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Abstract: 
 
In this thesis, we consider the effectiveness of Differential Evolution as a computational algorithm in 

the context of spare part inventory optimisation in a two-echelon supply chain setting.  The study of DE 

in application to supply chain planning is limited; thus, we present a well-known hard discrete non-

linear stochastic optimisation problem to determine the inventory investment for a two-echelon supply 

chain system.  The underlying optimisation problem is notoriously difficult since it has discrete 

variables and is combinatorial in nature.  We assume the best-in-class algorithm in the field of 

Operations Research to be the optimum optimisation algorithm for the problem under study.  We aim 

to determine the accuracy of DE in generating to the best-in-class optimum solutions for the problem.  

We select DE control parameters that best fit the problem and select two DE Algorithm variants for the 

analysis.  We create a series of complex conditions in which we expect DE to achieve the optimum 

solutions and present our case for comparison to the best-in-class method.  We show specific 

enhancements to the DE algorithm to provide a robust method of achieving the optimum solutions 

unique to the problem under study.  In addition, we derive conclusions on the scalability of DE and 

which DE algorithm is the preferred algorithm for the problem under study.  Further, we formulate 

conclusions under which problem conditions; each DE Algorithm is best suited to achieve the optimum 

solutions and which DE Algorithm is comparable to the best-in-class analytical method.  Finally, we 

present areas of further research for the application of DE in the context of inventory supply chain.   
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Chapter 1 
 

1 Introduction 
 
 
Differential Evolution (DE) is a powerful, easy to use, fast, reliable global optimisation algorithm for 

tackling difficult optimisation problems.  It is ideal for researchers who need a robust optimisation 

algorithm without the need for expertise in the field of evolutionary algorithms.  In this thesis, we use 

DE to optimise a common model in the domain of supply chain planning and distribution.  The model 

is a multi-echelon system comprising of one central warehouse and multiple local warehouses. See 

Figure 1.1.  It is also more commonly referred to in the literature as a one-warehouse multi-retailer 

system.  The system is employed across a wide range of domains from retail to manufacturing.  It is 

considered a complex optimisation problem as it contains a number of parameters that vary the 

complexity of the model under certain conditions.  The goal is to apply DE as an optimisation 

algorithm to match the solutions of the best-in-class analytical algorithm in the field of Operations 

Research.  

 

1.1 A Two-Echelon Inventory System for Spare Parts 
 
In relation to the telecommunications sector, Internet Service Providers (ISPs) must maintain their 

network to avoid customer attrition.  Any outages can negatively impact consumer sentiment.  Similar 

to the reconfiguration of manufacturing processes into a supply chain paradigm, companies are looking 

at the services business as a new way to differentiate themselves from competitors.  

 
Figure 1.1 The representation of the two-echelon inventory system.  
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The services business is a significant portion of a technology company’s portfolio and there is an 

understanding now that is should be targeted. In the context of telecommunications industry, not only 

should a service vendor be able to supply at a reduced cost and lead-time, ISPs require that failed 

components are replaced so the downtime to their network is kept to a minimum.  The two-echelon 

inventory system depicted in Figure 1.1 is a typical supply chain structure that is used to supply spare 

parts to satisfy the requests from the ISPs.  Due to stringent delivery restrictions like two-hour or four-

hour delivery windows, local warehouses are utilised to supply parts to the customer equipment.  The 

locations of the local warehouses are determined such that they are very close to the customer 

equipment.  These local warehouses are replenished by the central warehouse.  Failed parts are sent to 

the central warehouse by the customer, and from there they are shipped to the repair vendors.  If a part 

requested by the customer is not delivered on time, the penalty cost is incurred per the terms of an 

agreement.  The demand for spares tends to be low, in the order of a couple of units per year at a local 

warehouse; however, spares are usually expensive. Having expensive slow moving items in the system 

and penalty clauses make the optimisation of inventories (where to stock and how much to stock) an 

important task.   The Penalty Cost Model is used to determine the amount of inventory required to be 

placed at each of the FSLs and the central warehouse to meet customer obligations. This model is 

discussed in more detail in chapter two. 
 

1.2 Differential Evolution 
 
DE is a reliable, easy to use optimisation tool.  One of the advantages of DE is that it has a small 

number of control parameters for adjustment which adds to its simplicity. Only three parameters need 

to be adjusted when optimising a function,   the step size otherwise known as the scale factor F, the 

cross-over probability and the population size.  A trial and error method of selecting the best 

combination of the three parameters is recommended for a particular objective function and a study of 

the control parameters is discussed later in the thesis.   DE optimisation occurs through a creation of a 

search space of multiple candidate solutions or vectors.  Each vector undergoes the following steps in 

order to be considered for inclusion in the next generation of vectors.  

 

• Mutation:  A key characteristic of DE is how new population vectors are created for each 

generation.  The new vectors are points creating by perturbations of the existing points.  This 

is done by using the scale factor F to calculate a weighted difference vector between two 

randomly chosen vectors which is added to a third randomly chosen vector to generate a trial 

vector 

• Recombination:  The creation of the trial vector is through a method of recombination 

between the original parent or target vector and the generated mutant vector in the previous 

step through the process of crossover.  Crossover determines how many parameters from the 

target and mutant vectors are used in the creation of the trial vector. Crossover ensures that the 

trial vector will inherit at least one parameter from the mutant vector. This maintains diversity 

in the newly emerging population. 
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• Selection:  Selection follows the normal process inherent to most evolutionary algorithms. 

Each new trial vector is compared to its parent and will replace the parent in the new 

generation if it produces a better objective function value then its parent. 

 

There is no bias in the way DE selects population members for consideration as this can create 

populations that have lost diversity.  It uses a one-to-one tournament selection to determine vectors that 

move into the next generation.  A trial vector competes against its parent and will be eliminated if it 

does not better the objective function value of the parent.  This is the case even if the trial vector has a 

better objective function value then other vectors in the population.  In the context of the Penalty Cost 

Model, our goal is to minimise the total investment over the spare parts inventory system such that we 

know the amount of inventory required to be placed at each of the FSLs and the central warehouse.  

The DE population of vectors are combinations of stocking levels for each location in the inventory 

system.  DE iterates through the population space searching for the optimum selection of stocking 

levels such that the total cost is minimised.  It achieves this by perturbing existing vectors of stock 

levels to create new vectors whose objective function values are considered.  Termination of the DE 

optimisation occurs after a set number of iterations or convergence on the optimum solution of stocking 

levels.   

1.3 Motivation of the Research 
 
The main motivation behind this research is to implement DE in the context of spare part inventory 

optimisation in a two-echelon supply chain setting.  Hence, we aim to determine the accuracy of DE in 

generating the optimum solutions for the Penalty Cost Model, which is a mathematical optimisation 

model for the problem under consideration.  As the complexity of the model increases, we would like 

to see the effectiveness of DE and identify the scenarios in which DE is better suited for optimising the 

problem as apposed to other algorithms more commonly used in the field of Operations Research (OR).  

Finally, we would like to research how the DE algorithm scales as the Penalty Cost Model’s 

complexity increases to determine specific DE control parameters best suited to this type of objective 

function.  The literature referring to supply chain optimisation using DE is sparse, thus; an exploration 

of the benefits of applying DE to such problems is appealing.   

 

1.4 Problem Statement and Research Questions 
 
The research presented in this thesis studies a Differential Evolution implementation of the Penalty 

Cost Model to determine its comparability to the best-in-class algorithm commonly applied in the OR 

research domain.  In order to achieve this, a number of questions need to be answered. 

 

1. Is DE an effective optimisation tool for solving the Penalty Cost Model? 

2. How does it compare with the best-in-class analytic algorithm? 

3. Is the DE implementation effective at achieving the optimum solutions for a given test-bed? 

4. Under what conditions does DE fail to achieve the optimum solution? 
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1.5 Thesis Outline 
 
The thesis is organised as follows.  Chapter 2 explores the Penalty Cost Model in more detail 

discussing the main components of the model and introduces Metric Approximation as a technique to 

determine the expected backlogs for slow moving service part items.  

 

Chapter 3 is devoted to Differential Evolution (Price & Storn, 1995) from its inception to how it 

mutates existing points to generate new points as it converges towards the optimum. It outlines the 

advantages of DE over other evolutionary algorithms, and also explores the discrete nature of the 

specific implementation of DE as applied to the penalty cost model.  DE control parameters and 

different DE algorithm variants are discussed extensively.  

 

Chapter 4 is dedicated to the specific tasks of implementing the Penalty Cost Model using DE.  A test-

bed of problem setting scenarios are discussed with justification based on various strategies designed to 

test the ability of DE to locate the optimum solution. A review of the modifications to the Matlab 

package is highlighted focusing on effective boundary constraint generation, discrete mapping of 

continuous variables and initial population seeding.   

 

Chapter 5 is the numerical results chapter focusing on the comparison mechanisms used to determine 

DE’s viability as an effective optimisation algorithm for the Penalty Cost Model.  An exploration of the 

test-bed problem settings is outlined along with the experimental setup.  A review on DE’s control 

parameters is presented characterising the key combinations of parameters that best suit the Penalty 

Cost Model.  A comparison of DE variants is discussed.  Finally, a scalability analysis of each DE 

variant used in this study is demonstrated with reasons for adopting particular DE variants championed 

under certain conditions.   

 

In conclusion, Chapter 6 encapsulates the main points from each chapter and offer conclusions and 

directions for further research. 
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Chapter 2 
 

2 Penalty Cost Model 
 
2.1 Introduction 
 
 

Before we describe the theory behind this services supply chain model, we provide an example that is a 

similar to an optimised supply chain system you will find in practice today. What differentiates the 

following example from a real world system is the level of complexity of the example supply chain 

under study.  In the literature, the supply chain model we present is referred to as one warehouse, 

multi-retailer system.   

2.2 Services Supply Chain 
 
Consider an original equipment manufacturer (OEM), which provides telecommunications equipment 

to an internet service provider (ISP). OEM has contracted the repairs of fault parts to an outside repair 

vendor.  OEM has won numerous new equipment contracts from the ISP over the last decade.  

However the problem of failed units in the field has always been an issue for the ISP.  To mitigate the 

potential downtime of their network, the ISP has over-purchased units in the past to provide a buffer 

against failures. All failed units are returned to the OEM for repair.  As a result of this, the ISP’s 

balance sheet is showing an increase in inventory holding costs which is impacting profits.  The ISP is 

going through the same cost cutting drive as the OEM.  The OEM offers a number of spare part support 

services available to the ISP.  The idea is to help the ISPs reduce their spare parts inventory needs by 

leveraging the economies of scale and economies of statistics.  Note that the OEM sells equipment to 

multiple ISPs, so it can reduce the investment needed in spares through the reduction in uncertainty by 

pooling different customer (ISPs) demands, which is referred to as economies of statistics.  In addition, 

OEM faces a greater volume of demand due to pooling multiple streams of individual ISP demand, it 

can benefit from lower repair and/or transportation costs, warehouse handling costs, information 

system costs, etc., which is referred to as economies of scale.  The OEM’s top service is a five-hour 

replacement service.  Upon receiving the failure notice from the ISP, a replacement the unit will be 

delivered within five hours.  Another service provided by the OEM is next business day delivery.  

Depending on the units in question for the ISP and how critical they are for the performance of their 

network, they choose a portfolio of services from the OEM and agree metrics and penalties to 

determine how well the OEM maintains the service.  The penalty cost ( p ) is a function of the 

importance the part plays in the customer’s network and how critical it is to the performance.  In some 

cases, a contractually agreed price will be paid to the customer for every instance that the customer is 

without a replacement unit.  
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The ISP provides the number of units that will be supported by this new service agreement (installed 

base) and where they are located.  The OEM already has a main central warehouse in Paris to serve 

European demand and uses a third party logistics (3PL) partner’s (e.g., DHL) local warehouses and 

delivery network.  The central warehouse acts as a supplier in effect to the FSLs.  The FSLs act as a 

supplier to the customer locations where the network units are operating.  The ISP has paid for the five-

hour service for a number of critical items in their network.  The OEM knows the number of parts in 

question, the location of the parts and how long it will take them to deliver the replacement from the 

closest local warehouse (FSL).  

 

There are two locations inside the ISP’s network that are outside the range of a five-hour delivery 

window from the existing supply chain of the OEM.  Hence, the OEM considers this and creates two 

new FSLs to provide service to the customer locations.  The system operates as follows.  A failure 

notice is received from the ISP to the OEM.  A replacement unit is delivered from the local warehouse 

(FSL assigned to that specific ISP equipment) and the failed unit is collected.  The local warehouse will 

request a replacement from the central warehouse.  All failures return to the central warehouse and 

from there to the repair vendor.  Successfully repaired units will go back into stock at the central 

warehouse.  This creates a closed loop of repaired parts.  Parts that are eventually deemed un-repairable 

are scrapped, their components re-cycled, and a new part is injected to the closed system by the OEM.  

 

2.3 Model 
 
We present a two-echelon system; a central warehouse (CW) and multiple local warehouses (FSLs).  

FSLs are responsible for replenishing the customer locations.  The CW has responsibility for 

replenishing the FSLs.  We denote CW as location 0 and FSLs as locations 1,2,…..,J.  Only FSLs are 

facing the stochastic demand of the customers, which is assumed to be Poisson distributed in this 

model.  The inventory system provides a service for a single item.  Each location follows an installation 

base-stock policy under continuous-review i.e., one-for-one replenishment.   In other words, each 

customer request triggers replenishment from the CW. 

 

We use the following notation: 
 
Notation: 
 

+Ζ0  =  set of nonnegative integers, };,2,1,0{0 =Ζ+  
i   =  index for locations; 
c  =  unit purchasing cost; 
p  =  unit penalty cost associated with not satisfying demand; 

iL  =  replenishment lead time at location i , 0≥iL ; 

iλ  =  arrival rate at location i , 0≥iλ ; 

iS   =  base-stock level at location i iS +Ζ∈ 0 ; 
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iI   =  net inventory level at location i , ℜ∈iI ; 

0W  = Expected waiting time at the CW. 

 
At each location, we assume that the stock is allocated according to a first-come first-served (FCFS) 

basis.  

 
 

2.4 Analysis 
 
The optimisation problem is introduced in 2.4.1 outlining the dynamics of the system.  

2.4.1 Dynamics of the Penalty Cost Model 
 
The objective is to minimise the expected cost of the system; 

 )),(()(),...,(
10

0
,,

min
0

∑∑
==

+=Π
J

i
ioi

J

i
iJ

SS
SSBLpScSS

J

,  (2.1) 

 
where ),...,( 0 JSSΠ  is the cost function and ),( ioi SSBL  is the expected number of backlogs at the 
FSL i . 
 
FSLs face the stochastic demand from the customers. The failed unit is immediately replaced by a 

serviced part from stock if it’s available. If it is not available, the demand for a serviced part is added to 

the backlog. The expected number of backlogs is a function of both the base stock level at the CW and 

that particular FSL, and can be calculated as follows: 

  
}))(Pr{(1(),( 00 iiiiii SWLDSSBL <+−= λ ,             (2.2) 

 
where )( 0WLD ii +  is the random variable denoting demand at location i over time duration  

0WLi +  with 0W  being a random variable.   The probability term in (2.2) is the probability that 

arriving demand at location i is fulfilled immediately from on hand stock. Hence, one minus this 

probability corresponds to the probability of not satisfying the arriving demand. 

The waiting time at the CW ( 0W ) is calculated using an approximation technique referred to as 

METRIC approximation in the literature [2].  See Sherbooke et al (1968).  Metric approximation 

replaces the random variable 0W  with the expected waiting time at the CW.  As a result of applying 

metric approximation to the model, solving (2.1) provides an approximation of the stock levels 

required instead of the exact levels. 

To calculate the expected backlogs across all FSLs, Let 0λ  denote the arrival rate at the CW     
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where 0λ  is the sum of all arrival rates over the FSLs. 
 
METRIC approximation uses the following relationship for the calculation of 0W :  
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where )(0 oSBL is the expected backlog level at the CW. Note that the net inventory level at the 

central  warehouse is 
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where )( 00 LD  is the demand faced by the CW over its replenishment lead time.  
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Note that −≡ )()( 00 ISBL o . Using this identity and substituting the expression above into (2.4) yields 
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The system minimises the expression (2.1).  It provides the overall total investment cost for a set of 

input parameters.  The decision variables for this function are the base stock levels at the CW and 

FSLs, the arrival rates and lead-time at the FSLs and the CW lead-time. The penalty cost for the 

expected number of backlogs at the CW is given by (2.6).  
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Chapter 3 
 
 

3 Differential Evolution 
 
3.1 Introduction 
 
Differential Evolution (DE) is a powerful, easy to use, fast, reliable global optimisation algorithm that 

is a tool for tackling difficult optimisation problems.  Since it’s inception in 1995, DE’s reputation as 

an effective optimisation algorithm has grown.  It has been applied to various different optimisation 

problems and different variants of DE have been proposed [3].  Its origins are in the Genetic Annealing 

algorithm (Kenneth Price, 1994 Dr. Dobb’s Journal DDJ).  Genetic annealing is a population based, 

combinatorial optimisation algorithm that is used to find a solution via thresholds in a space deemed 

too large for ordinary search methods. After publication in DDJ, Dr. Rainer Storn investigated the 

possibility of solving the Chebyshev polynomial fitting problem. The initial solution was found but 

convergence was slow.  Modification of the Genetic Annealing algorithm using floating point encoding 

and arithmetic operations as well as discovering the differential mutation operator gave rise to the first 

iteration of DE. Storn suggested creating separate parent and child populations to accommodate 

parallel processing.  DE was presented by Storn and Price in 1995 [4] followed by [5,6,7] and was well 

received at the IEEE International conference on Evolutionary Computation.  Another article published 

for DDJ in April 1997 introduced DE to a large international audience.  After another publication with 

extensive empirical evidence of DE’s robustness [8], many optimisation researchers became aware of 

DE’s potential.  More light was shed upon the inner workings of DE in 2002 [9] with an article on the 

analysis of the critical values for control parameters of DE.  The paper deals with one problem of 

premature convergence which is common in evolution strategies and the choice of control parameters 

that prevent premature convergence or stagnation 

  

3.2 Motivation for using DE 
 
DE is a population-based stochastic method for global minimisation of objective functions.  Objective 

functions are a way of quantifying everyday real world problems that describe properties that need to 

be minimised to obtain some particular outcome.  Often objective functions can have many parameters 

that will influence the property that is being optimised.  Objective functions will have a number of 

characteristics that help determine the how well it will be optimised.  Are input parameters continuous, 

discrete or both?  What is the dimensionality of the objective function? , is the function multi-modal in 

nature, are there constraints placed on the objective function?  DE is used for optimising multi-

objective functions that often have objectives that are in conflict with each other.  One of its main 
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attractions is its ability to find optimal solutions without the need to compute derivatives.  It is, in 

summary, multi-point derivative-free optimiser. 

 

3.2.1 Derivative-free techniques 
 
Derivative-free techniques are known as direct search algorithms and rely on heuristics and conditional 

branches to find the optimum.  Using direct search, there is a selection phase during which a proposed 

move is either accepted or rejected.  One such direct search method is the brute force method or 

Enumeration.  However, this technique is rarely used to optimise functions with a significant number of 

continuous parameters.  All methods need to consider a suitable step size when searching through some 

grid space.  If the step size is too large, the optimum value could be missed; if the step size is too small, 

it will be computationally too expensive to proceed.  The dimensionality of the problem is why brute 

force methods are not considered.  One such method that over comes dimensionality is the random 

walk method (Gross & Harris, 1985) which samples the objective function at randomly generated 

points and has a greedy selection criterion.  Nevertheless, choosing a good step size figure is still an 

issue for the Random Walk method.  The Hooke and Jeeves method [10] is a one-point direct search 

that tackles the step-wise problem.  It uses its own step size to search for trial points along each co-

ordinate axis.  If the step size is deemed too large, a smaller step size is used and the procedure repeats.  

While the Hooke and Jeeves method is more effective at searching a population then Brute Force or 

Random walk, the step size is always reduced in the search for new trial points.  An algorithm with no 

possibility of increasing the step-size can get trapped in a local minimum.  For unimodal objective 

functions, this is okay but as most real world problems are multi-modal in nature,   global optimisation 

of a function is required.   

 

3.2.2 Starting point problem 
 
As multi-modal objective functions have multiple minima, they pose a starting point problem.  To find 

the global optimum of an objective function with multiple minima, a good starting point in the vicinity 

of the optimum is essential.  A method is required that increases the chance of sample points moving to 

another local minima of attraction.  It is possible using the Random Walk method in conjunction with 

simulated annealing (SA) [11].  SA looks for points on the objective function’s surface by modifying 

the greedy selection criterion to accept some uphill moves while also continuing to accept all downhill 

moves.   

 

While there is still an issue with step size for SA as a search criterion, it has been used as a substitute 

for greedy criterion in direct search methods like [12].  However, SA is not particular adept at 

continuous function optimisation due to step size.   Multi-start techniques are another way to sample an 

objective function space.  Each sample point is an initial point for a greedy search of the local 

landscape.  There are drawbacks to this method attempting to calculate how many starting points are 
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required.  Also, if a lot of starting points are close together, they may all lead through a greedy search 

to the same local minimum.  Various clustering algorithms (Torn & Zelinkas 1989; Janka 1999) have 

been applied in tandem with mutli-search techniques to identify clusters of points that belong to the 

same local minimum.  Base points will be supplied for each cluster which will serve as a base point for 

local optimisation.  Multi start techniques are multi-point, derivative-based methods. Differential 

Evolution belongs to a group of methods that are multi-point, derivative-free.  Along with Evolution 

Strategies (ES) and Genetic Algorithms (GA), they all attempt to find better solutions through a 

process of recombination, mutation and selection of the best candidates (Survival of the fittest).  ES, 

GA, DE are often referred to as evolutionary algorithms (EA) but there are differences.   

 

ES methods like Nelder and Mead polyhedron search 1965 and Controlled Random Search Price 1978 

are good at optimising continuous objective functions using floating point encoding of parameters 

while GA’s are often better at optimising combinatorial problems using bit string encoding.  Modifying 

GA’s to use floating-point encoding for continuous parameter optimisation turns the algorithm into an 

ES.  Like the multi-start algorithm, ES samples the objective function space with many different points. 

Unlike the multi-start algorithm whose points evolve in isolation, ES points influence each other 

through the means of re-combination.  ES algorithms are some of the best at global optimisation of a 

search space.  Like nearly all EAs, DE solves the starting point problem by randomly sampling the 

objective function at multiple initial starting points.  DE generates new points for consideration that are 

perturbations of existing points.  How DE differs from other ES methods is the newly generated points 

are not samples from a predefined probability density function or reflections of existing points (Nelder 

and Mead polyhedron search 1965, Controlled Random Search – Price 1978). 

 

3.3 Differential Evolution Algorithm 
 
DE is more likely to be affected by premature convergence then other evolution strategies as it does not 

employ outside information when optimising.  In 2005, the term Contour matching was coined [1].  

This describes the self steering properties of DE from initialisation with competing minima and multi-

modal search towards the optimal minimum with steps sizes appropriate for a local search.  
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Figure 3.1 Peaks function and illustration of difference vectors that promote transfer of points between 
local minima [1] 
 
Contour matching means that the vector population adapts such that promising regions of the objective 

function surface are investigated automatically once they are detected.  Part of the investigation is the 

promotion of basin-to-basin transfer [13].  Figure 3.1 illustrates that DE yields a certain amount of 

difference vectors that can generate new trial points in the lower basin of attraction when the base 

points originated from another basin of attraction [1].  Diversity of the population is critical for basin to 

basin transfer.  The number of population members (NP) is a control parameter that is set for the 

duration of algorithm.  One of the main aspects of DE is the generation of new vectors which are 

perturbations of existing vectors.  The perturbed vectors are generated from an NP*(NP-1) nonzero 

difference vectors of the population instead of using a predetermined probably density function.  The 

new points are reflections of existing points which are binomially distributed. This fosters a wide 

search for the global minimum.  As the difference vector distribution decreases through each 

generation, we see DE self adaptively explore the basin that is covered by the decreasing vector 

distribution.   

 

After initialisation of the population, DE applies mutation to the population of vectors to create a 

mutated population of vectors.  This mutated population is combined with the initial target population 

to create the trial population of vectors.  As part of the generation of trial vectors, DE employs a 

technique known as Crossover (CR).  CR is a user-defined probability that controls the rate of 

parameter values that are copied from the mutant vector.  To determine which vector will provide the 

parameter for the trail vector, CR is compared to a random number generator between [0, 1], if the 

random number is less then or equal to CR, the mutant vector supplies the parameter for the trial 

vector; otherwise the target vector supplies the parameter. After the trial population of vectors is 

generated, DE applies selection to both the trial and target populations. The vector with the lower 

objective function cost is marked for the next generation of population vectors.  By comparing each 

trial vector with its corresponding target vector of the same index, DE more tightly integrates the 

recombination and selection process.  It also ensures that each target vector is compared only once per 

generation.  The vectors that are marked by the pair-wise comparison become parents of the next 
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generation.  All target vectors will compete against randomly generated trial vectors until the new 

population for the next generation is created.  This process will continue until the optimum is found or 

a termination criterion is reached. 

 

3.3.1 Initialisation 
 
One requirement for DE to optimise an objective function is that the function’s landscape needs to have 

a population that is distributed through out the problem space. 

 

 
Figure 3.2 Initialisation of DE Population.  
 
 
Initial bounds are provided as user input to cover an area that will contain the global optimum.  Most 

real-world problems will have parameters whose bounds are seldom equal.  Where the difficulty arises 

is if the bounds for a specific parameter are not known.  We enter a situation whereby we must use far 

initialisation to tackle the lack of bounds.  With far initialisation, there is the possibility that the 

optimum lies outside the initial bounds.  It is critical that bounds are set sufficiently enough to cover 

the problem space.  The initial spread of points can converge on a local minimum that is not the global 

minimum if F is too small. If competing minima are too far apart, DE cannot use difference vectors to 

jump from one minimum to the next.  Most real world objective functions will have parameters that 

correspond to some physical or logical constraints that will suggest bounds that are acceptable to use.  

Uniform random distributions are effective distributions to use for initialisation especially when the 

optimum location is unknown.  In general, any distribution that contains some random distribution of 

points across the problem space is good to use for initialisation.  If some information about the 

optimum is known, a Gaussian distribution can be applied to distribute the points in a multi-normal 
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fashion.  If the objective function is multi-modal in nature, uniform random distributions should be 

used to distribute the initial points widely enough to encompass the optimum.  

 

3.3.2 Mutation 
 
A mechanism for evolving the population of vectors is essential.  There is the possibility that re-

selection of vectors already chosen can occur along with other vectors being omitted from the search. 

Vectors that are not chosen are deprived of passing on potential diversity to the next generation.  Re-

selection of vectors causes the potential to loose diversity in the next generation due to over sampling 

of the same vector.  DE ensures that this does not happen by comparing vectors from competing 

populations by their index.  The target vector, i, specifies the vector that the mutant vector will be 

recombined with to form the trial vector.  Indices r0, r1 & r2 are used to determine which vector 

parameters create the mutant. 

 

 
Figure 3.3 Perturbation of two vectors.  
 
 
The base vector index refers to r0.  The difference vector indices refer to r1 & r2.  The base vector 

index represents the vector that will have the scaled difference ( ]2,0[∈F  ) vector added to it along 

with a third randomly chosen vector to form the mutated vector, u. (Fig. 3.5) 

 

)( 2100 rrr xxFxu −•+=     (3.1) 
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Figure 3.4 Mutation. 
 
 
The mutation scale factor F has a range of [0, 2] although the results generated from this research do 

not use an F value > 1.1 as a scale factor.  This is discussed in chapter 5, review of DE control 

parameters. In general, solutions with F > 1 are more time consuming and less reliable then F < 1.  

 

3.3.3 Recombination 
 
Recombination of vector parameters creates one or more trial vectors for pair-wise comparison with the 

target vector.  The target vector is already known from the current population.  Discrete recombination 

is known as crossover (CR) and is an operation in which trial vector parameters are copied from 

randomly selected vectors.  Discrete recombination is used in classic DE where at least two populations 

of vectors are maintained, the current population being replaced by the newly formed next generation 

of vectors.  This is a family survival selection criterion.  In contrast to this, continuous recombination is 

another method where only one population is maintained and newly formed vectors replaced randomly 

chosen vectors in the current population and are immediately available to be used to generate new trial 

vectors for comparison.  Nonetheless, continuous recombination is not best suited for data that is 

symbolic or binary in nature.  

 
In order to generate a new generation of vectors, the trial vector is created using CR on the target and 

mutant vectors respectively.  The most popular method of CR is binomial CR described as follows:  

 

  (3.2) 
 



   

 22 

In binominal CR, ]1,0[]1,0[ ∈jrand  denotes the j-th evaluation of a uniform random number 

generator. ]1,0[∈RC  is the user defined input CR probability.  CR ensures that the trial vector will 

inherit at least one variable from the mutant vector.  There are a number of different CR techniques 

which can be applied along with binominal CR, one-point CR, n-point CR and exponential CR.  In this 

case, binominal CR is preferred as is does not exhibit a representational bias when selecting parameters 

for inclusion in the trial vector.  Representational bias is inherent in n-point CR since the way 

parameters are ordered in vectors affects the algorithms performance.  

 

Comparing n-point CR to binominal CR, each parameter regardless of position in the trial vector has 

the same probability of inheriting its value from a given vector.  For example, CR = 0.3 and CR = 0.7 

produce a vector that on average inherits 30% from one vector and 70% from another.  In binominal 

CR, comparing CR to ]1,0[jrand  determines the source of trial parameters.  To begin, DE will select 

a parameter at random from the mutant to ensure that the trial vector will not be an exact copy of the 

target vector.  Based on a uniform random number generation value  Crrand j ≤]1,0[  , the 

parameter will be provided by the mutant vector; otherwise, the target vector is the source.  When CR 

is close to 0, DE minimises disruption by changing a few parameters of a vector at a time, while when 

CR is close to 1, this favours exploration as most parameters will be taken from the mutant vector.  

In the study of the control parameters [7] for DE, it found that a low CR is the most effective for 

optimising decomposable functions where as CR ~ 1 are effective for functions that are not 

decomposable. 

 

3.3.4 Selection 
 
There are two stages in the evolutionary process where selection can be applied to a population.  

Certain GAs [14] employs a selection criterion that is biased towards the parent.  Typically, vectors 

that have the best objective function values are assigned the highest selection probability making them 

more probable for mating in the next generation.  This is similar to breeding of animals by improving 

certain characteristics of the animal’s offspring i.e. racehorses.  Instead of selecting potential mates 

based on objective function values, evolution strategies (ES) and DE select vectors with equal 

probability.  DE randomly selects base vectors for recombination with no reference to their objective 

function values.  There is a difference between this method and GAs.  Most EAs will employ some 

selection pressure on potential mates for recombination or survival.  GAs will typically bias selection 

in favour of better vectors for recombination and survival whereas DE only applies pressure when 

picking survivors for the next generation i.e. the objective function value pair-wise comparison.  For 

selection in the next generation, there are different survival criteria that can be explored; age only, 

objective function value, age and objective function value. Using objective function value only, the 

algorithm retains the best-so-far solution which is known as elitism [15].  DE has a one-to-one 

selection policy and holds NP knock out competitions to determine the next generation. NP refers to 

the number of population members.  
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DE shares similarities with Particle Swarm Optimisation (PSO) in this regard adopting a one-to-one 

tournament selection.  In the PSO algorithm, it has a velocity update formula that is similar to DE 

variant DE/target-to-best/1.  It is a form of binary, deterministic one-to-one selection.  Any vector that 

loses the single competition is eliminated and any vectors that win move forward into the next 

generation.  In DE, the best performing vector at the i-th position is simply the i-th vector in the current 

population. The trial vector replaces the best-so-far vector with the same index only if it has an equal or 

lower objective function value.  Comparing each trial vector to the best performing vector at the same 

index ensures that the best vector is retained at each index but also the best-so-far vector at any index. 

However, with one-to-one selection, a trial vector will be rejected even if its cost function value is 

better then most of the current target population but not the target vector it is competing with. 

 
Figure 3.5 Selection. Vector u has a lower objective function value then the target vector number 0 so it 
moves forward to the next generation. 
 
 
When the objective function is known to be multi-modal in nature, global selection is taken to ensure 

all members of the population receive information about the best solutions.  Comparing global 

selection to local selection limits the potential to get trapped in a local minimum.  With local selection, 

the population is divided into clusters or sub-populations which evolve in isolation.  Information 

between clusters does not pass between members and as such, there is a risk of stagnation. 

 

3.3.5 Termination 
 
When is the global optimum achieved?  It depends on the objective function.  If the function is a multi-

objective function, objectives can conflict with each other.  Satisfying one objective often leaves 

another unsatisfied.  Pareto improvement is required whereby changing one objective does not make 
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another worse off.  Often as a user defined input, the user can limit the number of iterations of the 

algorithm.  This is a trial and error approach in that a sufficient number of iterations are required to 

ensure the best known results are returned.  Another method for termination is when the objective has 

been met.  In some objective functions, the minimum value can already be known.  For example, some 

minimum value may already be known about a function meaning any subsequent value found under 

this value is not considered.  This is also a method used when working with functions where the 

minimum is known.  If the best-so-far vector’s objective function value is known to fall within a 

certain tolerance of the global minimum, termination is met.  Also, human monitoring can determine 

when optimisation is over.  Feedback provided by the objective function can determine that no further 

optimisation is possible. 

 

3.4  DE Algorithm 
 
The code used in this thesis is the DeMat Matlab package [1]. A more detailed description of the main 

functions and files is given in section 4.3. Below is pseudo code of the classic implementation of 

Differential Evolution.  As described later in the thesis, there are a number of different variants of the 

algorithm that adjust how new members are selected for inclusion in the next generation. 

 
// Inputs )(NPPopulationSize , )(DproblemSize , )(FrScaleFacto , )(CRCrossover  

// Output: bestS  

Population  InitialisePopulation( NP , D ) 
 
EvaluatePopulation(Population) 

bestS  GetBestSoFar(Population) 
 
While( TerminationNotMet()) 
 NewPopulation = “” 
 For ( ∈iP  Population) 

  For(j=0; j< D ; j++) // generate a trial vector  
If(rand(0,1)<= CR  or j==RandomPosition( NP ))  
 )(* 2,1,0,, rjrjrjij PPFPS −+=   
Else  

ijij PS ,, =   
   End 
  End 
  If (Cost ( iS ) <= Cost( iP )) 

   NextGeneration  iS  
  Else 
   NextGeneration   iP  
 End 
 Population  NextGeneration 
 EvaluatePopulation(Population) 
 bestS  GetBestSoFar(Population) 
End 
Return( bestS ) 
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3.5  DE Control parameters 
 
In DE, diversity of the population is critical to avoid premature convergence.  In general, selection 

tends to reduce the diversity of the population whereas mutation increases it.  DE has three control 

parameters that maintain this diversity, the mutation scale factor of the difference vector (F), the 

crossover control parameter (CR) and the population size (Np).  These are fixed values for the duration 

of the algorithm.  There is research into the self adaptive control parameters [16] that monitor and 

adjust the parameters on the run as the population evolves but for the purpose of this review, we do not 

apply adaptive control parameter setting.  There are two methods for parameter setting, parameter 

tuning and parameter control.  Self adaptive control parameters fall into the parameter control category. 

In the experimental results we highlight how parameter tuning was taken to find the optimum control 

parameters for the penalty cost model.  Parameter tuning is used in a trial and error fashion to find good 

starting point control parameters that are used in the algorithm.  Fine tuning the parameters based on 

initial results is the feedback to tune the parameters for the main run of the algorithm that best suits the 

test-bed.   

 

3.5.1 Scale factor F 
 
Maintaining a good F is crucial to counteract the selection pressure.  In [9] Zaharie shows that there are 

upper and lower limits of F and it is not recommended to use an F outside of this threshold.  Zaharie’s 

study provides an algorithm to effectively calculate the lower limit. 
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      (3.3) 

 

critF  provides a lower limit of F in the sense that values smaller then this will induce convergence 

even on a level objective function surface.  Objective functions rarely have surfaces that are flat.  F 

must be greater then critF  to counter the additional reduction in variance that selection delivers. 

Classic DE employs an F value that is constant as the algorithm iterates.  There are other modifications 

of DE that can introduce a method of randomising the F difference vector scale factor. Keeping F 

constant is effective in the sense that no function that has been solved required F to be randomised.   

 

Randomising F can prove advantageous.  Creating a random variable F widens the amount of potential 

difference vectors that can be picked to create mutants.  This is an excellent option to use for 

populations that are small or symmetrically distributed.  DE requires a population to have enough 

diversity so as not to stagnate. When DE stagnates, it cannot find better solutions because no 

combinations of vector differences and vectors provide a better solution.  Randomising the scale factor 
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F is a good way of increasing the pool of potential trial vectors while minimising the impact of 

stagnation without the need to increase the population size.  In the experimental results, there are two 

algorithms tested that introduce jitter and dither into the generation of F as the scale factor.  Jitter is 

used to generate a new value of F for every parameter in the vector.  Alternative to this is dither in  

(3.4) when a new F scale factor is generated for each vector.  

 

)1()1,0( FrandFF idither −•+=    (3.4) 

 
 

for each difference vector, i.  Dithering DE does not significantly depart from classic DE in that the F 

scale factor generated is applied to all components of the difference vector.  Jittering the scale factor F 

is a significant change to classic DE in that all components of the difference vector are multiplied by a 

different F scale factor and this changes the scale of the differential but also its orientation.  

 
))5.0)1,0(, −+= jijitter randFF    (3.5) 

 
 
This makes DE Jitter different to classic DE with F as a constant value.  Part of Zaharie’s study [9] 

included various tests done comparing classic with jitter and dither versions of DE.  It was estimated 

that jitter DE was the fastest technique over the full range of CR as a random real number in the range 

[0,1] .  In terms of the number of function evaluations, all three methods of DE require the same 

amount of evaluations.  Classic DE and dither perform similarly but dither requires a larger population 

size.   

 
 

3.5.2 Population members NP 
 
DE requires preset parameter bounds to generate an initial population that is uniformly distributed 

throughout the problem space. This population is a D-dimensional matrix of vectors with NP 

population members. The general acceptable rule for NP is 10*D.  The number of population members 

NP is also not very critical.  Depending on the difficulty of the problem NP can be lower than 10*D or 

must be higher than 10*D to achieve convergence.  NP does not change as the algorithm iterates 

towards the optimum. 

3.5.3 Crossover probability CR 
 

 
The cross over probability (CR) is a real numbered value [0,1] and manages the recombination of 

parameters to create the trial vector. Higher values of CR mean the parent target vector has less 

influence in passing parameters to create the trial vector. [1] Another important characteristic of CR is 

that only high values of CR guarantee the contour matching properties of DE are applied. However, [1] 

also shows that contour matching is lost when CR = 1 i.e. strong crossover and that DE has a tendency 

to search along the main parameter aces which is beneficial to separable objective functions.  
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3.6 DE notation 
 
Different variants of DE have been created as new optimisation problems are investigated.  Various 

objective functions have populations that are non-linear, multi-modal, small number of parameters and 

so on.  A notation was designed to allow the user to understand what type of variant is employed as the 

main DE algorithm for optimisation.  Classic DE is as follows: 

 

3.6.1 DE/rand/1/bin 
 

)( 2,1,0,, rjrjrjij xxFxu −•+=     (3.6) 
 

where { }pNrrri ,.....,2,1,,, 210 ∈ ; r0,r1,r2 are randomly chosen and bestjxrrri ,210 ;≠≠≠ is the 

best individual vector in the j-th generation.  The scale factor F is a real number in the range [0,2].  For 

the experimental results discussed in chapter 5, the scale factor F range was [0.5,1.1].  This is the most 

popular variant of DE and is known as classic DE.  The notation DE/rand/1/bin is described as 

follows, DE Differential Evolution, “rand” refers to vectors that are selected at random to create mutant 

vectors, “1” is the number of pairs of solutions chosen and “bin” refers to the recombination stage 

creating the trial vector using a binomial recombination technique.  Another variant used in the 

experimental stage is 

 

3.6.2 DE/local-to-best/1/bin 
 

)()( 2,1,,,,, rjrjijbestjijij xxFxxFxu −•+−•+=   (3.7) 
 
This DE variant computes the difference between the i-th member and the best-so-far member of the 

current population. This method attempts to balance robustness with fast convergence and is a popular 

choice in most studies of DE. 

 

3.6.3 DE/best/1/bin with jitter 
     

  )( 2,1,,, rjrjjitterbestjij xxFxu −•+=     (3.8) 
 
Using equation 3.5 to add jitter for the scale value F for each parameter in the j-th vector, this algorithm 

always selects the best-so-far vector as its base vector in addition to 1 scaled vector difference creating 

the trial vector by uniformly crossing the resulting mutant with the target vector. In this algorithm, the 

base vector always has the lowest objective function value in the current target population and adds 
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increased greediness to the search process. This results usually in faster convergence, reduced odds of 

stagnation but a lower probability of success. 

 

3.6.4 DE/rand/1/bin with per-vector-dither 
 

 )( 2,1,0,, rjrjditherrjij xxFxu −•+=     (3.9) 
 
Using equation 3.4 to apply dither on a per vector basis, this algorithm is closely related to classic DE 

but with more robustness. 

 

3.6.5 DE/rand/1/bin with per-generation-dither 
 
Same strategy as equation 3.9 put dither is applied once per generation basis instead of each vector.  
 

3.6.6 DE/rand/1/bin either-or 
 

 )2()1(5.0 0,2,1,0,, rjrjrjrjij xxxFxu •−+•+•+=   (3.10) 
 
Expression 3.10 is used after a random number check. If rand < 0.5, classic DE in equation 3.6 is 

applied, else equation 3.10 is applied. 

 
 

3.7  Discrete Differential Evolution (DDE) 
 
 
The previous section describes different variants of the classic DE algorithm that have been applied to 

many numerical optimisation problems. DE was developed as a non-linear continuous optimisation 

algorithm.  The objective function under study contains discrete decision variables; thus, the 

application of DE to an objective function that is discrete in nature is limited.  As a result, it is 

important to accurately convert DE continuous nature to a discrete representation in order to optimise 

the objective function.  Due to the nature of the problem under study, using some of the readily 

available rounding functions to encode floating point numbers to integer values like “floor” “round” 

are unsuitable.  The discrete values to be minimised are inventory stock levels and incorrect levels of 

plus or minus 1 can lead to an exponential increase in the total investment cost and penalty costs.  

Taking this into consideration, simply rounding to the nearest integer value is unsuitable.  The process 

is randomised by applying a uniform random number 5.0)1,0( ≤rand  to decide the procedure of 

rounding floating point solutions to discrete values. Novel DDE approaches have been proposed to 

solve discrete optimisation problems like DE with local search based on Lin Kernighan-Heulsgaun 

(LKH) method [17], DE with local search based on Variable Neighbourhood Search (VNS) [18],[19] 

can be enhanced with methods that improve it 

 
 



   

 29 

Chapter 4 
 
 

4 Differential Evolution Penalty Cost Model 
 
4.1 Introduction  
 
In this chapter, we will discuss the DE implementation of the Penalty Cost Model outlining the 

problem settings required by the model and the necessary software enhancements to implement it using 

DE. We illustrate various problem settings that mirror real world supply chain systems implementing 

the Penalty Cost Model and what we would expect optimum solutions to look like. This chapter is 

presented as follows;  

 

• Penalty Cost Model Scenarios. 

• DE code. 

o Package description 

o Boundary Constraints 

o Discrete Values 

o Seeding initial population  

 

4.2 Penalty Cost Scenarios 
 
The objective of the optimisation problem under consideration is to minimise the sum of the investment 

cost and the expected penalty costs.  Penalty cost is defined as the cost applied by the customer in the 

event that a request for a replacement unit is not fulfilled immediately.  As part of the contract 

negotiation between the customer and the OEM, a penalty cost is factored in as an assurance by the 

company that they will maintain adequate stock to help maintain the customer’s network.  The trade-

off is between the inventory investment cost and the expected penalty cost.  On one hand, no 

investment in spares yields minimum investment cost, but the penalty costs would be maximised since 

all the customer demand would be backlogged.  On the other hand, investing infinitely many spares 

would minimise the penalty costs since all customer requests would be fulfilled from on-hand stock, 

but the investment in spares would be infinite. 

 

In order to test the effectiveness of DE’s ability to find the optimum Penalty Cost solutions, a series of 

penalty cost scenarios are developed for testing purposes.  The Penalty Cost Model has various 

problem settings that describe the overall system.  There are a number of opportunities to develop 

testing scenarios for the model and for DE is find the optimum solutions.  
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The parameters of the Penalty Cost Model are J (the number of FSLs), c  (unit purchasing cost), 

p (unit penalty cost), iL  for Ji ,...,0=  (replenishment lead times at all stocking locations) and iλ  

for Ji ,...,1=  (arrival rates at the FSLs). We define a combination of the values of all the parameters 

a scenario. For example, 2=J , 1000=c ,  10000=p , 200 =L , 21 =L , 12 =L , 11 =λ  

and 1.02 =λ  describes a specific instance of the Penalty Cost Model, and be referred to as a scenario 

or problem instance. As part of the full factorial test bed described later in this chapter, we fix the 

number of retailers, the unit purchasing cost and the FSL lead times, and vary three of the variables to 

various combinations of low, medium or high. Taking penalty cost as the first variable, our knowledge 

of the system implies that if the penalty cost is high, it is imperative that enough stock is available to 

meet any potential requests for replacements. Taking that into consideration and looking at the CW 

lead-time as another tuneable variable, a high CW lead-time means a longer repair cycle. The third 

variable which can influence the model is the vector of arrival rates at the FSLs. This is the rate the 

each FSL receives requests for replacement parts per calendar day. An arrival rate of one unit per day is 

considered extremely high in terms of service supply parts as this equates to 30 units per month.  

 

Applying different combinations of low, medium, high to the model parameters is the basis of the 

testing scenario. A particular scenario may include a high penalty cost coupled with a high CW lead-

time and a high arrival rates at the FSLs. When the optimum solution for this scenario is reviewed, it 

provides interesting information about the performance of the model. The solution will point to high 

levels of stock at the FSL to mitigate the high arrival of requests for replacement units. Due to the 

extensive repair lead-time, extra buffer stock is required at the CW to replenish the FSL.  As the CW 

lead-time is decreased, the ability to return repaired units into the system increases. Thus, the need to 

maintain a buffer stock at the CW is decreased.  As the arrival rates drops, the FSL stock levels will 

follow suit.  It is expected that the FSL will still maintain a higher level of stock compared to the CW 

due to the high penalty cost. Adjusting the penalty cost down under the same conditions will decrease 

the FSL stock levels as the scenario moves towards holding stock at the CW.  The arrival rates at 

individual FSLs are also tuneable to have a mixture of low, medium, high across the FSLs.  Scenarios 

of this type are considered the most challenging to obtain the optimum solution.  Each FSL has 

different requirements in terms of stock levels and the CW must maintain enough buffer stock to 

support the FSLs.  
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4.3 DE Matlab Package  
 
The code used in this thesis is the DeMat Matlab package [1]. The program of the package is depot.m.  

It controls DE mutation, selection, crossover, maintaining boundary constraints and the output of 

results. The package contains a number of files that are called by the engine. Rundeopt.m is the main 

management file that contains DE control variables, population sizes, number of iterations, and bound 

constraints. This file is enhanced to allow the delivery of different testing scenarios to the main engine.  

This Penalty Cost Model is implemented using Objfun.m.  The file takes vectors of stock levels from 

the CW and FSLs as input along with the FSL arrival rates and lead-times to compute the total cost.  

Another critical file is left_win.m; it is used by depot.m at selection.  It defines the pair-wise 

comparison of the trial and target vectors for input into the next generation.  The package is developed 

further with code specific to the Penalty Cost Model. OBjfun.m has a number of files required to 

implement the Penalty Cost Mode.  Equation (2.4) is implemented in expon.m while equation (2.2) is 

calculated using backlog.m.  Extra modifications to the code were necessary to implement the 

following subsections, 4.3.1, 4.3.2 and 4.3.3.  

 

4.3.1 Boundary Constraints 
 
Rundeopt.m required significant adjustments to test various DE testing scenarios. The test bed of 90 

scenarios is supplied by CSV file. For each scenario, DE is required to create bounds for an initial 

population of vectors. Obviously, the optimum solution should be inside this bounded region.  

Typically, the bounds are a function of the number of parameters in the objective function.  However, a 

more robust method of bounds calculation is required for the Penalty Cost Model to guarantee the 

optimum solution is covered by the initial population region. A flexible method was developed using 

the input information from each scenario.  The CW lead-time ( 0L ), FSL lead-time ( iL ), FSL arrival 

rate ( iλ ), unit cost ( c ) and penalty cost ( p ) are used to create the upper bound for a particular FSL i.   

 

 

Comparisons of the level at which the cumulative probability of the Poisson distribution with mean  

 

ii LLa λ*)( 0+=      (4.1) 

 

which traverses the level of (4.2) for the first time is compared to (4.3).  

 

)/( cpp +       (4.2) 
 

aau *3+=       (4.3) 
 

The greater value is used as the upper bound for the FSL.  In other words,  
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where iUB is defined as the upper bound for decision variable iS , and ω  is a Poisson random variable 

with mean a .  This is repeated until upper bounds are created for all FSLs: JUBUB ,...,1 . A 

summation of the FSL upper bounds is assigned to 0S  as an upper bound: 

∑
=

=
J
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0 ,      (4.5) 

 

4.3.2 Discrete values 
 
Another adaptation to the code was necessary to mitigate DE’s continuous nature. DE is a meta- 

heuristic algorithm for global optimisation over continuous spaces. The Penalty Cost model is an 

objective function with continuous and discrete input variables.  The discrete input variables, which are 

also the decision variables, are stock levels across the CW and FSLs: JSSS ,...,, 10 . The initial 

population and subsequent iterative generations of new populations in DE hold vectors of input 

variables (stock levels) which are consumed by the objective function as the algorithm converges 

towards the optimum solution. As a result, it is necessary to adjust all vector populations to discrete 

values. In effect, this turns the implementation of DE into discrete DE.  

 

During the initial population stage, DE will generate a matrix of real numbered vectors. As discrete 

values are required, a method of translating the matrix of real values into a matrix of integer 

equivalents is required. Simply rounding to the nearest Integer is insufficient. Due to the nature of the 

services supply chain business, a difference of one unit can have implications to the total cost outcome. 

Rounding to the nearest integer in theory could provide an optimum solution that is lower then the 

actual optimum solution provided by the best-in-class method. Taking this into consideration, a random 

number process of rounding up or down is used to seed the initial population and subsequent 

generations with discrete values. This random process is used again during the algorithm’s boundary 

constraints management stage to ensure that mutated values are inside the upper and lower bounds and 

is also discrete in nature. 

 

4.3.3 Alteration of initial population 
 

After an exploratory review of the results using standard DE, certain scenarios were identified that 

failed to provide the optimum solution.  They were consistently shown to deviate from the best-in-class 

algorithm with significant max and mean deviations.  It was known from the best-in-class method that 

the optimum solution for the scenarios is a solution where no stock is required to be placed at the 

central warehouse or FSLs.  It was decided to introduce a vector representing this solution into the 

initial population.  The initial population is a random generation process so it possible that a vector of 
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zeros could be created.  The lower and upper bounds are used to create a population of vectors that are 

possible solutions.  Hence, the initial population could contain a vector matching the solution outlined 

above. However, it is not guaranteed and with respect to the scenarios that struggled, it was a 

requirement.  A method of calculating distance from zero is applied to each vector in the initial 

population to select one for replacement.  The distance between vector [a,b,c,d] and [0,0,0,0] is defined 

as  

2^2^2^2^ dcbaDist +++=     (4.6) 
 
The vector with the closest distance to [0,0,0,0] is replaced by a vector of [0,0,0,0] . As shown in the 

numerical results, this improves DEs performance in achieving the optimum solutions. 
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Chapter 5 
 
 

5 Experimental Setup and Numerical Results 
 
5.1 Introduction 
 
This chapter presents the results of a comparison between a DE implementation of the Penalty Cost 

Model against a best-in-class method developed in the field of Operations Research.  The purpose of 

the analysis is to test the performance of DE in a variety of different scenarios.  The results are 

introduced for two DE algorithm variants, algorithm two and three are presented in the order they were 

compiled. They correspond to equations (3.7) and (3.8) which are DE/local-to-best/1/bin and 

DE/best/1/bin with jitter in respective DE notation.  Both algorithms apply the unmodified standard DE 

and the enhanced DE code changes described in chapter 4, sections 4.3.1 to 4.3.3.  A comparison of 

standard DE (unmodified) and enhanced DE to the best-in-class method is presented for each algorithm 

followed by a comparison of each DE algorithm to ascertain the better performing algorithm in the 

context of the Penalty Cost Model.  

 

The numerical results chapter is structured as follows;  

 

• Test-bed design. 

• Control and experimental setup. 

• Review of the DE control parameters. 

• Performance analysis of the DE. 

o Algorithm three 

o Algorithm two 

o Algorithm comparison 

• Scalability of the DE Penalty Cost Method 

 

5.2 Test-Set Design 
 
As mentioned in Chapter 4, a full factorial test set of 90 scenarios was designed to test the ability of DE 

to converge to the optimum solution.  Three levels of values, low, medium, high are used for the input 

parameters.  Each scenario contains the following input data; unit cost ( c ), penalty cost ( p ), central 

warehouse (CW) lead times ( 0L ), Forward Stocking location (FSL) lead times ( iL ), and FSL arrival 

rate ( iλ ). The FSL arrival rate is the rate in which the FSL will receive requests for replacement units 
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from the customer per calendar day.  The low, medium, high arrival rates values are 0.01, 0.1 and 1, 

respectively.  An arrival rate of one is considered high in the context of service parts as this would 

equate to 30 requests for replacement units per month.   

 

The unit cost is fixed at 1 for all 90 scenarios, and the penalty cost is varied using the values 9, 999 and 

99999 for low, medium and high.  The central warehouse lead times are one, five and ten calendar 

days. This lead time is the length of time to repair and return repaired units to the CW.  The FSL lead 

times are all fixed at 1 day ( 1=iL ), and the number of FSLs is restricted for 3 ( 3=J ). A full 

factorial design yields 90 distinct scenarios (Three penalty cost values * three CW lead time values * 

15 different arrival rate combinations for three FSLs). A sample set of input parameters for five 

scenarios is given in Table 5.1.  All 90 scenarios are designed to test the performance in different 

parameter regimes.  High values of penalty cost coupled with a low CW lead-time and high arrival 

rates at the FSLs will produce an optimum solution in a different region to a scenario with low penalty 

cost, and arrival rates, and high central warehouse lead time.  

 

Table 5-1 Sample input scenarios 
 
Scenario c  p  

0L  1L  1λ  2L  2λ  3L  3λ  

1 1 9 1 1 0.01 1 0.1 1 1 
2 1 9 5 1 0.1 1 1 1 0.01 
3 1 999 1 1 0.01 1 0.1 1 1 
4 1 999 10 1 1 1 0.01 1 0.1 
5 1 99999 1 1 0.01 1 0.1 1 1 
 

5.2.1 Control and Experimental Setup 
 
The code used in this study is the DeMat Matlab package [1].  A modified version of the code is used 

to process the input file containing 90 scenarios.  A scenario defines a particular set of problem 

parameters.  The input is supplied by CSV file in the form of Table 5.1.  DE was calibrated to select the 

best set of control parameters from an iterative review of all DE control parameters.  The selected 

control parameters are hard-coded as part of the control setup.  A review of the selection process is 

discussed later in the chapter.  Maximum number of generations for one scenario is set at 500.  Results 

are aggregated in CSV files.  Incorporated in the results are a mixture of dependent and independent 

variables.  The total cost calculated by the objective function is observed along with the optimum 

solution of stock levels for CW and FSLs.  The iteration that DE converged on the optimum solution is 

collected and the computation time for 500 iterations.  The hardware and software used for testing is a 

Dell PowerEdge 2900 server, two 64-bit Dual-Core Intel® Xeon® Processor 3.20 GHz, 1M Cache, 

800 MHz with Redhat and uncompiled Linux version of Matlab.  
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Table 5-2 Sample results 
 
Scenario F CR Total Cost CW FSL 1 FSL 2 FSL 3 Iteration Comp Time 

1 0.5 0.9 0.27 0 0 0 0 1 9.9558 

2 0.5 0.9 15.396 3 3 3 3 3 12.812 

3 0.5 0.9 10.433 1 4 4 0 1 17.525 

4 0.5 0.9 29.883 13 2 4 10 6 43.599 

5 0.5 0.9 47.933 23 10 10 4 12 63.173 

6 0.5 0.9 45.845 22 10 10 3 4 61.183 

 
Note: F is the value that is used in mutation to create the scaled difference vector. CR is the value most commonly used in 

binomial crossover. It determines how much of the parent vector is provided along with the mutant to create the trial vector. 

  

Using scenario five as an example, the recommended stock levels at the locations is displayed in 

columns CW, FSL1, FSL2, FSL3, and the minimum investment cost based on the various inputs 

supplied to this scenario is 47.933.  This recommendation will minimise the total investment to negate 

the possibility of any penalty costs applied.  As part of the control setup, an examination of DE’s 

performance against the 90 scenarios is required.  A known best-in-class method was developed in 

conjunction with researchers at Bell Labs to produce the optimum solution using the same 90 

scenarios.  It is a gradient descent search algorithm using METRIC approximation [2] to calculate the 

variable 0W  and is described in more detail in equation 2.4.  The method is referred to as the C Penalty 

Cost Algorithm (best-in-class) as the algorithm was developed in C.   Results similar to Table 5.2 are 

produced in CSV format.  Comparison between both methods is validated using mean percentage 

difference and a visual assessment of the optimum solutions for both methods.  This assessment gave 

rise to the modifications outlined in chapter 4, section 4.3.3. To distinguish the modified version of DE 

from the original, the methods are referred to as Standard DE and Enhanced DE.  Both methods apply 

the same DE control parameters.   

 

5.3 Review of DE Control Parameters 
 

There are a number of control parameters that are fixed for each DE generation. An iterative review of 

the control parameters was taken to select a combination for the Penalty Cost Model.  The three control 

parameters adjusted are the step size otherwise known as the scale factor F, the crossover probability 

CR and the DE algorithm variant. There are six DE variants as part of the DeMat Matlab package.  

Each variant applies different mutation techniques to converge on the optimum solution.  The 

following range of parameters for scale factor F was used, {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1}.  The range 

advised in the literature is [0,2] although it is recommended to stick between the region [0.5 1].   

 

The CR control parameter has a range of [0 1].  The values used in the review are 0.1, 0.3, 0.5, 0.7, 0.8, 

0.9 and 1.  Based on recommendations in the Matlab package, it was decided to focus on the region 0.7 
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to 1 and this is why the incremental difference is 0.1.  We still consider CR probabilities outside this 

and provide results for the region 0.1 to 0.7 in 0.2 incremental jumps.  The number of scenarios used 

for the iterative review of control parameters is 27 with a similar spread of problem settings to the test-

bed of 90 scenarios.  The number of generations within DE is set to 1000.  For each combination of 

control parameters, a total of 294 separate iterations are collected for each scenario.  The collection of 

results is provided in Figure 5.1 displaying each DE variant’s performance as a function of the scale 

factor F and the crossover probability CR, with the coloured cells representing the log scale of the 

number of iterations to converge at the optimum solution.  

 

 
Figure 5.1 DE algorithm performance as a function of F & CR  
  
Note: Best combination based on convergence to optimum is F = 0.5, CR = 0.9 and DE algorithm 3.  

 

The best combination of parameters suggested by this review is F = 0.5, CR = 0.9 and algorithm three.  

Figure 5.11 Algorithm two suggests an alternative choice holding F and CR to the same values as the 

best combination.  Due to the close call, both algorithms two and three are used in the numerical 

experiments and the same F and CR values are used in the testing process. 

5.4 DE Performance Analysis 
 
The DE control parameters used for testing are two variants of the DE algorithm, 9.0=RC  

and 5.0=F .   The test-bed of 90 scenarios is collated 30 times for each DE algorithm and compared 

to the best-in-class algorithm.  Results are supplied for the unmodified standard DE and the enhanced 

version of DE.    
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To determine the accuracy of the solutions returned, percentage deviation from the cost of the best-in-

class algorithm is used as a performance metric which is defined as; 

 

 
100*cos t

CostCost

C
CDPD −

= ,     (5.1) 

 

where CostC  is the total cost of the best-in-class algorithm and CostD is the total cost supplied by DE 

for a particular scenario.  Each scenario is run 30 times to identify the stability of DE.  Labels such as 

acceptable, not acceptable, or requires further analysis are used to describe the performance of DE in 

each scenario.  Obviously, scenarios that achieve the best-in-class optimum are acceptable.  Scenarios 

with a max deviation less than or equal to 2% over 30 iterations and an overall mean deviation of no 

more that 1% over 30 iterations is also considered acceptable.  Scenarios outside of these regions are 

either unacceptable or require further analysis.  Unacceptable scenarios have a max deviation more 

than 2% and an overall mean deviation more than 1%.  Scenarios that require further analysis are in the 

grey area of acceptability, and need to be judged on a case by case basis.  In general, the performance is 

good but deviated significantly at certain iterations.  Whether scenarios are placed into the acceptable 

area depends on the tolerance of the decision maker.  Almost all supply chain systems contains 

multiple items with different unit costs.  As a result, the focus will be on the more costly items in the 

system where the tolerance will be tightened as apposed to a relaxation of the tolerance for inexpensive 

items.  Table 5.3 displays a measure of a scenario’s stability for DE algorithm three.    

 

5.4.1 Algorithm 3 - DE/best/1/bin with jitter 
 
For 30 iterations, standard DE achieves stable solutions in 68 scenarios achieving the best-in-class 

optimum in 49 cases.  It returns seven scenarios that are unacceptable.  The maximum percentage 

deviation is 25.14. The average deviation over the runs that yield positive deviation is 4.31.  Note that 

this measure gives the expected percentage deviation in case there is a deviation from the best-in-class 

solution. For a real world Penalty Cost Model with overall investment in millions of dollars, the 

deviations figures for standard DE may be considered high.  This is in contrast to enhanced DE that 

does not return any unacceptable scenarios.  It achieves the optimum in 56 cases with an overall 

acceptable figure of 75 out of 90 scenarios with a maximum percentage deviation of 8.73, and an 

average deviation (over the runs that yield positive deviation) of 2.24 respectively.  Note the 

considerable decrease in both maximum and average percentage deviation figures.  Although there is 

significant improvement in terms of results, enhanced DE is not dominant over standard DE for 

algorithm three.  There are scenarios in which standard DE achieves the optimum when enhanced DE 

fails, and vice versa.  On the one hand, there are six scenarios for which Standard DE achieves the 

solution of the best-in-class algorithm while enhanced DE does not.  On the other hand, Enhanced DE 

achieves the solution of the best-in-class algorithm in 14 scenarios where Standard DE yields positive 

percentage deviations.  There is an overlap of 24 scenarios where both standard and enhanced DE fails 

to achieve the best-in-class optimum although 11 of the scenarios are considered acceptable.  Further 
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analyses of the problem settings for the overlapping scenarios do not identify a pattern that would 

account for the persistent deviations.   

 

Table 5-3 DE Algorithm 3 
 

Scheme Standard DE Enhanced DE 

Achieved Optimum 49 56 

max dev <= 2, mean dev <= 1 (acceptable) 19 19 

max dev > 2, mean dev > 1 (unacceptable) 7 0 

max dev > 2, mean dev <= 1 ( grey ) 15 15 

Note: Standard DE has 7 un-acceptable  scenarios  

 

5.4.2 Algorithm 2 - DE/local-to-best/1/bin 
 
For 30 iterations, standard DE achieves stable solutions in 78 scenarios achieving the best-in-class 

optimum in 72 cases.  It returns 12 scenarios that are unacceptable.  The maximum and average (over 

the runs that yield positive deviation) percentage deviation is 69.17 and 16.50 respectively.  Deviations 

of this magnitude are impractical for use in any supply chain system.  The deviations are concentrated 

in a group of scenarios that are consistent with the unacceptable scenarios from algorithm three.  This 

is the purpose of the modifications to DE outlined in chapter 4.  Contrasting these figures with 

enhanced DE for algorithm two, it achieves the optimum in 80 cases with an overall acceptable figure 

of 88 out of 90 scenarios.  It has a maximum and average (over the runs that yield positive deviation) 

percentage deviation of 4.01 and 1.15 respectively.  Enhanced DE shows significant improvements 

over standard DE in the amount of optimum solutions achieved and also in the exceptional reduction in 

max and average deviations.  Similar to algorithm three, enhanced DE is not dominant over standard 

DE although there is a noticeable shift in partial dominance towards enhanced DE.  There are three 

scenarios in which standard DE achieves the optimum when enhanced DE fails.  However, enhanced 

DE achieves the solution of the best-in-class algorithm in 12 out of 14 scenarios where Standard DE 

yields positive percentage deviations.  

 

Table 5-4 DE Algorithm 2 
 

Scheme Standard DE Enhanced DE 

Achieved Optimum 72 80 

max dev <= 2, mean dev <= 1 (acceptable) 6 8 

max dev > 2, mean dev > 1 (unacceptable) 12 0 

max dev > 2, mean dev <= 1 ( grey ) 0 2 
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5.4.3 Problem Settings 
 
The numerical results identify a number of scenarios where DE has failed to achieve the optimum.  

Table 5.5 identifies the scenarios that algorithm three failed to achieve the optimum for both standard 

and enhanced DE.  Table 5.6 is the corresponding scenarios for algorithm two. The purpose of 

identifying the scenarios is to check if there is an underline pattern to the scenarios which DE fails to 

achieve the optimum.  There is no clear trend other then medium to high penalty costs and medium to 

high CW lead time.  Both variables are used in the creation of an initial population of vectors and 

provide more opportunities for the DE algorithm to become trapped in local minima. DE does not 

guarantee that the optimum solution will be found.  It is the nature of stochastic algorithms converging 

to the global optimum. 

 

Table 5-5 Scenario overlap – Standard and Enhanced DE 
 

Scenario c  p  
0L  1λ  2λ  3λ  

32 1 999 1 0.01 0.01 0.1 
34 1 999 1 0.01 0.1 0.1 
43 1 999 5 0.01 0.01 1 
55 1 999 10 0.1 0.1 0.1 
80 1 99999 5 1 1 0.01 
83 1 99999 10 0.01 0.01 1 
87 1 99999 10 0.01 0.1 1 

 
Table 5-6 Algorithm 2 Scenario overlap – Standard and Enhanced DE 
 

Scenario c  p  
0L  1λ  2λ  3λ  

8 1 999 1 1 1 1 
32 1 999 1 0.01 0.01 0.1 
45 1 999 5 0.1 0.1 0.1 
46 1 999 5 1 0.1 0.1 
58 1 99999 10 1 1 1 

 

5.4.4 DE Algorithm Comparison 
 
Providing an effective method for comparison between both DE algorithms, Algorithm 2 and 3, allows 

for the formulation of specific instances where one would favour a particular algorithm over the other.  

For the Penalty Cost Model, it is shown that the standard DE method could not be applied to any real 

world system due to the number of unacceptable solutions and the high percentage deviations returned.  

Concentrating on enhanced DE as a way of comparing Algorithm 2 and 3, it demonstrates that 

algorithm two is more accurate and comparable to the best-in-class method due to the number of 

optimum solutions and the low overall percentage deviations.   
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We see an increase in the number of optimum solutions attained by Algorithm 2 and a reduction in max 

and mean percentage deviations as shown in Table 5.7.  The increase in optimum solutions allows 

Algorithm 2 to hold dominance over Algorithm 3.  Algorithm 2 achieves the optimum best-in-class 

solution in 23 scenarios where Algorithm 32 yields positive percentage deviations.  Nonetheless, for 

particular scenarios this accuracy comes at the expense of computation time and the number of 

iterations to converge.  As a result, scalability is a factor and leads to certain conclusions about each 

algorithm in relation to the model and supply chain distributed systems in general.   

 

Table 5-7 MAX & AVERAGE Percentage deviations Algorithm 2, Algorithm 3 
 

% Deviation Standard DE Enhanced DE 

Scenario MAX AVERAGE MAX AVERAGE 

Algorithm 3 25.14 4.31 8.73 2.25 

Algorithm 2 69.17 16.50 4.01 1.15 

 
Note: The average percentage deviation is calculated over the runs that yield positive deviation, not all runs. 

 

For a system with larger numbers of forward stocking locations combined with high levels of penalty 

cost, Algorithm 2 could be preferred for its accuracy in determining the optimum solutions.  An extra 

consideration of inexpensive items signifies a relaxation in the acceptable tolerance of the system 

which counteracts the lower probability of finding the optimum solution.  In this case, we may be 

happy to use Algorithm 3 to take advantage of its convergence rate.  In the next section, we discuss 

whether using Algorithm 2 for particular scenarios is computationally too expensive to the faster 

converging Algorithm 3.   

 

5.5 Scalability Analysis 
 

The initial experimental setup used a full factorial test bed of 21 scenarios.  The scalability review is 

applied to both algorithms using the enhanced DE method.  The CW lead-time is constant throughout 

and set to high (10).  The Penalty Cost is adjusted from low to medium to high.  The number of FSLs is 

3, 6, 12, 24, 48 and 60.  The FSL lead-time is constant as it is the case in the initial 90 scenario test-

bed.  The FSL arrival rate for each scenario is a randomly generated real number between [0,1].  As the 

underlying optimisation problem, the Penalty Cost Model, is combinatorial in nature, and DE is a 

computational algorithm, it is expected that the computation time will increase exponentially as the size 

of the population grows.  Figure 5.2 shows the minute differences in the computation time of each 

algorithm for penalty cost, 999 but in general, the computation times are similar.   
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Figure 5.2 Computation time for Algorithm 3 and 2 at penalty cost 999 
 
The number of iterations to convergence is more intuitive and provides good insight into the choice of 

algorithm and under what conditions that choice is advised.  Figure 5.3 shows the iterations as a 

function of the number of FSLs at each penalty cost with a mean value obtained.  As the figure shows 

clearly, the number of iterations depends heavily on the value of the penalty cost, which is intuitive. 

Scenarios with high penalty costs have larger upper bounds (see equation 4.4) which grow the search 

space significantly.  

 
Figure 5.3 Algorithm 3 and Algorithm 2 Iterations to convergence 
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Figure 5.4 to Figure 5.6 show the different convergence rates of each algorithm at penalty cost 9, 999, 

99999 respectively.  We see that for small number of retailers which are analogous to smaller 

population sizes, algorithm three converges on the optimum faster. In relation to the test-bed, scenarios 

with penalty cost 9 have smaller populations then the rest of the test-bed.  As the penalty costs increase, 

the boundary constraint modifications discussed in 4.3.1 ensure that the population size increases 

accordingly.  In addition, the scalability test-bed differs from the original 90 scenario test-bed in that 

the number of retailers increases for every scenario.   

 

This drastically changes the population size for each scenario in the scalability test-bed.  As the 

population size increases with medium to high levels of penalty cost, algorithm two performs better at 

converging to the optimum.  In light of this and taking the accuracy of solutions into consideration, 

algorithm two is the suggested algorithm to use for penalty cost models with a number of forward 

stocking locations greater than six and penalty costs in the medium to high range.   
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Figure 5.4 Penalty Cost 9 Algorithm 2 & 3 Iterations to converge 
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Figure 5.5 Penalty Cost 999 Algorithm 2 & 3 Iterations to converge 
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Figure 5.6 Penalty Cost 99999 Algorithm 2 & 3 Iterations to converge 
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Chapter 6 
 
 

6 Conclusions and Further Research 
 
 
The two echelon inventory system for spare parts is a well-known model with real world applications 

in inventory management, manufacturing and production planning.  In most if not all large technology 

corporations, there is a plentiful supply of optimisation problems that can be addressed with inventory 

planning and cost reductions at the forefront.  Up until now, there have been sporadic reviews and 

applications of supply chain system optimisation using DE.  In this thesis, the goal was the application 

of Differential Evolution to the optimisation of spare part inventory in a two-echelon supply chain 

setting.  The main motivation of this thesis was to gain an understanding of the mechanics of 

Differential Evolution and to determine the accuracy of DE in generating the optimum solutions for the 

Penalty Cost Model, which is the underlying optimisation problem for the aforementioned inventory 

system.   

 

6.1 Aims and Objectives 
 
The Penalty Cost Model is the mathematical optimisation model for determining the inventory 

requirements (where to stock and how much to stock) in a two-echelon spare parts supply chain system 

consisting of one central warehouse and a number of forward stocking locations. Customer requests for 

spare parts need to be fulfilled from on-hand stock, and any backlog results in penalties charged by the 

customer as part of the service contract between the parties. The objective of the Penalty Cost Model is 

to minimise the expected costs of the system that are comprised of the item costs (investment in 

inventory) and expected penalty costs. Based on preliminary results, a number of code modifications 

where introduced into the DE package. The modifications relate to boundary settings and initial 

population generation which are internal functions to DE.  As the complexity of the model intensifies, 

so does the need to ascertain the scalability of DE.  Hence, we have conducted a numerical experiment 

to test how DE scales as the size of the problem grows, which is achieved by increasing the number of 

forward stocking locations. The performance of each DE algorithm is assessed at ever increasing 

forward stocking location numbers and conclusions as to which algorithm is the preferred choice under 

complex Penalty Cost Model conditions.   
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6.2 Outcomes 
 
We applied the DE algorithm to a well-known and very hard discrete non-linear stochastic optimisation 

problem used to determine the inventory investment in a two-echelon spare parts inventory system.  

This is important because the use of DE in supply chain planning is limited, and the underlying 

optimisation problem is notoriously difficult since it has discrete decision variables and is 

combinatorial in nature.  An initial step was to conduct a small numerical study to decide on which DE 

variant and control parameters to use.  This study showed that Algorithm 3 (DE/best/1/bin with jitter) 

and Algorithm 2 (DE/local-to-best/1/bin) outperformed the others, and the parameter values to use for 

the supply chain problem are F scale factor, 0.9 and cross over (CR) probability, 0.5.  The main 

experimental setup and numerical results were motivated by real life supply chains where the various 

Penalty Cost Model parameters are varied to induce more complex Penalty Cost scenarios in which DE 

must achieve the optimum. The varied parameters are the penalty cost, the central warehouse lead time 

and the arrival rates at the forward stocking locations.  A full factorial design of a three-level set up 

resulted in a test bed of 90 Penalty Cost Model scenarios.  Using this test-bed, the performance of 

Algorithm 2 and Algorithm 3 was tested.  Using a metric referred to as percentage deviation, each DE 

algorithm was compared to the best-in-class analytical algorithm in the field of Operations Research.  

Note, percentage deviation (Equation 5.1) is the percentage difference between the best-in-class cost 

and the DE cost and the test-bed of 90 scenarios was run 30 times for each algorithm.  The percentage 

deviations for Algorithm 2 were found to have a maximum and average (over the runs that field 

positive deviation) of 69.17% and 16.50% respectively.  Algorithm 3 showed improvements with a 

maximum and average (over the runs that field positive deviation) of 25.14% and 4.31% respectively.  

We found that neither Algorithm 2 nor Algorithm 3 were appropriate for real like applications since the 

solutions found by the algorithms deviate considerably in many cases.  Consequently, we decided to 

modify the standard version of each DE algorithm to introduce enhancements for a more robust means 

of boundary calculation, to facilitate the Penalty Cost Model’s discrete decision variables and to adjust 

the initial population of solutions generated by DE before optimisation.  We call the modified 

algorithm enhanced Algorithm 2 and enhanced Algorithm 3.  The numerical results using the same test 

bed for the same number of iterations found the performance to increase considerably.  The maximum 

and average (over the runs that field positive deviation) for Algorithm 2 were 4.01% and 1.15% 

respectively.  The corresponding maximum and average for Algorithm 3 were 8.73% and 2.25% 

respectively.  The culmination of the numerical study was to test the scalability of the enhanced DE 

algorithms and it was found that Algorithm 2 is the preferred algorithm for optimising the Penalty Cost 

Model at all levels of scenario complexity. Our figures show that for increasing population size, 

Algorithm 2 outperforms Algorithm 3 using the number of iterations to convergence as the indicator   

We are confident that as a standalone application, the enhanced Algorithm 3 under certain real life 

supply chains will produce Penalty Cost Model solutions that are considered acceptable. However, 

enhanced Algorithm 2 outlines a more consistent stable application with optimum solutions of the best-

in-class achieved in 97% of the cases.  It returns the best-in-class solution in the bulk of scenarios 

where Algorithm 3 presents positive percentage deviations.  In the context of achieving the best-in-
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class solution, the accuracy of Algorithm 2 signifies that it is the recommended algorithm to adopt for 

the Penalty Cost Model.  In light of the results of this research we provide the following conclusions:  

 

1. Is DE an effective optimisation tool for solving the Penalty Cost Model? 

No, the standard version of DE was not effective at achieving the best-in-class solutions and 

the percentage deviations outlined present an unacceptable level of performance.  However, 

the enhanced version of DE is and the recommended DE algorithm to use is Algorithm 2. 

 

2. How does it compare with the best-in-class analytic algorithm? 

Enhanced DE Algorithm 2 achieves the optimum in 97% of the scenarios and the deviations in 

the scenarios where it returned positive percentage deviations are well inside real life supply 

chain tolerances.  In the context of optimum solutions achieved and the nature of stochastic 

algorithms like DE where no guarantee of convergence is given, we show that the enhanced 

DE Algorithm 2 is comparable to the best-in-class analytical algorithm.  In terms of practical 

applications of the enhanced DE Algorithm 2, the computational time increases exponentially 

for larger population sizes. See Figure 5.3 for the computation time for Algorithm 2 and 

Algorithm 3 at penalty cost 999.  In real life supply chain settings, a distribution of 24 forward 

stocking locations is considered a large collection of local warehouses to optimise. In 

consideration, Algorithm 2 converges on the optimum in 4.37 minutes using uncompiled 

Matlab on a Dell PowerEdge 2900 server, with a 64-bit Dual-Core Intel® Xeon® 3.20 GHz 

Processor.   

 

3. Is the DE implementation effective at achieving the optimum solutions for a given test-bed? 

Using the standard version of DE for both algorithms, we show that it is not effective at 

achieving the optimum solutions.  Applying the enhanced version of DE, Algorithm 2 is 

effective at achieving the optimum solution under all Penalty Cost Model conditions.  

Algorithm 3 is effective at only certain Penalty Cost Model conditions.  

 

4. Under what conditions does DE fail to achieve the optimum solution? 

In light of the fact that Algorithm 3 is successful only at certain Penalty Cost Model 

conditions, we know that for larger populations, it does not perform as well as Algorithm 2.  

The numerical results supplied by Algorithm 3 under these specific conditions are acceptable 

but not as accurate as the results for Algorithm 2.  Larger populations’ contain decision 

variables where the penalty cost, the central warehouse lead times, and the number of forward 

stocking locations are increasing.  In the context of the Penalty Cost Model scenarios, 

Algorithm 3 is comparable to Algorithm 2 only at smaller levels of each decision variable. 
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6.3 Further Research 
 
The penalty cost objective function optimised by DE presents some interesting avenues of research.  

The study can be applied to significantly more complex supply chain objective functions that are 

considered difficult to optimise in the field of Operations Research. The scalability assessment of the 

current DE implementation could be explored utilising DE’s parallel processing capabilities at higher 

levels of complex Penalty Cost Model conditions.  Applying parallel processing to this Penalty Cost 

Model would greatly reduce the computation time and may allow a practical DE implementation of the 

Penalty Cost Model.  The advantages of using this would appear at much larger number of retailers as 

the search space is more extensive.   
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Appendix A 
 

Appendix A 1 Test-bed of 90 scenarios 
 

Scenario c  p  
0L  1λ  2λ  3λ  

1 1 9 1 0.01 0.01 0.01 
2 1 9 1 0.01 0.01 0.1 
3 1 9 1 0.01 0.01 1 
4 1 9 1 0.01 0.1 0.1 
5 1 9 1 0.1 0.1 0.1 
6 1 9 1 1 0.1 0.1 
7 1 9 1 0.01 0.1 1 
8 1 9 1 1 1 1 
9 1 9 1 1 1 0.1 

10 1 9 1 1 1 0.01 
11 1 9 5 0.01 0.01 0.01 
12 1 9 5 0.01 0.01 0.1 
13 1 9 5 0.01 0.01 1 
14 1 9 5 0.01 0.1 0.1 
15 1 9 5 0.1 0.1 0.1 
16 1 9 5 1 0.1 0.1 
17 1 9 5 0.01 0.1 1 
18 1 9 5 1 1 1 
19 1 9 5 1 1 0.1 
20 1 9 5 1 1 0.01 
21 1 9 10 0.01 0.01 0.01 
22 1 9 10 0.01 0.01 0.1 
23 1 9 10 0.01 0.01 1 
24 1 9 10 0.01 0.1 0.1 
25 1 9 10 0.1 0.1 0.1 
26 1 9 10 1 0.1 0.1 
27 1 9 10 0.01 0.1 1 
28 1 9 10 1 1 1 
29 1 9 10 1 1 0.1 
30 1 9 10 1 1 0.01 
31 1 999 1 0.01 0.01 0.01 
32 1 999 1 0.01 0.01 0.1 
33 1 999 1 0.01 0.01 1 
34 1 999 1 0.01 0.1 0.1 
35 1 999 1 0.1 0.1 0.1 
36 1 999 1 1 0.1 0.1 
37 1 999 1 0.01 0.1 1 
38 1 999 1 1 1 1 
39 1 999 1 1 1 0.1 
40 1 999 1 1 1 0.01 
41 1 999 5 0.01 0.01 0.01 
42 1 999 5 0.01 0.01 0.1 
43 1 999 5 0.01 0.01 1 
44 1 999 5 0.01 0.1 0.1 
45 1 999 5 0.1 0.1 0.1 
46 1 999 5 1 0.1 0.1 
47 1 999 5 0.01 0.1 1 
48 1 999 5 1 1 1 
49 1 999 5 1 1 0.1 
50 1 999 5 1 1 0.01 
51 1 999 10 0.01 0.01 0.01 
52 1 999 10 0.01 0.01 0.1 
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53 1 999 10 0.01 0.01 1 
54 1 999 10 0.01 0.1 0.1 
55 1 999 10 0.1 0.1 0.1 
56 1 999 10 1 0.1 0.1 
57 1 999 10 0.01 0.1 1 
58 1 999 10 1 1 1 
59 1 999 10 1 1 0.1 
60 1 999 10 1 1 0.01 
61 1 99999 1 0.01 0.01 0.01 
62 1 99999 1 0.01 0.01 0.1 
63 1 99999 1 0.01 0.01 1 
64 1 99999 1 0.01 0.1 0.1 
65 1 99999 1 0.1 0.1 0.1 
66 1 99999 1 1 0.1 0.1 
67 1 99999 1 0.01 0.1 1 
68 1 99999 1 1 1 1 
69 1 99999 1 1 1 0.1 
70 1 99999 1 1 1 0.01 
71 1 99999 5 0.01 0.01 0.01 
72 1 99999 5 0.01 0.01 0.1 
73 1 99999 5 0.01 0.01 1 
74 1 99999 5 0.01 0.1 0.1 
75 1 99999 5 0.1 0.1 0.1 
76 1 99999 5 1 0.1 0.1 
77 1 99999 5 0.01 0.1 1 
78 1 99999 5 1 1 1 
79 1 99999 5 1 1 0.1 
80 1 99999 5 1 1 0.01 
81 1 99999 10 0.01 0.01 0.01 
82 1 99999 10 0.01 0.01 0.1 
83 1 99999 10 0.01 0.01 1 
84 1 99999 10 0.01 0.1 0.1 
85 1 99999 10 0.1 0.1 0.1 
86 1 99999 10 1 0.1 0.1 
87 1 99999 10 0.01 0.1 1 
88 1 99999 10 1 1 1 
89 1 99999 10 1 1 0.1 
90 1 99999 10 1 1 0.01 

 
 

Scenarios c  p  
0L  iλ  No of retailers 

1 1 9 10 ]1,0[ℜ=iλ  3 
2 1 9 10 ]1,0[ℜ=iλ  6 
3 1 9 10 ]1,0[ℜ=iλ  12 
4 1 9 10 ]1,0[ℜ=iλ  24 
5 1 9 10 ]1,0[ℜ=iλ  36 
6 1 9 10 ]1,0[ℜ=iλ  48 
7 1 9 10 ]1,0[ℜ=iλ  60 
8 1 999 10 ]1,0[ℜ=iλ  3 
9 1 999 10 ]1,0[ℜ=iλ  6 

10 1 999 10 ]1,0[ℜ=iλ  12 
11 1 999 10 ]1,0[ℜ=iλ  24 
12 1 999 10 ]1,0[ℜ=iλ  36 
13 1 999 10 ]1,0[ℜ=iλ  48 
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14 1 999 10 ]1,0[ℜ=iλ  60 
15 1 99999 10 ]1,0[ℜ=iλ  3 
16 1 99999 10 ]1,0[ℜ=iλ  6 
17 1 99999 10 ]1,0[ℜ=iλ  12 
18 1 99999 10 ]1,0[ℜ=iλ  24 
19 1 99999 10 ]1,0[ℜ=iλ  36 
20 1 99999 10 ]1,0[ℜ=iλ  48 
21 1 99999 10 ]1,0[ℜ=iλ  60 

 
Note: The arrival rates are real values between 0 and 1... 
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