it follows that

(Ax(α0))i = (Ax)i + α(A(y − x))i.

We also have (y−x)i = 0 and (y−x)j ≥ 0 for j 6= i. Since A is Metzler, this implies

that

α(A(y − x))i ≥ 0.

Hence

(Ax)i ≤ (Ax(α0))i,

which proves the claim.

Claim 2

(Bx(α0))i ≤ (By)i.

Proof of Claim 2: Assume (Bx(α0))i > (By)i.

Then by (5.11) it follows that

α0(By)i + (1− α0)(Bx)i > (By)i.

Hence

(1− α0)(Bx)i > (1− α0)(By)i.

Dividing across by 1− α0 and noting that 1− α0 > 0 we get

0 > (B(y − x))i
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which is a contradiction since (y − x)i = 0, (y − x)j ≥ 0 for j 6= i and B is Metzler.

So

(Bx(α0))i ≤ (By)i,

which proves the claim.

Using Claim 1 and Claim 2 it follows that

(Ax)i ≤ (Ax(α0))i ≤ (Bx(α0))i ≤ (By)i,

i.e. the P-K conditions hold.

Case (ii) Suppose we have x ∈ ΩA, y ∈ ΩB with x ≥ y and xi = yi. Again we

have

cTx < 0

cT y > 0

which implies

cT (y − x) = c1(y1 − x1) + ...+ cn(yn − xn) > 0.

Hence i ∈ Ic− ∪ Ic0. For if we had i ∈ Ic+ this would mean that

cT (y − x) = c1(y1 − x1) + ...+ ci(yi − xi)︸ ︷︷ ︸
=0

+...+ cn(yn − xn) ≤ 0,

since yj − xj ≤ 0 for all j.

Since i ∈ Ic− ∪ Ic0, it follows that

(Az)i ≥ (Bz)i (5.13)
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for any z ∈ Ω.

Write

x(α) = (1− α)x+ αy (5.14)

= x+ α(y − x) (5.15)

where α ∈ [0, 1]. By continuity, there exists some α0 ∈ (0, 1) such that x(α0) ∈ Ω.

By (5.10) we have

(Ax(α0))i ≥ (Bx(α0))i.

Claim 3

(Ax)i ≥ (Ax(α0))i.

Proof of Claim 3: The argument is identical to the argument for Claim 1.

Claim 4

(By)i ≤ (Bx(α0))i.

Proof of Claim 4: The argument is identical to the argument for Claim 2.

By Claim 3 and Claim 4 it follows that

(Ax)i ≥ (By)i,

i.e. the P-K conditions hold.

Conversely, let us assume that the P-K conditions hold. We shall now consider

each case in turn.

Case (i) i ∈ Ic+.
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Let v = (v1, v2, ..., vi−1, 0, vi+1, ..., vn) ∈ Rn+ where vj > 0 if i 6= j. Suppose

z ∈ Ω. For δ > 0, let us define xδ and yδ as follows.

xδ = z − δv

yδ = z + δv.

(5.16)

Then, for all δ > 0 we have

cTxδ = cT (z − δv) = −δcT v < 0

cT yδ = cT (z + δv) = +δcT v > 0

So xδ ∈ ΩA, yδ ∈ ΩB, xδ ≤ yδ and (xδ)i = (yδ)i.

Since the P-K conditions hold, we conclude that (Axδ)i ≤ (Byδ)i. Letting δ → 0 we

get (Az)i ≤ (Bz)i.

Case (ii) i ∈ Ic−.

Let v = (v1, v2, ..., vi−1, 0, vi+1, ..., vn) ∈ Rn+. Suppose z ∈ Ω. For δ > 0, let us

define xδ and yδ as follows.

xδ = z − δv

yδ = z + δv.

(5.17)

Then, for all δ > 0 we have

cTxδ = cT (z − δv) = −δcT v > 0

cT yδ = cT (z + δv) = +δcT v < 0

So yδ ∈ ΩA, xδ ∈ ΩB, xδ ≤ yδ and (xδ)i = (yδ)i.

Since the P-K conditions hold, we conclude that (Ayδ)i ≥ (Bxδ)i. Letting δ → 0 we
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get (Az)i ≥ (Bz)i.

Case (iii) i ∈ Ic0.

Suppose z ∈ Ω. For δ > 0, let us define xδ and yδ as follows.

xδ = z − δv

yδ = z + δv.

(5.18)

Furthermore, choose v ≥ 0 such that vi = 0, vj = 0 whenever cj < 0, and vj > 0

otherwise.

Then

cTxδ = −δcT v < 0

cT yδ = +δcT v > 0

.

So we have xδ ∈ ΩA and yδ ∈ ΩB with (xδ)i = (yδ)i. Therefore (Axδ)i ≤ (Byδ)i

since the Kamke conditions hold. Letting δ → 0 we get (Az)i ≤ (Bz)i. (*)

Finally, suppose vi = 0 and vj = 0 whenever cj > 0.

Then

cTxδ = −δcT v > 0

cT yδ = +δcT v < 0

.

So we have xδ ∈ ΩB and yδ ∈ ΩA with (xδ)i = (yδ)i. Therefore (Axδ)i ≥ (Byδ)i

since the Kamke conditions hold. Letting δ → 0 we get (Az)i ≥ (Bz)i. (**)

79



5.4 The Kamke Conditions

By (*) and (**), we have (Az)i = (Bz)i.

Example. We will now use Proposition 5.4.1 to find an example of a simple three-

dimensional bimodal system which satisfies the P-K conditions.

Let

c =


1

−1
2

3
4

 .

Let us consider the region Ω defined by

Ω = {x ∈ Rn+ : cTx = 0} (5.19)

which divides Rn+ into two regions, ΩA and ΩB.

Let A =


−1 1 1

1 −1 2

2 1 −3

.

I+
c = {2} and I0

c = {1, 3}.

For the PK-conditions to be satisfied, the matrix B must satisfy

(Ax)1 = (Bx)1 (5.20)

(Ax)2 ≤ (Bx)2 (5.21)

(Ax)3 = (Bx)3 (5.22)

for x ∈ Ω.
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Write B(i) for the ith row of the matrix B, i ∈ {1, 2, 3}. Define B(1) and B(3) as

B(1) = A(1) + tcT (5.23)

B(3) = A(3) + tcT , (5.24)

where t ∈ R.

Hence (5.20) and (5.22) above will be satisfied.

Finally, write B(2) = tcT + v where v > 0. This will ensure that (5.21) above is

satisfied.

So if we choose t = 1/2 and p =

(
1 1/2 1/8

)
we getB =


−1/2 7/4 11/8

5/2 −15/4 5/2

5/2 3/4 −3/4


and using our results we conclude that the system defined as in (1) above, with the

matrices A and B as in this example, satisfies the P-K conditions.

5.5 Monotonicity of Piecewise Smooth Systems

In this section we investigate the relationship between the P-K conditions and mono-

tonicity for systems such as (5.1). Our first result shows that the P-K conditions are

necessary for (5.1) to be monotone.

5.5.1 Necessity of P-K conditions

Proposition 5.5.1. Suppose the dynamical system given by (5.1) is monotone. Then

the P-K conditions hold.

Proof. We will now show that if (5.1) is monotone then the P-K conditions must

hold. We will do this by assuming that the P-K conditions do not hold and this will
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mean that monotonicity is violated.

Assume the P-K conditions do not hold.

Case (i): Suppose there exist x ∈ ΩA, y ∈ ΩB with

x ≤ y

xi = yi

such that

(Ax)i > (By)i.

Next write

d(t) := xi(t, x)− xi(t, y).

d is smooth (C1) in (0, δ) for sufficiently small δ > 0. We also have

d(0) = 0,

as xi = yi, and

ḋ(0) = (Ax)i − (By)i > 0.

But

ḋ(0) = lim
t→0

d(t)− d(0)

t
= lim

t→0

d(t)

t
> 0

which means that

d(t) > 0

for t ∈ (0, δ1) for some δ1 > 0. i.e.

xi(t, x) > xi(t, y)

for t ∈ (0, δ1). This means that (5.1) is not monotone. Thus, if (5.1) is monotone,

part (i) of the PK-conditions must hold. The argument to show that (ii) is necessary

is identical.
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5.5.2 Sufficient conditions for monotonicity of (5.1) in

certain cases.

Proposition 5.4.1 implies that if

I0
c = {1, 2, ..., n}

the P-K conditions are equivalent to Ax = Bx on Ω. Note, this can only happen if

n ≥ 4.

As n increases, the number of vectors c for which this happens increases. Further-

more, Proposition 5.4.1 tells us that the P-K conditions are automatically satisfied

when we have equality on the bounding hyperplane. We shall focus our attention

now on the case where

Ax = Bx

for all x such that

cTx = 0.

As this makes f continuous, the concept of solution becomes much simpler.

5.6 Monotonicity and Continuity

5.6.1 Lipschitz Continuity of (5.1)

We shall show that under the assumption

Ax = Bx

for x ∈ Ω, f in (5.1) is Globally Lipschitz.
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Consider (5.1) and suppose that x, y ∈ Rn. Let us examine ‖f(x)− f(y)‖ where

‖ − ‖ is the l2 norm (we could choose any norm as we are in a finite dimensional

linear space).

Case 1: x, y ∈ ΩA.

‖f(x)− f(y)‖ = ‖Ax−Ay‖ ≤ ‖A‖‖x− y‖,

where ‖A‖ is the induced matrix norm.

Case 2: x, y ∈ ΩB.

‖f(x)− f(y)‖ ≤ ‖B‖‖x− y‖.

Case 3: x ∈ ΩA, y ∈ ΩB (or vice-versa).

There exists α ∈ [0, 1] such that

z := x+ α(y − x) ∈ Ω.

We also have

x = z + α(x− y)

y = z + (1− α)(y − x)

so that x, y, z are collinear.

Also

x− z = α(x− y)

y − z = (1− α)(y − x).
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Consider ‖f(x)− f(y)‖.

‖f(x)− f(y)‖ ≤ ‖Ax−Az‖+ ‖Bz −By‖

≤ ‖A‖‖x− z‖+ ‖B‖‖z − y‖

≤ K(‖x− z‖+ ‖y − z‖)

= K‖x− y‖,

where

K = max(‖A‖, ‖B‖).

This shows that (5.1) is globally Lipschitz. This guarantees the existence and unique-

ness of solutions of (5.1) defined on [0,∞) [8].

5.6.2 Solutions of (5.1) - A closer look.

Let us now look more closely at the form the solution of (5.1) takes under the

assumption that

Ax = Bx

for x ∈ Ω.

Suppose we have an initial condition x0 ∈ ΩA. There exists T > 0 such that

dynamics are given by ẋ(t) = Ax(t) for t ∈ [0, T ] and the corresponding solution is

given by x(t, x0) = eAtx0. This will remain the case until x(t, x0) hits the hyperplane,

i.e. until such time as

cTx(t, x0) = 0.

Similarly, if we have an initial condition x0 ∈ ΩB then dynamics will evolve ac-

cording to ẋ(t) = Bx(t) with corresponding solution x(t) = eBtx0 for as long as the

trajectory remains in ΩB.
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By assuming that Ax = Bx on Ω, we considerably simplify the situation for

initial conditions on the boundary. First note that a conventional sliding mode such

as in Figure 4.2 cannot occur. For, consider x0 ∈ Ω. According to the conventional

definition for sliding modes, for a sliding mode to occur, we would need to have

cTAx0 6= 0 cTBx0 6= 0

cTAx0 > 0 cTBx0 < 0.

However this cannot happen since we have assumed that Ax = Bx for x ∈ Ω.

We next present some technical results to highlight solutions of (5.1) when x0 ∈

Ω.

Proposition 5.6.1. Suppose x0 ∈ Ω.

Define

k + 1 = min{p ≥ 0 : cTApx0 6= 0}.

Then (i) if k <∞,

Apx0 = Bpx0

for 0 ≤ p ≤ k + 1.

(ii) if k =∞ then

eAtx0 = eBtx0 ∀ t ∈ R

eAtx0 ∈ Ω ∀t ∈ R

Proof. (i) If k <∞, then

cTx0 = cTAx0 = cTA2x0 = ... = cTAkx0 = 0,

i.e.

Apx0 ∈ Ω
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for 0 ≤ p ≤ k.

Since x0 ∈ Ω, we have

Ax0 = Bx0.

But we also have Ax0, Bx0 ∈ Ω. This implies

A2x0 = B2x0,

and it follows inductively that

Apx0 = Bpx0

for 0 ≤ p ≤ k + 1.

(ii) If k =∞, then

cTApx0 = 0 (5.25)

for all p. It follows from the same argument as in (i) that

Apx0 = Bpx0,

for 0 ≤ p ≤ ∞, and hence

x0 +Atx0 +
(At)2

2!
x0 + ... = x0 +Btx0 +

(Bt)2

2!
x0 + ...,

i.e.

eAtx0 = eBtx0

for all t ∈ R.

Furthermore, it follows from (5.25) and by looking at the power series expansions

of eAtx0 and eBtx0 that

cT eAtx0 = cT eBtx0 = 0

for all t ∈ R. Hence

eAtx0 ∈ Ω
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for all t ∈ R.

Comment: From our previous result, if k =∞, it follows that

eAtx0 = eBtx0

for all t and

eAtx0 ∈ Ω,

where x0 ∈ Ω. In the next result, we consider the case where k <∞.

Proposition 5.6.2. Let k be defined as in Propositon 5.6.1. Suppose x0 ∈ Ω and

k <∞. Assume

cTAk+1x0 > 0.

Then

cT eAtx0 > 0

and

cT eBtx0 > 0

for t ∈ (0, δ), for some δ > 0.

Proof. Taking a power series expansion of cT eAtx0 we obtain

cT eAtx0 = cTx0 + cTAtx0 + cT
(At)2

2!
x0 + ...+ cT

(At)k

k!
x0 + cT

(At)k+1

(k + 1)!
x0 + ...

= cT
(At)k+1

(k + 1)!
x0 + cT

(At)k+2

(k + 2)!
x0...

= tk+1(cT
(A)k+1

(k + 1)!
x0 + t(cT

(A)k+2

(k + 2)!
x0 + ...)). (5.26)

We can choose δ1 > 0 so that

cT
(A)k+1

(k + 1)!
x0 > t(cT

(A)k+2

(k + 2)!
x0 + ...),
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for t ∈ (0, δ1), and so

cT eAtx0 > 0.

Using Proposition 5.6.1 the same argument shows that there exists δ2 > 0 such

that for t ∈ (0, δ2),

cT eBtx0 > 0.

Choose δ = min(δ1, δ2). Then

cT eAtx0 > 0,

cT eBtx0 > 0

for all t ∈ (0δ).

The form of solutions of (5.1) for intitial conditions on Ω is now clear.

(i) If k =∞, then the trajectory remains on Ω for all time t.

(ii) If k <∞ and cTAk+1x0 < 0, then the trajectory moves into ΩA.

(iii) If cTAk+1x0 > 0, the the trajectory moves into ΩB.

5.6.3 Monotonicity of (5.1)

We now prove that if A,B ∈ Rn×n are Metzler, then under the assumption

Ax = Bx

on Ω, (5.1) is monotone. First recall that

x ≤ y

xi = yi
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implies

fi(x) ≤ fi(y),

and that

ẋ(t, x0) = f(x(t, x0) (5.27)

for all t ≥ 0.

Proposition 5.6.3. Let A,B ∈ Rn×n be Metzler. Suppose the P-K conditions hold

for (5.1) and Ax = Bx for x ∈ Ω. Then (5.1) is monotone.

Proof. Suppose we have x0, y0 ∈ Rn+ with

x0 ≤ y0.

For δ > 0, define gδ as

gδ(x) = f(x) + δv,

where v � 0. Let yδ be the solution of

ẏδ(t) = gδ(yδ(t)),

yδ(0) = y0 + δv.

Let x(t, x0) be the solution of

ẋ(t, x0) = f(x(t, x0)),

x(0) = x0.

Clearly

x(0, x0)� yδ(0).

We claim that

x(t, x0)� yδ(t)

for all t > 0.
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Suppose our claim is false. Then there exists t0 > 0 such that

xi(t0, x0) = (yδ)i(t0), for some i,

x(t0, x0) ≤ yδ(t0),

x(s, x0) � yδ(s)

for 0 ≤ s ≤ t0.

Since

xi(s, x0)− (yδ)i(s) < 0

for 0 ≤ s < t0, it follows that

d

dt
(xi(t0, x0)) ≥ d

dt
((yδ)i(t0)),

i.e.

fi(x(t0, x0)) ≥ fi(yδ(t0)) + δvi.

Since the P-K conditions hold we must have

fi(x(t, x0)) ≤ fi(yδ(t0)) (5.28)

< fi(yδ(t0)) + δvi (5.29)

which is a contradiction.

Hence,

x(t, x0)� yδ(t)

for all t > 0.

Now, let δ → 0. As f and gδ are Lipschitz for any δ > 0, it follows from

the continuous dependence of solutions on parameters and initial conditions (see

Theorem 55, Appendix C of [50]) that

x(t, x0) ≤ x(t, y0).

This completes the proof.
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Finally for this section, we consider some implications of Proposition 5.6.3.

Lemma 5.6.1. If Ax = Bx on Ω, then A and B differ by a rank 1 matrix.

Proof. Suppose

Ax = Bx

for all x ∈ Rn+ such that cTx = 0. Then

(A−B)x = 0

for all x satisfying cTx = 0. The kernel of the matrix A − B is the hyperplane

defined by cTx = 0 and is of dimension n− 1. Therefore the rank of A− B is 1 by

the rank-nullity theorem. Any rank 1 matrix can be written as

xyT

for vectors x, y ∈ Rn. Since the kernel of A−B is given by

{x : cTx = 0},

it follows that

A−B = bcT

for some vector b ∈ Rn.

Note also, that if A and B differ by a rank 1 matrix of the form bcT for some

b ∈ Rn, i.e.

A = B + bcT ,

then it follows that

Ax = (B + bcT )x = Bx+ bcTx = Bx (5.30)

for x such that cTx = 0.

Based on this discussion, we can now state the following proposition:
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Proposition 5.6.4. Let A,B ∈ Rn×n be Metzler. If B = A+bcT , then the piecewise

system (5.1) is monotone.

Furthermore, in this case, we can add to Proposition 5.6.4, and state the following

result:

Proposition 5.6.5. Let A,B ∈ Rn×n be Metzler. If Ic0 = {1, ..., n}, (5.1) is mono-

tone if and only if there exists a vector b such that B = A+ bcT .

Proof. If B = A+ bcT , (5.1) is monotone by Proposition 5.6.5.

Conversely, if (5.1) is monotone then Proposition 5.5.1 implies that the P-K

conditions hold. It follows from Proposition 5.4.1 that Ic0 = {1, ..., n} and that

Ax = Bx,

for x ∈ Ω. Lemma 5.6.1 now gives the result.

Finally, we construct a system which according to Proposition 5.6.5 is monotone.

Example 5.6.1. A piecewise linear system in R4 which is monotone.

Let cT =

(
1 −1 2 −2

)
so that Ic0 = {1, 2, 3, 4}.

Define A as

A =



−1 1 2 3

1 −2 1 2

1 2 −1 1

1 2 3 −3


.
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5.6 Monotonicity and Continuity

Let

b =



1
2

1
4

1
3

1
2


.

Hence, if

B = A+ bcT =



−3
2

3
2 3 2

3
4

−7
4

3
2

3
2

2
3

7
3

−1
3

1
3

1
2

5
2 4 −4


,

then the system (5.1) is monotone.
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Chapter 6

Conclusion

In this Chapter, we summarise and briefly discuss the work done in the thesis. We

then outline various open problems which provide scope for future research in this

area.

6.1 Concluding Remarks

Non-smooth systems occur ubiquitously in applications ranging from engineering

problems to biological models. The motivation for this thesis was to investigate the

monotonicity properties of piecewise smooth systems. In particular, we considered

the following question. Given a state-dependent switched linear system in which each

of the component systems is monotone, what can we say about the monotonicity of

the whole system?

To address this, in Chapters 2-4 we discussed the mathematics behind positive

LTI systems and switched systems, outlining some of the major results in these areas

and drawing from some more recent work, such as [30], [37]. In Chapter 3, we also

discussed monotone systems and indicated how monotonicity can be used in deriv-

ing stability results for such systems. We also discussed the Kamke conditions and
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6.2 Directions for Future Work

quoted an important result from [49] which states that the Kamke conditions are

equivalent to monotonicity for smooth systems. In Chapter 4, we highlighted some

of the issues which can arise in the study of state-dependent switched linear systems.

In particular, we described how solutions for such systems are defined.

In Chapter 5, our aim was to introduce new results pertaining to the monotonicity

of state-dependent switched linear systems. For simplicity, we considered a bimodal

system in which the state-space was partioned via hyperplane through the origin.

Dynamics in this setting were given by (5.1). We extended the Kamke conditions to

take into account this new setting, and in doing so, formulated the P-K conditions

(Piecewise-Kamke) for (5.1). We then showed in Proposition 5.5.1 that the P-K

conditions were necessary for (5.1) to be monotone. Our next goal was to provide

a simple algebraic characterisation of the P-K conditions which we succeeded in

doing with Propostion 5.4.1. We next showed in Proposition 5.6.3, (5.1) is monotone

provided that the vector fields agree on the separating hyperplane. This implied that

for certain hyperplanes, continuity of (5.1) is equivalent to monotonicity. The work

described in Chapter 5 gives rise to many interesting questions which could become

the focus for future research. We discuss some of these in the next section.

6.2 Directions for Future Work

The first natural extension to the work here is to determine whether or not the P-K

conditions are equivalent to monotonicity in general. We have shown this to be true

when the hyperplane is defined by a vector c with Ic0 = {1, ..., n}. This ruled out

sliding modes, which made things considerably simpler. A more general approach

would have to take into account sliding modes, as described in Chapter 4. This intro-

duces technical difficulties arising from the form of solutions to (5.1). In particular,

results from the study of Differential Inclusions guarantee the existence of solutions
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6.2 Directions for Future Work

satisfying the inclusion almost everywhere. The possibility that a solution doesn’t

satisfy (5.1) at all times t creates potential problems for the argument used in the

proof of Proposition 5.6.3.

Another extension would be to generalise the form of the bounding hyperplane.

General hyperplanes, of the form

cTx+ b = 0,

where b 6= 0, which do not go through the origin could be considered. Indeed, one

could consider more general surfaces for partitioning Rn+, and not necessarily hy-

perplanes, and investigate the monotonicity properties of systems whose operating

regions are defined by these surfaces.

Thus far, we have only been considering bimodal systems. However, many sys-

tems which occur in practical applications are multimodal in nature, such as Exam-

ples 2.2.2, 2.2.3. Furthermore, the bounding hyperplanes in these examples do not

go through the origin so it is important that results such as Proposition 5.6.3 are

extended to take such situations into account.

Finally, one could investigate whether or not the results presented in Chapter 5

could be extended to nonlinear state-dependent switched systems.
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