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The classification of loop symmetries in Kitaev’s honeycomb lattice model provides a natural frame-

work to study the Abelian topological degeneracy. We derive a perturbative low-energy effective

Hamiltonian that is valid to all orders of the expansion and for all possible toroidal configurations.

Using this form we demonstrate at what order the system’s topological degeneracy is lifted by finite size

effects and note that in the thermodynamic limit it is robust to all orders. Further, we demonstrate that the

loop symmetries themselves correspond to the creation, propagation, and annihilation of fermions. We

note that these fermions, made from pairs of vortices, can be moved with no additional energy cost.
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Recently, Kitaev introduced a spin-1=2 quantum lattice
model with Abelian and non-Abelian topological phases
[1]. This model is relevant to ongoing research into topo-
logically fault-tolerant quantum information processing
[2–4]. The system is comprised of two-body interactions
and is exactly solvable, which makes it attractive both
theoretically [5–16] and experimentally [17–20].

Here, by classifying the loop symmetries of the system
according to their homology, we derive a convenient form
of the effective Hamiltonian on the torus. The result is valid
for all orders of the Brillouin-Wigner perturbative expan-
sion around the fully dimerized point as well as for all
toroidal configurations. This allows the system’s topologi-
cal degeneracy to be addressed and shows at what order in
the expansion the degeneracy is lifted. In the thermody-
namic limit the system’s topological degeneracy remains to
all orders. In a separate analysis, valid for the full parame-
ter space, we examine the paired-vortex excitations created
by applying certain open string operations to the ground
state. These vortex pairs are fermions and can be freely
transported in a way that keeps additional unwanted ex-
citations to a minimum.

The Hamiltonian for the system can be written as

H ¼ � X
�2fx;y;zg

X
i;j

J�K
�;�
ij ; (1)

where K�;�
ij � ��

i � ��
j denotes the exchange interaction

occurring between the sites i and j connected by a � link;
see Fig. 1. In what follows, we will use K�

ij � K�;�
ij when-

ever � ¼ �. Following Ref. [1], we consider loops of n

nonrepeating K operators, K�ð1Þ
ij K�ð2Þ

jk ; . . . ; K�ðnÞ
li , where

�ðmÞ 2 x; y; z. Any loop constructed in this way commutes
with the Hamiltonian and with all other loops. When the
model is mapped to free Majorana fermions coupled to a
Z2 gauge field, these loop operators become Wilson loops
[1]. The plaquette operators

Wp ¼ �x
1�

y
2�

z
3�

x
4�

y
5�

z
6; (2)

where the numbers 1–6 label lattice sites on single hex-
agonal plaquette p (see Fig. 1), are the closed loop opera-
tors around each of the hexagons of the lattice. The
commutation relations imply that we may choose energy
eigenvectors jni such that wp ¼ hnjWpjni ¼ �1. If wp ¼
�1, we say that the state jni carries a vortex at p.
For a finite system of N spins on a torus, there are N=2

plaquettes. The product of all plaquette operators is the
identity, and this is the single nontrivial relation between
them. Hence there are only N=2� 1 independent quantum
numbers: fw1; . . . ; wN=2�1g. All homologically trivial loops

are products of plaquettes. The relevant homology is Z2,
since loop operators square to the identity. To describe the
full symmetry group generated by loop operators, we in-
troduce generators for the nontrivial Z2 homology classes
of the surface that the lattice lives on. At most one gen-
erator per homology class is necessary, since all elements
of any homology class can be generated from an arbitrary
element of that class using the plaquettes. The Z2 homol-
ogy group of the torus is Z2 � Z2, so it is enough to add
two homologically nontrivial loops as generators. The third
nontrivial class is generated from the product of these two.
The full loop symmetry group of the torus is the Abelian

FIG. 1 (color online). The honeycomb lattice and plaquette
Wp.
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group with N=2þ 1 independent generators of order 2,

that is, ZN=2þ1
2 . All closed loop symmetries can be written

as

Cðk;lÞ ¼ GkFlðW1; W2; . . . ; WN�1Þ: (3)

Here k 2 f0; 1; 2; 3g, G0 ¼ I, and G1, G2, and G3 are
arbitrarily chosen symmetries from the three nontrivial

homology classes. The Fl, with l 2 f1; . . . ; 2N=2�1g, run
through all monomials in the Wp.

The loop symmetries play an important role in the
perturbation theory of the Abelian phase of the model.
Following Kitaev, we take Jz � Jx; Jy and write the

Hamiltonian as H ¼ H0 þU, where H0 ¼ �Jz
P

ijK
z
ij is

the unperturbed Hamiltonian and U ¼ �P
�2fx;ygJ�

P
ijK

�
ij

is the perturbative contribution. H0 has a 2
N=2-fold degen-

erate ground state space spanned by ferromagnetic con-
figurations of the dimers on z links. To understand how this
degeneracy behaves under perturbation, we analyze the
Brillouin-Wigner expansion [21,22]. The method returns
the systems energies E as an implicit nonlinear eigenvalue
problem and thus, for the actual calculation of coefficients
to high orders, can be difficult to apply [23]. However, we
will take advantage of the infinite but exact nature of the
series by recognizing that on the torus the form of the
Hamiltonian is restricted, allowing one term for each ele-
ment of the group of loop symmetries. This will facilitate a
general discussion on the system’s topological degeneracy.

Define P to be the projector onto the ferromagnetic
subspace, and note that, for any exact eigenstate of the
full Hamiltonian jc i, the projection jc 0i ¼ P jc i satisfies

�
E0 þ

X1
n¼1

HðnÞ
�
jc 0i ¼ Ejc 0i ¼ Heffjc 0i; (4)

where HðnÞ ¼ PUGn�1P , G ¼ ½1=ðE�H0Þ�ð1� P ÞU,
and E0 is the ground state energy of H0. The eigenstates,
with eigenvalue E, of the effective system and full system
are related by the expression jc i ¼ ð1�GÞ�1jc 0i ¼P1

n¼0 G
njc 0i.

Calculating the nth order correction is equivalent to

finding the nonzero elements of the matrix HðnÞ.
Contributions to HðnÞ come from the length n products

K�ð1Þ
ij ; . . . ; K�ðnÞ

kl , with �ðmÞ 2 x; y, that preserve the low-

energy subspace. Hence any such contribution comes
from an element of the group of loop symmetries from
which all factors Kz

ij have been removed.

The resulting low-energy effective Hamiltonian can be
written in terms of operators acting on the spins of the
dimers using the following transformation rules:

P ½�x � �y� ! þ�y
e; P ½�x � �x� ! þ�x

e;

P ½�y � �y� ! ��x
e; P ½�z � I� ! þ�z

e;

P ½�z � �z� ! þIe;

(5)

where the subscript e indicates the effective spin operation

and the arrow ! can be read as ‘‘is represented by.’’
Importantly, this transformation can be applied directly
to the loop symmetries themselves, without removing the
z links first, and does not change the resulting operator on
the low-energy subspace. The lowest order nonconstant
contributions therefore come from the plaquette operators
P ½Wp� ! Qp ¼ �y

eðlÞ�
y
eðrÞ�

z
eðuÞ�

z
eðdÞ, where l, r, u, and d

denote the positions (left, right, up, and down, respec-
tively) of the effective spins, relative to the plaquette p
[1]. Expanding to all orders, we have contributions from all
loop symmetries, both homologically trivial and nontrivial.
To come to an explicit expression for the effective
Hamiltonian, we now introduce a particular generating
set for the loop symmetry group, constructed from N=2�
1 plaquettes and the operators Z � Q

i�
z
i , where i repre-

sents lattice sites in the horizontal direction of alternating x
and y links, and V � Q

Kx;y
jk

Q
Ky;x

lm , where the products

take place over vertically arranged x and y links. The
projections P ðZÞ ! z and P ðVÞ ! y act by �z

e and �y
e

on the relevant effective spins; see Fig. 2. In analogy to (3),
we can now write the full effective Hamiltonian as

Heff ¼
X3
k¼0

X2N=2�2

l¼1

dk;lGkðz; yÞFlðQ1; Q2; . . . ; QN=2�2Þ; (6)

where G0 ¼ I, G1 ¼ z, G2 ¼ y, G3 ¼ zy, and the dk;l are
constants which depend on Jx, Jy, and Jz. This form is

strictly valid for when the effective square toroidal lattice
has an even number of plaquettesQp along both directions.

The inside sum only runs to 2N=2�2 because, as a result of
the projection, we now have two nontrivial relationsQ

Qb ¼ Q
Qw ¼ 1; see Fig. 2. These arguments apply to

even-even toric code configurations but can be generalized
to the configurations examined in [24].

In general, dk;l �OðJnxx J
ny
y Þ, where nx and ny are the

respective number of x links and y links used to make
Gkðz; yÞFlðQ1; Q2; . . . ; QN=2�2Þ. In the thermodynamic

FIG. 2 (color online). The Z and V chains with their projec-
tions onto the dimerized subspace. The projections may be
factorized into products P ½Z� ! zbzw and P ½V� ! ybyw. Each
of the individual factors zb, zw, yb, and yw also commute with the
homologically trivial components of the effective Hamiltonian
but obey the relation z�1

j y�1
k zjyk ¼ ei�ð1��jkÞI. In the text,

dimers are referred to as black (white) if they are shared by a
black (white) plaquette.
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limit, and for homologically nontrivial loops (k > 0), the
values of nx and ny go to infinity and the limiting form of

(6) is similar to the form addressed in Ref. [12] but with
additional topological degrees of freedom.

We can now analyze the topological degeneracy of the
Abelian phase. The general argument for topological
ground state degeneracy depends on the existence of op-
erators T1 and T2 that both create particle-antiparticle pairs
from the vacuum, bring the particle (or antiparticle) around
the torus, and then annihilate the pair [2,25]. These opera-
tors should commute with the Hamiltonian but not with
each other. Hence T1 and T2 operators for the honeycomb
system cannot be contained within the group of commuting
loop symmetries. However, the low-energy effective rep-
resentations of the homologically nontrivial loops’ gener-
ators have the factorizations z ¼ zbzw and y ¼ ybyw,
where zb and yb act with effective �z’s and �y’s, respec-
tively, on the spins of the ‘‘black’’ dimers involved in z and
y, while zw and yw do the same for the ‘‘white’’ dimers (see
Fig. 2).

These black and white operators correspond to the non-
trivial loop operators on the square lattice and dual square
lattice of the toric code (cf. [2]) and thus obey the commu-

tation relations z�1
j y�1

k zjyk ¼ ei�ð1��jkÞI. Since these op-

erators commute with the effective plaquette operatorsQp,

they also commute with all homologically trivial compo-
nents ofHeff . However, they do not commute with all of the
homologically nontrivial components. If we define C0 as
the homologically nontrivial loop with the least number of
x and y links, then the topological degeneracy is first
broken at the order M, where M is the number of x and y
links in C0.

At any size, the plaquette and homologically nontrivial
operators together generate all conserved quantities and, in
particular, determine the energy. For the typical system
sizes that can be handled by numerical diagonalization and
other numerical methods, the homologically nontrivial
terms in the effective Hamiltonian are appreciable and
must be taken into account to produce a good fit to exact
numerical results. In larger tori these homologically non-
trivial terms become less relevant to the energy, and the
topological degeneracy of the system can be robust beyond
the 4th order toric code approximation. Indeed, in the
thermodynamic limit, the fourfold topological degeneracy
exists to all orders of the perturbation theory and the
eigenstates of the effective Hamiltonian are exactly those
of the toric code. One should note, however, that even in
this limit, and unlike the toric code, the energy of a
particular eigenstate is also determined by the relative
positions of the vortex excitations [12].

We now concentrate on the full Hamiltonian and con-
sider the physical properties associated with open-ended
strings of overlapping K� operators. We first note that
f��

i ;Wpg ¼ 0 when the site i belongs to an � link at

plaquette p. Hence, the operator ��
j changes the vorticity

of the two plaquettes sharing this � link by either creating

or annihilating a pair of vortices or moving a vortex from
one plaquette to the other. It follows that the K operators

satisfy ½K�
ij;Wp� ¼ 0 (8 i; j), ½K�;�

ij ;Wp� ¼ 0 (i; j =2 p),

and fK�;�
ij ;Wpg ¼ 0 (i _ j 2 p).

Now define a path s on the lattice as some ordered set of
jsj neighboring sites connecting the end points i and j. A
string operator, denoted as Ssij, of overlappingK

� operators

along this path s can be represented as a site ordered
product of �� and K�;� operators. We use the K�;� nota-
tion in what follows when wewish to explicitly indicate the
simultaneous operation of the constituent �� operators. If
we assume that a K�;� always acts first, we see that the
total operator can be interpreted as creation of two vortex
pairs and subsequent movement of one of the pairs along
the path s. Importantly, we see that �� correspond to a
rotation of one vortex pair, whereas K�;� moves the pair
without a rotation (see Fig. 3). If i and j are neighboring
sites and s is a homologically trivial loop, then by defini-
tion Cðk;lÞ ¼ Ssij ¼

Q
pWp, where the product is over all

plaquettes enclosed by s [see (3)]. If we treat a vortex pair
as a composite particle, then the simplest loop operator
Cðk;lÞ ¼ Wp (constructed from single �� operators) rotates

the composite particle by 2�. The resulting overall phase
of ei� suggests that the vortex pairs are fermions for all
values of J�.
Suppose now that the first and last links along the path s

are � and � links, respectively, and that the ends of the
string Ssij are given by the operators �� or K�;� and �� or

K�;�. Then

SsijHSsij ¼ H þ 2J�K
�
ia þ 2J	K

	
jb; (7)

where a and b are the sites connected to i and j by the re-
spective � and 	 links � � � � � and 	 � � � �. Taking
the expectation value of both sides with respect to any
translationally invariant state jc i, which includes the

FIG. 3 (color online). The operator Kx;y
2;3 is used to create two

vortex pairs from the vacuum with an energy cost of 2JzhKz
1;2 þ

Kz
3;4i. The subsequent operators Kx;y

4;5 and Ky;x
6;7 move one of the

pairs in the direction shown. The Pauli operator �y
8 rotates this

pair, and the energy of the system at this time is E0 þ
2JzhKz

1;2i þ 2JxhKx
8;9i. This new pair is then moved horizontally

with no additional energy cost by Kz;y
9;10.
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vortex-free ground state [1,26], we see that the expectation
energy of the state Ssijjc i depends only on the ends of the

string and this energy contribution is the same for links of
the same type. This implies, even when Jx � Jy � Jz, that

vortex pairs created from the ground state can be propa-
gated freely provided the relative orientation of each pair
remains constant. The expectation energy of the states
created in this way can be calculated explicitly with respect
to the ground state [1,9].

These fermionic vortex pairs are distinct from the fer-
mions introduced as redundant degrees of freedom in
Ref. [1], those obtained by Jordan-Wigner transformation
[7,8,11], and the vorticity-preserving free-fermionic exci-
tations of Ref. [12]. In the gapped phase, however, the low-
energy vortex-pair configurations are related to certain
fermionic e-m composites of the toric code [1,2]. This
last point is potentially relevant to the connection between
the Abelian and the non-Abelian phases [16].

The movement of vortex pairs is in contrast to the
situation encountered when one wants to separate individ-
ual vortices. Crucially, this cannot be done using over-
lapping K� terms and indeed can be achieved only if we
use single ��’s that do not, in general, act on neighboring

sites. To this end we define Ds
ij � ��

i �
�
k . . .�

�
j , where it is

understood that if k and l are neighboring sites along some
link, then � � �. These operators satisfy

Ds
ijHDs

ij ¼ E0 þ aJxK
x þ bJyK

y þ cJzK
z; (8)

where aþ bþ c ¼ jsj for some integers a, b, and c de-
pending on the path s. As before, suppose we take the
expectation value of (8) with respect to a translationally
invariant state jc i. In this case we see that the energy
expectation value of the state Ds

ijjc i scales with jsj and
implies a string tension for states created in this way [27].

The above results, valid for all values of the parameters
J�, are in agreement with the perturbative analysis of the
gapped Abelian phase [15]. There it was shown that, while
the repeated application of single �� excites e or m toric
code semions in the low-energy dimerized subspace, it also
introduces contributions to the wave function from higher-
energy eigenstates. These high-energy eigenstate contribu-
tions also occur when low-energy vortex pairs are excited,
but in this case two effective toric code e-m pairs are
created in the effective system. An easy way to see this
is to compare the expectation energy hKy;zHKy;zi ¼ E0 þ
4JhKxi 	 E0 þ 2J2=Jz (see [15]) to that of the ground
state energy of the 4-vortex configuration E 	
E0 þ J4=2J3z , where J ¼ Jx ¼ Jy. However, since (7) im-

plies that the vortex pairs can be moved freely, there can be
no increase in the contribution from these high-energy
states as these pairs are propagated. This may be useful
for the experimental detection of anyons because, in the
toric code, the e-m pairs and single e (or m) excitations
have mutually anyonic statistics.

In conclusion, we have associated each of the loop
symmetries of the full toroidal system with a term in the

perturbative expansion. We then demonstrated the order at
which the topological degeneracy is broken and noted that,
in the thermodynamic limit, it remains to all orders. In a
further analysis, we showed that the symmetries corre-
spond to propagation of vortex pairs along closed loops.
When treated as composite particles, the vortex pairs are
fermions. We showed that these pairs can be propagated
with no additional energy cost but that, in general, single
vortices cannot. In relation to the Abelian phase, we have
included a discussion that shows how vortex pairs maybe
transported in way that keeps the fermionic population to a
minimum. This argument relies on a detailed understand-
ing of the supporting spectrum. It may be possible to make
similar arguments in the non-Abelian phase; however, the
necessary understanding of the supporting eigenspectrum
is currently lacking.
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