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THE IMPORTANCE OF BEING 
BEAUTIFUL IN MATHEMATICS 
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I 1. Introduction 
1 
I 
I In this article I will discuss beauty in mathematics and I will present a case for why I consider 
1 beauty to be arguably the most important feature of mathematics. However, I will first make 

some general comments about mathematics that are relevant to my discussion. 

Mathematics essentially comprises an abundance of ideas. Number, triangle and limit are just 

some examples of the myriad ideas in mathematics. I find from experience in teaching mathemat- 

ics and promoting mathematics among the general public that it's a big surprise for many people 

when they hear that number is an idea that cannot be sensed with our five physical senses. Num- 

bers are indispensable in today's society and appear practically everywhere from football scores 

to phone numbers to the time of day. One of my favourite football scores, which I refer to in 

some talks, is the 'celebrated' result: 

Louth 1-9 v 1-7 Cork in 1957 

I will return to this football score later. 

The reason number appears practically everywhere is because a nuinber is actually an idea and 

not something physical. Many people think that they can physically see the nuinber two when it's 

written on the blacltboard but this is not so. The number two cannot be physically sensed because 

it's an idea. 

Mathematical ideas like number can only be really 'seen' with the 'eyes of the mind' because that 
is how one 'sees' ideas. Think of a sheet of music which is importailt and useful but it is nowhere 

near as interesting, beautiful or powerful as the music it represents. One can appreciate music 

without reading the sheet of music. Similarly, mathematical notation and symbols on a black- 

board are just like the sheet of music; they are important and useful but they are nowhere near as 
interesting, beautiful or powerful as the actual mathematics (ideas) they represent. The nuinber 2 

on the blackboard is purely a symbol to represent the idea we call two. Many people claim they 
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do not see mathematics in the physical world and this is because they are looking with the wrong 
eyes. These people are not looking with the eyes of their mind. For example if you look at a car 

with your physical eyes you do not really see mathematics, but if you look with the eyes of your 

mind you may see an abundance of mathematical ideas that are crucial for the design and opera- 

tion of the car. 

So what is this idea we call two? If one looks at the history of number one sees that the powerful 

idea of number did not come about overnight. As with most potent mathematical ideas, its crea- 

tion involved much imagination and creativity and it took a long time for the idea to evolve into 

something close to its current state around 2500 BC. Here is one way to think of what the number 

two is: 

Think of allpairs of objects that exist; they all have something in common and 

this common thing is the idea we call two. 

One can think of any positive whole number in a similar way. Note that this idea of two is differ- 

ent from two sheep, two cars etc. The seemingly simple statement that 

20+3 1=5 1 

is actually an abstract statement, since it deals with ideas rather than concrete objects, and solves 

infinitely many problems (since you can pick any object you want to count) in one go. This illus- 

trates the incredible practical power of abstraction and many people do not realise that they use 

abstraction all the time, e.g. when adding. Note that it's not physically possible to solve infinitely 

many different problems and yet, Hey Presto! it can be done in the abstract in one go. It borders 

on magic that it can be done. 

Abstraction essentially means that we work with ideas and also try to deal with many seemingly 

different problems/situations in one go, in the abstract, by discarding superfluous information and 

retaining the important common features, which will be ideas. Many people tend to think of ab- 

straction as the antithesis of practicality but as the above example of addition shows, abstraction 

can be the most powerful way to solve practical problems because it essentially means you try to j 
1 

solve many seemingly different problems in one go, in the abstract, as opposed to solving all the I 
I 

different problems separately. The latter approach of solving the different problems separately is ! 

what people did as relatively recently as less than five thousand years ago by using different 1 
1 

physical tokens for counting different objects. For example, they used circular tokens for count- i 
4 

ing sheep and cylindrical tokens for counting jars of oil etc. Nowadays, of course, thanks to ab- j 
straction, we just do it in one go as 20+31=51 and it doesn't matter whether we are counting 

sheep or jars of oil. Clearly, there are much more advanced examples of abstraction but the 1 
20+3 1=5 1 example captures the essential feature of abstraction. See [I] for more on abstraction. 4 

i 

These surprises (that number is an idea and addition is an example of abstraction) can actually be I 
1 
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very positive experiences for some people and these surprises don't confuse them; in fact it can 

change their perception of mathematics for the better and make them more comfortable with 
other more complicated ideas because they are now already comfortable with one abstract mathe- 

matical idea, i.e. number. These surprises also enhance the understanding, awareness and appre- 
ciation of mathematics for many people. Some people also find it fascinating to know that the 

idea of number was not always known to humans and was actually created by somebody around 

2500 BC. As I said above, before 2500 BC the idea of number had not been created and people 

used different physical tokens to count different objects. 

Now, back to that pleasing football score: 

Louth 1-9 v 1-7 Cork in 1957 

Sometimes I use this result, and other examples, to illustrate how number is an idea and why it is 

so prevalent in today's society. I comment on how the same symbol 9 is used in two different 

places to indicate two different things. One refers to 9 very satisfying points scored by Louth, 

while the other refers to 9 hundreds of years. The reason for this is that 9 is just a symbol to rep- 

resent an idea and that idea can slot into infinitely many different situations. This is one reason 

why mathematical ideas and abstraction are so powerful and ubiquitous in society today. 

Some other important features of the above scoreline are that it was the last time that Louth won 

the All Ireland senior football title, it shows the smallest county defeating the largest county and I 

could go on! 

I will now move on to the main topic of this article. 

2. Beauty in mathematics 

The beauty in mathematics typically lies in the beauty of ideas because, as already discussed, 

mathematics consists of an abundance of ideas. Our notion of beauty usually relates to our five 

senses, like a beautiful vision or a beautiful sound etc. The notion of beauty in relation to our five 

senses clearly plays a very important and fundamental role in our society. However, I believe that 

ideas (which may be unrelated to our five senses) may also have beauty and this is where you 

will typically find the beauty in mathematics. Thus, in order to experience beauty in mathematics, 

you typically need to look, not with your physical eyes, but with the 'eyes of your mind' because 

that is how you 'see' ideas. 

From my experience in the teaching of mathematics and the promotion of mathematics among 

the general public, I have found that the concept of beauty in mathematics shocks many people. 
However, after a quick example (like the big sum for a little boy below) or two and a little chat 
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the very same people have changed their perception of mathematics for the better and agree that 

beauty is a feature of mathematics. One of the reasons why many people are shocked when I 
mention beauty in mathematics is because they expect the usual notion of beauty in relation to 

our five senses but as I said above the beauty in mathematics typically cannot be sensed with our 
five senses. 

Around 2,500 years ago the Classical Greeks reckoned there were three ingredients in beauty and 

these were: 

lucidity, simplicity and restraint. 

Note that ~implicitythbove typically means Bimplicity in hindsighto because it may not be easy 

to come up with the idea initially. On the contrary, it may require much creativity and imagina- 

tion to come up with the idea initially. These three ingredients above might not necessarily give a 

complete recipe for beauty for everybody, or maybe a recipe for beauty doesn't even exist. How- 

ever, it can be interesting to have these ingredients in the back of your mind when you encounter 

beauty in mathematics. Also, for the Classical Greeks, the three ingredients applied to beauty, not 

just in mathematics, but in many of their interests like literature, art, sculpture, music, architec- 

ture etc. 

3. Some examples of beauty in mathematics 

Example 1. Big sum for a little boy 
Here is a simple example of what I consider to be beauty in mathematics. A German boy, Karl 

Friedrich Gauss (1777-1855), was in his first arithmetic class in the late 18th century and the 

teacher had to leave for about 15 minutes. The teacher asked the pupils to add up all the numbers 

from 1 to 100 assuming that would keep them busy while he was gone. Gauss put up his hand 

before the teacher left the room. Gauss had the answer and his solution exhibits both beauty and 

practical power. Gauss observed that: 

1+100=101, 

2+99=101, 

3+98=101, 

. . . 
50+51=101 

and so the sum of all the numbers from 1 to 100 is 50 times 101 which is 5050. Notice how 

Gauss' solution exploits the symmetry in the problem and flows very smoothly. Compare it to the 

direct brute force approach of 1+2+3+4 .... which is very cumbersome and would take a long time. 

Both approaches will give the same answer but Gauss' solution is elegant and the other is tedious. 

Gauss' approach is also much more powerful than the 1+2+3 ... approach because his idea can be 
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generalised to solve more complicated problems, but you cannot really do much more with the 
1+2+3 . approach. This power of the beauty in mathematics happens frequently. For those people 

who are shocked by the notion of beauty in mathematics, this example from Gauss usually 

changes their perception of mathematics very quickly for the better and they then agree that 

beauty can be a feature of mathematics. 

Example 2. The Seven bridges of Konigsberg 
This is the famous Seven bridges of Konigsberg puzzle. Konigsberg, which is now called Kalin- 
ingrad in Russia, was a city in East Prussia during the eighteenth century. The city was on the 

banks of the River Pregel and the four parts of the city, denoted by A, B, C, and D, were linked 

by seven bridges. See Figure 1 

Figure 1 

On Sundays people liked to walk around the city and the following question arose: 

Is it possible for one to return to their starting point, anywhere in the city, by cross- 

ing each bridge exactly once? 

It's a bit like the Dublin puzzle which asks: 

"Can you walk from one side of Dublin to the other without passing a pub? E 

I suppose you could call it 'The infinite pubs of Dublin' puzzle! Anyway, nobody could solve the 

Konigsberg puzzle until the famous Swiss mathematician, Euler (1707-1783), heard about the 

puzzle and solved it in 1736. 

Euler proved that it's impossible to return to your starting point by crossing each bridge exactly 

once. So, how did Euler's proof go? Well, suppose for convenience that your starting point is in 

A. The same argument will work for B, C and D. Now, Euler observed that a necessary condition 
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for being able to return to your starting point after crossing each bridge exactly once is that there 

must be an even number of bridges linked to A. The reason for this is that you must leave A on 

some bridge and then come back to A on a different bridge, then leave and come back again etc. 

If you think about it you will see that if there was an odd number of bridges linked to A, then you 

would have no last bridge to come back on. Now, one can see that there is actually an odd num- 

ber of bridges linked to A and so you cannot return to your starting point after crossing each 

bridge exactly once. I think Euler's proof is ingenious and is the epitome of elegance. The Classi- 

cal Greeks would consider it beautiful too because it certainly has those three ingredients of lu- 

cidity, simplicity (in hindsight) and restraint. 

Euler's solution is a famous example of elegance in the history of mathematics. Furthermore, his 

solution of a seemingly trivial puzzle led to a whole new area in mathematics called network the- 

ory (or graph theory) which is now indispensable for understanding and designing telecommuni- 

cation networks, computer circuits, complicated timetables (like our university timetable here in 

Maynooth) and much more. This is a great example of how an elegant solution of a seemingly 

innocent puzzle can lead to a major breakthrough in mathematics which in turn can produce very 

powerful solutions to all sorts of important problems in engineering, science and many other ar- 

eas. 

Notice that nowadays one could just throw this puzzle at a computer and the computer would just 

check all the millions of possible routes and conclude that it's impossible to return to your starting 

point by crossing each bridge exactly once. However, I don't see any elegance in a computer 

churning out the word 'Impossible'. The computer approach provides no insight into why it's im- 

possible and furthermore doesn't give you any new ideas that could be applied elsewhere. How- 

ever, Euler's approach provides insight into why it's impossible and his idea, as I said above, led 

to a whole new area in mathematics that is now indispensable for solving many important prob- 

lems in engineering, science and many other areas. So, maybe it's just as well there were no com- 

puters in Euler's time! Also, it's interesting to note that there are no longer seven bridges in 

Konigsberg because the city was bombed heavily during the second world war. Only three of the 

original bridges are left and two of the others have been rebuilt. Apparently, it is now possible to 

return to your starting point by crossing each bridge exactly once, unlike back in Euler's time in 

1736! 

Euler was the most prolific mathematician ever, in terms of number of publications, until the 

Hungarian mathematician, Erdos (1 9 13- 1996), passed him out recently. Erdos was so prolific that 

apparently, on a long train journey once, he ended up chatting with the train conductor, who was 

not a mathematician, and between the two of them they solved a previously unsolved problem 

and published it later! Euler was not only prolific in mathematics; he also had thirteen children. 

Actually, he once said that some of his greatest mathematical ideas came to him while he had a 

sleeping baby on his lap. Note that one could base an outdoor mathematical activity on the 
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Konigsberg puzzle by finding a place near your school, like an appropriate variety of paths in a 

park, and ask a similar question as in the Konigsberg puzzle above. 

Example 3. The walk along a mountain path 
This strange looking puzzle seems to have nothing to do with mathematics and yet it is one of my 

favourite examples of beauty in mathematical thinking. The puzzle goes as follows: 

Deirdre starts walking along a mountain path @om her house to Ciara's house at 9 a.m. 

on Saturday morning. Deirdre stays overnight at Ciara's house and starts walking back 

along the same mountain path at 9 a.m. on Sunday morning. Is there a point on the 

mountain path where Deirdre passes at the same time on both days? 

i 

Notice that there are no assumptions made about Deirdre's speed on either day. She may walk 
f 

; faster on one day than the other; we don't know and it doesn't matter. The solution to this puzzle i 
I involves thinking outside the box in a big way. Here is the solution: Imagine the Saturday walk 

and the Sunday walk starting simultaneously and you will see that the two walks must intersect at 
r' 
1 some point X. This point X is a point on the path where Deirdre passes at the same time on both 
f days. That's it! Now, that solution has beauty. 
t e- 
[ Example 4. An extraordinary equation 

The following equation is widely regarded to be the most beautiful equation in mathematics: 

Why? Well, essentially because it embraces the five most important numbers in mathematics and 

it does so in quite a lucid and relatively simple way. The five numbers all have very different ori- 

gins and yet it's quite extraordinary that one relatively 'simple7 relationship embraces them all. 

Each of the five numbers 
0, 1, n, e, i 

has a fascinating history. The most interesting book title related to these numbers is undoubtedly 

'Zero: The biography of a dangerous idea7 by Charles Seife. Read it and you will see why zero 

was and still is a dangerous idea. Second in the league of interesting book titles for these numbers 

is 'An imaginary tale: the stoiy of & ' by Paul Nahin. 

Equation (*) above can be proved by setting 0 = x in the equation: eio = cos 0 + isin 0 . 

Equation (*) is not only very aesthetically pleasing, but it also is very useful in a practical way. 

For example, it plays a fundamental role in helping us understand how things change periodically 
f 
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in time. In fact, the electricity supply industry, which utilises alternating current to provide elec- 
tricity, uses equation (*) and its consequences every time it designs and operates a power station. 

So, quite literally, in this case mathematical beauty definitely has practical power! 

Example 5. Magic 
This example provides a taste of the magic in mathematics. I will present this example in the 
form of a trick below. Tricks can often be a good way to stimulate students. They can also pro- 

vide an intriguing setting for the discussion of mathematics. The trick below has many important 

applications to science. For example, the trick relates to why students can listen to their favourite 

music on a CD and why a CD supposedly has no flaws/scratches etc. like the old LPs. The trick 

also relates to why we can view images from Mars! 

Here is the trick: 

Create an audience of students. Ask a volunteer to set up a square with five rows and five col- 

umns of cards (or anything that has a front and a back side that are different), with a random 

number of cards face up and face down. Ask the volunteer to turn one of the cards over while you 

are not looking. The trick is that you will be able to say which card was turned over. However, 

just before the student turns the card over, you suggest adding in one card to each of the five 

original rows and one card to each of the five original columns in order to make your problem 

more difficult. This action is crucial to the trick but you don't let the audience know this. You 
carefully, yet seemingly carelessly, append a new card to each of the five rows and a new card to 

each of the five columns such that the number of cards face up in each of the first five new rows 

is even and the number of cards face up in each of the first five new columns is even. 

You then look away and let the volunteer turn one card over. You look back at the cards (and 

wave your magic wand!) and simply silently count the number of cards face up in each of the 

first five new rows and each of the first five new columns and note where you get an odd answer. 

This will tell you where the overturned card lies. It will seem like magic. 

The above trick can also be performed by using zeros and ones on the blackboard instead of cards 

face up and face down. 

I have performed this trick many times in my public promotion of mathematics in schools and the 
general public and the trick definitely makes a big impression on people. I feel the idea behind 

this trick has a certain beauty to it. Where there is beauty in mathematics, practical power will 

often follow, and so it's not surprising that this idea also has important practical applications. 

How does the above trick relate to applications in science? Well, in the trick you are using a basic 

version of a technique that is fundamental in the powerful practical area of 'error correction in 
codes'. This is the technique where information is appended to the code (message) by the trans- 

mitter, in order that the receiver of the message will be able to detect a possible error, due to 
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physical interference etc, and hopefully correct the error. The analogue of the error in the above 

trick is the overturned card and you were able to detect where the error lies essentially by append- 

ing extra information before the card was turned over. 

Error correction in codes is crucial in the performance of compact discs. Take a CD from your 

music collection. The sound is digitally stored on the CD. This digital information can be thought 

of as a code (message) consisting of zeros and ones, just like the face-up cards and face-down 

cards in the trick above. Extra information is also appended to the CD as in the trick above to 

give the total code on the CD. A laser beam in your CD player transmits this total code to a de- 

coder. The decoder receives the total code and attempts to detec: any errors which may have been 

caused by dirt or a scratch etc. This detection process is an advanced version of the method used 

in the trick above. When an error is detected it can then be corrected so that the sound emanating 

fiom your CD player is correct. This is a far cry from the needle on the turntable! 

Error correction in codes is also fundamental in analysing information transmitted from space- 

craft. For example, when a spacecraft takes photos of Mars, the information is digitally stored 

like in the CD above. This information (and the extra appended information like above) is trans- 

mitted to earth. Any errors caused along the way, like radio interference etc, can be detected and 

corrected like above. We can then see the correct images of Mars. 

Example 6. It's a knock out 
Recall that I said I could go on, in relation to the Louth v Cork scoreline. Well, this example is 

related to that scoreline. How many games took place in the 1957 All-Ireland senior football 

championship before the Louth captain, Dermot O'Brien, lifted the Sam Maguire to the cheers of 

all the jubilant Louth fans at Croke Park? It's not obvious, is it? 

Here is a similar, yet seemingly more difficult problem: Pick any knock-out tournament you 

want; it could be football, tennis etc. Suppose there are 127 teams involved and that each game 

produces one winner who proceeds to the next round and one loser that cannot return to the tour- 

nament later on. So, there are no draws, replays or GAA-backdoor-like features. How many 

games must be played before the champion lifts the trophy? Generalise this to the case where you 

replace 127 by any positive number n. 

This looks like quite a complicated problem because you don't know if some teams have byes 

into later rounds and you don't have any information on the structure of the tournament other than 

what is mentioned above which doesn't seem like enough information. Nevertheless, there will be 

a beautiful two-line solution to this problem. This is a good example of how, by looking at the 

problem in a completely different way, the solution just simply pops out. Another feature of this 

problem is the following metaphor which I sometimes mention in my promotion/teaching of 

mathematics: 
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You might feel like you are banging your head against a brick wall and there is 

no way through to the other side. However, maybe there is an unlocked door 

somewhere in the brick wall andyou just need to gently pytish it open and there 

you are, on the other side. 

Instead of concentrating on the start of the tournament and looking forward in time, like most 

people do, we will go to the end of the tournament to produce the elegant two-line solution: 

The 'champion lifting the trophy' is equivalent to 'exactly 126 losers' which is 

equivalent to 'exactly 126 games played'! Consequently, the answer is 126. 

Similarly, the general solution to the n-team problem is n- 1. 

It's interesting to note that, in the Junior Certificate Syllabus, one of the general objectives in 

mathematics education is that the students should appreciate mathematics as a result of being able 

to acknowledge the beauty. There are many other examples of beauty in mathematics. Some re- 

quire more advanced material and some don't. Here are just two more examples, of many: 

Euclid's elegant proof that there are infinitely many primes and the aesthetically pleasing proof 

by Hippasus that JZ is irrational. 

4. Why beauty is arguably the most important feature of mathematics 

From my experience teaching a course on the history of mathematics I feel that beauty in mathe- 

matics is arguably the most important feature of mathematics. I will present a case for this opin- 

ion shortly. Five other important features of mathematics are: 

a) Deductive reasoning. See Reason (iii) below for more on this. 

b) Abstraction. See section 1 above for more on this. 

c) The practical power of mathematics, i.e. the powerful applications of mathematics to sci- 

ence, engineering, navigation, meteorology, finance and many other areas. 

d) Research. Historically, research in mathematics has been very vibrant with mathemati- 

cians trying to solve many unsolved problems and also developing new theories. The mo- 

tivation for mathematical research can come fi-om a problem in the physical world or just 

from pure human imagination. One can play 'Who wants to be a Millionaire?' in mathe- 

matical research! How? Well, go to www.claymath.org and check out the Clay Mathemat- 

ics Institute's Millennium Problems. There is a million dollars prize money for solving 
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i 
any of the seven Millennium Problems. Let me know if you solve any and I would be 

i happy to be your agent! One of the unsolved Millennium problems relates to the Navier- 
I 
t Stokes equation, which is partially named after an Irish mathematician. George Stokes 
L 

; (1 819- 1903) was born in Sheen, Co. Sligo. The Navier-Stokes equation is important in 
i many practical problems including the stability of ships and can also be used to model 

ocean currents. Coincidentally Stokes did a lot of work on fluid dynamics, related to 

waves and ocean currents, and now Skreen is close to some of the best waves for surfing 

in Europe (e.g. Easkey). 

e) Freedom. The notion of freedom in mathematics shocks many people. However, as Cantor 

(1 845- 19 18) once said, 

"The essence of mathematics lies in its freedom". 

The reason freedom is an important feature of mathematics is because one is free to con- 

ceive of any ideas one wants in mathematics. Whether or not these ideas will lead to any- 

thing interesting or useful is another matter. Historically, the major breakthroughs in 

mathematics have typically happened because the great mathematicians were free to con- 

ceive of any ideas they wanted even if they broke with conventions and seemed bizarre to 

other mathematicians and the general public. Three examples, of many, are the discovery 

that & was irrational by Hippasus in Ancient Greece, the discovery of Non-Euclidean 

Geometry in the 19th century which liberated geometry and the creation of Quaternions 

by Hamilton on the banks of the Royal Canal in Dublin in 1843 which liberated algebra 

from arithmetic. See section 6 for more on Quaternions. 

Mathematics is so much more than mere numbers, techniques and formulas. Techniques on their 

own are usually devoid of stimulation and beauty. The art of doing mathematics may involve any 

of the following: creativity, imagination, inspiration, ingenuity, surprise, mystery, beauty, intui- 

tion, insight, subtlety, fun, a wild thought, wonder, symmetry, harmony, aesthetic pleasure, origi- 

nality, a great sense of achievement, a profound idea, a simple and yet powerful idea, deep con- 

centration and hard work. 

As I will outline below, features (a), (b), (c), and (d) above are all intimately related to beauty in 

mathematics. 

I will now present a case for why I believe that beauty is, arguably, the most important feature of 

mathematics. I will give four reasons. 

Reason (i) The qztest for beauty has often been the motivation for why the great mathematicians 

do research in mathematics. 

Intellectual curiosity, the quest for beauty and the need to understand and solve important practi- 
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cal problems (in science and many other areas) are some of the motivating elements for doing 

mathematics. From my experience in teaching a course on the history of mathematics, I feel that 

the search for beauty has often been the motivation for why the great mathematicians do research 

in mathematics. I will let some of these mathematicians speak for themselves: 

Ireland's greatest mathematician, William Rowan Hamilton ( 1  805-1865), was also a poet and re- 

garded "Mathematics as an aesthetic creation, akin to poetry, with its own mysteries and mo- 

ments of profound revelation ". 

He also wrote: "For mathematics, as well as poetry, has its own enthusiasm and holds its own 

communion, with the sublimity and beauty of the universe". 

Hardy ( 1  877-1947), once wrote: 

"The mathematician's patterns, like the painter's or poet's, must be beautiful, 

the ideas, like the colours or the words must fit together in a harmonious way. 

Beauty is the first test; there is no permanent place in the world for ugly 

mathematics. It may be hard to define mathematical beauty, but that is just as 

true of beauty of any kind - we may not quite know what we mean by a beauti- 

fulpoem, but that does not prevent trs from recognising one when we read it". 

The great French mathematician, Poincare ( 1  854- 19 12), said: 

"The mathematician does not do mathematics because it's usehl, he studies it 

because he delights in it and he delights in it because it's beautzJir1". 

Somebody once wrote: "Many mathematicians do research out of a desire for mathematical ele- 

gance and the thrill of exploring the unknown". 

Archimedes (287-212 BC) is widely regarded as one of the three greatest mathematicians of all 

time. The historian, Plutarch, once wrote about Archimedes: 

"He, i.e. Archimedes, regarded the business of engineering, and indeed of 

every art which ministers to the material needs of life, as an ignoble and sor- 

did activity, and he concentrated his ambition exclusively upon those specula- 

tions whose beauty and subtlety are untainted by the claims of necessity. These 

studies, he believed, are incomparably superior to any others, since here the 

grandeur and beauty of the subject matter vie for our admiration with the co- 

gency and precision of the methods of proof '. 

This is quite a remarkable statement when one considers that Archimedes' mathematics was, and 

still is, exceptionally powerful when applied to the areas of engineering, science and many other 

areas. 

Archimedes and Hamilton are great examples of people who pursued mathematics for its aes- 
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g thetic qualities and yet their mathematics has turned out to be incredibly powerfill when applied 

it I to science, engineering and many other important practical areas. There are many other examples 

h of such people. The moral of the story here is that the practical power of mathematics can be an 
i 
i 

offspring of the search for beauty. This leads us on to reason (ii) below. 

/ Reason (ii) The practical power of mathematics is often an offspring of the search for beauty in 
I 

mathematics. 

t 

See examples 1 ,  2, 4 and 5 in section 3 where one can see the practical power of the beauty in 
f mathematics. The quest for beauty in mathematics is what has motivated many of the great 

mathematicians and yet their mathematics has turned out to be incredibly powerfbl in science and 
many other areas. Very often this search for beauty in mathematics has led to new ideas and dis- 

P 

coveries of new theories that have fbndamentally changed our understanding of the physical 

world and are now indispensable in the physical world. It's clear from the history of mathematics 

that the practical power of mathematics is often an offspring of the quest for beauty in mathemat- 
ics. For example, in the sixteenth century the Polish mathematician, Copernicus, was convinced 

that the universe was a systematic harmonious structure framed on the basis of mathematical 
principles, designed by God. This pursuit for an aesthetic harmonious mathematical structure led 

Copernicus to his fainous heliocentric theory which stated that the earth and the planets revolved 

around the sun as opposed to the earlier belief that the earth was the centre of the universe with 

the sun revolving around the earth. Copernicus had no experimental evidence for his theory. The 
motivation for his theory was purely aesthetic because the mathematics describing the sun- 

centred universe was more aesthetically pleasing than the mathematics describing the earth- 

centred universe. Galileo and Kepler would later pursue Copernicus' ideas and provide experi- 

mental evidence that the earth revolved around the sun. This shocked the world and revolution- 

ised science and society. 

As we know, Hamilton's motivation for doing research in mathematics was the search for beauty 

and yet his mathematics has turned out to be incredibly powerful when applied to science and 
many other areas. For example, his fundamental theory of dynamics was indispensable for the 

creation of Quantum Mechanics which is how we now understand the physical world at the mi- 

croscopic level. Also, his fainous Hamiltonian function is fundamental to many aspects of phys- 

ics. Here is what Hamilton wrote about his new 'General method of dynamics' in 1 834: 

"The difficulty is therefore at least transferred from the integration of many 

equations of one class to the integration of two of another; and even ifit should 

be thought that no practical facility is gained, yet an intellectual pleasure may 

reszrlt@om the reduction of the most complex and, probably, of all researches 

respecting the fo1-ces and motions of' bodv, to the study of  one characteristic 

function, the unfolding of one central relation ... " 
It's clear that Hamilton didn't care if his new theory had practical applications. The important 
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point for him is that it had 'intellectual pleasure', i.e. aesthetic pleasure. However, his new theory 

did turn out to have many powerful practical applications later on, e.g. in Quantum Mechanics as 

mentioned above. Again, here we have practical power being an offspring of the search for 
beauty in mathematics. In section 6 I also show some of the many powerful applications of Ham- 
ilton's Quaternions. 

The Classical Greeks did mathematics for aesthetic pleasure, as we will see below in reason (iii). 
However, their mathematics has turned put to be exceptionally powerful in the practical world. 

Two examples, of many, are the ellipse and the parabola. They studied the abstract ellipse inten- 

sively for aesthetic pleasure and their results were exactly what Kepler needed two thousand 

years later to show that the orbits of the planets were ellipses with the sun at one of the foci. They 

also investigated the abstract parabola for aesthetic pleasure and their results later helped Galileo 

show that projectiles from the surface of the earth followed a parabolic trajectory. This solved a 

very important practical problem in the seventeenth century, around two thousand years after the 

Classical Greeks. 

It's important to realise that in the applications of mathematics to the physical world, and else- 

where, mathematics does a lot more than solve problems: it can analyse, predict and prescribe: it 

can provide deeper insight and it can generate and explore new ideas. Mathematics has a rich his- 

tory and it has played a very significant role in our civilisation. 

Reason (iii) Mathematics, as we know it today, was essentially born out of a pursuit for aesthetic 

pleasure and beauty by the Classical Greeks around 600 BC. 

The two main pillars of mathematics are Deductive Reasoning and Abstraction. Around 600 BC 

the Classical Greeks essentially created mathematics, as we know it today, based on these two 
pillars. Also, these two pillars, Deductive Reasoning and Abstraction, appealed to the Greeks for 

aesthetic reasons, as we will see below. 

Deductive reasoning works as follows: 
We start with premises (which are accepted facts) and then we make conclusions with certainty. 

It's this word certainty that makes deductive reasoning very special and distinguishes it from all 
other forms of reasoning. Deductive reasoning lies at the heart of a mathematical proof and 

means that a proof, once done correctly, is eternal. This made deductive reasoning very appealing 

to the Classical Greeks for aesthetic reasons because they were deep philosophers and found the 
quest for eternal truths to be aesthetically pleasing. Deductive reasoning is also one of the reasons 

why mathematics underpins so much of science. Notice that in some cases we don't care whether 
the premises mentioned above are true or not (e.g. in the 'proof by contradiction' approach we 
want to prove our premises are actually false). Note that 'potentially uncertain' things like intui- 
tion, conjectures, etc. also play an important role in the art of deductive reasoning because they 
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can give you powerful insight, targets for what to prove etc. Much creativity and imagination can 

also be involved in the art of deductive reasoning because there is no guaranteed approach that 

will always work. An example of an old proof that is eternal is Euclid's proof that there are infi- 

nitely many primes. Euclid's proof is as valid today as when it was first done around 2,300 years 

ago. Deductive reasoning has been called a celebration of the power of pure reason. See [I] for 

more on deductive reasoning. 

See section 1 for a discussion about abstraction. The Classical Greeks were greatly attracted to 

abstract concepts and ideas which they considered to be eternal, perfect and aesthetically pleas- 

ing. Concrete physical things were, in their opinion, ephemeral and imperfect. They studied the 

abstract circle, i.e. the mathematical circle rather than a particular physical circle. However, many 

of their results about abstract concepts turned out to be fundamental in solving practical problems 

as we saw above in reason (ii). Note that the abstract circle has no thickness, colour or molecular 

structure whereas a physical circle does. Even though the abstract circle may be suggested by the 

physical circle, the Greeks emphasised that the abstract circle and the physical circle were two 

totally different creatures. 

Deductive reasoning and abstraction are always around whenever mathematics appears. It's very 

revealing when you realise that mathematics, as we know it today, was born out of a pursuit of 

aesthetic pleasure and beauty by the Classical Greeks around 600 BC. 

Reason (iv) As Keats wrote: Beauty is truth, truth beauty. 

I feel that this reason is not necessarily as strong as the previous three reasons but I think it's 

worth mentioning. Deductive reasoning in mathematics is like finding truths, in a certain sense, 

that follow from accepted facts. In this way a big part of mathematics relates to searching for 

truths, in a certain sense, and therefore searching for beauty. 

5. Some consequences of mathematical beauty elsewhere 

Some beautiful visions and sounds can be a consequence of beauty in mathematics. For example, 

a physically beautiful piece of architecture may be based on the famous number called the 

Golden Ratio or a beautiful piece of Bach's music may be underpinned by the Fibonacci numbers. 

Also, certain aesthetically pleasing symmetries in mathematics may produce visually beautiful 

pieces of art. There are many other examples where beauty, related to our five physical senses, 

can be a consequence of beauty in mathematics. 
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6. The importance of being ... 
What the hell! Since this is a piece about beauty in mathematics, I might as well end with a bit of 

symmetry by circling back to the title of this article. Hamilton created a strange new number sys- 

tem called Quaternions on October 16, 1843 at Broombridge on the banks of the Royal Canal in 

Dublin. He has been called the Liberator of Algebra because his Quaternions did not satisfy the 

commutative rule of multiplication (ab=ba) in arithmetic and so they liberated algebra from the 

shackles of arithmetic. In Quaternions the order in which the numbers appear is important and 

this did not bother the creative Hamilton because this is usually what happens in the physical 

world. For example, consider an empty swimming pool and the two operations of diving in head- 

first and turning the water on. The order in which the operations take place is quite important! 

See [2] and [3] for more on Hamilton's life and works. 

Quaternions now play a prominent role in many areas. One example, of many, is that they are 

heavily used in the computer animation industry and in special effects in movies. An example of 

this that always appeals to journalists, radio hosts and students of course, is that Lara Croft of 

Tomb Raider was created using Quaternions! Also, Quaternions were involved, through the Irish 

company Havok, in creating the renowned new special effects in the film, The Matrix Reloaded, 

and in the recent Bond film, Quantum of Solace. Havok won an Emmy award in the US in 2008 

for pioneering new levels of realism and interactivity in movies and games. Havok were involved 

in creating the special effects for the movie, Poseidon, which was nominated for an OSCAR for 

its visual effects in 2007. Hamilton's WILDE thought on that famous day, October 16, 1843, 

with his creation of these strange four dimensional numbers, Quaternions, shocked the mathe- 

matical community and changed the whole landscape of mathematics forever because soon after 

the event many other mathematicians followed in Hamilton's footsteps and felt free to conceive 

of all sorts of seemingly strange number systems or algebraic structures (e.g. matrices) that did 

not satisfy the commutative rule (ab=ba) from arithmetic. 

Quaternions also played a significant role in Maxwell's mathematical theory and prediction of 

electromagnetic waves in 1864. Thus, the inventions of radio, television, radar, X-rays and many 

other important products of our times are directly related to Hamilton. 

I organise the annual Hamilton walk on October 16 where people retrace Hamilton's steps from 

Dunsink to Broombridge. It's an ideal event for Transition Year groups and many from the gen- 

eral public also participate. Typically, around 200 people come on the walk. Contact me if you 

are interested in bringing a school group. Many famous people including Fields Medallists and 

Nobel Prize winners have participated in the walk, which will be celebrating its 20th anniversary 

this year in 2009. 

In 1855 Hamilton received a very unusual request. He refers to the event as follows: 
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"A very odd and original lady has also had a baby; such things, as you know 

will happen ... Recently, when I met her for theJirst time in my life, she told me 

of this young Pagan as she called him. And she asked me to be a godfather, 

perhaps because she is an admirer of Wordsworth. However, I declined". 

The young pagan above was none other than Oscar Wilde. Lady Wilde soon became a close 

friend of Hamilton. Wordsworth is mentioned above because Hamilton and Wordsworth were 
good friends. In fact, Hamilton was the godfather of Wordsworth's son William. On a visit to the 

Dublin Writers' Museum in Parnell Street some years back, I noticed that Oscar Wilde was born 

on October 16. Who knows what Hamilton's reply to Lady Wilde might have been if he had 

known this? 
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Multiplication in Algebra Revisited 
Here is a multiplication of two algebraic expressions using the method of 'long multiplication'. 

Expand and simplify: (3x2 + 2x - l ) (x  + 2) 

x + 2  Start the ~nultiplication with the LEFTMOST term 

3x3 + 2x2 - l x  

+6x2 +4x -2  Align the 'like terms' in the products 

3x3 + 8x2 + 3x - 2 Result 

From a discussion with John Courlander, Dublin 


