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Abstract

A very important scientific advance was the identification of HIV as a causative agent for AIDS.
HIV infection typically involves three main stages: a primary acute infection, a long asymptomatic
period and a final increase in viral load with a simultaneous collapse in healthy CD4+T cell count
during which AIDS appears. Motivated by the worldwide impact of HIV infection on health and
the difficulties to test in vivo or in vitro the different hypothesis which help us to understand the
infection, we study the problem from a control theoretic perspective. We present a deterministic
ordinary differential equation model that is able to represent the three main stages in HIV infection.
The mechanism behind this model suggests that macrophages could be long-term latent reservoirs
for HIV and may be important in the progression to AIDS. To avoid or slow this progression to
AIDS, antiretroviral drugs were introduce in the late eighties. However, these drugs are not always
successful causing a viral rebound in the patient. This rebound is associated with the emergence of
resistance mutations resulting in genotypes with reduced susceptibility to one or more of the drugs.
To explore antiretroviral effects in HIV, we extend the mathematical model to include the impact
of therapy and suggest different mutation models. Under some additional assumptions the model
can be seen to be a positive switched dynamic system. Consequently we test clinical treatments
and allow preliminary control analysis for switching treatments. After introducing the biological
background and models, we formulate the problem of treatment scheduling to mitigate viral es-
cape in HIV. The goal of this therapy schedule is to minimize the total viral load for the period
of treatment. Using optimal control theory a general solution in continuous time is presented for
a particular case of switched positive systems with a specific symmetry property. In this case the
optimal switching rule is on a sliding surface. For the discrete-time version several algorithms based
on linear programming are proposed to reduce the computational burden whilst still computing the
optimal sequence. Relaxing the demand of optimality, we provide a result on state-feedback stabi-
lization of autonomous positive switched systems through piecewise co-positive Lyapunov functions
in continuous and discrete time. The performance might not be optimal but provides a tractable
solution which guarantees some level of performance. Model predictive control (MPC) has been
considered as an important suboptimal technique for biological applications, therefore we explore
this technique to the viral escape mitigation problem.
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Chapter 1

Introduction

The update of UNAIDS in 2009 showed a worldwide increase of people living with HIV (human
immunodeficiency virus). Approximately 33.4 million people (adults and children) are living with
HIV and the estimated number of people newly infected with HIV was 2.7 million in 2008, 20% higher
than the number in 2000. At present, there is no known cure that results in eradication of the virus in
an infected person. Antiretroviral therapy may be used and is largely successful in suppressing viral
load. However, long term treatment to control the replication often fails, causing patients infected
with HIV to progress to AIDS (Acquired Immune Deficiency Syndrome). The estimation of deaths
due to AIDS in 2007 was 2 million people [1]. For this reason, much effort has been conducted
for the last 30 years to find a possible solution to stop the infection. To understand how HIV
infection collapses the immune system numerous theories have been proposed. However, to date,
mathematical models of HIV infection do not fully explain all events observed to occur in practice.
In the last decade, as a result of the relevant health problems and the difficulty to understand
HIV infection process, mathematical modeling has started to be employed. This modeling helps to
understand the relation between HIV and the immune system, and how treatments may affect the
HIV cycle. These approaches are mainly modeled on the interaction of the HIV with CD4+T cells.

HIV infection can be roughly described in three stages; an early peak in the viral load, a long
asymptomatic period and a final increase in viral load with a simultaneous collapse in healthy
CD4+T cell count during which AIDS appears. In an untreated patient, the time course of these
three stages is approximately 10 years. Models of HIV infection have been able to describe the
primary infection and the symptomatic stages. However they are not able to explain the transition
to AIDS, which is very important for the patient’s health. Typically, to model this transition to
AIDS, time-varying parameters (with no detailed mechanistic model) are used [2]. Of course, with
appropriately selected time-varying parameters, the full course of the disease can be represented.
However, due to the lack of a mechanistic model of the parameter variations, we consider it is not
suitable for predicting the results of alternate therapy options or schedules.
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CHAPTER 1. INTRODUCTION

Most of the studies of the interaction between HIV and host body cells have been dedicated
to CD4+T cells. Macrophages have been known since 1980s to be susceptible to HIV infection.
However, they have passed as a “sideshow” relative to the “main attraction” of CD4+T cells [3]. In
recent years, there has been a growing suspicion that antigen-presenting cells might be central to
AIDS progression.

To the best of our knowledge, [4] proposed the first model able to represent the three stages
of infection without time varying parameters during the simulation. Numerical results showed that
macrophages might play an important role in the final stages of the infection. Nonetheless, dynamical
studies of the model in [4] exhibit high sensitivity to parameter variations. These sensitivities show
that for small parameter changes of the order of 3%, the typical time course to AIDS may reduce
from 10 years to 2 years or may disappear entirely. Such unusually sensitive behavior shows that
the model proposed by [4] requires more effort to robustly obtain the appropriate course of HIV
infection. For this purpose, a reduction of [4] is proposed in order to analyze in detail the full course
of HIV infection. In contrast to [4] the proposed model in this thesis has a robust behavior to
parameter variations, such performance tells us this model can be a good tool to understand AIDS
progression. Once we have certain grade of confidence in the model, different studies are performed
on it.

The treatment of HIV infected patients is of major importance in today’s social medicine. Highly
Active Antiretroviral Therapies (HAART) are the most important treatment strategies for HIV in-
fected patients. Antiretroviral therapy for treating HIV-1 has improved steadily since the advent
of potent therapy in 1996. New drugs have been approved, they offer new mechanisms of action,
improvements in potency and activity (even against multi-drug-resistant viral strains), dosing con-
venience, and tolerability. These therapies prevent immune deterioration, reduce morbidity and
mortality, and prolong the life expectancy of people infected with HIV. Moreover, viral load in the
blood is reduced by at least five orders of magnitude.

Nonetheless, HAART is not always successful. Many patients have long-term complications
while others experience virological failure. Virological failure is defined as the inability to maintain
HIV RNA levels less than 50 copies/ml [5]. In most cases, viral rebound is associated with the
emergence of resistance-conferring mutations within the viral genome, resulting in virus with reduced
susceptibility to one or more of the drugs. Published guidelines [5] suggest that the primary goal of
the initial regimen is to suppress viral replication to the maximum degree possible and sustain this
level of suppression as long as possible. Unfortunately, even when the virus is suppressed, ongoing
low-level replication still occurs, hence the likelihood of developing resistance is always present.
Moreover, virus eradication by HAART does not appear to be achievable in the foreseeable future.
In this environment, one key goal day-to-day clinical management is to delay the time until patients
exhibit strains resistant to all of existing regimens.

There is therefore a crucial tradeoff between switching drugs too early, which risks poor adherence
to a new drug regimen and prematurely exhaust the limited number of remaining salvage therapies,
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CHAPTER 1. INTRODUCTION

and switching drugs too late, which allows the accumulation of mutations that leads to multidrug
resistance [6]. The guidelines for the use of antiretroviral agents in HIV-1-infected adults and
adolescents [5] have not achieved a consensus on the optimal time to change therapy for virologic
failure. The most aggressive approach would be to change for any repeated detectable viremia (e.g.
two consecutive HIV RNA > 50 copies/ml after suppression). The most acceptable strategy has
been to allow detectable viremia up to an arbitrary level (e.g. 1000-500 copies/ml). This later
approach is called switch on virologic failure. Using a mathematical approach [7] hypothesized that
alternating HAART regimens would further reduce the likelihood of the emergence of resistance.
Years after, [8], [9] evaluated this proactive switching in a clinical trial, which they called SWATCH
(SWitching Antiretroviral Therapy Combinations against HIV-1). Surprisingly, alternating regimens
outperformed the virologic failure based treatment.

However, there are still many links missing with alternating regimens. The most important
is how this alternation regimen should be designed in order to minimize the viral load. For this
reason we address the problem of HAART scheduling using a control theoretic approach. This is
because control systems have been shown to be an effective tool to deal with optimization problems
under time constraints. For the sake of simplicity in the control design approach, we make some
assumptions on the proposed HIV model. The most important assumption is that healthy CD4+T
cell and macrophage concentrations remains approximately constant under treatment. This will
allow us to characterize the model as a switched positive linear system, where the switching action
will indicate the regimen that is being used. Therefore, the problem will be defined as to find the
switching trajectory which minimizes the total viral load and maintains a low level for as long as
possible.

Thus, we introduce optimal control for positive switched systems to minimize viral load in a
finite horizon. Although the systems are linear, the solution to the optimal control is not trivial as a
result of the switching action. The problem of determining optimal switching trajectories in hybrid
systems has been widely investigated, both from theoretical and computational point of view. In
this work, for a particular case with a certain class of symmetry, we solve analytically for the optimal
solution. For this case, the optimal solution belongs to a sliding surface.

For discrete-time systems the problem remains complex and numerical algorithms have been
proposed to determine optimal trajectories. On one hand iterative solutions based on Pontryagin’s
maximum principle have been proposed, but without any guarantee of convergence. On the other
hand, dynamic programming is good for problems of reasonable dimension. Here, based on the
specific problem considered, we suggest algorithms based on linear programming (LP) to reduce the
computational burden and simulation time.

A general solution for the optimal control problem is hard to find even numerically. Consequently,
it is necessary to explore other strategies to find solutions which guarantee certain performance.
Relaxing the demand of optimality we use linear co–positive Lyapunov functions. Based on these,
we examine stability properties and then guaranteed cost controls for switched positive systems
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CHAPTER 1. INTRODUCTION

are presented. Simulation results show the effectiveness of these methods. Moreover, we consider
the application of Model Predictive Control (MPC) as it appears to be suitable for a suboptimal
application in the biomedical area. Based on the switched linear system we applied optimal and
suboptimal strategies on a nonlinear mutation model. Simulation results exhibit good performance
of these strategies when applied to a high order nonlinear model although they are based on a
simplified linear model.

1.1 Overview and Contributions

In Chapter 2 we review the basic concepts to understand the immune system and the various
cell types involved in the immune response. Moreover, we put together many concepts and ideas in
HIV, these are the HIV cycle, HIV disease progression and the different mechanisms by which HIV
causes the depletion of CD4+T cells. To describe how antiretroviral treatments can tackle HIV, we
introduce an up to date list of accepted drugs against HIV and their different guidelines.

In Chapter 3 we address the modeling problem of HIV infection using differential equations. We
start the chapter with a description of different mathematical models in the area and how different
mechanisms have been used to explain the progression to AIDS. The contributions of this chapter
are the following:

• The derivation of a mathematical model able to represent the three stages of HIV infection is
presented. The main difference with other models is that our model exhibits a robust behavior
to parameter variations and contemplates the long-term behavior in HIV infection.

• We provide a sensitivity and steady state analysis with the end to understand the reasons of
the transition to AIDS.

• By inclusion of cell proliferation terms we can improve the match between the model dynamics
with common clinical observations, and still maintain behavior that is robust to parameter
variations.

• Under normal treatment circumstances, we assume constant cell concentrations. Then we
derive three different positive switched linear mutation models to test clinical treatments and
to allow preliminary control analysis for the switching treatment.

In Chapter 4 we address the optimal control problem for positive switched systems using a
finite horizon cost function. The contributions of this chapter are the following:

• A formulation of the optimal control problem for positive switched systems with application
to mitigate HIV escape is proposed.
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• The main result of the chapter is a general solution for a particular case of switched systems
with a certain symmetry property, where the optimal switching rule is on a sliding surface. A
more general permutation case is presented.

• Using dynamic programming we formulate the discrete-time optimal control problem. This
gives a two point boundary value problem, that is difficult to solve due to the switched system
nature. Alternatively, exhaustive search approaches may be used but are computationally pro-
hibitive. To relax these problems we propose several algorithms based on linear programming
to reduce the computational burden whilst still computing the optimal sequence.

Relaxing the demand of optimality in Chapter 5 we address different suboptimal strategies for
positive switched systems in finite horizon. The contributions of this chapter are the following:

• We provide a result on state-feedback stabilization of autonomous positive switched systems
through piecewise co-positive Lyapunov functions in continuous and discrete time. The per-
formance might not be optimal but provides a solution which guarantees an upper bound on
the achieved cost.

• We explore model predictive control application for positive switched systems, which has been
used for many biomedical applications.

• The performance of optimal and suboptimal strategies is tested via simulation using three
different switched linear systems. To verify if these strategies can be applied to a more realistic
scenario, we test them on a nonlinear system. We apply optimal and suboptimal strategies
to this nonlinear mutation model where the control is designed using a reduced order linear
approximation of the dynamics.

We conclude in Chapter 6 summarizing the main ideas and results of the thesis and pointing out
some open questions for future research. Some of the results of this thesis have led to the following
peer-reviewed publications:

• E.A. Hernandez-Vargas, Dhagash Mehta, R. Middleton, Towards Modeling HIV Long Term
Behavior, IFAC World Congress, Milan, Italy, 2011

• E.A. Hernandez-Vargas, R. Middleton, P. Colaneri, Optimal and MPC Switching Strategies
for Mitigating Viral Mutation Escape, IFAC World Congress, Milan, Italy, 2011

• E.A. Hernandez-Vargas, P. Colaneri, R. Middleton, F. Blanchini, Dynamic Optimization Al-
gorithms to Mitigate HIV escape, IEEE Conference on Decision Control, Atlanta, USA, 2010

• R. Middleton, P. Colaneri, E.A. Hernandez-Vargas, F. Blanchini, Continuous-time Optimal
Control for Switched Positive Systems with application to mitigating viral escape, NOLCOS,
Bologna, 2010
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• E.A. Hernandez-Vargas, P. Colaneri, R. Middleton, F. Blanchini, Discrete-time control for
Switched Positive Systems with Application to Mitigating viral escape, International Journal
of Robust and Nonlinear Control, 2010.

• J. Ferreira, E.A. Hernandez-Vargas, R. Middleton, Computer Simulation of Structured Treat-
ment Interruption for HIV infection, Computers Methods and Programs in Biomedicine, 2011.
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Chapter 2

HIV and the Immune System

In this chapter we briefly describe the immune system and the various cell types involved in an
adaptive immune response, as well as their interactions. An introduction to HIV infection, AIDS
progression and its possible causes are presented. We conclude the chapter by providing the most
recent list of drugs accepted for treatment of HIV infection and their different guidelines for use.

2.1 Immune System

Immunology is the study of the body’s defense against infection. Our body’s reactions to infection
by potential pathogens are known as immune responses. The immune system can be divided into two
parts, called innate and adaptive. The innate immune system is composed of physiological barriers
that prevent the invasion of foreign agents. Most infectious agents activate the innate immune system
and induce an inflammatory response. The adaptive immune response is mediated by a complex
network of specialized cells that identify and respond to foreign invaders. It is called adaptive due
to the fact that it can respond with great specificity to a very broad class of foreign substances,
and exhibits memory, so that subsequent re-challenge results in a powerful, immediate response.
The immune system is composed of different types of white blood cells (leukocytes), antibodies and
some active chemicals. These cells work together to defend the body against diseases by foreign
invaders. All the cellular elements of the blood, including the red blood cells that transport oxygen,
the platelets that trigger blood clotting in damaged tissues, and the white blood cells of the immune
system arise from the pluripotent hematopoietic stem cells in the bone marrow. White cells then
migrate to guard the peripheral tissues- some of them residing within the tissues, other circulating
in the bloodstream and in a specialized system of vessels called lymphatic system, which drains
extracellular fluid and frees cells from tissues, transports them through the body as lymph, and
eventually empties into the blood system [10].
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CHAPTER 2. HIV AND THE IMMUNE SYSTEM

2.1.1 Immune System Components

A major distinguishing feature of some leukocytes is the presence of granules; white blood cells
are often characterized as granulocytes or agranulocytes. Granulocytes are leukocytes characterized
by the presence of differently staining granules in their cytoplasm when viewed under microscopy.
These granules are membrane-bound enzymes which primarily act in the digestion of endocytosed
particles. There are three types of granulocytes: neutrophils, basophils, and eosinophils. Agranu-
locytes are leukocytes characterized by the apparent absence of granules in their cytoplasm, these
include lymphocytes and monocytes [10]. The three major types of lymphocyte are T cells, B cells
and natural killer (NK) cells. T cells (Thymus cells) and B cells (bone cells) are the major cellular
components of the adaptive immune response. The specific roles played by various agranulocytes
cells and their interactions are presented below.

Dendritic Cells

Dendritic cells are known as antigen-presenting cells (APCs), which are particularly important to
activate T cells. They have long finger-like processes, see Fig.2.1 like dendrites of nerve cells, which
gives them their name. There are at least two broad classes of dendritic cells (DCs) that have been
recognized; the conventional dendritic cells (cDC) that seem to participate most directly in antigen
presentation and activation of naive T cells; and plasmacitoid dendritic cells (pDC), a distinct lineage
that generate large amounts of interferons, particularly in response to viral infections, but do not
seem to be as important for activating naive T cells.

DC SIGN

MHC
Class II

MHC
Class I

CCR7

B7.1

B7.2

ICAM 1

CD58

LFA 1

ICAM 2

Fig. 2.1: Conventional dendritic cell

Cells detect peptides derived from foreign antigens. Such antigens peptide fragments are captured
by Major Histocompatability Complex (MHC) molecules, which are displayed at the cell surface.
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CHAPTER 2. HIV AND THE IMMUNE SYSTEM

There are two main types of MHC molecules, called MHC I and II. The most important differences
between the two classes of MHC molecule lie not in their structure but in the source of the peptides
that they can trap and carry to the cell surface. MHC class I molecules collect peptides derived from
proteins synthesized in the cytosol, therefore they are able to display fragments of viral proteins on
the cell surface. MHC class II molecules bind peptides derived from proteins in intracellular vesicles,
and thus display peptides derived from pathogens living in macrophage vesicles and B cells. MHC
class II receptors are only displayed by APCs.

T Lymphocytes

T lymphocytes or T cells are a subset of lymphocytes defined by their development in the thymus.
During T cell arrangement, a number of random rearrangements occur in the portion of the genome
responsible for creating the T cell Receptor (TCR) protein. This occurs in every immature T cell
expressing a unique TCR surface protein, providing an enormous range of specificity. All cells that
express TCR that do not bind with sufficient strength to MHC molecules are killed as well as those
express TCR that bind too strongly to MHC molecules. T cells that survive are those whose TCR
proteins are capable of recognizing MHC molecules with bound peptide fragments, but do not bind
strongly to any peptide fragments occurring naturally in uninfected cells. During this process, the
lineage of the T cells is also determined; either they become helper T cells, expressing the surface
molecule CD4 and TCR that bind with MHC class II, or they become cytotoxic T cells, expressing
the surface molecule CD8 and TCR that bind to MHC class I.

CTLTH

MHC-I 
TCR

CD8MHC-II 
TCR

CD4

Fig. 2.2: Types of effector T cell

Once T cells are mature, they enter the bloodstream. Naive T cells are those mature recirculating
T cells that have not yet encountered their specific antigens. To participate in the adaptive immune
response, a naive T cell must meet its specific antigen. Then they are induced to proliferate and
differentiate into cells that have acquired new activities that contribute to remove the antigen.
CD4+T or Helper T cells do not directly mediate an adaptive immune response; instead, they
regulate the development of the humoral (B-cell mediated) or cellular (T cell mediated) immune
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responses. CD4+T cells have a more flexible repertoire of effector activities, the most important are:
TH1 cells are able to activate infected macrophages, TH2 cells provide help to B cells for antibody
production, TH17 cells enhance neutrophil response, and Treg cells suppress T cell responses.

CD8+T cells are T cells that carry the co-receptor CD8, see Fig.2.2. They recognize antigens,
for example viral antigens, that are synthesized in the cytoplasm of a cell. Naive CD8 T cells are
long-lived, and remain dormant until interacting with an APC displaying the antigen MHC class I
complex for which the cells unique TCR is specific. The co-stimulatory molecule B7 is also necessary
to activate a CD8+T cell into a cytotoxic-T cell (CTL). CTL can produce as many as 104 daughter
cells within one week [11]. During CD4+T cell expansion, signals provided by CD4+T cells condition
the expanding clones to be able to revert to a functional memory pool; however, the exact nature
of this help is not known [12].

Lymphocytes are in different parts of the human body. They can circulate through the primary
lymphoid organs (thymus and bone marrow), the secondary lymphoid organs (spleen, lymph nodes
(LN)), tonsils and Peyers patches (PP) as well as non-lymphoid organs, such as blood, lung and
liver, see Table 2.1. Lymphocytes numbers in the blood are used to evaluate the immune status
because is an accessible organ system, however blood lymphocytes represent only about 2% of the
total numbers of lymphocytes in the body. The number of lymphocytes in the blood depend on race
and is influenced by various factors [13].

Table 2.1: Lymphocytes Distribution

Organ Lymphocytes (109)
Blood 10
Lung 30
Liver 10
Spleen 70

Lymph nodes 190
Gut 50

Bone marrow 50
Thymus 50

Other Tissue 30

B Cells

B cells are lymphocytes that play a large role in the humoral immune response, and are primar-
ily involved in the production of antibodies, proteins that bind with extreme specificity to a variety
of extra-cellular antigens. B cells (with co-stimulation) transform into plasma cells which secrete
antibodies. The co-stimulation of the B cell can come from another antigen presenting cell, like a
dendritic cell. This entire process is aided by TH2 cells which provide co-stimulation. Antibody
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molecules are known as immunoglobulins (Ig), and the antigen receptor of B lymphocytes as mem-
brane immunoglobulin. There are five classes of antibodies that B cells can produce; IgM, IgG, IgA,
IgD, and IgE; each of which has different chemical structure in their invariant region (the portion
of the molecule that does not affect the antibodies antigen specificity).

Macrophages

Macrophages, large mononuclear phagocytic cells, are resident in almost all tissues and are the
mature form of monocytes, which circulate in the blood and continually migrate into tissues, where
they differentiate. Macrophages are long-lived cells and perform different functions throughout the
innate response and the subsequent adaptive immune response. Their role is to phagocytose (engulf
and then digest) cellular debris and pathogens either as stationary or mobile cells, and to stimulate
lymphocytes and other immune cells to respond to the pathogen.
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Fig. 2.3: Macrophage scheme

A crucial role of macrophages is to orchestrate immune responses: they help induce inflammation
and secrete signaling proteins that activate other immune system cells. These proteins are cytokines
and chemokines. Cytokine is a general name for any protein that is secreted by cells and affects
the behavior of nearby cells bearing appropriate receptors. Chemokines are secreted proteins that
attract cells bearing chemokine receptors out of the blood stream and into the infected tissue.
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2.2 HIV Infection

In 1981, reports of a new disease emerged in the USA, which caused tumors, such as Kaposis
sarcoma and other opportunistic infections originating from immunologic abnormalities. The new
disease was called Acquired Immunodeficiency Syndrome (AIDS) based on the symptoms, infections,
and cancers associated with the deficiency of the immune system. In 1983, Sinoussi and Montagnier
isolated a new human T-cell leukemia viruses from a patient with AIDS [14], which was later named
HIV (Human Immunodeficiency Virus). It is now clear that there are at least two types, HIV-1 and
HIV-2 which are closely related. HIV-2 is endemic in west Africa and now spreading in India. Most
AIDS worldwide is, however, caused by the most virulent HIV-1, which has been infecting humans
in central Africa for far longer than had originally been thought [10].

2.2.1 HIV Components and Cycle

Like most viruses, HIV does not have the ability to reproduce independently. Therefore, it must
rely on a host to aid reproduction. Each virus particle whose structure is shown in Fig.2.4 consists of
nine genes flanked by long terminal repeat sequences. The three major genes are gag, pol, and env.
The gag gene encodes the structural proteins of the viral core, pol encodes the enzymes involved in
viral replication and integration, env encodes the viral envelope glycoproteins. The other six genome
are smaller, Tat and Rev perform regulatory functions that are essential for viral replication, and
the remaining four Nef, Vif, Vpra and Vpu are essential for efficient virus production. HIV expresses
72 glycoprotein projections composed of gp120 and gp41. Gp41 is a transmembrane molecule that
crosses the lipid bilayer of the envelope. Gp120 is non-covalently associated with gp41 and serves as
the viral receptor for CD4+T cells.
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Fig. 2.4: HIV components
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The HIV genome consists of two copies of RNA, which are associated with two molecules of
reverse transcriptase and nucleoid proteins p10, a protease, and an integrase. During infection the
gp120 binds to a CD4 molecule on the surface of the target cell, and also to a co-receptor, see
Fig.2.5. This co-receptor can be the molecule CCR5, primarily found on the surface of macrophages
and CD4+T cells, or the the molecule CXCR4, primarily found on the surface of CD4+T cells. After
the binding of gp120 to the receptor and co-receptor, gp41 causes fusion of the viral envelope with
the cell’s membrane, allowing the viral genome and associated viral proteins to enter the cytoplasm.
HIV is classified as a retrovirus, an RNA virus which can replicate in a host cell via the enzyme
reverse transcriptase to produce DNA from its RNA genome. The DNA is then incorporated into
the cell nucleus by an integrase enzyme. Once integrated the viral DNA is called a provirus. Then
the DNA hijacks the host cell, and directs the cell to produce multiple copies of viral RNA. These
viral RNA are translated into viral proteins to be packaged with other enzymes that are necessary
for viral replication. An immature viral particle is formed, which undergoes a maturation process.
The enzyme protease facilitates maturation by cutting the protein chain into individuals proteins
that are required for the production of new viruses. The virus thereafter replicates as part of the
host cell’s DNA [15].
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Fig. 2.5: HIV cycle

15



CHAPTER 2. HIV AND THE IMMUNE SYSTEM

2.2.2 HIV Disease Progression

The term viral tropism refers to which cell types HIV infects. When a person is infected with
HIV, its target are CD4+T cells, macrophages and dendritic cells. Because of the important role of
these cells in the immune system, HIV can provoke devastating effects on the patients health. For
clinicians, the key markers of the disease progression are CD4+T cell count and viral levels in the
plasma. A typical patient’s response consists of an early peak in the viral load, a long asymptomatic
period and a final increase in viral load with a simultaneous collapse in healthy T cell count during
which AIDS appears. This course is shown in Fig.2.6.

Fig. 2.6: Typical HIV/AIDS course. Picture taken from [36].

During the acute infection period (2-10 weeks) there is a sharp drop in the concentration of
circulating CD4+T cells, and a large spike in the level of circulating free virus (to an average of 107

copies/ml). In this primary period, patients developed an acute syndrome characterized by flu-like
symptoms of fever, malaise, lymphadenopathy, pharyngitis, headache and some rash. Following
primary infection, seroconversion occurs, when people develop antibodies to HIV, which can take
from 1 week to several months. After this period, the level of circulating CD4+T cells returns
to near-normal, and the viral load drops dramatically (to an average of about 50,000/ml). In the
asymptomatic or latency period, without symptoms, the patient does not exhibit any evidence of
disease, even though HIV is continuously infecting new cells and actively replicating. The latent
period varies in length from one individual to another, there are reports of this latent period lasting
only 2 years, while other reports more than 15 years [3]. Normally, this period ranges from 7 to
10 years. After the long asymptomatic period, the virus eventually gets out of control and the
remaining cells are destroyed. When the CD4+T cell count has dropped lower than 250 cells/mm3,
the individual is said to have AIDS. During this stage the patient starts to succumb to opportunistic
infections as the depletion of CD4+T cells leads to severe immune system malfunction.
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2.2.3 How Does HIV cause AIDS?

AIDS is characterized by the gradual depletion of CD4+T cells from blood. The mechanism
by which HIV causes depletion of CD4+T cells in infected patients remains unknown. Numerous
theories have been proposed, but none can fully explain all of the events observed to occur in patients.
The most relevant mechanisms are explained below.

Thymic Dysfunction

The thymus is the primary lymphoid organ supplying new lymphocytes to the periphery. Thy-
mopoiesis, the basic production of mature naive T lymphocytes populating the lymphoid system
is most active during the earlier parts of life. However, recent advances in characterizing thymic
functions suggest that the adult thymus is still actively engaged in thymopoiesis and exports new
T cells to the periphery till 60 years of age [16]. Several works [17], [18] have reported that HIV in-
duced thymic dysfunction, which could influence the rate of disease progression to AIDS, suggesting
a crucial role of impaired thymopoiesis in HIV pathogenesis. Moreover, thymic epithelial cells can
also be infected and this in turn could promote intrathymic spread of HIV [19].

The Homing theory

An important mechanism to explain AIDS is Homing (a precisely controlled process where T
cells in blood normally flow into the lymph system). This process occurs when CD4+T cells leave
the blood, then abortive infection with HIV induces resting CD4+T cells to home from the blood
to the lymph nodes, see [20],[21],[22]. All this homing T cells are abortively infected and do not
produce HIV mRNA [21]. The normal lymph-blood circulation process is within one or two days
[23], but when they enter in the blood, they exhibit accelerated homing back to the lymph node.
Once these abortive cells are in the lymph node, half of them are induced to apoptosis by secondary
signals through homing receptors (CD62L, CD44, CD11a) as shown in [21]. The few active infected
T cells in lymph nodes, bind to surrounding T cells (98-99% of which are resting) and induces signals
through CD4+T and/or chemokine co-receptors.

The Dual role of Dendritic cells

In HIV, DCs play a dual role of promoting immunity while also facilitating infection. C-type
lectin receptors on the surface of DCs, such as DC-SIGN can bind HIV-1 envelope gp120 [24]. DCs
can internalize and protect viruses, extending the typically short infectious half-life of virus to several
days [25]. The progressive alteration of the immune system resulting in the transition to AIDS, could
be caused by the dysfunction of DCs. During progression, DCs either fail to prime T cells or are
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actively immune-suppressive, resulting in failure of the immune control; however, the reasons for this
dysfunction are unknown. [26] proposed that DCs could be directly affected by HIV or indirectly
causing dysfunction due to a lack of CD4+T cells.

Persistent Immune Activation

Cytopahic effects alone can not fully account for the massive loss of CD4+ T cells, since produc-
tively infected cells occupy a small fraction of total CD4+ T cells (typically of the order of 0.02%
to 0.2%). Various clinical studies have linked the massive depletion of CD4+ T cells to the wide
and persistent immune activation, which seemed to increase with duration of HIV-1 infection [12],
[27]. According to this theory, the thymus produces enough naive T cells during the first years of
life to fight a lifelong battle against various pathogens. Thus, long-lasting overconsumption of naive
supplies through persistent immune activation, such as observed during HIV-1 infection will lead to
accelerated depletion of the CD4+T and CD8+T cells stock. This effect would be more pronounced
if thymic output depends only on age and not on homeostatic demand, though this view is debated
[17].

Immune Escape

Numerous reasons for lack of immune control have been proposed. The best documented has
been immune escape through the generation of mutations in targeted epitopes of the virus. When
effective selection pressure is applied, the error-prone reverse transcriptase and high replication rate
of HIV-1 allow for a rapid replacement of circulating virus by those carrying resistance mutations as
was first observed with administration of potent antiretroviral therapy [28]. Note that escape may
occur even through single amino-acid mutation in an epitope (part of an antigen that is recognized
by the immune system), at sites essential for MHC binding or T cell receptor recognition.

Reservoirs and Sanctuary Sites

Long-lived reservoirs of HIV-1 are a barrier to effective immune system response and antiretro-
viral therapy, and an obstacle for strategies aimed at eradicating HIV-1 from the body. Persistent
reservoirs may include latently infected cells or sanctuary sites where antiretroviral drug penetrance
is compromised. Moreover, the cell type and mechanism of viral latency may be influenced by
anatomical location. Some studies [29], [30] have suggested that latently infected resting CD4+T
cells could be one of these long-term reservoir while other studies have been conducted to explore
the role of macrophages as an HIV sanctuary [31].
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2.3 Antiretroviral Drugs for HIV infection

The most important scientific advance after the identification of HIV as the causative agent for
AIDS was the development of effective antiretroviral drugs for treating individuals infected with
HIV. The first effective drug against HIV was the reverse transcriptase inhibitor azidovudine, which
was developed as an anticancer drug but was not effective in that capacity. It was licensed as
the first antiretroviral drug in 1987. The use of zidovudine during pregnancy was documented to
decrease neonatal transmission of HIV from 25.5% to 8.3% [32]. Subsequently, more drugs have
been developed to target specific vulnerable points in the HIV life cycle, see Fig.2.5. Currently,
there are 20 drugs approved and their use in combinations of three or more drugs have transformed
the treatment of individuals. Morbidity and mortality owing to HIV disease have sharply declined
[3].

Highly active antiretroviral therapy (HAART), the combination of three or more antiretrovirals,
was used to reduce viral replication and to delay the progression of the infection. Another salutary
effect of HAART is the restoration of immune function, which routinely occurs on long-term therapy
and leads to the regeneration of robust CD4+T and CD8+T cellular responses to recall antigens
[33].

There are more than 20 approved antiretroviral drugs in 6 mechanistic classes with which to
design combination regimens, see Table 2.2. These 6 classes include the nucleoside/nucleotide re-
verse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs),
protease inhibitors (PIs), fusion inhibitors (FIs), CCR5 antagonist, and integrase strand transfer
inhibitors (INSTI). The most extensively studied combination regimens for treatment-naive patients
that provide durable viral suppression generally consist of two NRTIs plus one NNRTI or PI [5].

Fusion Inhibitors and CCR5 Antagonists interfere with the binding, fusion and entry of
an HIV virion to a human cell. There are several key proteins involved in the HIV entry process:
CD4, gp120, CCR5, CXCR4, gp41. FIs have shown very promising results in clinical trials, with low
incidences of relatively mild side-effects, but they are large molecules that must be given through
injection or infusion, which limits their usefulness. The CCR5 co-receptor antagonists inhibit fu-
sion of HIV with the host cell by blocking the interaction between the gp-120 viral glycoprotein
and the CCR5 chemokine receptor [34]. The adverse events are abdominal pain, cough, dizziness,
musculoskeletal symptoms, pyrexia and upper respiratory tract infection.

Nucleoside Reverse Transcriptase Inhibitors mimic natural nucleosides, and are introduced
into the DNA copy of the HIV RNA during the reverse transcription event of infection. However, the
NRTI are nonfunctional, and their inclusion terminates the formation of the DNA copy. The side
effects associated with NRTI use seem to be related to mitochondrial toxicity [21], and can include
myelotoxicity, lactic acidosis, neuropathy, pancreatitis, lipodystrophy, fatigue, nausea, vomiting, and
diarrhea.
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Table 2.2: Antiretroviral Drugs [5]

Class Generic Name Trade Name Intracellular Half-life
NNRTIs Delavirdine Rescriptor 5.8 hrs

Efavirenz Sustiva 40-55 hrs
Etravirine Intelence 41 +/-20 hrs
Nevirapine Viramune 25-30 hrs

NRTIs Abacavir Ziagen 1.5 hrs/12-26 hrs
Didanpsine Videx 1.5 hrs/ 20 hrs

Emtricitabine Emtriva 10 hrs/ 20 hrs
Lamiduvine Epivir 5-7 hrs
Stavudine Zerit 1 hr/ 7.5 hrs
Tenofovir Viread 17 hrs/ 60 hrs

Zidovudine Retrovir 1.1 hrs/ 7 hrs
PIs Atazanavir Reyataz 7 hrs

Darunavir Prezista 15 hrs
Fosamprenavir Lexiva 7.7 hrs

Indinavir Crixivan 1.5-2 hrs
Lopinavir Kaletra 5-6 hrs
Nelfinavir Viracept 3.5-5 hrs
Ritonavir Norvir 3-5 hrs
Saquinavir Invirase 1-2 hrs
Tipranavir Aptivus 6 hrs

INSTIs Raltegravir Isentress 9 hrs
FIs Enfuvirtide Fuzeon 3.8 hrs

CCR5 Antagonists Maraviroc Selzentry 14-18 hrs

Non-Nucleoside Reverse Transcriptase Inhibitors also block the creation of a DNA copy
of the HIV RNA, but work by binding directly to key sites on the reverse transcriptase molecule,
blocking its action. These drugs do not work well on their own, but in conjunction with NRTIs, they
increase the effectiveness of viral suppression. Side-effects can include hepatoxicity, rash, dizziness,
and sleepiness depending on the drug used.

Integrase strand transfer inhibitors are a class of antiretroviral drug designed to block the
action of integrase, a viral enzyme that inserts the viral genome into the DNA of the host cell. Sides
effects may include nausea, headache, diarrhea and pyrexia.

Protease inhibitors target the viral enzyme protease that cuts the polyproteins into their re-
spective components. With this step of viral replication blocked, the infected cell produces viral
particles unable to infect cells. All currently available PIs can cause lipodystrophy, a severe redis-
tribution of body-fat that can drastically change the patients appearance. Other side effects include
gastrointestinal disorders, nephrolithiasis, dry skin, severe diarrhea, and hepatoxicity.
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2.4 Viral Mutation and Drug Resistance

The process of reverse transcription is extremely error-prone, and the resulting mutations may
cause drug resistance or allow the virus to evade the immune system. Drug resistance is a prominent
issue in HIV infection, which means the reduction in effectiveness of a drug in curing the disease.
HIV differs from many viruses because it has very high genetic variability. This diversity is a result
of its fast replication cycle, with the generation of about 1010 virions every day, coupled with a
high mutation rate of approximately 3× 10−5 per nucleotide base per cycle of replication [35]. This
complex scenario leads to the generation of many variants of HIV in the course of one day.

Genotypic and phenotypic resistance assays are used to assess viral strains and inform selection
of treatment strategies. On one hand, the genotype is the genetic makeup of a cell, or an organism
usually with reference to a specific characteristic under consideration. Then the genotypic assays
detect drug resistance mutations present in relevant genes. On the other hand, a phenotype is any
observable characteristic or trait of an organism: such as its morphology, development, biochemical
or physiological properties and behavior. Hence phenotypic assays measure the ability of a virus to
grow in different concentrations of antiretroviral drugs [5].
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Fig. 2.7: Resistance pathways

The fitness of a viral strain, which can be described as the capability of an individual of a certain
genotype to reproduce in a certain environment depends on the genotype. Through adaptation,
the frequencies of the genotypes will change over generations and the genotypes with higher fitness
become more common. Fig.2.7 shows some resistance pathways which were presented in [36]. Panel
A illustrates a resistance pathway with a single point mutation, this has been observed when a
single drug is supplied, for example Lamivudine. Resistance can emerge through accumulation of
resistance-associated mutations as is shown in Panel B. In other cases, resistance can be developed
after multiple steps of fitness loss, see Panel C, which then enable the emergence of mutants that
are fit enough to sustain the population.
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2.5 Guidelines for HAART Treatment

The use of HAART for suppression of measurable levels of virus in the body has greatly con-
tributed to restore and preserve the immune system in HIV patients. In the 90s, the dogma for HIV
therapy was “Hit HIV early and hard” [37]. However, the treatment of HIV is complicated by the
existence of tissue compartments and cellular reservoirs. Long-term reservoirs can survive for many
years and archive many quasispecies of virus that can re-emerge and propagate after withdrawal of
HAART. Moreover, the virus in the central nervous and in semen evolves independently of virus
found in blood cells [38], [39]. The initial enthusiasm for initiating therapy early was tempered by
the recognition that standard antiretroviral therapy would probably not lead to eradication and,
therefore, that therapy would need to be sustained indefinitely. This could be difficult for many
patients due to adverse health events, metabolic complications, adherence and costs. These short
and long term problems associated with HAART have led to proposals for alternative treatment
strategies for controlling HIV infection. Next, the most important treatment guidelines and trials
are explained.

2.5.1 Current Clinical Guidelines

Accumulating data showed that immune reconstitution was achievable even in those individ-
uals with very low CD4+T cells count, and the time to diagnosis of AIDS or mortality was not
different in those individuals who were treated early. Based on this consideration, the guidelines
were changed to recommend that therapy should be initiated in asymptomatic patients when their
CD4+T cells count drop between 200 and 350 cell/mm3 [5]. In 2010, [40] presented a new treatment
regimen, the recommendations emphasize the importance of starting HAART early and continuing
treatment without interruption. HAART can be started at any time, but it is recommended for
those asymptomatic individuals with counts at 500 cell/μl or below, and should be considered for
asymptomatic individuals with counts above 500 cell/μl. Regardless of CD4+T cells count, HAART
is recommended in the following settings; symptomatic patients, rapid disease progression: people
older than 60 years old, pregnancy, chronic hepatitis B or hepatitis C and HIV-associated kidney
disease.

The DHHS (Department of Health and Human Services) panel recommends initiating antiretro-
viral therapy in treatment patients with one of the following types of regimen: NNRTIs + 2 NRTIs,
PIs + 2 NRTIs, and INSTIs + 2 NRTIs. However, the selection of a regimen should be individualized
based on virologic efficacy, toxicity, pill burden, dosing frequency, drug-drug interaction potential,
resistance testing results, and comorbid conditions [5].

HIV drug resistance testing should be performed to assist in the selection of active drugs when
changing HAART regimens in patients with virologic failure, defined as the inability to sustain
suppression of HIV RNA levels to less than 50 copies/ml. The optimal virologic response to treatment
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is maximal virologic suppression (e.g., HIV RNA level <400 copies/ml after 24 weeks, <50 copies/ml
after 48 weeks). Persistent low-level viremia (e.g. HIV RNA 50-200 copies/ml) does not necessarily
indicate virologic failure or a reason to change treatment [5].

Immunologic failure can be defined as a failure to achieve and maintain an adequate CD4+T cell
response despite virologic suppression. There is no consensus for when and how to treat immunologic
failure. For some patients with high treatment experience, maximal virologic suppression is not
possible. In this case, HAART should be continued with regimens designed to minimize toxicity,
preserve CD4+T cell counts, and avoid clinical progression. In this scenario, expert advice is essential
and should be sought.

Antiretroviral treatment failure is defined as a suboptimal response to therapy. Treatment failure
is often associated with virologic failure, immunologic failure, and/or clinical progression. Many
factors are associated with an increased risk of treatment failure, including starting therapy in earlier
years, presence of drug-resistant virus, prior treatment failure, incomplete medication adherence,
drug side effects, toxicities, suboptimal pharmacokinetics, and other unknown reasons.

2.5.2 Structured Treatment Interruptions

Structured treatment interruptions (STIs) consist of therapy withdrawal and re-initiation accord-
ing to specific criteria. STIs were motivated in part by the clinical success of a patient in Germany,
who was treated soon after diagnosis of acute HIV infection [41]. Before initiation of treatment
in this patient, HIV RNA levels exceeded 80, 000 copies/ml on two separate occasions, suggesting
that a steady state of viremia had already been reached. After viral suppression on HAART, the
therapy was temporarily discontinued, which was associated with recurrence of viremia. However,
after a second discontinuation of treatment due to concurrent hepatitis A infection, viral rebound
was not observed in that patient who decided to stop therapy completely and remained virologically
suppressed for the next 19 months. Since the patient’s immune response progressively improved
despite the absence of treatment, it was hypothesized that, intermittent exposure to HIV antigens
may have boosted the HIV-specific immune response in this patient via autoimmunization.

In this context note that those individuals who have been living with HIV for at least 7 to
12 years (different authors use different time spans) and have stable CD4+T counts of 600 or
more cells/mm3 of blood and no HIV-related diseases have been called Long-Term Non-progressors
(LNTP). However, the term LTNP is a misnomer, as it must be noted that progression toward AIDS
can occur even after 15 years of stable infection [42]. The aim of the STIs mentioned earlier was
either or both of: (i) to stimulate the immune system to react to HIV, (ii) to allow re-emergence of
wild-type virus and thereby reduce problems of drug resistance. However, a number of clinical trials
of STIs [43], [44], [45], [46] have shown adverse outcomes for patients under discontinuous therapy,
including serious health risks associated with treatment interruptions. For these reasons, the recent
trend in research has been solidly against STIs.
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2.5.3 Switching Regimen

There is no consensus on the optimal time to change therapy to avert or compensate for virologic
failure. The most aggressive approach would be to change for any repeated, detectable viremia (e.g.
two consecutive HIV RNA > 50 copies/ml after suppression). Other approaches allow detectable
viremia up to an arbitrary level (e.g. 1000-500 copies/ml). However, ongoing viral replication in the
presence of antiretroviral drugs promotes the selection of drug resistance mutations and may limit
future treatment options [47].

Antiretroviral drug sequencing provides a strategy to deal with virologic failure and anticipates
that therapy will fail in a proportion of patients due to resistant mutations. The primary objec-
tives of therapy sequencing are the avoidance of accumulation of mutations and selection of multi-
drug-resistant viruses [9]. Using a mathematical model, [7] hypothesized that alternating HAART
regimens, even while plasma HIV RNA levels were lower than 50 copies/ml, would further reduce
the likelihood of the emergence of resistance. This concept has preliminary support from a clinical
trial [8] called SWATCH (SWitching Antiviral Therapy Combination against HIV). In this study,
161 patients were assigned to receive regimen A (staduvine, didanosine, efavirenz), regimen B (zi-
dovudine, lamivudine, nelfinavir), or regimen C (alternating regimens A and B every 3 months for
12 months). Regimen A and B had the same performance, with only 20% failure rate at the end
of 48 week observation. The alternating regimen outperformed both regimens A and B with only
three failure events. In addition, virologic failure was noted in regimens A and B, while in regimen
C no resistance was documented [7]. These results, suggest that proactive switching and alternation
of antiretroviral regimens with drugs that have different resistance profiles might extend the overall
long-term effectiveness.
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Chapter 3

Mathematical Modeling

A description of several mathematical models of HIV infection is presented. Using the latent
reservoir theory, a deterministic model is proposed in order to explain the long-term behavior of
HIV infection and the progression to AIDS. A parameter variation study exhibits the robust behavior
of the model. We conclude the chapter by proposing different linear mutation models that will be
used to test clinical treatment strategies and to allow preliminary control analysis for the therapy
alternation.

3.1 Modeling Background

Since 1990 a large number of mathematical models have been proposed to describe the interaction
between the adaptive immune system and HIV. These present a basic relation between CD4+T cells,
infected CD4+T cells and virus [48], [49], [50], [51], [52], [53]. A significant effort has been made
in understanding the interaction of the immune response with HIV [54], [55], [56]. These studies
confirm that activated CD8+T cells or cytotoxic T cells (CTL) have an important function during
HIV infection, however this function is thought to be compromised during the progression to AIDS.
Single compartment models are able to describe the primary infection and the asymptomatic stage
of infection. However, they are not able to describe the transition to AIDS. Most of them use
ordinary or partial differential equations, while other authors proposed random variations because
of the stochastic nature of HIV infection [57], [58]. A few studies characterize the problem as a
cellular automata model to study the evolution of HIV [59], [60]. These models have the ability to
reflect the clinical timing of the evolution of the virus. To obtain a more widely applicable model,
some authors have tried to introduce other variables, taking into consideration other mechanisms by
which HIV causes depletion of CD4+T cells. Numerous theories [12], [17], [20], [24], [28], [29] have
been proposed, but none can fully explain all events observed to occur in practice.
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Recent laboratory studies [20], [21], [22] have shown that HIV infection promotes apoptosis
in resting CD4+T cells by the homing process. Basically, abortive infection of resting CD4+T
cells induces those CD4+T cells to home from the blood to the lymph nodes. This mechanism
was modeled in two compartments by [61], simulation results showed that therapeutic approaches
involving inhibition of viral-induced homing and homing-induced apoptosis may prove beneficial for
HIV patients. Several other investigators have reported that HIV induces thymic dysfunction, which
could influence the rate of the disease progression to AIDS. In [62], authors found that infection of
the thymus can act as a source of both infectious virus and infected CD4+T cells.

Dendritic cell interactions were analysed and described in a mathematical model in [63]. The
authors gave two main hypotheses for the role of DC dysfunction in progression to AIDS. The first
hypothesis suggests that as CD4+T cells become depleted by HIV infection, they are presented in
insufficient numbers to license DC, which in turn reduces the ability of DC to prime CD8+T cells.
The second hypothesis suggests that DC dysfunction is the result of a direct viral effect on DC
intracellular processes.

3.2 HIV Long-Term Model: The latent reservoir

A reservoir is a long-lived cell, which can have viral replication even after many years of drug
treatment. Studies [29], [30] have suggested that CD4+T cells could be one of the major viral
reservoirs. HIV-1 replicates well in activated CD4+T cells, and latent infection is thought to occur
only in resting CD4+T cells. Latently infected resting CD4+T cells provide a mechanism for life-
long persistence of replication-competent forms of HIV-1, rendering hopes of virus eradication with
current antiretroviral regimens unrealistic. However, recent observations [64] reveal that the virus
reappearing in the plasma of patients undergoing interruption of a successful antiviral therapy is
genetically different from that harbored in latently infected CD4+T cells by HIV-1. These data
strongly suggest that other reservoirs may also be involved in the rebound of HIV-1 replication.

A number of clinical studies have been conducted to explore the role of macrophages in HIV
infection [31]. Macrophages play a key role in HIV disease, they appear to be the first cells infected
by HIV; have been proposed to spread infection to the brain, and to form a long-lived virus reservoir.
A mathematical model which describes the complete HIV/AIDS trajectory was proposed in [4].
Simulation results for that model emphasize the importance of macrophages in HIV infection and
progression to AIDS. We believe [4] is a good model to describe the whole HIV infection course,
however, further work is needed since the model is very sensitive to parameter variations.

A simplification of [4] is proposed with the the following populations; T represents the uninfected
CD4+T cells, T ∗ represents the infected CD4+T cells, M represents uninfected macrophages, M∗

represents the infected macrophages, and V represents the HIV population. The mechanisms con-
sidered for this model are described by the following reactions:
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Cell production. The source of new CD4+T cells and macrophages from thymus, bone marrow,
and other cell sources is assumed to be constant by many authors [51], [52].

∅
sT−→ T (3.1)

∅
sM−→M (3.2)

sT and sM are the source terms and represent the generation rate of new CD4+T cells and
macrophages, which were estimated as 10 cells/mm3day, and 0.15 cells/mm3day respectively by
[51].

Infection process. HIV can infect a number of different cells: activated CD4+T cell, resting
CD4+T cell, quiescent CD4+T cell, macrophages and dendritic cells. Dendritic cells play a piv-
otal role in linking cells and invading pathogens. For simplicity, just activated CD4+T cells and
macrophages are considered in the infection process.

T + V
kT−→ T ∗ (3.3)

M + V
kM−→M∗ (3.4)

The parameter kT is the rate at which free virus V infects CD4+T cells, this has been estimated
by different authors, and the range for this parameter is from 10−8 to 10−2 ml/day copies [4]. The
macrophage infection rate, kM , is fitted as 2.4667 × 10−7 ml/ day copies. Parameter fitting was
realized by an iterative trial-and-error process to match clinical data in [65], [66].

Virus proliferation. HIV may be separated into their source, either CD4+T cells or macrophages
by the host proteins contained within their coat [67]. Viral proliferation is considered as occurring
in activated CD4+T cells and macrophages.

T ∗ pT−→ V + T ∗ (3.5)

M∗ pM−→ V +M∗ (3.6)

The amount of virus produced from infected CD4+T cells and macrophages is given by pTT
∗ and

pMM∗ respectively, where pT and pM are the rates of production per unit time in CD4+T cells
and macrophages. The values for these parameters are in a very broad range depending on the
model, cells and mechanisms. We take values from [4], where pT ranges from 0.24 to 500 copies
mm3/cells ml and from 0.05 to 300 copies/cells day for pM . Notice that not all virus particles are
infectious, only a limited fraction (≈ 0.1%) of circulating virions are demonstrably infectious [68].
Some virus particles have defective proviral RNA, and therefore they are not capable of infecting
cells. In mathematical models, generally, V describes the population dynamics of free infectious
virus particles.
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Natural death. Cells and virus have a finite lifespan. This loss is represented by the following
reactions

T
δT−→ ∅ (3.7)

T ∗ δT∗−→ ∅ (3.8)

M
δM−→ ∅ (3.9)

M∗ δM∗−→ ∅ (3.10)

V
δV−→ ∅ (3.11)

The death rate of CD4+T cells in humans is not well characterized, this parameter has been chosen
in a number of works as δT = 0.01 day−1, a value derived from BrdU labeling macaques [51]. The
infected cells were taken from [51] with values of δT∗ ranging from 0.26 to 0.68 day−1, this value is
bigger than uninfected CD4+T cells because infected CD4+T cells can be cleared by CTL cells and
other natural responses.

In contrast to CD4+T cells, HIV infection is not cytopathic for macrophages and the half-life of
infected macrophages may be of the order of months to years depending on the type of macrophage.
These long lives which could facilitate the ability of the virus to persist [69]. Moreover, studies
of macrophages infected in vitro with HIV showed that they may form multinucleated cells that
could reach large sizes before degeneration and necrosis ensued [31]. The current consensus is that
the principal cellular target for HIV in the CNS (Central Nervous System) is the macrophage or
microglial cell. A large study in clinical well-characterized adults found no convincing evidence for
HIV DNA in neurons [70]. Thus macrophages and infected macrophages could last for very long
periods, we estimated δM and δM∗ as 1 × 10−3 day−1 using clinical data for the CD4+T cells [65],
[66]. Clearance of free virions is the most rapid process, occurring on a time scale of hours. The
values of δV ranged from 2.06 to 3.81 day−1 [51], [52], [53].

First, let us consider mechanisms 3.1-3.11 as the most relevant. Then the following model may
be obtained

Ṫ = sT − kTTV − δTT

Ṫ ∗ = kTTV − δT∗T ∗

Ṁ = sM − kMMV − δMM (3.12)

Ṁ∗ = kMMV − δM∗M∗

V̇ = pTT
∗ + pMM∗ − δV V

In the next section, we shall show that even given the simplicity in the system 3.12, compared
with other macrophages models [4], [51], [52], we can still obtain some of the main features of the
long-term dynamics in HIV infection with a behavior that is suitably robust to parameter variations.
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3.2.1 Model Simulation

There are approximately 6000/mm−3 white blood cells in a healthy human according to [71].
For initial condition values, previous works are considered [4], [51]: CD4+T cells are taken as 1000
cells/mm3 and 150 cells/mm3 for macrophages. Infected cells are considered as zero and initial viral
concentration as 10−3 copies/ml. The model implementation outlined in last section is conducted
in MATLAB, using parameter values presented in Table 3.1.

Table 3.1: Parameters values for (3.12)

Parameter Nominal Value Taken from: Parameter Variation
sT 10 [51] 7 - 20
sM 0.15 [51] 0.1 - 0.3
kT 3.5714× 10−5 [4] 3.2 × 10−5 - 1.0 × 10−4

kM 4.3333× 10−7 Fitted 3.03 × 10−7 - 1.30 × 10−6

pT 38 [4] 30.4 - 114
pM 44 [4] 22 - 132
δT 0.01 [4] 0.001-0.017
δ∗T 0.4 [51] 0.1-0.45
δM 1 × 10−3 Fitted 1 × 10−4 - 1.4 × 10−3

δ∗M 1 × 10−3 Fitted 1 × 10−4 - 1.2 × 10−3

δV 2.4 [4] 0.96- 2.64

Numerical results given in Fig.3.1 show a fast drop in healthy CD4+T cells, while there is a
rapid increase in viral load. It might be expected that the immune system responds to the infection,
proliferating more CD4+T cells, which gives rise to the increment in CD4+T cells. However, in
(3.12) there is no term for proliferation, therefore the observed increase in CD4+T cell count is due
to a saturation of infection in CD4+T cells and a consequent sharp drop in the viral load experienced.
For approximately, 4 to 5 years an untreated patient experiences an asymptomatic phase where in
CD4+T cell counts levels are over 300 cells/mm3. On one hand CD4+T cells experience a slow
but constant depletion, on the other hand the virus continues infecting healthy cells and therefore
a slow increase in viral load take place as can be seen in Fig.3.2b. At the end of the asymptomatic
period, constitutional symptoms appear when CD4+T cell counts are below 300 cells/mm3. The
last stage and the most dangerous for the patient is when the depletion in CD4+T cells crosses 250
cells/mm3, which is considered as AIDS. This is usually accompanied by a rapid growth in viral
load, and the severe immuno-deficiency frequently leads to potentially fatal opportunistic diseases.
Fig.3.1 reveals how the model is able to represent the three stages in HIV infection and corresponds
reasonably well to clinical data.

Infected CD4+T cell dynamics are qualitatively similar to the viral load dynamics in the first
years of infection, as can be seen in Fig.3.2a. There is an initial peak of infected CD4+T cells,
followed by a small increment but constant population during the asymptomatic stage.
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Fig. 3.1: CD4+T cells dynamic over a period of ten years. � is clinical data taken from [65] and ♦
is data from [66]

Macrophages are considered one of the first points of infection, therefore infected macrophages
may become long-lived virus reservoirs as is stated in [31]. Fig.3.2c shows healthy macrophage
dynamics with a slow depletion in counts, this depletion is because of their change to infected status.
The number of infected macrophages increases slowly during the asymptomatic period, but when
constitutional symptoms appear, infected macrophages increase in population faster than before,
see Fig.3.2d. These results suggest that in the last stages of HIV the major viral replication comes
from infected macrophages. This is consistent with the work of [72], which states that in the early
infection the virus replication rate in macrophages is slower than the replication rate in CD4+T
cells. Over the years, the viral replication rate in macrophages grows.

Simulations results help to elucidate various HIV mechanism, see Fig.3.3, which can be considered
as two feedback systems. One provides the fast dynamics presented in the early stages of infection
as a result of an strong inhibition to CD4+T cells. The second feedback sustains a constant slow
infection process in macrophages over the years due to a weak inhibition accompanied by the long
time survival conditions of macrophages.

Whilst the model [4] reproduces known long term behavior, bifurcation analysis gives an unusu-
ally high sensitivity to parameter variations. For instance, small relative changes in infection rates
for macrophages give bifurcation to a qualitatively different behavior. Therefore, it is necessary to
check the sensitivity to parameter variation in the proposed model (3.12).
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Fig. 3.2: Dynamics of cells and virus over a period of ten years
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Accordingly, we can vary the parameters to observe the range for which the model (3.12) shows
the whole HIV infection trajectory with reasonable different time scales. For instance, Fig.3.4a
reveals that the model may reproduce long term behavior despite high variations of the parameter
kT , which may range from 10% below nominal values and 220% above. It can be noticed that higher
infection of CD4+T cells speeds up the progression to AIDS. The ranges for other parameters are
shown in Table 3.1, this reveals that parameters can be varied in a wide range whilst still showing
the three stages in HIV infection with reasonable time scales. In this case we define reasonable time
scales as progression to AIDS in between 1 and 20 years. We consider (3.12) might be a useful model
to represent the whole HIV infection for different patients as a result of its robustness to represent
the three stages of HIV infection.

Interesting conclusions can be obtained if we analyse other parameters. Consider for instance
the death rate of healthy CD4+T cells dT . Initial thoughts might be that increasing the death
rate of CD4+T cells will hasten the progression to AIDS. Nonetheless, Fig.3.4b provides interesting
insights of the progression to AIDS. On one hand Fig.3.4b shows if the death rate of CD4+T cells is
small, then the progression to AIDS is faster since CD4+T cells live for longer periods and become
infected, then more virus are produced. Moreover more infection of long term reservoirs takes place.
On the other hand, if the death rate of CD4+T cells is high, then the viral load explosion might be
inhibited. Indubitably, CD4+T cells levels will be low with a high dT value, but Fig.3.4b exposed
that there is a range for dT which CD4+T cells could be maintained in safety levels (> 350 cells).
Clinical evidence has shown that HIV affects the life cycle of CD4+T cells [21]. For simplicity we
considered in (3.12) one compartment of activated CD4+T cells, which are directly infected by HIV.
Let us consider dT as a regulation between two pools of cells, naive and activated cells, consequently
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we could infer that for a stronger activation of CD4+T cells, the progression to AIDS would be
faster. Clinical observations [12] have supported the hypothesis that persistent hyperactivation of
the immune system may lead to erosion of the naive CD4+T cells pool and CD4+T cell depletion.
Numerical results yield the idea that macrophages need the first stage of viral explosion in order to
attain large numbers of long lived reservoirs and cause the progression to AIDS. Thus, a regulation
in the activation of CD4+T cells in the early stages of HIV infection might be important to control
the infection and its progression to AIDS.

3.2.2 Steady State Analysis

Using the system (3.12), the equilibria may be obtained analytically in the next form

T =
sT

kTV + δT
, T ∗ =

kT sT

δT∗

V

kTV + δT

M =
sM

kMV + δM
, M∗ =

kMsM

δM∗

V

kMV + δM

where V is the solution of the polynomial

aV 3 + bV 2 + cV = 0 (3.13)

The equation (3.13) has three solutions, which are

V (A) = 0, V (B) =
−b+

√
b2 − 4ac

2a
, V (C) =

−b−√
b2 − 4ac

2a
(3.14)

where;
a = kTkMδT∗δM∗δV

b = kT δT∗δMδM∗δV + kMδT δT∗δM∗δV − sTkTkMpT δM∗ − s2kT kMpMδT∗

c = δT δT∗δMδM∗δV − sTkT pT δMδM∗ − sMkMpMδT δT∗

Equilibrium A

T (A) =
sT

δT
, T ∗(A) = 0, M (A) =

sM

δM
, M∗(A) = 0, V (A) = 0

Equilibrium B,C

T (B,C) =
sT

kTV (B,C) + δT
, T ∗(B,C) =

kT sT

δT∗

V (B,C)

kTV (B,C) + δT

M (B,C) =
sM

kMV (B,C) + δM
, M∗(B,C) =

kMsM

δM∗

V (B,C)

kMV (B,C) + δM
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Proposition 3.1 The compact set Γ = {{T, Ti,M,Mi, V } ∈ R5
+ : T (t) ≤ sT /δT ,M(t) ≤ sM/δM} ,

is a positive invariant set.

Proof The proof can be found in [74].

Remark 3.1 If c is a negative real number, then (3.12) has a unique infected equilibrium in the
first orthant.

Proof This can be seen directly from b2 − 4ac > 0 in (3.14).

Remark 3.2 It is possible to have two infected equilibria in the first orthant, if b is a negative real
number and c is a positive real number. It can be easily shown that using values from Table 3.1 b

and c are negative.

Proposition 3.2 The uninfected equilibrium is locally unstable if there exists a unique infected
equilibrium in the first orthant.

Proof If we compute the characteristic polynomial for the equilibrium A (uninfected status), we
obtain a polynomial of fifth order, where one of the coefficients is equal to c. Applying the Routh
Hurwitz criterion yields that the equilibrium is stable if and only if every coefficient of the charac-
teristic polynomial is positive. However, it was previously shown that c must be negative in order
to have a unique equilibrium point. Therefore the uninfected equilibrium is unstable.

Equilibrium A represents an uninfected status. Using numerical values, the uninfected equilibrium
is unstable, which is consistent with previous works [48], [51], [52], [73]. This might be the reason
why it is impossible to revert a patient once infected, back to an HIV-free state.

3.2.3 Cell Proliferation Terms

The macrophage dynamics modeled in this work present a very different scenario from [4]. In
[4], the authors presented a model with an explosion in macrophage populations (both infected
and healthy over 1000 cells/mm3). In our model, simulation results reveal slightly depletion in
macrophages and increment in infected macrophages as can be seen in Fig.3.2c, but the total pop-
ulation remains almost constant. This is consistent with the observation that macrophages have
a long life span [51]. This difference in macrophage dynamics is because we do not consider cell
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proliferation terms. In order to adjust the fast depletion in CD4+T cells and explosion in viral load,
we include cell proliferation terms

T + V
ρT−→ T + (T + V ) (3.15)

M + V
ρM−→M + (M + V ) (3.16)

Using the proliferation rates (3.15) and (3.16) in the proposed model (3.12), the dynamics match
better in the final depletion of CD4+T cells as can be noticed in Fig.3.5. The collapsing in CD4+T
cells is obvious using the proliferation rates ρT and ρM . Moreover, after the primary infection
stage takes place [3], the recovering in CD4+T cell counts over 500 cells/mm3 is more evident
using cell proliferations terms. The authors of [4] emphasized the importance of macrophages in the
progression of HIV, however they had not provided any mathematical evidence of the HIV/AIDS
transition. Since the model is difficult to analyze, we suggest some simplifying assumptions to allow
mathematical analysis.
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Fig. 3.5: CD4+T cells dynamic using bilinear proliferation rates (3.15) and (3.16)

Assumption 3.1 Fast Viral Dynamics.
Using parameter values in Table 3.1, we notice that δV >> 1. This corresponds to viral dynamics
with a time constant much less than one day. In this case, the differential equation for the virus can
be approximated by the following algebraic equation as suggested in [75]:

V =
pT

δV
T ∗ +

pM

δV
M∗ (3.17)

36



CHAPTER 3. MATHEMATICAL MODELING

Assumption 3.2 T ∗ is approximately constant during the asymptomatic phase.
We note that in the asymptomatic period of infection (that is, after the initial transient, and before the
final divergence associated with development of AIDS), the concentration of infected CD4+T cells is
relatively constant. This assumption is also proposed in [73]. Therefore the following approximation
for infected CD4+T cells can be considered:

T ∗(t) ≈ T
∗
, ∀t ≥ t0 (3.18)

Using equations (3.17) and (3.18) we obtain

V (t) := c1M
∗ + VT∗ (3.19)

where VT∗ = pT

δV
T

∗
and c1 = pM

δV
. Note that if T̄ ∗ is selected as an upper bound on T ∗, then (3.19)

represents an upper bound on V (t). Therefore (3.19) describes the long asymptomatic period in the
viral load dynamic.

Using Assumptions 3.1 and 3.2 in (3.12), we have the following system

Ṁ ≈ sM − c2M + c3MM∗ (3.20)

Ṁ∗ ≈ c4M + c5MM∗ − δ4M
∗ (3.21)

where c2 = δM − (ρM − kM )VT∗ , c3 = (ρM − kM )c1, c4 = kMVT
∗ and c5 = kMc1.

Assumption 3.3 M and M∗ have an affine relation.
Note that from (3.20) and (3.21), we expect that the bilinear terms are predominant for large M and
M∗, then we may assume Ṁ ≈ c3

c5
Ṁ∗, which can be rearranged in the linear form

M∗ ≈ c6M − c7 (3.22)

where c6 = c2c5+c3c4
c3δM∗ and c7 = c5sM

c3δM∗ .

Remark 3.3 Under Assumptions 3.1-3.3 and the parameter condition 4αsM ≥ β2, the macrophage
dynamics in an infected HIV patient are unstable with a finite escape time.

Substituting (3.22) in equation (3.20), we have a numerically verified approximation for the macrophage
equation which is only valid for large amounts of M and Mi

Ṁ = sM + αM2 + βM (3.23)

where
α = c6pM (ρM−kM )

δV
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β = (ρM−kM )(pT T
∗−c7pM )

δV
− δM

The solution of the differential equation (3.23) is given by

M =
β

2α
+

√
4αsM − β2

2α
tan

(√
4αsM − β2

2
t+ η

)
(3.24)

where η is a constant related to the initial condition of the macrophages given by

η = tan−1

(
2αM0 − β√
4αs2 − β2

)
(3.25)

In (3.24) there is a tangent function if 4αsM ≥ β2, which tends to ∞ when the argument tends to
π/2, that is when

t = T∞ :=
π − 2η√

4αsM − β2
(3.26)

which implies that there is a finite escape time.

Whilst the incorporation of proliferations rates (3.15) and (3.16) in the model (3.12) reproduces
the observed long term behavior more accurately, any small change in parameters (i.e., 1% nominal
value) evidences an unusually high sensitivity. In particular, small relative changes in kT , ρT , ρM ,
δT , δT∗ , δM , or δV give bifurcation to a qualitatively different behavior. This sensitivity to parameter
variation is caused by the unstable behavior of the system (3.12) that was shown in Remark 3.3.
This finite time escape is because the macrophage proliferation rate is faster than the infection
rate of macrophages, that is ρM > kM . In order to have the same trajectory presented in Fig.3.5
and robustness to parameter variation, we modify the proliferation terms (3.15) and (3.16) using
Michaelis-Menten kinetics in the following form

T + V

ρT
CT +V−→ T + (T + V ) (3.27)

M + V

ρM
CM +V−→ M + (M + V ) (3.28)

the new parameters were adjusted to obtain the appropriate HIV trajectory with respect to clinical
observations. These parameter values are ρT = 0.01, ρM = 0.004, CT = 300 and CM = 500. Adding
cell proliferation rates (3.27) and (3.28) in the model (3.12), we can observe in Fig.3.6a how in the
symptomatic period CD4+T cell counts drop dramatically lower than 250 cell/mm3. In addition,
the primary infection dynamics are adapted better to clinical observations, that is when CD4+T
cells drops below 400 (cells/mm3) and then returns to near-normal values [3]. Viral load trajectories
agree with clinical observations; a large spike in the level of circulating virus, follow by a fast drop
in viral concentration. In the latent period the viral load remains almost constant, and finally the
explosion in viral load takes place in the symptomatic stage. The relevance of these cell proliferation
rates incorporated in the model (3.12) is that robust properties to parameter variation are preserved
and can be varied as is shown in Table 3.1.
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Fig. 3.6: CD4+T cell, macrophage and viral dynamic using proliferation rates (3.27) and (3.28)
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Viral explosion promotes more infection of long-term cells, which will replicate virus during long
periods. This is consistent with simulation results in [4], which found that infected macrophages
increase slowly in number during the asymptomatic period and exponentially in the later stage of
the disease.

There is lack of information regarding infected cells in HIV. Simulation results show that infected
macrophages experience an explosion in population as can be seen in Fig.3.6d. This is consistent with
studies in rhesus macaques [72], using the highly pathogenic simian immunodeficiency virus/HIV
type 1 (SHIV) infection in monkeys. This is an exaggerated model of HIV infection in humans
that allows scientist to address certain clinical aspects of retrovirus that are difficult to study in
people. Lymphoid organs such as lymph nodes and spleen for the source of the remaining virus were
examined in [72]. They found that 95% of the virus-producing cells were macrophages and only 1
to 2% were CD4+T cells. Moreover, macrophages contain and continue to produce large amounts
of HIV-like virus in monkeys even after the virus depletes CD4+T cells.

3.2.4 Drug Therapy Model

Antiretrovirals may interfere with different parts of the HIV cycle. There are 20 approved an-
tiretroviral drugs in 6 mechanistic classes to design combination regimens. The most extensive study
for combination regimens provides durable viral suppression and generally consists of 2 NRTIs plus
one NNRTI or a PI [5]. In that event, we modify (3.12) to include the effect of these drugs:

Ṫ = sT − (1 − ηRT )kTTV − δTT

Ṫ ∗ = (1 − ηRT )kTTV − δT∗T ∗

Ṁ = sM − (1 − fηRT )kMMV − δMM (3.29)

Ṁ∗ = (1 − fηRT )kMMV − δM∗M∗

V̇ = (1 − ηPI)pTT
∗ + (1 − fηPI)pMM∗ − δV V

On one hand RTIs can block infection and hence reduce the infection rate of CD4+T cells and
macrophages. This can be represented including the term (1 − ηRT ) into the cell infection rates.
RTIs like other drugs are not perfect, thus ηRT is the “effectiveness” of the reverse transcriptase
inhibitors [52]. Inhibitor efficient is in the range 0 ≤ aRT ≤ ηRT ≤ bRT ≤ 1, where aRT and bRT

represent minimal and maximal drug efficacy. On the other hand PIs inhibit the protease of HIV,
resulting in a decrease of the viral proliferation, this is represented including (1 − ηPI) in the viral
proliferation rate of infected cells. Because macrophages are long-lived cells [31], inhibitors are more
effective in CD4+T cells than in macrophages, this is contemplated using f ∈ [0, 1] [55].

The primary goal of antiretroviral therapy is to reduce HIV-associated morbidity and mortality.

40



CHAPTER 3. MATHEMATICAL MODELING

Over the last 20 years, several changes have been made to the recommendations on when to start
therapy. The standard procedure for the panel of antiretroviral guidelines for adults and adolescents
with HIV in USA [5] is to only make recommendations in agreement with two-thirds of the panel
members. This has not been possible for When to Start recommendations in its last updated
version [5]. However, there is a general consensus that antiretroviral therapy should be initiated
in all patients with a history of an AIDS-defining illness or when CD4+T counts are less than 350
cells/mm3 [5].

Using the model (3.29), we notice in Fig.3.7 that HAART treatment would be initiated approx-
imately around the third year after infection. Fig.3.7a shows how CD4+T cells experience a rapid
depletion in counts. When treatment is introduced, CD4+T cells counts recover and maintain nor-
mal counts. One of the most important goals of therapy is to achieve maximal virologic suppression,
that is HIV RNA level less than 400 copies/ml after 24 weeks, and less than 50 copies/ml after 48
weeks, this fact can be seen in Fig.3.7b.

Infected cells play an important role in HIV infection. On one hand, infected CD4+T cells show
a rapid depletion when HAART is introduced, and this is maintained at a very low level for several
years, see Fig.3.7c. On the other hand, infected macrophages have a very slow depletion as is shown
in Fig.3.7d. Therefore they can still contribute to the viral load population for a long period of time.
This is consistent with many works on the area, which propose that macrophages are responsible
for the second phase in the decay of plasma virus level [52].

Remark 3.4 Under the assumption of perfect effectiveness in the treatment, CD4+T cells and
macrophages dynamics become uncoupled from viral dynamic equation. Therefore we can solve the
equations for the infected cells

T ∗ = T ∗
0 exp(−δT∗t)

M∗ = M∗
0 exp(−δM∗t)

Using these equations is easy to see that for this model, the longer the delay to initiate HAART, the
more new infections of cells and reservoirs will take place, consequently a longer period is necessary
to clear the virus.
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Fig. 3.7: CD4+T cell, macrophage and viral dynamic under HAART treatment

42



CHAPTER 3. MATHEMATICAL MODELING

3.3 Basic Viral Mutation Treatment Model

Numerical results suggest that the mathematical model (3.12) is able to represent the complete
trajectory of HIV infection. Furthermore, the inclusion of treatment effects expose the fast recover
in CD4+T cells and reduction of viral load. According to simulation results, HIV infection progres-
sion could be delayed for an undetermined period of time. Notwithstanding, HIV may mutate, this
is problematic since it gives rise to drug resistance if a single drug or single drug combination is
given. Consequently, it is necessary to consider different genetic strains. For the sake of simplicity,
we propose a model for mutation dynamics that is simple enough to allow control analysis and op-
timisation of treatment switching. Based on (3.12), we make the following assumptions in designing
our control strategies.

Assumption 3.4 Constant macrophage and CD4+T cell counts. The main non-linearities in the
more general model are bilinear, and all involve either the macrophage or healthy CD4+T cell count.
Under normal treatment circumstances (that is after the initial infection stage, and until full pro-
gression to a dominant highly resistant mutant) typical simulations and/or clinical data suggest that
the macrophage and CD4+T cell counts are approximately constant [52]. This assumption allows to
simplify the dynamics to being essentially linear.

Assumption 3.5 Scalar dynamics for each mutant. A more extensive model for HIV dynamics
would include a set of states for each possible genotype such as: Vi(t) (viral concentration); T ∗

i (t)
(CD4+T cells infected by mutant i); M∗

i (t) (macrophages infected by mutant i) etc. To simplify the
model we focus on the viral load Vi(t) only.

Assumption 3.6 Viral clearance rate independent of treatment and mutant. In some cases, partic-
ularly in view of the earlier assumption of representing the dynamics as scalar, viral clearance rate
might well depend on one or more of the treatment regimes, or the viral genetics. For simplicity, we
take this as a constant.

Assumption 3.7 Mutation rate independent of treatment and mutant. In a similar vein, we assume
that the mutation rate, between species with the same genetic distance, is constant. In practice, there
is some dependence of mutation rate on the replication rate, and therefore there is some relationship
between mutant, treatment and mutation rate.

Assumption 3.8 Deterministic model. We are interested in deriving control strategies with either
optimal or “verifiable” performance. To simplify the control design we rely on a deterministic model.
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3.3.1 A 4 variant, 2 drug combination model

Assumptions 3.4-3.8 the model includes n different viral genotypes, with viral populations, xi :
i = 1, ...n; and N possible drug therapies that can be administered, represented by σ(t) ∈ {1, ...N},
where σ is permitted to change with time, t. The viral dynamics are represented by the equation:

ẋi(t) = ρi,σ(t)xi(t) − δV xi(t) +
∑
j �=i

μmi,jxj(t) (3.30)

where μ is a small parameter representing the mutation rate, δV is the death or decay rate and
mi,j ∈ {0, 1} represents the genetic connections between genotypes, that is, mi,j = 1 if and only if
it is possible for genotype j to mutate into genotype i. Equation (3.30) may be rewritten in vector
form as

ẋ(t) =
(
Rσ(t) − δV I

)
x(t) + μMux(t) (3.31)

where Mu := [mij ] and Rσ(t) := diag{ρi,σ(t)}.

Drug treatment

highly resistant genotype

1,1

ne
ss

1,0fit
n

genotype 1genotype 1

0,0 0,1

wildtype genotype 2

Fig. 3.8: Drug treatment

As a simple motivating example, we take a model with 4 genetic variants, that is n = 4, and
2 drug therapies, N = 2. The viral variants (also called ‘genotypes’ or ‘strains’) are described as
follow.

• Wild Type(WT): In the absence of any drugs, this is the most prolific variant. It is also the
variant that both drug combinations have been designed to combat, and therefore is susceptible
to both therapies.

• Genotype 1 (G1): A genotype that is resistant to therapy 1, but is susceptible to therapy 2.

• Genotype 2 (G2): A genotype that is resistant to therapy 2, but is susceptible to therapy 1.
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• Highly Resistant Genotype (HRG): A genotype, with low proliferation rate, but that is resistant
to all drug therapies.

Therapy 2

WT G1

1
er
ap

y
1

Th
e

G2 HRG

Fig. 3.9: Mutation tree for a 4 variant, 2 drug combination model

We take the viral clearance rate as δV = 0.24 day−1 which corresponds to a half life of slightly
less than 3 days [51]. Typical viral mutation rates are of the order of μ = 10−4. We consider a
mutation graph that is symmetric and circular, see Fig.3.9. That is, we allow only the connections:
WT ↔ G1, G1 ↔ HRG, HRG ↔ G2 and G2 ↔ WT . Other connections would require double
mutations and for simplicity, we consider these to be of negligible probability. This leads to the
mutation matrix:

Mu =

⎡⎢⎢⎢⎢⎣
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤⎥⎥⎥⎥⎦ (3.32)

We propose three different scenarios for viral replication as can be found in the Table 3.2. The
first scenario, the most ideal case, describes a complete symmetry between G1 and G2, in the sense
that therapy 1 inhibits G2 with the same intensity that therapy 2 inhibits G1. In practice, we might
expect a small difference in relative proliferation ability. Furthermore, a more detailed model would
also include asymmetry in the genetic tree, which would usually have a much more complex structure
than a simple cycle. The second scenario shows an asymmetry for replication rates in G1 and G2,
although both therapies induce the same replication in the WTP and HRG. The more realistic
case is when all genotypes experience different dynamics to the new treatment, this is represented
in the Scenario 3.
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Scenario Therapy WT(x1) 1 G1 (x2) G2(x3) HRG (x4)
1 1 ρ1,1 = 0.05 ρ2,1 = 0.27 ρ3,1 = 0.05 ρ4,1 = 0.27

2 ρ2,1 = 0.05 ρ2,2 = 0.05 ρ3,2 = 0.27 ρ4,2 = 0.27
2 1 ρ1,1 = 0.05 ρ2,1 = 0.28 ρ3,1 = 0.01 ρ4,1 = 0.27

2 ρ2,1 = 0.05 ρ2,2 = 0.20 ρ3,2 = 0.25 ρ4,2 = 0.27
3 1 ρ1,1 = 0.05 ρ2,1 = 0.26 ρ3,1 = 0.01 ρ4,1 = 0.29

2 ρ2,1 = 0.01 ρ2,2 = 0.15 ρ3,2 = 0.25 ρ4,2 = 0.27

Table 3.2: Replication rates for viral variants and therapy combinations

Remark 3.5 Notice that the system (3.30) is not stabilizable under the switching action. The
biological reason is because that the highly resistant genotype will escape the effects of treatments and
immune system.

These numbers are of course idealized, however, the general principles are based on:

• Genetic distance from wild type reduces fitness: In the absence of effective drug treatments,
we might expect that fitness (that is, reproduction rate) decreases with genetic distance from
the wild type, which we expect to be the most fit.

• Therapy at best 90% effective: In the absence of drugs, from typical data, we might expect an
overall viral proliferation rate (with high, constant CD4+T cell count) of approximately ρ =
0.5 day−1.

3.3.2 Clinical Treatments using the Basic Viral Mutation Model

“When does the patient need to change therapy?” has been a question of discussion in [5]. There
are very clear factors when the patient needs to change therapy: drug side effects, prior treatment
failure, comorbidities, lower CD4+T cell counts, presence of drug-resistant virus or other reasons.
Nonetheless, there is no consensus on the optimal time to change therapy for virologic failure.
Guidelines for the use of antiretroviral agents [5] recommends change for any detectable viremia
up to an arbitrary level (e.g. 1000 copies/ml). Antiretroviral sequencing, called SWATCH, was
proposed in order to deal with virologic failure and anticipates therapy failure in a proportion of
patients [8]. In this trial, patients were alternating between two treatments every 3 months for 12
months.

Encouraged by the optimal time to change therapy, the model (3.30) is used to test these two
treatments. For numerical analysis, we propose that the patient has a complete medical history,
physical examination, laboratory evaluation once a month for one year period. Fig.3.10 reveals how
the total viral load initially drops rapidly for the three different scenarios. However the appearance
of resistant genotypes will drive a virologic failure (viral load > 1000 copies/ml) after 8 months,
then a new therapy is needed. Scenarios 1 and 2 exhibit a second drop in viral population, not as
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Table 3.3: Total viral load at the end of treatment using model (3.30)

Scenario Monotherapy Switched on failure SWATCH
Scenario 1 1.3692× 104 344.25 45.35
Scenario 2 3.7116× 104 919.29 60.59
Scenario 3 3.8725× 104 1.2437× 104 1045.27

pronounce as it was for therapy 1. For scenario 3, the viral load explosion is almost not affected
by the new therapy, this is because the HRG is directing the dynamics of the system. Using the
SWATCH treatment, a lower concentration in the total viral load over the year is shown in Fig.3.11.
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Fig. 3.10: Switching on failure treatment for model (3.30)

Some clinicians recommend to wait as long as possible to switch a therapy, to have more choices
for future treatments. However, it can be noticed in Table 3.3 if we wait for a long period, the
total viral load will have very high concentration levels for the three scenarios. This is because we
just inhibit one intermediate genotype, and we allow proliferation of the other genotype. Then, it
is more likely to encounter highly resistant mutants. Even when we introduce the other therapy,
it would not be enough to decrease the total viral load. This basic model gives the insight that
prior treatment may be important to maximally suppress HIV levels and prevent further selection
of resistant mutants.
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Fig. 3.11: SWATCH treatment for model (3.30)

3.4 Macrophage Mutation Model

In Section 3.3 we showed a model with a single state variable representing each genotype. The
simulation results exhibit virologic failure before a year of treatment. This is not consistent with
clinical evidence, for instance [76] observed that the median time to failure was 68.4 months for
patients with persistence low-viremia (51-1000 copies/ml for at least 3 months) and more than 72
months for patients without persistence low-viremia (PLV). [76] suggests that PLV is associated with
virological failure. That is, patients with a PLV>400 copies/ml and a history of HAART experience
are more likely to experience virological failure, moreover they recommend that patients with PLV
should be considered for treatment optimization and interventional studies.

Accordingly, it is important to study models with more species to better match clinical obser-
vations of disease time-scales. In fact, the significance of considering such models is due to the
observation of Perelson et al, [52], that after the first rapid phase of decay during the initial 1-2
weeks of antiretroviral treatment, plasma virus declined at a considerably slower rate. This second
phase of viral decay was attributed to the turnover of a longer-lived virus reservoir. Hence, the two
target cell models are more accurate than one target cell models [52]. Therefore we relax Assump-
tion 3.6, and consider other species for a more realistic model. However, the design of switching
strategies for the nonlinear model (3.12) can be very demanding. For the sake of simplicity, we use
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Assumption 3.4 to obtain a linear switched system of the form:

Ṫ ∗
i = kT,σTVi − δT∗T ∗

i +
n∑

j=1

μmi,jVjT

Ṁ∗
i = kM,σMVi − δM∗M∗

i +
n∑

j=1

μmi,jVjM (3.33)

V̇i = pT,σT
∗
i + pM,σM

∗
i − δV Vi

where T and M are treated as constant. The infection rate is expressed as kT,σ for CD4+T cells
and a kM,σ for macrophages. Viral proliferation is achieved in infected activated CD4+T cells and
infected macrophages, this is represented by pT,σ and pM,σ respectively. These parameters depend
on the fitness of the genotype and the therapy. The mutation rate is expressed by μ, andmi,j ∈ {0, 1}
represents the genetic connections between genotypes. The death rates are δT∗ , δM∗ , δV respectively.
For simulation purposes, we shall use the parameters shown in Table 3.4. The system (3.33) can be

Table 3.4: Parameters values for (3.33)

Parameter Value Value taken from:
kT 3.4714× 10−5 Fitted
kM 4.533 × 10−7 Fitted
pT 44 Fitted
pM 44 Fitted
δT∗ 0.4 [4]
δM∗ 0.001 [4]
δV 2.4 [4]

rewritten as follows

ẋ =

⎡⎢⎢⎢⎢⎣
Λ1,σ 0 . . . 0

0 Λ2,σ . . . 0
...

. . .
...

0 0 . . . Λn,σ

⎤⎥⎥⎥⎥⎦x+ μMux (3.34)

where x′ = [T ∗
1 ,M

∗
1 , V1, . . . , T

∗
n ,M

∗
n, Vn], Λj,σ is given by

Λj,σ =

⎡⎢⎣ −δT∗ 0 kT,σT

0 −δM∗ kM,σM

pT,σ pM,σ −δV

⎤⎥⎦
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and the mutation matrix is

Mu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1,1

⎡⎢⎣ 0 0 T

0 0 M

0 0 0

⎤⎥⎦ . . . m1,j

⎡⎢⎣ 0 0 T

0 0 M

0 0 0

⎤⎥⎦
...

. . .
...

mi,1

⎡⎢⎣ 0 0 T

0 0 M

0 0 0

⎤⎥⎦ . . . mi,j

⎡⎢⎣ 0 0 T

0 0 M

0 0 0

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.4.1 A 9 variant, 2 drug combination model

To accommodate a more complicated scenario we suggest 9 genetic variants, that is n = 9, and
2 possible drug therapies, N = 2. The viral variants are organized in a square grid as shown in
Fig.3.12. The wild type genotype (g1) would be the most prolific variant in the absence of any
drugs, however, it is also the variant that all drug combinations have been designed to combat,
and therefore is susceptible to all therapies. After several mutations the highly resistant (g9) is a
genotype with low proliferation rate, but resistant to all drug therapies.

In this model, therapies are composed of reverse transcriptase inhibitors and protease inhibitors,
that are represented by

ki
T,σ = kT fiη

T
σ,i (3.35)

ki
M,σ = kMfiη

M
σ,i (3.36)

pi
T,σ = pT fiθ

T
σ,i (3.37)

pi
M,σ = pMfiθ

M
σ,i (3.38)

where ησ,i represents the infection efficiency for genotype i under treatment σ, and θσ,i expresses
the production efficiency for the genotype i under treatment.

We assume that in the absence of treatment, mutation reduces the fitness of the genotype. Thus
we use linear decreasing factors fi, which represents the fitness of the genotype i. Drugs effects can
be seen in Fig.3.12, where the arrows indicate the efficiency of the drug. Moreover, based on clinical
evidence [31], inhibitors are more effective in CD4+T cells than in macrophages, this is modeled
using ηT

σ,i > ηM
σ,i and θT

σ,i > θM
σ,i.

For simulation purposes, we suggest the linear decreasing factors on the same axis in Fig.3.12
as fi = [1, 0.95, 0.95] and the treatment efficiencies are as follow: ηT

σ,1 = θT
σ,1 = [0.2, 0.9, 1], ηT

σ,2 =
θT

σ,2 = [0.2, 0.5, 1], ηM
σ,1 = θM

σ,1 = [0.25, 0.5, 1], and ηM
σ,2 = θM

σ,2 = [0.1, 0.8, 1].
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Fig. 3.12: 9 genotypes mutation tree

3.4.2 Clinical Treatments using the Macrophage Mutation Model

To evaluate extended time-scales in the model (3.33) we consider longer treatment periods, and
propose that the patient has full clinical examination, once every three months as stated in [8].
Fig.3.13a exhibits the first virologic failure after 6 years of treatment, which is consistent with
clinical observations [76]. Numerical results reveal two observations. One is that infected CD4+T
cells show very similar dynamics to the viral load because viral replication is rapid in infected
CD4+T cells. Secondly, infected macrophages show a more robust behavior against treatments,
which reveals strong evidence that macrophages can persist even during long periods of HAART
treatment. Therefore, maintaining therapy in patients is important to avoid the formation of latent
reservoirs, which will continue to experience viral replication. Simulation results suggest that both
therapies will last for approximately 14 years before virological failure is occurred.

In contrast to virologic failure treatment, the SWATCH treatment can maintain the total viral
load under virologic failure levels for roughly 16 years, see Fig.3.13b. This gives an extension of nearly
2 years compared with virological failure treatment. These simulation results support the recycling
therapies to extend HAART treatments. Similar evidence was found in [8], where significantly more
patients in the alternating therapy group than in the virological failure treatment group had plasma
HIV-1 RNA levels less than 400 copies/ml while receiving treatment.
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Fig. 3.13: Clinical treatments evaluation for a 9 genotypes model

3.5 Latently infected CD4+T cells Model

Simulation results reveal that the model (3.33) exhibits time-scales consistent with clinical ob-
servations. Now, we explore whether another mechanism can match clinical evidence. Using the
homing theory and the fact that latently infected CD4+T cells might have an important role in the
late HIV infection stage, we adopt the model proposed by [52]. Using Assumption 3.4 we obtain the
model

Ṫ ∗
i = ψkT,σTVi + aLLi − δT∗T ∗

i +
n∑

j=1

μmi,jVjT

L̇i = (1 − ψ)kT,σTVi − aLLi − δLLi (3.39)

V̇i = pT,σT
∗
i − δV Vi

where Li, represents the latently infected CD4+T cells. The infection rate is expressed by kT,σ. This
parameter depends on the genotype and the therapy that is used. Once CD4+T cells are infected,
a proportion of cells ψ passes into the infected cells population, whereas a proportion (1−ψ) passes
into the latently-infected cell population. These latently-infected cells might be activated later and
start the virus replication, which is represented by the term aL. Viral proliferation is achieved in
infected activated CD4+T cells, this is represented by pT,σ, which depends on the fitness of the
genotype and the therapy. The mutation rate is represented by μ, the death rates are represented
by δT∗ , δL, δV for T ∗, L, V respectively. mi,j ∈ {0, 1} represents the genetic connections between
genotypes. For simulation purposes, we use the parameters shown in Table 3.5.
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Table 3.5: Parameters values for (3.39)

Parameter Value Value taken from:
kT 3.8 × 10−3 Fitted
pT 6.45 × 10−1 Fitted
δT∗ 0.4 [4]
δV 2.4 [4]
δL 0.005 [4]
aL 3 × 10−4 [4]
ψ 0.97 [4]

Assumption 3.4 allows to simplify the dynamics to a linear system. Therefore the system (3.39)
can be rewritten as (3.34), where x′ = [T ∗

1 , L1, V1, . . . , T
∗
n , Ln, Vn], Λj,σ is given by

Λj,σ =

⎡⎢⎣ −δT∗ aL ψkT,σT

0 −(aL + δL) (1 − ψ)kT,σT

pT,σ 0 −(cTT + δV )

⎤⎥⎦
and the mutation matrix is

Mu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1,1

⎡⎢⎣ 0 0 T

0 0 0
0 0 0

⎤⎥⎦ . . . m1,j

⎡⎢⎣ 0 0 T

0 0 0
0 0 0

⎤⎥⎦
...

. . .
...

mi,1

⎡⎢⎣ 0 0 T

0 0 0
0 0 0

⎤⎥⎦ . . . mi,j

⎡⎢⎣ 0 0 T

0 0 0
0 0 0

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.5.1 A 64 variant, 3 drug combination model

We propose 64 genetic variants, that is n = 64, and 3 possible drug therapies, N = 3. The viral
variants are organized in a three-dimensional lattice as shown in Fig.3.14. This lattice is based on
the simplifying assumption that multiple independent mutations are required to achieve resistance
to all therapies.

As with the previous models the wild type genotype (g1) would be the most prolific variant in
the absence of any drugs, however, it is also the variant that is susceptible to all therapies. After
several mutations the highly resistant genotype (g64) is a genotype with low proliferation rate, but
that is resistant to all drug therapies. In a similar vein to other models, therapies are composed of
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g24
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g48
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g32
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Therapy 1

Fig. 3.14: Three lattice mutation tree

reverse transcriptase inhibitors and protease inhibitors, that is

kT,σ = kT fjησ,j (3.40)

pT,σ = pT fjθσ,j (3.41)

where ησ,j represents the infection efficiency for genotype j under treatment σ, and θσ,j expresses the
production efficiency for the genotype j under treatment. Similarly, we assume that in the absence
of treatment mutation reduces the fitness of the genotype, thus we use linear decreasing factors for
fj , which represent the fitness of the genotype j.

The drug efficiency gradients are illustrated in Fig. 3.14, where the arrows indicate the efficiency
of the drug. For instance, the genotypes g1, g5, ..., g61 are all on one face of the lattice, and are fully
susceptible to therapy 1. The opposite face, g4, g8, ..., g64 describes all genotypes highly resistant
to therapy 1. For simulation purposes, we suggest the linear decreasing factors on the same axis
in the three lattice Fig.3.14 as fi = [1, 0.98, 0.96, 0.94] and the treatment efficiencies are as follow:
ηT

σ,1 = θT
σ,1 = [0.5, 0.6, 0.75, 1], ηT

σ,2 = θT
σ,2 = [0.2, 0.5, 0.7, 1], and ηT

σ,3 = θT
σ,3 = [0.3, 0.6, 0.85, 1].

3.5.2 Clinical Treatments using Latently infected CD4+T cells Mutation

Model

We use a more complex mutation tree model to evaluate the switch on failure treatment and the
SWATCH treatment. Using 64 genotypes and three therapies, we consider longer treatment periods,
and propose that the patient has full clinical examination, once every three months. Fig.3.15a shows
how the first virologic failure occurs around the first year of treatment. Active infected CD4+T cells
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have a very similar dynamic to the viral load, this is because in activated CD4+T cells, viral
replication is rapid and efficient. On the other hand, latently infected cells shows a more robust
behavior against treatments, where patients under HAART provided the first real evidence that
HIV-1 can persist in a latent form and then it can be rescued from cells ex vivo after their activation
[3].
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Fig. 3.15: Clinical treatments evaluation for a 64 genotypes model

In contrast to virological failure treatment, the SWATCH treatment (switching between regimens
every three months) can maintain the total viral load under detectable level for approximately 10
years, and the virologic failure appears after 14 years. Qualitatively similar evidence was found in
[8], where significantly more patients in the alternating therapy group than in the virologic failure
treatment group had plasma HIV-1 RNA levels less than 400 copies/ml while receiving treatment.
It can be inferred that switching regimens affect stronger latently infected cells, as a result low viral
load is prolonged for a longer period than the period of the virologic failure treatment.

Simulation results expose that even with the complexity of the mutation tree presented in
Fig.3.14, time scales for virologic dynamics under treatment match better in the macrophages lin-
ear model (3.33). We presume that long-term behavior of macrophages is necessary to obtain the
appropriate responses.
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3.6 Concluding Remarks

In this chapter we have described different mathematical models for HIV infection in order to
explore two very important issues: understand HIV progression to AIDS and how to avoid or delay
the appearance of highly resistant genotypes using HAART treatments. These questions are still
points of discussion in clinical circles, but using mathematical models we offer new insights into HIV
infection. The major contributions in this chapter are as follows;

• We provided a review of the most relevant mathematical models in literature. Using different
mechanisms these models explain distinct parts in the infection and how drugs may help to
control it.

• Using the latent reservoir theory, we proposed a mathematical model which is able to represent
the three stages of HIV infection. Simulation results show how infected macrophages lead to
symptomatic infection provoking viral explosion. This model provides important insights on
how latent reservoirs play a very important role in the last stages of HIV infection.

• A dynamic study is realized for the model. Steady state analysis provides with three equi-
librium points: the first equilibrium represents the uninfected status which is unstable, this
reveals the difficulty to return to this status once a person is infected by HIV. Using nominal
parameters values, we found just one equilibrium in the positive orthant, which is stable and
represents the infected status.

• A robustness analysis demonstrates that the model retains its ability to describe the three
stages in HIV infection even for moderately large parameter variation. Incorporating cell
proliferation terms, dynamics in CD4+T cells and virus can match better clinical observations
and preserve the property of robustness in the model.

• Treatment terms are included in the model. Simulation results suggest the importance of
starting HAART treatment in early stages of the infection in order to avoid new cell infections,
especially for macrophages which will take a long time to clear.

• When the patient is under treatment, we suggest three different models to explore how the
switch on regimens should be provided. We compare two clinical treatments, the switched on
failure which is commonly used in clinical practice and SWATCH. Simulations exposed the
importance of proactive switching to decrease viral load maximally.

• The long-term behavior of macrophages or similar long lived reservoirs appears to be necessary
to obtain the appropriate time scales and treatment responses for HIV infection.
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Chapter 4

Optimal Control Strategies

In this chapter we provide a background on positive switched linear systems. We shall discuss the
optimal control problem applied to a certain class of positive switched linear systems. Using dynamic
programming, we propose different algorithms to numerically solve the discrete-time optimal control
problem. For the sake of simplicity, optimal strategies will be discussed just for the basic mutation
model. We conclude the chapter by testing via simulations the robustness of the optimal control.

4.1 Positive Switched Linear Systems - definitions

Dynamical systems that are described by an interaction between continuous and discrete dy-
namics are usually called hybrid systems [83]. Continuous-time systems with (isolated) discrete
switching events are referred as switched systems. A switched system may be obtained from the
hybrid system neglecting the details of the discrete behavior and instead considering all possible
switchings from a certain class. In this work, we are interested in those systems which belong to
the positive orthant called positive systems. These systems have the important property that any
nonnegative input and nonnegative initial state generates a nonnegative state trajectory and output
for all future times. Common examples of positive systems include, chemical processes (reactors,
heat exchangers, distillation columns, storage systems), stochastic models where states represent
probabilities, and many other models used in biology, economics and sociology [84].

We consider the following positive switched linear system on a finite time interval,

ΣA : ẋ(t) = Aσ(t)x(t), x(0) = x0, (4.1)

where Aσ(t) switches between some given finite collection of matrices A1,...,AN , t ≥ 0, x(t) ∈ Rn
+ is

the state variable vector, x0 ∈ R+
n , σ(t) is the switching signal. This is a piecewise constant function
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σ, which has a finite number of discontinuities, which we call the switching times - on every bounded
time interval and takes a constant value on every interval between two consecutive switching times.
We now introduce the mathematical definition of continuous time positive systems.

Theorem 4.1 The system (4.1) is said to be positive if and only if the matrices Ai are Metzler,
that is, their nondiagonal elements are nonnegative. Then, for every nonnegative initial state and
every nonnegative input its state and output are nonnegative.

Throughout this chapter the following notation is adopted:

i. for x ∈ Rn, x � 0 (x  0) means that xi > 0 (xi ≥ 0) for 1 ≤ i ≤ n

ii. for A ∈ Rn×n, A � 0 (A  0) means that aij > 0 (aij ≥ 0) for 1 ≤ i, j ≤ n

iii. for x, y ∈ Rn, x � y (x  y) means that x− y  0 (x− y  0)

A matrix is said to be Hurwitz if all its eigenvalues have negative real part. We write A′ for the
transpose of A, and eA for the exponential matrix of A. The symbol Sgn denotes the sign function,
that takes value 1 when its argument is positive, −1 when its argument is negative and 0 when its
argument is 0. A convex hull for a set of points X in a real vector space is the minimal convex set
containing X . Finally co(X1, X2, · · · , XN ) denotes a convex hull of the matrices Xi.

4.2 Optimal control for Positive Switched Systems

Beginning in the late 1950s and continuing today, the issues concerning dynamic optimization
have received a lot of attention within the framework of control theory [77]. Optimal control’s goal
is to determine the control signals that will cause a process to satisfy the physical constraints and
at the same time minimize (or maximize) some performance criterion.

The solution for the optimal control problem is mainly based in two techniques; the so-called
Hamilton-Jacobi theory supplies sufficient conditions for the global optimality together with its most
significant achievement, namely the solution of the Linear Quadratic (LQ) problem. The second
technique is called the Maximum Principle, which exploits a first order variational approach and
provides powerful necessary conditions suited to encompass a wide class of fairly complex problems.
A complete background in optimal control can be found in [77], [78], [79],[80], [81] and [82].

The problem of determining optimal switching trajectories in hybrid systems has been widely
investigated, both from the theoretical and from the computational points of view [85], [86], [87]
and [88]. For continuous-time switched systems, several works present necessary and/or sufficient
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conditions for a trajectory to be optimal using the minimum principle [89] and [90]. However, there
is no general solution for the problem.

In this work, we are concerned with a specific class of autonomous switched systems, where the
continuous control is absent and only the switching signal must be determined [88]. The switched
system may be embedded into a larger family of nonlinear systems. Sufficient conditions for opti-
mality on a finite horizon are developed using [80]. No constraints are imposed on the switching and
the performance index contains no penalty on the switching.

The cost functional to be minimized over all admissible switching sequences is given by

J(x0, x, σ) =
∫ tf

0

q′σ(τ)x(t)dt+ c′x(tf ) (4.2)

where x(t) is a solution of (4.1) with the switching signal σ(t). The vectors qi are assumed to
have nonnegative entries and c is assumed to have all positive entries. The optimal switching
signal, the corresponding trajectory and the optimal cost functional are denoted as σo(t, x0), xo(t)
and J(x0, x

o, σo) respectively. The Hamiltonian function relative to the system (4.1) and the cost
functional (4.2) is given by

H(x, σ, π) = q′σx(t) + π′Aσx(t) (4.3)

Theorem 4.2 Continuous-time Optimal Control for Positive Switched Systems

Let σo(t, x0) : [0, tf ] × Rn
+ → I = {1, . . . , N} be a switching signal relative to x0 and let xo(t) be

the corresponding trajectory. Let πo(t) denote a positive vector solution of the system of differential
equations

ẋo(t) = Aσo(t,x0)x
o(t) (4.4)

−π̇o(t) = A′
σo(t,x0)

πo(t) + qσo(t,x0) (4.5)

σo(t, x0) = argmin
i∈I

{πo′(t)Aix
o(t) + q′ix

o(t)} (4.6)

with the boundary conditions xo(0) = x0 and πo(tf ) = c. Then σo(t, x0) is an optimal switching
signal relative to x0 and the value of the optimal cost functional is

J(x0, x
o, σo) = π′o(0)x0 (4.7)

Proof The scalar function

v(x, t) = πo(t)′x(t) (4.8)

is a generalized solution of the HJE

0 = ∂v
∂t (x, t) +H

(
x(t), σo(t, x0), ∂v

∂x (x, t)′
)

(4.9)
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where

H(x, σ, π) = q′σx(t) + π′(t)Aσx(t) (4.10)

Notice that the triple (xo, πo, σo) satisfies the necessary conditions of the Pontryagin principle, since

H(xo, σo, πo) ≤ H(x, σ, π), σ = 1, 2

Moreover,

∂v

∂x
(x, t) = πo(t)′ (4.11)

∂v

∂t
(x, t) = π̇o(t)′x(t) (4.12)

so that, for almost all t ∈ [0, tf ]

π̇o(t)′xo(t) + q′σo(t,x0)
xo(t) + πo(t)′Aσo(t,x0)x

o(t) = 0 (4.13)

Moreover it satisfies the boundary condition

v(xo(tf ), tf ) = πo(tf )′xo(tf ) = c′xo(tf ) (4.14)

This completes the proof.

The HJE partial differential equation is reduced to a set of ordinary differential equations (4.5). No-
tice that these equations are inherently nonlinear. The state equations must be integrated forward
whereas the co-state equations must be integrated backward, both according to the coupling condi-
tion given by the switching rule. As a result, the problem is a two point boundary value problem,
and can not be solved using regular integration techniques. Next, we shall discuss how the system
(4.5) can be solved analytically under certain assumptions on the matrix Aσ.

4.3 Optimal control to Mitigate HIV Escape

The CD4+T cell count is a key factor in deciding whether to initiate antiretroviral therapy
and is the strongest predictor of subsequent disease progression [5]. However, viral load is the
most important indicator of response to antiretroviral therapy. Analysis of 18 trials with viral
load monitoring showed significant association between a decrease in plasma viremia and improved
clinical outcome [91]. Therefore we can infer that viral load and CD4+T cells matter. But mostly
during treatments and numerical simulations, viral load is low and CD4+T cell count is good (over
350 cells/mm3) until the final escape in viral load appears. Moreover, the final escape of the virus is
at some almost uncontrollable exponential rate and final viral load is a surrogate for time to escape.
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Consequently it is reasonable to think that if the total viral load is small enough during a finite time
of treatment, new cell infections would be less likely. Therefore there is a significant probability that
the total virus load becomes zero.

Notice that in a more accurate stochastic model of viral dynamics, xi(t) is the expected value of
the number of virus Vi. Hence, from Markov’s inequality, it can be shown that small E[x] guarantees
a high probability of viral extinction (P (

∑
i vi = 0) ≥ 1 − E[

∑
i vi] = 1 −∑i xi). It is therefore

logical to propose a cost
J := c′x(tf ) (4.15)

where c is the column vector with all ones, and tf is the final time for the treatment. This cost is
minimized under the action of the switching rule.

Remark 4.1 Another interesting interpretation of the cost relies on the theory of Markov jump
linear systems. Indeed, notice that the state, equation (3.30) can be written as follows:

ẋi(t) = ηi,σ(t)xi(t) + μ
∑
j �=i

λijxj(t) (4.16)

where ηi,σ(t) = ρi,σ(t) + 2μ − δ and λi,j = mi,j, i �= j, λi,i = −2. Notice that matrix: μΛ, where
Λ = {λi,j} is a stochastic matrix, that can be considered as the infinitesimal transition matrix of the
Markov jump linear system

ξ̇ = 0.5ηi,σ(t)ξ (4.17)

Moreover
∑n

i=1 xi(t) = E[ξ2(t)]. Minimizing
∑n

i=1 xi(t) is then equivalent to minimizing the vari-
ance of the stochastic process ξ(t). Notice that if limt→∞E[ξ2(t)] = 0 then the system (4.17) is
stable in the mean-square sense.

It was explained that there is no general consensus amongst clinicians on the optimal time to
change therapy to avoid virologic failure. The clinical trial in [9] suggested that proactive switching
and alternation of antiretroviral regimens could extend the overall long-term effectiveness of the
available therapies. Then, we define the optimal problem to mitigate viral escape as follows.

Problem 4.1 Given the 4 variant model (3.30), find for a fixed period of treatment tf the optimal
switching signal between two HAART regimens to minimize the total viral load, represented by the
performance criterion (4.15).

4.3.1 General Solution for a Symmetric Case

In this section, we shall solve analytically the Problem 4.1 for a specific case of mutation, that
is when there is a symmetry in replication rates as it was shown in Chapter 3 for Scenario 1. Then,
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for the system ΣA the matrix Aσ has the following form

Aσ =

⎡⎢⎢⎢⎢⎣
λ1 0 0 0
0 λ2σ 0 0
0 0 λ3σ 0
0 0 0 λ4

⎤⎥⎥⎥⎥⎦+ μ

⎡⎢⎢⎢⎢⎣
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤⎥⎥⎥⎥⎦

Using symmetric replications rates, we can assume that

Assumption 4.1
λ21 > 0, λ22 < 0, λ31 < 0, λ32 > 0

Assumption 4.2

λ21 − λ22 + λ31 − λ32 = 0

Using Assumption 4.1 and 4.2 note that

ΔA = A1 −A2 = (λ21 − λ22)

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎤⎥⎥⎥⎥⎦ = (λ21 − λ22)J̄

Since λ21 − λ22 > 0, we can define the decision function γ(t) = π(t)′J̄x(t) that takes the form

γ(t) = π2(t)[x2(t) − x3(t)] + x3(t)[π2(t) − π3(t)] (4.18)

Moreover, from the structure of A1 and A2 it is possible to conclude that

γ̇(t) = [π2(t) − π3(t)][x1(t) + x4(t)] − [x2(t) − x3(t)][π1(t) + π4(t)] (4.19)

The following lemma, which can be proven directly from (4.18) and Assumption 4.1 is useful to
characterize the optimal solution.
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Lemma 4.1 Under Assumption 4.1 the following conditions hold:

|Sgn[x2(t) − x3(t)] + Sgn[π2(t) − π3(t)]| = 2

=⇒ Sgn[γ(t)] = Sgn[x2(t) − x3(t)]

Sgn[x2(t) − x3(t)] + Sgn[π2(t) − π3(t)] = 0,

=⇒ Sgn[γ̇(t)] = Sgn[π2(t) − π3(t)]

Sgn[ẋ2(t) − ẋ3(t)] = Sgn[1.5 − σ(t)]

Sgn[π̇2(t) − π̇3(t)] = Sgn[σ(t) − 1.5]

Remark 4.2 Theorem 4.2 does not consider the possible existence of sliding modes, i.e. infinite
frequency switching of σ(t). However, the optimal state and costate variables xo, πo can lie on a
sliding surface, and this corresponds to a chattering switching law. This leads to the notion of
extended (Filippov) trajectories satisfying a differential inclusion. To be precise, the optimal control
is characterized by:

ẋo(t) ∈ co{A1x
o(t), A2x

o(t), · · · , ANx
o(t)} (4.20)

−π̇o(t) ∈ co{A′
1π

o(t) + q1, · · · , A′
Nπ

o(t) + qN} (4.21)

π′o(t)Aix
o(t) = constant, ∀i (4.22)

In order to characterize the sliding modes, we look for a convex combination of the matrices.

Aα = αA1 + (1 − α)A2

with α ∈ [0, 1].

Lemma 4.2 Under Assumption 4.2 the Filippov solution corresponding to

α =
λ32 − λ22

λ32 − λ22 + λ21 − λ31

satisfy
ẋ(t) = (αA1 + (1 − α)A2)x(t),

π̇(t) = −(αA1 + (1 − α)A2)π(t)

then the sliding surface is
x2(t) = x3(t), π2(t) = π3(t)

such that
γ(t) ≡ 0
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Proof It is enough to show that the variables x2(t) − x3(t) and π2(t) − π3(t) obey autonomous
differential equations. Indeed,

ẋ2(t) − ẋ3(t) = α(λ21 − λ31)x2(t) + (1 − α)(λ22 − λ32)x3(t)

where

α(λ21 − λ31) = (1 − α)(λ22 − λ32)

so that
ẋ2(t) − ẋ3(t) = r(x2(t) − x3(t))

Analogously
π̇2(t) − π̇3(t) = −r(π2(t) − π3(t))

where
r =

λ21λ32 − λ22λ31

λ32 − λ22 + λ21 − λ31

Now, let

k1 = argmin{x2(0), x3(0)}
k2 = argmin{c2, c3}

and

T �
1 = min

t≥0
: [0 1 − 1 0]eAk1 tx(0) = 0,

T �
2 = min

t≤tf

: [0 1 − 1 0]e−Ak2(t−tf )c = 0.

Notice that, thanks to the definition of k1, k2 and the monotonicity conditions of x2(t) − x3(t),
π2(t) − π3(t), the time instants T �

1 and T �
2 are well defined and unique. Clearly, by definition

x2(T �
1 ) = x3(T �

1 ) and π(T �
2 ) = π3(T �

2 ). We are now in the position to provide the main result of this
section.

Theorem 4.3 Long Horizon Case

Let Assumptions 4.1, 4.2 be met with and assume that T �
1 ≤ T �

2 . Then, the optimal control associated
with the initial state x(0) and cost c′x(tf ) is given by σ(t) = k1, t ∈ [0, T �

1 ] and σ(t) = k2, t ∈
[T �

2 , tf ]. For t ∈ [T �
1 , T

�
2 ], the optimal control is given by the Filippov trajectory along the plane

x2 = x3, with dynamical matrix A = αA1 + (1 − α)A2.

Proof We shall verify that the control law satisfies the conditions given by the Hamilton-Jacobi
equations in the intervals [0, T �

1 ] and [T �
2 , tf ]. Moreover, in the interval [T �

1 , T
�
2 ] the optimal control
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state and costate variables slide along the trajectories x2(t) = x3(t) and π2(t) = π3(t). To this end,
let σ(t) = k1 for t ∈ [0, T �

1 ], σ(t) = k2 for t ∈ [T �
2 , tf ] and

π(t) = eAk1(T �
1 −t)π(T �

1 ), t ∈ [0, T �
1 ]

π(t) = eA(T �
2 −t)π(T �

2 ), t ∈ [T �
1 , T

�
2 ]

π(t) = eAk2(tf−t)c, t ∈ [T �
2 , tf ]

x(t) = eAk1 tx(0), t ∈ [0, T �
1 ]

x(t) = eA(t−T �
1 )x(T �

1 ), t ∈ [T �
1 , T

�
2 ]

x(t) = eAk2(t−T �
2 )x(T �

2 ), t ∈ [T �
2 , tf ]

First of all notice that, by definition, x2(T �
1 ) = x3(T �

1 ) and π2(T �
2 ) = π3(T �

2 ). Thanks to Lemma
4.2, in the interval [T �

1 , T
�
2 ] we have x2(t) = x3(t) and π2(t) = π3(t). In the intervals [0, T �

1 ] and
[T �

2 , tf ], consider the decision function and its derivative, given by (4.18), (4.19), respectively. Now,
we have γ(T �

1 ) = γ(T �
2 ) = 0 and, for t ∈ [0, T �

1 ], t ∈ [T �
2 , tf ]:

ẋ2(t) − ẋ3(t) = λ2kix2(t) − λ3kix3(t) =

{
> 0 ki = 1
< 0 ki = 2

π̇2(t) − π̇3(t) = −λ2kiπ2(t) + λ3kiπ3(t) =

{
< 0 ki = 1
> 0 ki = 2

This means that, for t ∈ [0, T �
1 ], t ∈ [T �

2 , tf ]:

x2(t) − x3(t) =

{
< 0 ki = 1
> 0 ki = 2

π2(t) − π3(t) =

{
> 0 ki = 1
< 0 ki = 2

γ̇(t) =

{
> 0 ki = 1
< 0 ki = 2

Since γ(T �
i ) = 0 it follows

γ(0) = π(0)′J̄x(0) =

{
< 0 k1 = 1
> 0 k1 = 2

γ(tf ) = π(tf )′J̄x(tf ) =

{
< 0 k2 = 1
> 0 k2 = 2

which confirms σ(t) = argmini π(t)′Aix(t) = k1, for t ∈ [0, T �
1 ] and σ(t) = argmini π(t)′Aix(t) = k2,

for t ∈ [T �
2 , tf ].
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Even though in practice the horizon length tf may often be large enough to guarantee that T �
1 ≤ T �

2 ,
for completeness, we shall consider the small horizon case.

Theorem 4.4 Small Horizon Case

Let Assumption (4.1) be met and 0 < T �
2 ≤ T �

1 < tf . Then, the optimal control associated with the
initial state x(0) and cost c′x(tf ) is given as follows:

If k1 = k2, then
σ(t) = k1, t ∈ [0, tf ]

otherwise, if k1 �= k2, then

σ(t) =

{
k1 : t ∈ [0, T �

3 ]
k2 : t ∈ [T �

3 , tf ]

}
where T �

3 ∈ [T �
2 , T

�
1 ] is such that for t = T �

3

x(T �
2 )′eAk1(t−T �

2 )J̄e−Ak2 (t−T �
1 )π(T �

1 ) = 0

Proof Let first consider the case k1 = k2. Then, we will verify that the constant control law
σ(t) = k1 satisfies the sufficient condition given by the Hamilton-Jacobi equations, i.e.

σ(t) = argmini π(t)′Aix(t),

π̇(t) = −Aσ(t)π(t), π(tf ) = c

To this end, consider again the decision function γ(t) and its derivative, given by (4.18) and (4.19),
respectively. Consider

π(t) = eAk1 (tf−t)c, t ∈ [0, tf ]

x(t) = eAk1 tx(0), t ∈ [0, tf ]

Moreover let k̄1 = 1 if k1 = 2 and viceversa. Since T �
2 ≤ T �

1 , we conclude that

Sgn[x2(t) − x3(t)] = Sgn[π2(t) − π3(t)] = k1 − k̄1,

in the interval (T �
2 , T

�
1 ). This implies that Sgn[γ(t)] = k1 − k̄1 in the same interval. Moreover,

Sgn[γ̇(t)] = Sgn[π2(t) − π3(t)]

in t ∈ [0, T �
2 ) and t ∈ (T �

1 , tf ]. This means that the sign of γ(t) is constant in [0, tf ] and equals
k1 − k̄1. The proof of the first part is concluded.
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Consider now the case k1 �= k2. By assumption,

Sgn[x2(t) − x3(t)] = k1 − k̄1, t ∈ [0, T �
2 )

and
Sgn[π2(t) − π3(t)] = k2 − k̄2, t ∈ (T �

1 , tf ]

Notice that, in any possible switching point in the interval [T �
2 , T

�
1 ], the derivatives of x2(t) − x3(t)

and π2(t) − π3(t) change sign at t = T �
3 , so that Sgn[γ̇(t)] is constant in [0, tf ], and consequently,

Sgn[x2(t)−x3(t)] = k1− k̄1, Sgn[π2(t)−π3(t)] = k2− k̄2 in [0, tf ]. We now have to prove that indeed
there exists a T �

3 . To this end, notice that

Sgn[γ(T �
2 )] = k1 − k̄1, Sgn[γ(T �

1 )] = k2 − k̄2

This, together with Sgn[γ̇(t)] = Sgn[x2(t) − x3(t)] implies that there exists T �
3 ∈ (T �

2 , T
�
1 ) for which

γ(T �
3 ) = 0. This value is the only point t ∈ [T �

2 , T
�
1 ] satisfying x(T �

2 )′eAk1 (t−T �
2 )J̄e−Ak2(t−T �

1 )π(T �
1 ) =

0.

To illustrate these last results, we consider Scenario 1 portrayed in Table 3.2, the initial condition
x0 = [103, 102, 0, 10−5] and the cost function weighting as c = [1, 1, 1, 1]′ (that means we want to
minimize the total viral load equally). Firstly, we need to compute the initial time T �

1 during which
the system will not switch. For this example T �

1 = 24.64 days. Then the control will be on the
sliding surface x2 = x3 for the remaining time as can be observed in Fig.4.1. From the clinical point
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Fig. 4.1: Optimal switching rule

of view, this strategy is unrealistic because of the high frequency switching. Nonetheless, we may
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speculate that when there are two intermediate resistants genotypes as presented in the Scenario 1,
it would be recommended to switch treatment as soon as clinicians consider the patient’s health is
not under any risk.

4.4 General Permutation Case

In last section we explored a general solution for a four genotype mutation tree, with certain
symmetry in the proliferation rates under switching, using Pontryagin principle we obtained neces-
sary conditions for optimality. In this section we want to establish which conditions are necessary for
a more complicated structure model to satisfy optimality conditions. For example, we might start

WTG G3

Th
er

ap
y 

1

Therapy 2

HRG

G2

G4

G5

Fig. 4.2: Example 6 genotype symmetric case

introducing two intermediate genotypes to the 4 genotype mutation tree presented before. This new
mutation arrangement, as can be seen in Fig.4.2, has the wild type genotype that need to mutate
three times in order to be resistant to therapy. The mathematical model is the same as (3.30), then
for this problem the matrix Aσ has the form

Aσ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 0 0 0
0 λ2σ 0 0 0 0
0 0 λ3σ 0 0 0
0 0 0 λ4σ 0 0
0 0 0 0 λ5σ 0
0 0 0 0 0 λ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
0 0 0 1 0 1
0 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Extending the number of genotypes, the next assumptions need to be satisfied.
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Assumption 4.3 The matrix A1 may be linked to A2 by permuting some elements in it, this is
expressed by

A2 = PA1P (4.23)

where P is a symmetric matrix.

Assumption 4.4 The permutation matrix P can be written as a function of a matrix v in the form

P = I − vv′ (4.24)

Assumption 4.5 The matrix v has the property

v′v = 2I (4.25)

In order to satisfy optimality conditions for the 4 genotype symmetric case, it was necessary to
consider the existence of sliding modes. To follow this objective, a linear combination of matrices
was established;

Aα = αA1 + (1 − α)A2

with α = 1
2 . For a more general case, we shall need to find a left invariant set subspace to Aα, hence

we need to introduce the following lemma.

Lemma 4.3 Let Assumptions 4.3-4.5 be satisfied, then v′ is a basis for a left invariant subspace of
A 1

2
; that is v′A 1

2
= 1

2 (v′A1v)v′

Proof Using (4.23) we may rewrite A 1
2

as

A 1
2

=
1
2
(A1 + PA1P )

Using (4.24) in A 1
2

we obtain

A 1
2

=
1
2
(2A1 − vv′A1 −A1vv

′ + vv′A1vv
′)

then
v′A 1

2
=

1
2
(2v′A1 − v′vv′A1 − v′A1vv

′ + v′vv′A1vv
′)

therefore
v′A 1

2
=

1
2
(v′A1v)v′
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The last lemma is applied to any mutation tree model which satisfies Assumptions 4.3-4.5. For
the proposed example in Fig.4.2 the vector v has the following form;

v′ =

[
0 1 0 −1 0 0
0 0 1 0 −1 0

]
(4.26)

Theorem 4.5 Let Assumption 4.3 be met and assume that initial conditions are such that v′x(t1) =
0 and v′π(t1) = 0. Then the optimal control is given by the Filippov trajectory along the plane
v′x(t) = 0 with dynamical matrix Aα = 1

2 (A1 +A2).

Proof If we consider the system (4.1) as an embedded system [85], the optimal control law can be
rewritten as

γ(t) = π(t)′ΔAx(t)

In order to prove that the optimal trajectory is along the plane v′x(t) = 0, it is necessary to show
that the plane is invariant. Accordingly, we have

ΔA = A1 −A2 = A1 − PA1P

Using Lemma 4.3 we may achieve the expression

ΔA = v(v′A1 − 1
2
v′A1vv

′) + (A1v − 1
2
vv′A1v)v′

we can rewrite as
ΔA := vw′ + wv′

where
w = A1v − 1

2
vv′A1v

Therefore, if we start on the sliding surface, this means with x(t1) such that v′x(t1) = 0 and π(t1)
such that v′π(t1) = 0, then the next conditions are satisfied;

(i) v′ẋ(t1) = v′Aαx(t1) = 1
2 (v′A1v)v′x(t1) = 0

(ii) v′π̇(t1) = v′Aαx(t1) = 1
2 (v′A1v)v′π(t1) = 0

(iii) γ(t1) = π(t1)′ΔAx(t) = π(t)′(vw′ + wv′)x(t1) = 0
(iv) Similarly, γ̇(t1) = 0
Thus, the trajectories will remain on the sliding surface for all future time.

Under the same assumptions the Theorem 4.5 may be applied to a broad number of mutation
trees, for instance as is portrayed in Fig.4.3. Therefore, independently of the number of intermediate
genotypes, if Assumptions 4.3, 4.4 and 4.5 are satisfied, a fast proactive switching treatment provides
the best solution to mitigate the highly resistant genotype.
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Fig. 4.3: General permutation case

4.5 Restatement as an optimization problem

It was previously exposed that the optimal control solution is difficult even for simple cases. In
some situations, the optimal control problem may be restated as a nonlinear optimization problem,
which could be considered as an easier choice than the solution of the HJE. For this purpose, instead
of finding when the system will switch, it may be considered that the system will switch, but now we
shall find the optimal length of the switches. Using the system ΣA, we consider a constant number
of switches for the period tf . We know the state at every moment using the exponential matrix and
obtain

x(τ1) = eA1Δτ1x(0) (4.27)

We can express the problem in time tf as

x(tf ) =
Nf∏
i=1

eAjΔτix(0) (4.28)

where Nf is the number of switches on the interval [t0, tf ], and j = 1 when i is odd, otherwise is 2.
In addition, the next restriction must be satisfied.

tf =
Nf∑
i

Δτi (4.29)

Now, if we take the cost function (4.15), this problem could be rewritten in a form that the cost
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function depends just of Δτi.

J(tf ) = c′
Nf∏
i=1

eAjΔτix(0) (4.30)

Lemma 4.4 Let μ = 0 for the system (3.30), then the optimal switching signal is described by a
single switch with duration

T2 =
1

2(λ21 − λ22)
ln
x3(tf )σ=1

x2(tf )σ=1
(4.31)

Proof Assuming the mutation rate μ is 0 then, the matricesAi are diagonal. Since diagonal matrices
commute A1A2 = A2A1, the equation (4.30) is reduced to;

J(tf ) = c′eA1
∑Nf

i=1 Δτi+A2
∑Nf

j=2 Δτjx(0) (4.32)

where i ∈ even numbers and j ∈ odd numbers. If we use the topology of the system ΔA = A1 −A2,
then, we rearrange (4.32) as

J(tf ) = c′eA1(
∑Nf

i=1 Δτi+
∑Nf

j=2 Δτj)+ΔA
∑Nf

j=1 Δτjx(0) = c′eΔA
∑Nf

j=2 Δτjx(tf )σ=1

where x(tf )(σ=1) = [x1(tf )σ=1, x2(tf )σ=1, x3(tf )σ=1, x4(tf )σ=1]′ is the state vector at time tf under
the only effect of σ = 1. As a result of the commutation property, the order of the switches is not
important for this case, what is really important is how long σ = 2 will be used independently of
the order. For this purpose, we consider in (4.33) that T2 =

∑Nf

j=2 Δτj as a variable with the only
restriction that T2 ≥ 0. Computing the first derivative with respect to T2;

dJ(tf )
dT2

= c′ΔAeΔAT2x1(tf ) (4.33)

To find the minimum, we solve for T2

T2 =
1

2(λ21 − λ22)
ln
x3(tf )σ=1

x2(tf )σ=1

In order to minimize the cost function J(tf ) in the system (3.30), we need to use σ = 2 for a period
T2.

Remark 4.3 For the case when μ �= 0, we have to solve the problem numerically using nonlinear
optimization. However, because the problem is non-convex, numerical solution may be very complex.
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4.6 Dynamic Programming for Positive Switched Systems

The model for the treatment of viral mutation given in (3.30) is described in continuous time.
In practice, measurements can only reasonably be made infrequently. For simplicity, we consider a
regular treatment interval τ , during which the treatment is fixed. If we use k ∈ N to denote the
number of intervals since t = 0, then

x(k + 1) = Aσ(k)x(k) (4.34)

defined for all k ∈ N where x ∈ Rn is the state, σ(k) is the switching sequence, and x(0) = x0 is
the initial condition. For (4.34) to be a positive system for any switching sequence, Ai, i = 1, ..., N
must be nonnegative matrices, that is, its entries are ai

lj ≥ 0, ∀(l, j), l �= j, i = 1, 2, ..., N . For each
k ∈ N,

σ(k) ∈ {1, 2, ..., N} (4.35)

Consider the following discrete-time cost function to be minimized over all admissible switching:

J = c′x(tf ) +
tf−1∑
k=0

q′σ(k)x(k) (4.36)

where x(k) is a solution of (4.34) with the switching signal σ(k). The vectors c and qi, i = 1, 2, · · · , N ,
are assumed to be positive.

Theorem 4.6 Discrete-time Optimal Control for Positive Switched Systems

Let σo(k, x0) : [0, tf ] × Rn
+ → I = {1, . . . , N} be an admissible switching signal relative to x0 and

xo(k) be the corresponding trajectory. Let πo(k) denote a positive vector solution of the system of
difference equations

xo(k + 1) = Aσo(k)x
o(k) , x(0) = x0

πo(k) = A′
σo(k)π

o(k + 1) + qσo(k) , π(tf ) = c (4.37)

σo(k) = argmin
s

{πo(k + 1)′Asx
o(k) + qsx

o(k)}

with the boundary conditions xo(0) = x0 and πo(tf ) = c. Then σo(k, x0) is an optimal switching
signal relative to x0.

Proof The optimal switching signal, the corresponding trajectory and the optimal cost functional
is denoted as σo(k), xo(k) and J(x0, x

0, σ0) respectively. Letting u = σ(k), q(k, x, u) = qσ(k), and
using the Hamilton-Jacobi-Bellman equation for the discrete case, we have;

V̄ (x, k) = min
u∈U

{q(k, x, u) + V̄ (x(k + 1), k + 1)} (4.38)
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where, denoting the costate vector by π(k), the general solution for this system is

V̄ (x(k), k) = π(k)′x(k) (4.39)

Using equations (4.34), (4.38), (4.36) and (4.39), we obtain the following system

xo(k + 1) = Aσo(k)x
o(k) , x(0) = x0

πo(k) = A′
σo(k)π

o(k + 1) + qσo(k) , π(tf ) = c (4.40)

σo(k) = argmin
s

{πo(k + 1)′Asx
o(k) + qsx

o(k)}

Notice that the discrete-time version has the same problem as its continuous version. The state
equations must be iterated forward whereas the co-state equation must be iterated backward, both
according to the coupling condition given by the switching rule. In addition, σ depends on π(k+ 1)
which makes the solution more difficult. As a result, the problem is a two point boundary value
problem, and can not be solved using regular techniques. For this case, we shall use dynamic
programming techniques to solve numerically [80]. The discrete-time version results in a recursive
equation, easily programmed for optimization. To this end, given the initial condition x(0) the
optimal control problem turns out to be

min
itf

,itf −1,...,i1
c′ Aitf

Aitf −1 . . . Ai1x(0)

Let us recursively define the sequence of matrices

Ω0 = c

Ω1 = [A′
1Ω0 A

′
2Ω0 . . . A′

NΩ0] = [A′
1c A

′
2c . . . A

′
Nc]

:

Ωk+1 = [A′
1Ωk A

′
2Ωk . . . A′

NΩk]

Then we have that V̄ (x, 0) = mini Ω′
tf ,ix, where Ωtf ,i is the ith column of Ωtf

and, in general

V̄ (x, k) = min
i

Ω′
tf−k,ix(k) (4.41)

At each step of the evolution the feedback strategy can be computed as

u(x(k)) = argmin
i

Ω′
tf−k,ix(k)

namely selecting the smallest component of the vector Ω′
tf−kx(k).
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The implementation of the strategy requires storing the columns of Ω′
T−kx(k). These number

columns would be 1+N+N2+N3+· · ·+N tf . This exponential growth could be too computationally
demanding. Bellman called this difficulty as “curse of dimensionality”, for high-dimensional systems
the number of high speed storage locations become prohibitive. In general, many of the columns of
the matrices Ωk may be redundant and can be removed. This can be done by applying established
dynamic programming methods as follows, see [92] for details.

4.6.1 Algorithm 1: Reverse Time Solution

Given Ωk,i solve the Linear Programming (LP) problem

μk,i = min
x: Ω′

k,̄i
x ≥1̄

Ω′
k,ix (4.42)

where 1̄ = [1 1 . . . 1]′ and Ωk,̄i the matrix obtained from Ωk by deleting the i− th column. Then
if μk,i ≥ 1 the column Ωk,i is redundant (and it should be eliminated from Ωk). This means that
for each Ωk we can generate a “cleaned” version Ω̂k of Ωk in which all the redundant columns are
removed. We point out that this elimination can be done while constructing the matrices Ωk. Indeed
any redundant column of Ωk necessarily produces only redundant columns in Ωk−1. Then the pro-
cedure for the generation of a reduced representation Ω(1)

k is achieved by performing the procedure
described above as follows

Algorithm

i. For a finite step number tf , suppose we know the initial condition for the state x0 and the
final costate condition π(tf ) = c

ii. Define Ω(1)
tf

= c and set k = tf

iii. Compute the matrix

Ω̂k = [A′
1Ω

(1)
k−1 A

′
2Ω

(1)
k−1 . . . A′

NΩ(1)
k−1]

iv. For each column i of Ω̂k

i) Solve the LP (4.42) with Ωk set to Ω̂k

ii) If μk,i ≥ 1 then delete column i from Ω̂k

v. After examining all the columns, we have a reduced Ω̂k, set Ω(1)
k = Ω̂k, set k = k − 1.

vi. If k ≥ 0 return to (iii), otherwise continue
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vii. The optimal sequence will be given by,

σ(k) = argmini Ω′(1)
k,ix0

�

Therefore, although the exact solution in general is of exponential complexity, it may be computa-
tionally tractable for problems of reasonable dimension in terms of horizon and number of matrices.
One way to further reduce the computational burden is to accompany the above algorithm (backward
iteration) with its dual version (forward iteration).

Remark 4.4 A dual version of the above algorithm, may be constructed by taking the forward
iterations

Θ(1)
0 = x(0)

Θ̂(1)
k+1 = [A1Θ

(1)
k A2Θ

(1)
k . . . ANΘ(1)

k ]

Then we have that the optimal feedback strategy can be computed as

σ(k) = argmin
i

Θ′
N−k,ic

so that one can solve the LP problem

νk,i = min
π: Θ′

k,̄i
π ≥1̄

Θ′
k,iπ

where Θk,̄i is the matrix obtained from Θk by deleting the i − th column. In this case, if νk,i ≥ 1,
then column i of Θk is redundant and may be removed.

Remark 4.5 For a given initial state x0 and final cost vector c, we can combine both the reverse
and forward time solutions to, a midpoint (e.g. tf/2) and finding mini,j Ω′(1)

tf /2,iΘ
(1)
tf /2,j.

4.6.2 Algorithm 2: Box Constraint Algorithm

The Algorithm 1 removes columns that are redundant for any x in Rn
+. This can be improved

if we derive tighter bounds on x(k) which apply independent of the switching sequence. If ALB �
Ai � AUB for all i, where bounds can be chosen as ALB = minAi and AUB = maxAi, then it must
be true that

Ak
LBx0 ≤ x(k) ≤ Ak

UBx0 (4.43)
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We can therefore replace (4.42) with the test:

μk,i = min
x,α: α≥0, Ωk,̄i x≥α1̄, βk

Ω′
k,ix− α (4.44)

where βk represents the inequality (4.43). If μk,i ≥ 0 then Ωk,i is redundant.

4.6.3 Algorithm 3: Joint Forward/Backward Box Constraint Algorithm

Using a box constraint the search space for Algorithm 1 is reduced. We can apply Remark 4.5
in order to further improve the last algorithm. Instead of solving tf/2 steps forwards and then tf/2
steps backwards and then combining sequences to get the optimal, we can solve backwards-forwards
step by step in order to make a tighter box constraint as follows:

Algorithm

i. Initialize Ω(3)
tf

= c and Θ(3)
0 = x0, s = 1

one step backward

ii. Find

Ω̂(3)
tf−s = [A′

1Ω
(3)
tf−s+1 A

′
2Ω

(3)
tf−s+1 . . . A′

NΩ(3)
tf−s+1]

iii. For every � solve the LP given in (4.44) using the next tighter box constrained:

A
tf−2s+1
LB xLB,s−1 ≤ xtf−2s+1 ≤ A

tf−2s+1
UB xUB,s−1

where xLB,s−1 = min� Θs−1,� and xUB,s−1 = max� Θs−1,�

iv. Delete column Ω̂tf−s,� if μtf−s,� ≥ α

v. After examining all the columns, set Ω(3)
tf−s = Ω̂(3)

tf−s

one step forward

vi. Find

Θ̂(3)
s = [A1Θ

(3)
s−1 A2Θ

(3)
s−1 . . . ANΘ(3)

s−1]

vii. For every �, remove the column Θ′
s,� and solve the LP given in (4.44) using the tighter box

constrained:

A′tf−2s
LB πLB,tf−s ≤ πs ≤ A′tf−2s

UB πUB,tf−s

where πLB,tf−s = min� Ωtf−s,� and πUB,tf−s = max� Ωtf−s,�.
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viii. Delete column Θs,� if μs,� ≥ α

ix. After examining all the columns, set Θ(3)
s = Θ̂(3)

s

x. Increment s. If s ≤ tf/2 return to (ii). Otherwise continue

xi. Find the optimal sequence from mini,j Ω′(3)
tf /2,iΘ

(3)
tf /2,j

�

4.6.4 Numerical results for discrete-time optimal control

Using the parameter values presented in Table 3.2, we compute the optimal switching rule in
order to minimize the total viral load concentration at the end of the treatment for the three different
scenarios.

Table 4.1: Total viral load at the end of treatment using model (3.30)

Scenario Monotherapy Switched on failure SWATCH Optimal
1 1.3692× 104 344.25 45.35 45.35
2 3.7116× 104 919.29 60.59 57.55
3 3.8725× 104 1.2437 × 104 1045.27 55.56

Notice in Table 4.1, that there is a significant difference in clinical recommendation treatments
and the proactive switching. The SWATCH strategy shows very low levels in viral load compare with
the usual recommendation switch on failure, this is because we constantly affect the two intermediate
genotypes. However, the SWATCH treatment could fail when the regimens do not affect the highly
resistant genotype with the same intensity. Then, it would be important to use the treatment that
impacts the most the highly resistant genotype for a longer period of time. Using an optimal control
approach, the viral load is decreased to undetectable levels (≤ 50 copies/ml) for the three scenarios,
and it can be seen that periodic switching might not be optimal as shown in Fig.4.4.

Computational Resources

Simulation results exhibit the importance of proactive switching at the right moment in order to
maintain viral load under detectable values. Nonetheless, computational time is a serious drawback
to obtain optimal switching trajectories. One possible numerical solution is a “brute force” approach
which analyzes all possible combinations for therapy 1 and 2 with decision time τ = td for a time

period tf = 336 days, that is, we evaluate 2
tf
td = 212 possible treatment combinations. To examine

long period simulations, it is necessary to find faster algorithms. In Table 4.2 we test different
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Fig. 4.4: Optimal switching treatment for model (3.30)

algorithms for 12 decisions; it can be seen that “brute force” is extremely slow for this period
of simulation, this is because we analyze 4096 columns. Using algorithm 1 we may get a faster
simulation, removing redundant columns. At the end of the optimization 11 columns remain with
a reduction of 99.7% columns with respect to “brute force”, and computational time is reduced
dramatically. Using the box constrained algorithm this problem can be solved in less time.

Table 4.2: Computational resources

Method Brute Force Algorithm 1 Box Constraint
Time (sec) 555 4.44 3.88
Columns 4096 11 1

Starting from initial and end points, Remark 4.5 suggests a reduction of computational time
compared to the previous algorithms, that is for every step in both directions we keep less columns
than in a single direction algorithm. Table 4.3 shows that the box constraint algorithm using Remark
4.5 has a lower computation time than algorithm 1. Moreover, we acquire further improvements
using algorithm 3; the process of removing columns is more effective than other algorithms due to
the tighter box constraint.

These numerical examples reveal that we could compute long treatment sequences in short periods
of time. For instance, using algorithm 3 the optimal trajectory for a treatment with 60 decisions is
solved in 5 minutes, where 9 cleaned columns are kept at the end of examination. Using “brute force”
we would evaluate 260, something that is not possible using a standard computer. However, there
is no guarantee that the proposed algorithms avoid exponential explosion in CPU time. Moreover,
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Table 4.3: Computational resources using Remark 4.5

Method Algorithm 1 Box Constraint Algorithm 3
Time (sec) 3.3 2.3 1.74

Forward Columns 7 3 1
Backward Columns 10 6 2

for a small number of decisions “brute force” algorithm can overperform computational times of the
proposed algorithms.

In the proposed algorithms, we solve a LP problem to delete redundant columns, for implemen-
tation we use the MATLAB toolbox “linprog”. For long simulation periods “linprog” tool alerted us
to some numerical issues. These warnings can arise to different reasons, two of which are explained
next.

Firstly, the unstable nature of the high resistant genotype in HIV problem cause an explosion
in some states of the system. That is, if we consider long period simulations, the columns of the
matrix Ω start to grow exponentially, for example 1028. Then, when the constraint (4.42) is checked,
“linprog” algorithm is searching for very small values i.e. 10−24. The default tolerance for “linprog”
is 10−6. Therefore, this can cause numerical difficulties in the algorithm. This problem might be
solved normalizing the matrix Ω in every step. However, this solution not always works, because
one of the states is always stable while other is always unstable, then in one column different time
scales can be presented. Therefore, matrix normalization might not be helpful for some problems.

x 2
 

L3

L2 

Feasible 
Region 

x1 

L3

Feasible
Region

L1 

x

Fig. 4.5: Feasible region in the shape of a simple polygon.

Secondly, linear programming problems are solved by constructing a feasible solution at a vertex
of the polytope and then walking along a path on the edges of the polytope to vertices with non-
decreasing values of the objective function until an optimum is reached. However, constraints can
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be overly stringent and cause difficulties to the solution. If we consider an optimization problem
between two variables, it is observed in Fig.4.5 the feasible region of the problem. But we may
notice that the intersection between L1 and L3 is not obvious. These problems are presented in
the proposed algorithms, where for some examples the intersection between lines was difficult to
observe because time scales were very small (i.e., 10−12). Moreover, “linprog” could have difficulties
when constraints are tight, for instance if lines L1 and L2 are almost parallel. An easy way to clean
columns is examining element by element of the columns, if all elements of one column are bigger
than other column, then it can be deleted. This might help in some examples to reduced the number
of warnings and can be combined with the proposed algorithms to make them faster.

Control Robustness

In order to check the robustness of the suggested treatments, we perform several simulations.
Considering the symmetric case, we propose perturbations in the proliferation rates using a Gaussian
distribution. Then we compute the optimal switching considering we would have the real model and
measurements.

Table 4.4: Optimal control robustness

Case Optimal Feedback with estimated π Non exact model
1 45.35 45.35 45.35
2 7101.28 7116.53 7430.21
3 1.22 2.13 3.43
4 3514.61 3514.61 12704.38
5 533.85 840.75 2555.53
6 5.39×10−5 6.085×10−4 2.30e×10−3

7 0.24 0.29 0.58
8 1.24×107 1.24×107 4.9×109

9 52.31 84.66 283.92
10 0.11 0.13 0.64
11 0.12 0.19 2.68
12 1.84 2.30 217.40
13 4.78 8.81 16.21
14 0.51 1.79 16.22
15 0.41 0.64 37.66
16 2075.24 2075.24 9315.32
17 0.0043 0.0049 0.0061
18 6.63 19.73 2605.47
19 191.40 208.74 5537.86
20 0.0022 0.0052 0.0049

Table 4.4 presents 20 different perturbed systems, the second column displays the optimal control
applied to the perturbed system, which around 65% of the cases mantain the viral load under
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undetectable values. There are two cases with very high viral level, this is because the perturbations
reduce the treatment efficiency for the highly resistant genotype. In the third column, we used a
feedback controller using as a estimation of π the computed one for the case 1. It can be unveiled
that almost all cases, the performance is very similar or equal to the optimal performance, then this
reveals us the insight that optimal trajectories are robust to these perturbations. For the last test, we
consider as the best strategy the periodic switching (computing from case 1), which is changing the
regimen once a month. We can notice that in 70% of the cases, the periodic switching performance
is not too far from the optimal. Nonetheless, it has to be remarked that there are some cases where
the viral load is very high, that is when treatments do not affect the highly resistant mutant with
the same intensity, then it could be suggested to avoid periodic treatment in those situations.
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4.7 Concluding Remarks

In this chapter we have considered the optimal control problem of positive switched linear sys-
tems. We have focused specifically on the fixed-horizon problem. The major conclusions made in
the chapter are listed below.

• Using a generalized solution of the HJE, for continuous and discrete-time we have obtained
the optimal solution. We pointed out that the solution results in a two point boundary value
problem, and it can not be solved using regular integration techniques.

• Under certain symmetry assumptions in the proliferation rate and the mutation graph, we
presented the main result of this chapter, which reveals that the optimal control on this class
of positive switched systems is given by the Filippov trajectory along the plane x2 = x3.

• Necessary conditions for optimality in a more general permutation problem were introduced,
the solution also remains in a sliding surface. Such behavior suggests that in the absence of
other practical constraints switching rapidly between therapies may be desirable.

• The numerical solution of the optimal control problem could result in an exponential growth
in computational demands. We derived different algorithms to try to avoid the “curse of
dimensionality”. These strategies were based on a LP problem in order to remove redundant
columns. Using forward and backward approaches, these algorithms relieve computational
time issues.

• A robustness study demonstrated that given an optimal control history, small perturbations in
the control should have vanishing effect on the cost. More precisely, necessary conditions usu-
ally indicate that the cost function’s linear sensitivity to control variation about the optimum
is zero.

• For the clinical point of view, we concluded that it is very important to change therapy in
the right moment in order to impact the appearance of high resistant genotypes. Switched
on failure is a conservative treatment, which could be improved using a proactive switching
as was previously propose in the SWATCH treatment. Robustness tests showed that periodic
treatment has good performance in most cases examined. Notwithstanding, it could be possible
that certain number of patients were not eligible for the proactive switching. This is when high
resistant genotype is affected with different intensity by distinct treatments. In those cases, a
specific regimen should be designed for the patient.
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Chapter 5

Suboptimal Control Strategies

In this chapter we provide a brief review of results on the stability of switched systems that
are available in the literature. In addition we present results for state-feedback stabilization of au-
tonomous positive switched systems through piecewise co-positive Lyapunov functions in both con-
tinuous and discrete time. The action of this control need not be optimal but provides a solution
which guarantees a level of performance. For comparison purposes, we examine the efficacy of model
predictive control applied to the HIV treatment regimen problem. Using control strategies based on a
switched linear system we conclude the chapter with the application of these techniques to a nonlinear
mutation model.

5.1 Introductory remarks

Switched systems present interesting theoretical challenges and are important in many real-
world problems [83]. Stability is a fundamental requirement for all control systems and switched
systems are no exception. Furthermore, stability issues become very important in switched systems;
for instance, switching between individually stable subsystems may cause instability and conversely,
switching between unstable subsystems may yield a stable switched system. This kind of phenomena
justifies the recent interest in the area of switched systems. In particular, stability analysis of
continuous time switched linear systems has been addressed by different authors [93], [94], [95],
[96], [97]. Moreover there have been advances in discrete-time, for example [98], [99], [100] and [101]
provide excellent overviews. Stabilization of positive systems has been studied since it is problematic
to fulfill the positivity constraint on the input variables [102], [103] and [104]. A few recent works
in switched positive systems [105] and [106] study the stability problem using co-positive Lyapunov
functions.
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As previously discussed in Chapter 4, the difficulty of determining optimal trajectories for
switched systems has been studied by different authors [85], [86], [87] and [88]. Nonetheless, there
is no general readily computable solution for the optimal control. In the previous chapter, we dealt
with the optimal control problem for a particular class of positive switched systems, we unveiled the
difficulties in either analytical or numerical solutions to the problem.

Consequently, we now consider other control options which might not exhibit optimal perfor-
mance, but may achieve reasonable results close to the optimal one. To this end, we introduce a
guaranteed cost algorithm associated with the optimal control problem in continuous and discrete-
time, that was proposed for a general class of switched systems in infinite-time horizon by [107].
However, because of the biological importance of designing a finite number of decisions, we study the
finite-time horizon guaranteed cost control. In addition, we explore the well known Model Predictive
Control, which appears to be suitable for a suboptimal application to the biomedical area, due to
its robustness to disturbances, model uncertainties and the capability of handling constraints.

5.2 Continuous-time Guaranteed cost control

In this section, we extend the stabilization work proposed by [107], which provided a result
on state-feedback stabilization of autonomous linear positive switched systems through piecewise
linear co-positive Lyapunov functions. This was accompanied by a side result on the existence of a
switching law which can guarantee an upper bound to the achievable performance over an infinite
horizon. However, for the mitigation of the viral escape problem discussed in the previous chapters,
we noted that the system is not stabilizable. Therefore we consider is necessary to follow finite time
horizon strategies. For this purpose, let us take the simplex in the form

Λ :=

{
λ ∈ RN :

N∑
i=1

λi = 1, λi ≥ 0

}
(5.1)

which allows to introduce the piecewise linear Lyapunov function:

v(x) := min
i=1,...,N

α′
ix = min

λ∈Λ

(
N∑

i=1

λiα
′
ix

)
(5.2)

The Lyapunov function in (5.2) is not differentiable everywhere, then we need to use the upper
Dini derivative expressed by D+ [82]. In particular, let us define the set I(x) = {i : v(x) = α′

ix}.
Then v(x) fails to be differentiable precisely for those x ∈ Rn

+ such that I(x) is composed of more
than one element, that is in the conjunction points of the individual Lyapunov functions α′

ix. Now we
denote by M the subclass of Metzler matrices with zero column sum, that is all matrices P ∈ RN×N
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with elements pji, such that

pji ≥ 0 ∀j �= i,

N∑
j=1

pji = 0 ∀i. (5.3)

As a consequence, any P ∈ M has an eigenvalue at zero since c′P = 0, where c′ = [1 · · · 1]. We
are now ready to formulate the main result on the guaranteed cost control of the system (4.1).

Theorem 5.1 Finite horizon Guaranteed Cost

Consider the linear positive switched system (4.1) and let the nonnegative vectors qi be given. More-
over, take any P ∈ M , and let {α1(t), . . . , αN (t)}, αi(t) : [0, tf ] → Rn

+ be any positive solutions of
the coupled differential inequalities

α̇i +A′
iαi +

N∑
j=1

pjiαj + qi � 0, i = 1, . . . , N (5.4)

with final condition αi(tf ) = c, ∀i. Then, the switching rule

σ(x(t)) = arg min
i=1,...,N

α′
i(t)x(t) (5.5)

is such that ∫ tf

0

q′σ(τ)x(t)dt + x(tf )′c ≤ min
i=1,...,N

α′
i(0)x0 (5.6)

Proof Consider the Lyapunov function

v(x, t) = min
�=1,...,N

α′
�(t)x(t)

and let i(t) = arg minl α
′
l(t)x(t). Then,

D+(v(x), t) = min
k

(α̇′
k(t) + α′

k(t)Aix) ≤ α̇′
i + α′

i(t)Aix

≤ −piiα
′
i(t)x −

∑
j �=i

pjiα
′
j(t)x− q′ix

≤ −piiα
′
i(t)x −

∑
j �=i

pjiα
′
i(t)x − q′ix = −q′ix

Hence, for all σ(t),
D+(v(x)) ≤ −q′σ(t)x(t)

which, after integration, gives

v(x(tf )) − v(0) =
∫ tf

0

D+v(x(τ))dτ

≤−
∫ tf

0

q′σ(τ)x(τ)dτ
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Therefore, ∫ tf

0

q′σ(τ)x(τ)dτ + c′x(tf ) ≤ v(0) = min
i=1,...,N

α′
i(0)x0

This concludes the proof.

Notice that (5.4) requires the preliminary choice of the parameters pij . In particular, the search for
pij and αi that satisfy Theorem 5.1 is a bilinear matrix inequality. We can, at the cost of some
conservatism in the upper bound, reduce these parameters to a single one, say ζ, so allowing an easy
search for the best ζ as far as the upper bound is concerned.

Corollary 5.1 Let q ∈ Rn
+ and c ∈ Rn

+ be given, and let the positive vectors {α1, . . . , αN}, αi ∈ Rn
+

satisfy for some ζ > 0 the modified coupled co-positive Lyapunov differential inequalities

α̇i +A′
iαi + ζ(αj − αi) + qi � 0 i �= j = 1, . . . , N. (5.7)

with final condition αi(tf ) = c, ∀ i. Then the state-switching control given by (5.5) is such that∫ tf

0

q′σ(τ)x(t)dt+ c′x(t) ≤ min
i=1,...,N

α′
i(0)x0 (5.8)

Proof Consider any matrix pij chosen such that pii = −ζ, therefore

ζ−1
N∑

j �=i=1

pji = 1 ∀i = 1, . . . , N (5.9)

Using (5.9), equations (5.4) and (5.7) are equivalent, hence the upper bound of Theorem 5.1 holds.

The result shown in Corolary 5.8 is relevant to the problem of mitigation of HIV escape, in the
sense that the switching rule (5.5) may be easy to compute. That is, we consider (5.7) as an equation,
and we solve for αi. The performance might not be optimal but we can know in advance an upper
bound on the cost function (5.8). This is very helpful because when a treatment is computed using
(5.5), knowledge of a bound on the worst case scenario in the total viral load can be obtained.

5.3 Discrete-time guaranteed cost control

The biological problem of mitigating HIV mutation was described in continuous time. However,
in practice, measurements can only reasonably be made infrequently. For this purpose, we consider
the discrete time switched system (4.34), clearly, (4.35) constrains Aσ(k) to jump among the N
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vertices of the matrix polytope A1, ..., AN . We assume that the full state vector is available and the
control law is a state feedback

σ(k) = u(x(k)) (5.10)

The control will be a function u(•): RN → {1, ..., N}. Consider the simplex (5.1) and let us
introduce the following piecewise co-positive Lyapunov function:

υ(x(k)) := min
i=1,...N

α′
ix(k) = min

λ∈Λ

N∑
i=1

λiα
′
ix(k) (5.11)

In a similar vein to continuous time, we need to find a class of matrices M , consisting of all
matrices P ∈ RN×N with elements pij such that inequality (5.3) is satisfied. Consequently we shall
provide a sufficient condition for the existence of a switching rule that stabilizes the discrete-time
system (4.34).

Theorem 5.2 Stability Theorem in Discrete-time

Assume that there exist a set of positive vectors α1, ..., αN , αi ∈ Rn
+, and p ∈ M , satisfying the

coupled co-positive Lyapunov inequalities:

(Ai − I)′αi +
N∑

j=1

pjiαj ≺ 0 (5.12)

The state-switching control with

u(x(k)) = argmin
i=1,...,N

α′
ix(k) (5.13)

makes the equilibrium solution x = 0 of the system (4.34) globally asymptotically stable (in the
positive orthant), with Lyapunov function υ(x(k)) given by (5.11).

Proof Recalling that (5.3) is valid for P ∈ M and that α′
jx(k) ≥ α′

σ(k)x(k) for all j = i = 1, ..., N ,
we have

Δυ(k) = υ(x(k + 1)) − υ(x(k)) = min
j=1,...,N

{α′
jx(k + 1)} − min

j=1,...,N
{α′

jx(k)}
= min

j=1,...,N
{α′

jAσ(k)x(k)} − min
j=1,...,N

{α′
jx(k)}

By definition of σ(k) we have minj=1,...,N{α′
jx(k)} = α′

σ(k)x(k) and therefore

Δυ(k) ≤ α′
σ(k)Aσ(k)x(k) − α′

σ(k)x(k)

≤ α′
σ(k)(Aσ(k) − I)x(k)
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From (5.12), with x(k) �= 0, it follows

Δυ(k) < −
N∑

j=1

pjσ(k)α
′
jx(k)

= −pσ(k)σ(k)α
′
σ(k)x(k) −

N∑
j �=σ(k)

pjσ(k)α
′
jx(k)

≤ −pσ(k)σ(k)α
′
σ(k)x(k) −

N∑
j �=σ(k)

pjσ(k)α
′
σ(k)x(k)

≤ −
N∑

j=1

pjσ(k)α
′
σ(k)x(k)

= 0

which proves the proposed theorem.

In a similar vein, it is possible to assure an upper bound on an optimal cost function. Let qi be
positive vectors, i = 1, 2, · · · , N , and consider the cost function;

J =
∞∑

k=0

q′σ(k)x(k) (5.14)

then, the following result provides an upper bound on the optimal value Jo of J .

Lemma 5.1 Upper Bound for Infinite Horizon

Let qi ∈ Rn
+ be given. Assume that there exist a set of positive vectors {α1, ...αN}, αi ∈ Rn

+ and
p ∈ M , satisfying the coupled co-positive Lyapunov inequalities;

(Ai − I)′αi +
N∑

j=1

pjiαj + qi ≺ 0 , ∀i (5.15)

The state-switching control given by (5.13) makes the equilibrium solution x = 0 of the system (4.34)
globally asymptotically stable and

Jo ≤
∞∑

k=0

q′σ(k)x(k) ≤ min
i=1,...,N

α′
ix0 (5.16)

Proof If (5.15) holds, then (5.12) holds as well, then we can say that the equilibrium point x = 0
for system (4.34) is globally asymptotically stable. In addition, by mimicking the proof of Theorem
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5.2, we can prove that

Δυ(x(k)) = υ(x(k + 1)) − υ(x(k))

≤ −q′σ(k)x(k)

Hence ∞∑
k=0

Δυ(x(k)) ≤ −
∞∑

k=0

q′σ(k)x(k)

∞∑
k=0

q′σ(k)x(k) ≤ υ(x(0)) − υ(x(∞))

therefore ∞∑
k=0

q′σ(k)x(k) ≤ min
i=1,...,N

α′
ix0

Remark 5.1 For fixed pji in order to improve the upper bound provided by Lemma 5.1, one can
minimize mini α

′
ix0 over all possible solutions of the linear inequalities (5.15).

Coupled co-positive Lyapunov functions can also be used to compute a lower bound on the optimal
cost.

Lemma 5.2 Lower Bound for Infinite Horizon

Assume that there exist a set of positive vectors α1, ..., αN , αi ∈ Rn
+ and p ∈ M , satisfying the

coupled co-positive inequalities:

(Aj − I)′αi +
N∑

m=1

pmiαm + qi  0 , ∀i, j (5.17)

Then, for any state trajectory such that x(k) → 0,

∞∑
k=0

q′σ(k)x(k)  max
i=1,...,N

α′
ix0 (5.18)

Proof Let
υ(x(k)) = max

i
α′

ix(k) (5.19)
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then

υ(x(k + 1)) = max
i=1,...,N

{α′
ix(k + 1)}

= max
i=1,...,N

{α′
iAσ(k)x(k)}

≥
(
α′

σ(k) −
N∑

m=1

pmσ(k)α
′
m

)
x(k) − q′σ(k)x(k)

≥
⎛⎝α′

σ(k) − pσ(k)σ(k)α
′
σ(k) −

N∑
m �=σ(k)

pmσ(k)α
′
m

⎞⎠ x(k) − q′σ(k)x(k)

≥
⎛⎝α′

σ(k) − pσ(k)σ(k)α
′
σ(k) −

N∑
m �=σ(k)

pmσ(k)α
′
σ(k)

⎞⎠x(k) − q′σ(k)x(k)

≥ α′
σ(k)x(k) − q′σ(k)x(k)

which implies
υ(x(k + 1)) − υ(x(k)) ≥ −q′σ(k)x(k)

so that ∞∑
k=0

q′σ(k)x(k) ≥ max
i=1,...,N

α′
ix0

Remark 5.2 Notice that inequalities (5.12) are not LMI, since the unknown parameters pji multiply
the unknowns vectors αj. If all matrices Ai are Schur matrices, then a possible choice is pji = 0,
i, j = 1, 2, · · · , N , so that inequalities (5.12) are satisfied by αi = (I −Ai)−1q̄i, where q̄i � qi.

Remark 5.3 Lemma 5.2 may be used to guarantee an upper bound to the finite-time optimal cost

JFT = c′x(tf ) (5.20)

where tf is the finite time and c  0 is a weight on the final state x(tf ). Assume that inequalities
(5.12) are feasible. Hence, thanks to linearity of (5.12) in α, it is possible to find αi  0 such that
(5.12) are satisfied along with the additional constraint c � αi, ∀i. Then c′x(tf ) ≤ mini α

′
ix(tf ) =

υ(x(tf )) ≤ υ(x(0)) = mini α
′
ix(0).

The theorems and lemmas presented above refer to a cost function over an infinite time horizon.
However, it is possible to slightly modify the relevant inequalities to account for finite time horizon
functionals. To be precise, consider the system (4.34), the cost function
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J = c′x(tf ) +
tf−1∑
k=0

q′σ(k)x(k) (5.21)

and the difference equations, for i = 1, 2, · · · , N

αi(k) = A′
iαi(k + 1) +

N∑
j=1

pjiαj(k) + qi, αi(tf ) = c (5.22)

The following result holds.

Theorem 5.3 Finite-Horizon Guaranteed cost control

Let qi ∈ Rn
+, i = 1 . . .N be given. Let {α1(k), ...αN (k)}, αi(k) ∈ Rn

+ be a set of nonnegative vectors
satisfying (5.22) where p ∈ M . The state-switching control

σ(k) = argmin
i=1,...,N

α′
i(k)x(k) (5.23)

is such that

c′x(tf ) +
tf−1∑
k=0

q′σ(k)x(k) ≤ min
i=1,...,N

α′
i(0)x0 (5.24)

Proof Let v(x(k), k) = mini{x(k)′αi(k)}. Then

v(x(k + 1), k + 1) = min
i
{x(k + 1)′αi(k + 1)} = min

i
{x(k)′A′

σ(k)αi(k + 1)}
≤ x(k)′A′

σ(k)ασ(k)(k + 1)

≤ v(x(k), k) − x(k)′qσ(k) − x(k)′
N∑

r=1

prσ(k)αr(k)

≤ v(x(k), k) − x(k)′qσ(k) − x(k)′ασ(k)(k)
N∑

r=1

prσ(k)

≤ v(x(k), k) − x(k)′qσ(k)

so that

J = c′x(tf ) +
tf−1∑
k=0

q′σ(k)x(k)

≤ c′x(tf ) −
tf−1∑
k=0

v(x(k + 1), k + 1) − v(x(k), k)

≤ c′x(tf ) − v(x(tf ), tf )) + v(x0, 0)

≤ min
i
{x′0αi(0)}

95



CHAPTER 5. SUBOPTIMAL CONTROL STRATEGIES

Remark 5.4 Note that in the infinite horizon case, the conditions (5.17), may be infeasible. How-
ever in the finite horizon case, (5.22), the equations are always feasible (for example taking pji = 0),
and for any fixed tf can be solved by the reversed time difference equation (5.22). If Ai are Schur
matrices, then in the limit and with pji = 0, limtf→∞ αi(0) = (I −Ai)−1qi.

Corollary 5.2 Let q ∈ Rn
+ and c ∈ Rn

+ be given, and let the positive vectors {α1, . . . , αN}, αi ∈ Rn
+

satisfy for some ζ > 0 the modified coupled co-positive Lyapunov difference equations:

αi(k) = A′
iαi(k + 1) + ζ(αj(k) − αi(k)) + qi i �= j = 1, . . . , N. (5.25)

with final condition αi(tf ) = c, ∀i. Then the state-switching control given by (5.23) is such that

c′x(tf ) +
tf−1∑
k=0

q′σ(k)x(k) ≤ min
i=1,...,N

α′
i(0)x0 (5.26)

The proof of Corollary 5.2 is in similar vein as Corollary 5.1. For the numerical solution of (5.25),
we consider a fixed ζ.

5.4 Model Predictive Control

More than 25 years ago MPC appeared in industry as an effective algorithm to deal with mul-
tivariable constrained control problems. Much progress has been made on feasibility of the on-line
optimization, stability and performance for linear systems. A thorough overview of the MPC history
can be found in [108]. However, many systems are in general inherently nonlinear and accompanied
with the high product specifications in the process industry make non-linear MPC systems a difficult
problem.

Model predictive control involves solving an on-line finite horizon open-loop optimal control
problem subject to system dynamics and constraints involving states and controls. The essence of
MPC is to optimize, over the manipulable inputs, forecasts of process behavior. The forecasting is
achieved with a process model, and therefore a good model is required to represent the problem under
study. However, models are never perfect, and therefore there will inevitably be some forecasting
errors. Feedback can help overcome these effects [109]. A fundamental question about MPC is its
robustness to model uncertainty and noise. When we say that a control system is robust we mean
that stability is maintained and that the performance specifications are met. Although a lot of
research has been conducted to check robustness in linear systems, very little is known about the
robust control of linear systems with constraints [108].

MPC is based on measurements obtained at time t. The controller then predicts the future
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dynamic behavior of the system over a prediction horizon Tp and computes an open-loop optimal
control problem with control horizon Tc, to generate both current and future predicted control
signals. A general picture of MPC scheme can be seen in Fig.5.1.

future prediction
past ipast set-point

predicted state x

closed-loop
state x

open loop input u

closed loopclosed-loop
state u

t t + t + Tc t + Tp

control horizon Tc

prediction horizon Tp

Fig. 5.1: Model Predictive Control strategy

Due to disturbances, measurement noise and model-plant mismatch, the true system behavior is
different from the predicted one. To incorporate a feedback mechanism, the first step of the optimal
control sequence is implemented. When the next measurement becomes available, at time t + τ ,
the whole procedure -prediction and optimization- is repeated to find a new input function with the
control and prediction horizons moving forward.

It is clear that the shorter the horizon, the less computational time of the on-line optimization
problem. Therefore, it is desirable from a computational point of view to implement MPC using
short horizons. However, when a finite prediction horizon is used, the actual closed loop input
and state trajectories will differ from the predicted open-loop trajectories even if no model plant
mismatch and no disturbances are present [113].

Notice that the goal of computing a feedback such that performance objective over infinite horizon
of the closed loop is not achieved. In general it is by no means true that a repeated minimization
over a finite horizon objective in receding horizon manner leads to an optimal solution for the infinite
horizon problem, in fact the two solutions differ significantly if a short horizon is chosen. Moreover,
if the predicted and actual trajectories differ, there is no guarantee that the closed-loop system will
be stable [114].
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MPC has been mainly applied to many problem in the industry. However, because of its good
performance this technique has been applied to other areas, for instance aerospace, biology, electronic
devices and many others can be found in [113]. Recently, biology problems have been a productive
application area for MPC [110], [111] and [112]. Nevertheless, modeling in biology is a difficult task:
low-order models are usually too simple to be useful, conversely, high order models are too complex
for simulation purposes and have too many unknown parameters requiring identification [112].

In this work, we are interested in the use of MPC techniques to plan treatment applications for
HIV. This idea is not new, for example a feedback-based treatment scheduling for HIV patients is
summarized in [111]. MPC strategies have been applied to the control of HIV infection, with the final
goal of implementing an optimal structured treatment interruptions protocol [112]. Nevertheless,
clinicians have been solidly against interruption treatments [5]. Moreover, the models used in these
previous approaches do not accurately reflect the interaction between different genotypes and drug
treatments, and consequently do not predict the possibility of the appearance of highly resistant
genotypes.

5.4.1 Mathematical Formulation of MPC

From the biological nature of HIV infection, the system (4.34) is unstable and in fact not stabi-
lizable. This is because of the existence of a highly resistant genotype that is not affected by any
treatment. Therefore, once the highly resistant mutant has “emerged” the population will explode
after a period of time. The objective of MPC is to suppress the total viral load as shown in (4.15).
In order to distinguish the real system and the system model used to predict the future for the
controller, we denote the internal variables in the controller by a bar (x̄, σ̄), where x(t) ∈ X ⊆ Rn

and σ(•) ∈ U ⊆ Rm. We can formulate the following model predictive control problem.

Problem 5.1 Find
min

σ̄
J(x(t), σ̄(•);Tc, Tp),

with
J(x(t), σ̄(•);Tp, Tc) := cx(t+ Tp)

subject to:
x̄(k + h+ 1/k) = Aσ̄(k+h/k)x̄(k + h/k)

σ̄(k + h/k) ∈ U , ∀h ∈ [0, Tc]

x̄(k + h/k) ∈ X , ∀h ∈ [0, Tp]

where Tp and Tc are the prediction and the control horizon with Tc ≤ Tp. The bar denotes internal
controller variables, the distinction between the real system and the variables in the controller is
necessary since the predicted values, even in the nominal undisturbed case, in generally will not be
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the same as the actual close-loop values, since the optimal is recalculated at every sampling instance.
For numerical solution, we shall use the following algorithm;

MPC Algorithm

i. Given x(k) at time k, compute the open-loop optimal control σ̄(•) for a receding horizon Tp

ii. Apply only the first input of the optimal command sequence to the system

iii. The remaining optimal inputs are disregarded

iv. Collect the new measurement from the system and increment k

v. Continue with point (i) until the final time is reached

�

In this algorithm, Tp has to be chosen in advance. As was previously mentioned, the shorter the
horizon, the less costly the solution of the on-line optimization problem. The method to solve the
open-loop optimal problem using (4.42) has an exponential growth. Therefore, it is desirable to use
short horizons MPC schemes for computational reasons. In general, it is not true that a repeated
minimization over a finite horizon objective in a receding horizon manner leads to an optimal solution
for the the infinite horizon problem [114]. In fact, both solutions differ significantly if a short horizon
is chosen.

5.5 Comparisons for the 4 variant model

First we introduce continuous-time guaranteed cost results. The switching rule presented is
computed using (5.5), where α(t) can be obtained from the inequality (5.4), which an easy way to
be solve it is considering pji = 0. Fig.5.2 shows the performance of the optimal control for scenario
1. Using a symmetric cost function weighting as c = [1, 1, 1, 1]′, an upper bound can be computed,
for such control a performance no worse than 2432.07 copies/ml is obtained. However, the final cost
for a simulation period of 12 months is 1367.31 copies/ml, this result is exactly the same as the
optimal control performance.

Simulation results show that at least in some cases, guaranteed cost control capture’s the possible
sliding mode behavior of the optimal control law. Indeed, consider a matrix P ∈ M and its Frobenius
eigenvector β, i.e. such that Pβ = 0. It is known that β is a nonnegative vector and it is possible to
choose it in such a way that

∑N
i=1 βi = 1. Now, it is easy to see that the solution of the differential

equations (5.4) associated with the choice γΠ ∈ M are such that limγ→∞ αi(t) = ᾱ(t), ∀i. In order
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Fig. 5.2: Guaranteed cost control

to characterize the limit function ᾱ, multiply each equation (5.4) by βi and sum up all of them.
Since

∑N
i=1 βipji = 0, and αi(t) = ᾱ(t), it results:

− ˙̄α(t) =

(
N∑

i=1

βiAi

)
ᾱ(t) +

N∑
i=1

βiqi

This equation is analogous to the equation of the costate time evolution along a sliding mode.
Therefore, the guaranteed cost control is capable of generating the possible sliding behavior as exhib-
ited by the optimal trajectories satisfying, in some time interval, the equation ˙̄x(t) =

(∑N
i=1 βiAi

)
x̄(t).

For comparison purposes, we introduce the use of model predictive control which typically
achieves superior performance with respect to other control strategies when manipulated and con-
trolled variables have constraints to meet. However, for this particular application the system is not
stabilizable. The MPC objective is to delay as far as possible the escape of the system. In general,
the finite set of possible control values causes problems for many control techniques. Nevertheless
in the cause of MPC, having a finite set of options may be an advantage in making the optimization
easier to solve.

In Table 5.1 we show the performance for all the proposed strategies designed to mitigate the
viral escape in the model (3.30). For Scenario 1, it can be observed that all the strategies present
an optimal behavior with the exception of the switch on failure scheme. The best switching regimen
would consist of switching as soon as possible for the next regimen. This recycling treatment can
potentially decrease the viral load through the years and delay the appearance of resistant mutants.
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Table 5.1: Total viral load at the end of treatment using model (3.30)

Scenario Switch on failure SWATCH Optimal Guaranteed MPC
1 344.25 45.35 45.35 45.35 45.35
2 919.29 60.59 57.55 73.92 57.62
3 1.2437× 104 1045.27 55.56 83.14 55.56

For scenario 2, we noticed that the switch on failure strategy performs worse than proactive
switching. For instance, the optimal strategy is very close to undetectable levels where the detection
threshold is approximately 50 copies/ml. Numerical results illustrate the good performance of MPC
since the viral load achieved is very close to the optimal one. The guaranteed cost control has a
good behavior for this scenario, even though its simple design is able to maintain reasonably good
results when compared to the optimal with much less computational time. Scenario 3 unveils that
both suboptimal strategies have good performance when compared with the optimal. Furthermore,
MPC shows for this example an optimal behavior, then we may conjecture that MPC is a good
strategy to deal with the mitigation of viral escape.

5.6 Comparisons for the macrophage mutation model

It was previously shown that using the macrophage mutation model (3.33), the first virological
failure is presented after six years of treatment, then the second therapy may last for 5 years before
viral explosion is presented. Numerical results are consistent with clinical observation. In addition
the SWATCH treatment outperformed the switch on failure treatment. This motivates the study
of a more structured method to design a treatment regimen aimed at minimizing the viral load.
Therefore we explore the optimal treatment and suboptimal strategies to mitigate the viral escape
in HIV. Using 10 months as prediction horizon for MPC, we observe in Fig.5.3 the closed-loop
response of Ti, Mi, V and the switched drug therapy over a period of 20 years. The MPC algorithm
achieves the goal of containing the viral load for a long period. For this example, MPC has the same
performance as SWATCH. This coincidence suggests that oscillating between one treatment and the
other will improve the viable treatment duration.

Table 5.2 shows the total viral load using optimal and suboptimal strategies. We note that the
suboptimal strategies have a similar performance to the optimal strategy; for instance, guaranteed
cost control slightly outperforms MPC and SWATCH. Using guaranteed cost control we know in
advance an upper bound on the performance achieved by the controller. We remark that using
optimal and suboptimal strategies we can delay the appearance of a virologic failure approximately
three years compared to the switch on failure strategy.
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Fig. 5.3: Closed loop using MPC for the macrophage mutation model

Table 5.2: Simulation results for 7 year treatment period using 3 month decision time

Strategy Viral Load
Virologic Failure 780

SWATCH 25.8
Optimal Control 9.9
Guaranteed Cost 13.38

MPC 25.53

5.7 Comparisons for the Latently infected CD4+T cell model

In the latently infected CD4+T cell model we consider three different therapies. Using the
virologic failure treatment, there are three changes in therapy in a period of 4 years. The first
therapy keeps the viral concentration below 1000 copies/ml for one year, however resistant genotypes
appear. Therefore the second treatment is introduced, the viral population is again decreased for a
while, but because of the existence of a high concentration of infected cells, virological failure occurs
in a shorter time period. It is then necessary to introduce the third treatment. An important fact
is that latently infected cells remain almost constant, this fits with clinical and theoretical studies
which agree that these cells play an important role for the late stage in HIV infection. Using 10
months as prediction horizon for MPC, we present in Fig.5.4 the closed-loop response of Ti, L, V
and the switched drug therapy over a period of 14 year. The MPC algorithm accomplishes the main
goal of containing the viral load as long as possible. In fact, for this example, virologic failure would
be present after 12 years, which means that we could extend the duration of virologic control by 8
years compared to the clinical assessment. In addition the total population of infected CD4+T cells
is decreased for a period of 6 years. These results are consistent with the preliminary clinical trial
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Fig. 5.4: Closed loop using MPC

SWATCH [8], which concluded that proactive alternation of antiretroviral regimens might extend
the long-term effectiveness of treatment options without adversely affecting patients’ adherence or
quality of life.

Table 5.3: Simulation Results for 5 year treatment period using 3 month decision time

Strategy Viral Load
Virologic Failure 5.14e28

SWATCH 6.22e-9
Optimal Control 2.20e-9
Guaranteed Cost 2.53e-4

MPC 2.31e-9

We notice in Fig.5.4 how the switching is irregular for the first 4 years, but it remains quite
regular for the remaining years. This means that oscillating treatment might be a good strategy
to mitigate the viral replication when it is not possible to measure the complete HIV state. Table
5.3 shows that the oscillating drug regimen provides very close results to both MPC and optimal
control. Based on simulation results and clinical trials we could suggest that this approach may
minimize the emergence of drug-resistant strains better than frequent monitoring for viral rebound.
Moreover, we test the guaranteed cost strategy, which requires very low computational resources
and exhibits good performance with respect to a switch on virologic failure treatment protocol.
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5.8 A Nonlinear Mutation Model Study

It was previously shown that the proposed controllers based on a switched linear exhibit a good
performance to decrease viral load and overperformed clinically used common strategies. However,
all comparisons were made on switched linear systems, which we consider represent adequately the
HIV dynamics when the patient is under treatment. However, it is very important to verify the
effectiveness of these strategies in a more realistic situation. For this reason, based on the proposed
model (3.12) and using proliferation terms (3.27) and (3.28), we suggest the following nonlinear
mutation model:

Ṫ = sT +
ρT

CT + VT
TVT −

n∑
i=1

ki
T,σTVi − δTT

Ṁ = sM +
ρM

CM + VT
MVT −

n∑
i=1

ki
M,σMVi − δMM

Ṫ ∗
i = ki

T,σTVi +
n∑

j=1

μmi,jVjT − δT∗T ∗
i (5.27)

Ṁ∗
i = ki

M,σMVi +
n∑

j=1

μmi,jVjM − δM∗M∗
i

V̇i = pi
T,σT

∗
i + pi

M,σM
∗
i − δV Vi

where VT =
n∑

i=1

Vi. Therapies are composed of reverse transcriptase inhibitors and protease in-

hibitors, that are represented by ki
T,σ = kT fiη

T
σ,i, k

i
M,σ = kMfiη

M
σ,i, p

i
T,σ = pT fiθ

T
σ,i, and pi

M,σ =
pMfiθ

M
σ,i. ησ,i is the infection efficiency for genotype i under treatment σ, and θσ,i expresses

the production efficiency for the genotype i under treatment. We assume that in the absence
of treatment, mutation reduces the fitness of the genotype. Thus we use linear decreasing fac-
tors fi, which represents the fitness of the genotype i. For simulation purposes, we suggest a
4 variant, 2 drug combination model as was presented in Chapter 3. The linear decreasing fac-
tors are fi = [1, 0.83, 0.83, 0.77] and the treatment efficiencies are: ηT

σ,1 = θT
σ,1 = [0.8, 0, 0.7, 0],

ηT
σ,2 = θT

σ,2 = [0.8, 0.7, 0, 0], ηM
σ,1 = θM

σ,1 = [0.7, 0, 0.6, 0] and ηM
σ,2 = θM

σ,2 = [0.7, 0.6, 0, 0].

In our test scenario we assume that the patient is untreated during the initial 4 years. We
make this assumption since the guidelines for the use of antiretroviral agents HIV-1 [5] recommends
antiretroviral therapy for patients with CD4+T counts between 350 and 500 cells/mm3. After 4
years we introduce the common practice regimens in the model (5.27). Fig.5.5 presents results for
the virological failure and oscillating treatment. When virologic failure treatment is introduced
after the fourth year, there is a fast recovering in CD4+T cells counts and a sharp drop in viral
load to undetectable levels as reported in clinical studies [3]. Clinical markers are in acceptable
levels to maintain good immunological responses before the first virological failure is presented at
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(a) CD4+T cells using virologic failure
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(b) Viral load using virologic failure
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(c) CD4+T cells using SWATCH
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(d) Viral load using SWATCH

Fig. 5.5: Virologic on failure and SWATCH applied to the nonlinear model (5.27)
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Fig. 5.6: Switched linear strategies applied on a nonlinear model

approximately 10 years. To avoid the collapsing of CD4+T cells, the introduction of the second
therapy is necessary. However, the persistent low-level viremia cause a second virological failure
after two years. Time scales are consistent with the clinical work of [76].

Using a proactive switching as proposed in [8], we note in Fig.5.5d that virological failure is
delayed until 19 years. This numerical results reveal the importance of proactive switching to extend
good health conditions. In comparison with the virological failure, SWATCH treatment extended
the time to virological failure by four years. Moreover, Fig.5.5c reveals that CD4+T cells counts are
maintained in good levels (over 400 cells/mm3) for longer period than with the virological failure
treatment.

In order to check the applicability of the optimal and suboptimal strategies proposed before, we
introduce the strategies after 4 years and keep them for a period of 6 years. That is because in
this period cells are maintained almost constant. Therefore, the switched linear system (3.33) could
be used to design switching trajectories. For this end, we simulate the nonlinear mutation model
(5.27) without any treatment during 4 years, then we collect the final values of infected cells and
virus, which will serve as initial condition for the switched system. CD4+T cells and macrophages
are considered constant, with values 700 cells/mm3 and 740 cells/mm3 respectively.

After the fourth year we compute the switching rule based on the switched linear system (3.33)
using two different approaches, see Fig.5.6. For the first one, we compute the whole switching
trajectory using only the switched system, then the whole switching trajectory is implemented in
the nonlinear system as is shown in Fig.5.6a, this is called offline control. The second approach
is based on the switched linear system, the difference is that at every decision step the output of
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Table 5.4: Simulation results for symmetric case

Strategy Viral Load CD4+T cells
Virologic Failure 405.7 500.9

SWATCH 230.9 731.4

Optimal Control Offline 243 648.1
Online 376 583.4

Guaranteed Cost Offline 408 570
Online 410 568.5

MPC 231 511

the nonlinear system updates the controller which computes the next input for the nonlinear model
as is shown in Fig.5.6b. Simulation results reveal that proactive switching overperformed virologic
failure treatment. In Table 5.4 we consider a 10 year treatment period and 3 month decision time.
Linear switched strategies present values very closed to the SWATCH treatment, where the offline
optimal strategy has the best performance compared to the other strategies based on the switched
linear model.

It is observed in Table 5.4 that SWATCH treatment had the best performance, that is because
we considered a symmetric treatment scenario. Nevertheless, in practice different therapies can
affect with different intensities the genotypes presented in the patient. For this end, we suggest
the following asymmetric treatment efficiencies: ηT

σ,1 = θT
σ,1 = [0.8, 0.01, 0.4, 0.01], ηT

σ,2 = θT
σ,2 =

[0.8, 0.8, 0.01, 0.1], ηM
σ,1 = θM

σ,1 = [0.7, 0.01, 0.3, 0.01] and ηM
σ,2 = θM

σ,2 = [0.7, 0.7, 0.03, 0.1].

For the asymmetric case, we proposed that the highly resistant genotype is partially affected
by treatments, but not with enough strength to affect the final viral escape. Notice in Fig.5.7b
how the first virological failure is presented after ten years, that is, slightly larger than in the
symmetric case. The second therapy does not last more than three years before a virological failure.
Therefore the total time before the viral load escapes is approximately 16 years. On the other hand,
the SWATCH strategy exhibits a duration of 30 years before virological failure occurs. For this
asymmetric example, SWATCH treatment provides good levels in CD4+T cell count and viral load
for almost 25 years. We can conclude from this example that even though the therapies were more
efficient, the switch on virological failure does not promote any improvement in the extension of the
viral escape. Proactive switching might make a difference in time scales to preserve safe in infected
people with HIV.

For the symmetric case, the SWATCH treatment option provides the best performance. Linear
switching strategies had slightly worse performance than the SWATCH strategy. Nevertheless,
when therapies are asymmetric, the proposed strategies present different performances as is shown
in Table 5.5. At the end of 6 year period treatment, virological on failure treatment exhibits slightly
less concentration in viral load than the SWATCH strategy. However if optimal and suboptimal
strategies based on a switched systems are used, we may notice that MPC provides the best result
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(a) CD4+T cells using virologic failure treatment
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(b) Viral load using virologic failure treatment
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(c) CD4+T cells using SWATCH
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(d) Viral load using SWATCH

Fig. 5.7: Virologic on failure and SWATCH for an asymmetric case in the model (5.27)
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Table 5.5: Simulation results for asymmetric case

Strategy Viral Load CD4+T cells
Virologic Failure 380 527.4

SWATCH 410 724.4

Optimal Control Offline 50.98 727
Online 264 639

Guaranteed Cost Offline 397.8 563.6
Online 314.17 646.03

MPC 49.08 733.622

with undetectable levels of virus and high concentration in CD4+T cells. Offline optimal control
supplies inconsiderably higher concentrations in viral load than MPC. Numerical results for both
examples show that feedback does not provide any improvement to optimal control. We consider
this bad performance is due to decision variables are very close each other using online optimal
control, together the use of a model approximation of the real system and measurements are made
infrequently.

Even though guaranteed cost strategies provide less viral load than virologic failure treatment,
they present the worst performance compared with the other suboptimal strategies for this example.
We remark that optimal control present an optimal trajectory for the linear system, that does not
mean it is going to be optimal when we apply it to the nonlinear case. Actually, there is no guarantee
that it will provide better results than other strategies.
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Fig. 5.8: Viral time escape as a function of the decision time
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Numerical results suggest that proactive switching is important to maintain low levels of viral load
for a long period of time. In general, switching every three months between two therapies appears
to be suitable for the last two examples. Since measurements are expensive and cumbersome for the
patient, viral and CD4+T cell count are recommended every three to six months, depending on the
patient’s health status.

Using the model (5.27) we can examine how decision time affects the markers for very long period
treatments. In Fig.5.8 we may notice how the viral escape is affected by the decision time when
SWATCH treatment is used. Simulation results reveal for the symmetric case a maximum in the
viral time escape, using a decision time of approximately 80 days the viral escape might be extended
nearby 53 years. Comparing with the recommended decision time of three months [8], we obtain
an extension of 4 years in the escape time. In the asymmetric case, the maximum escape time is
approximately 53 years using a decision time of 40 days.

Results show that the design of proactive switching is not trivial, and the decision time should be
carefully designed for each patient. These examples suggest that decision time should be between 1
and 4 months. For both cases, proactive switching provides the same results when the decision time
is more than 4 months. Based on this, we might suggest avoiding long decision times for proactive
switching, whilst decision time does not make a big difference in the case of switch on virological
failure treatment.
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Over the last 20 years, several changes have been made to the recommendations on when to
start therapy. The standard procedure for the Panel [5] has not been agree when to start therapy.
However, there is a general consensus that antiretroviral therapy should be initiated in all patients
with a history of an AIDS-defining illness or CD4+T counts are less than 350 cells/mm3.

Using the nonlinear mutation model (5.27) we also analyze the question when to initiate therapy.
We consider therapy 1 for the asymmetric case, then we introduce treatment in different periods of
the infection. On one hand, numerical results in Fig.5.9 suggest that there is very little advantage
in the time to viral escape as a result of introducing HAART in the early stages of infection, that is
during the first 4 years. In fact, when we introduce treatment in the primary infection stage, first
month, the viral escape is slightly faster than introducing the treatment later. This is because in the
early stage we suppress the wild type genotype, and this might help the emergence of other strains
with long term resistant.

On the other hand, patients should not be initiated treatment in later stages of infection. If
treatment is introduced approximately in the sixth year or after of the infection, the progression to
AIDS is faster. This is because treatments are of reduced efficacy in macrophages and can not help
to delay the progression.
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5.9 Concluding Remarks

In this chapter we have considered alternatives to the optimal control problem for positive
switched linear systems. Specifically we have concentrated on guaranteed cost control which pro-
vides an upper bound on the cost function and the well known model predictive control strategy.
The major conclusions made in the chapter are listed below.

• Using a piecewise co-positive Lyapunov function, we provide sufficient conditions for stability
in positive switched linear systems for continuous and discrete time.

• We derive in both continuous and discrete time a switching rule which guarantees a bound
on the achieved performance. This means that we know in advance the worst achievement
of the controller. At the cost of some conservatism in the upper bound, we may reduce the
parameters in the controller to a single one, allowing an easy computation line search for a
single parameter.

• Due to the biological application, we need to design a switching treatment for a specific pe-
riod of time, therefore we extend the guaranteed cost control to a finite horizon. Numerical
results reveal that guaranteed cost control achieves good results with minimal computational
resources. Moreover, this strategy could exhibit an optimal performance for some symmetric
cases, and very close results to the optimal for some asymmetric cases.

• The model predictive control application was explored to mitigate the viral escape. Simulation
results exhibit the effectiveness of this method. MPC gave similar performance to the optimal
control, with the advantage that MPC requires less computational resources than the optimal
strategy and it can handle constraints.

• From a clinical point of view, we conclude that macrophages occupy a unique place in the viral
escape, these treatments are not completely efficient to clear the infected macrophages causing
the final transition to AIDS.

• Using a more realistic scenario, we applied optimal and suboptimal strategies based on a
switched linear system to a nonlinear mutation model. Simulation results suggest that proac-
tive switching is important to extend the viral time escape. MPC technique showed the
best performance and was able to maintain undetectable viral levels for the asymmetric case.
Slightly less than MPC, guaranteed cost and optimal control revealed good results for the
escape time problem. Suboptimal strategies might be important for the design of switching
treatments, in the majority of the cases, MPC presents the best performance. Therefore, we
conclude that MPC might be consider in the future for a possible application.

• The clinical trial SWATCH suggests a switching time of 3 months, however, simulation results
suggest that the election of decision time is not trivial for the efficacy in the proactive switching.
From the study examples, long decision times (more than 4 months) should be avoided, because
they reduce the benefits in extending the viral escape time.
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• When to start therapy? is a difficult question to answer for clinicians. Based on this numerical
study, we suggest that there is not any reason to expose the patient to the strong effects of
HAART therapy during the first three years of infection. We did not find any evidence that
an early therapy would help in the long-term for the viral escape. However, treatment should
not be delay for later stages (more than 7 years), that is because HAART is still not effective
for long-term reservoirs.
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Chapter 6

Conclusions and Open Questions

The motivation and background for the study of the HIV infection was presented in the opening
two chapters. In particular, motivated by the worldwide problem in health caused by HIV, we
described several issues related to this infection. To tackle this biological problem, we follow a
mathematical approach. Toward this end we divided the thesis work in two parts. The first part
introduces the biological background and the mathematical models, which are fundamental for the
HIV infection study. Using a control theoretic approach, the second part of this work is composed
of optimal and suboptimal strategies to mitigate viral escape in HIV infection.

In Chapter 3, motivated by the work in [4], we proposed a mathematical model (3.12) able to
represent the whole trajectory in HIV infection: primary infection, asymptomatic and symptomatic
stage. Compared with other works, the proposed model based on the latent reservoir theory exhibits
the complete course of the infection with a robust behavior to parameter variations. Numerical
results suggest that HIV dynamics might be divided in two coupled feedback paths. One path
provides the fast dynamics presented in the early stages of infection as a result of a strong inhibition
to CD4+T cells. The second feedback path sustains a slow but constant process of infection in
macrophages. In this way, infected macrophages induce growth in the viral load in the last stages
of the infection. Incorporating cell proliferation terms, the dynamics of CD4+T cells and virus
match better clinical observations and preserve the property of robustness in the model. However,
the proposed model (3.12) needs more work to represent other mechanisms in HIV infection, for
instance immune responses, CD4+T cell activation, homing theory, and dendritic cell role. Then, it
might be possible to understand how other mechanisms affect the transition to AIDS.

Mathematical analysis of HAART regimens reveals that the longer the delay before initiating
therapy, the greater the number of new infections of cells and long-term reservoirs. Consequently a
longer period treatment is needed to clear the virus. When the patient is undergoing therapy and
prior to virologic failure, we make the assumption that non-infected CD4+T cell and macrophage
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counts are approximately constant. Then the model (3.12) may be reduced to a switched linear
system. We proposed three different switched systems using different mutation trees to explore
treatment regimens: the switch on failure which is common in clinical practice and the alternating
regimen SWATCH. Simulation results exposed the relevance of proactive switching to decrease viral
load maximally. SWATCH approach appears to give superior results to the classical switch on failure
approach. Nonetheless, periodic alternating treatments might not always provide good performance
when the available treatment options have unequal effects on the proliferation rate of the resistant
genotypes.

To obtain models capable of reproducing the long term clinical observations for the responses of
patients under treatment, we followed two different cells to match these dynamics: latently infected
CD4+T cells and macrophages. Simulations show that macrophages are necessary to obtain the
appropriate time scales and treatments responses. Consequently, we suggest that macrophages may
be an important component of the dynamics in HIV infection for both non-treated and treated
patients.

Because periodic alternating treatments does not always provide the best response, in the second
part of the thesis we examine the problem of treatment scheduling to mitigate viral escape in
HIV infection using optimal and suboptimal strategies. In Chapter 4 we provided the relevant
background to address the optimal control question. Using the Pontryagin principle we established
the optimal control problem for positive switched systems for a finite horizon which results in a two
point boundary value problem. Under certain conditions of symmetry in the viral proliferation rate,
we prove that the solution of the optimal control problem lies on a sliding surface. The biological
relevance resides when the resistant genotypes are affected with the same intensity by their respective
treatment, then it is important to switch proactively instead of using the current clinical practice of
switching on virological failure. In fact, optimally switching should occur as soon as one genotype
exceeds the concentration of the other and vice versa. This provides the idea that a periodic switched
treatment might be applied to different cases. In some asymmetric examples the optimal solution is
still switching, however, we have not been able to establish general results.

In a similar vein, we approach the discrete-time optimal control, where the problem also results
in a two point value problem. A possible numerical solution is an exhaustive search, however the
computational demands of this approach grow exponentially with the number of decisions. To tackle
computational time issues, we derived different algorithms based on linear programming to “prune”
partial control sequences that are provably sub-optimal. Depending on the number of decisions, these
algorithms offer faster solutions than an exhaustive search algorithm. A numerical robustness study
shows that optimal trajectories are robust to parameter variation, and therefore these strategies
might be relevant for treatment scheduling in HIV.

Many problems remain open for the optimal control area. For the continuous time case, it is
still needed to find the optimal solution for asymmetric cases, we conjecture that the solution lies
on a sliding mode but more work is necessary. The optimal solution in the discrete time version,
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even for the symmetric case, is difficult to prove analytically. An interesting question is to analyze
the optimal control using different cost functions. In this work we focus on a terminal penalty cost
function. However it might be important to analyze an integral term, that requires minimization of
aggregate the viral load. This might be relevant for the treatment scheduling. For the numerical
part, simulations showed that the algorithm proposed based on LP are good at “pruning” suboptimal
solutions. However, when we include higher order models with more species, MATLAB optimization
toolbox provides results with warnings of numerical difficulties in solving the optimization. Therefore
it might be important to find other strategies or formulations to achieve longer and faster simulations.

Regarding a practical application, optimal control strategies are very demanding. At the cost
of some conservatism in the optimality, in Chapter 5, we used suboptimal strategies that might
not provide an optimal performance, but whose solution may lie close to an optimal behavior.
These approaches have a dramatic reduction in use of computational resources. On one hand, using
a piecewise co-positive Lyapunov function, we give suboptimal strategies with a guaranteed cost
control. This guarantees a certain performance, therefore we can compute in advance the worst
scenario that this control might provide. The guaranteed cost control was presented for both finite
and infinite horizon cases.

Numerical results show that in the examples considered, guaranteed cost control achieves good
results compared with the optimal one, with minimal computational resources. In fact, for some
examples this strategy is able to reproduce optimal switching trajectories. However we have not
been able to establish which conditions are necessary for such behavior. On the other hand, model
predictive control appears to be a suitable suboptimal strategy for treatment scheduling. Simu-
lations reveal that MPC achieves similar performance to the optimal control, but MPC uses less
computational resources. It is difficult to choose which suboptimal strategy is better than the other.
In several numerical cases, MPC outperformed guaranteed cost control.

Using a more realistic scenario, we analyzed optimal and suboptimal strategies based on a
switched linear system but applied to a nonlinear mutation model. Simulations suggest that proac-
tive switching is important to extend the time to viral escape. The MPC technique proved the
most effective strategy. Slightly worse than MPC, guaranteed cost and optimal control revealed
good results for the escape time problem. We should remark about the robustness of the proposed
strategies, even though they were designed for a switched linear system, they present an acceptable
performance.

Suboptimal strategies based on a switched linear system present good performance, in most of
the cases they obtained similar results to the optimal one, independently of the complexity of the
mutation tree and nonlinearities. However, it might be important to explore control strategies based
on the nonlinear model. There are some works for the guaranteed cost control for a particular class of
nonlinear models, so it is necessary to adapt for nonlinear positive switched systems. MPC has been
shown to work well for nonlinear models, for instance in control process. Therefore it is interesting
to check MPC based on the nonlinear model.
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Simulation studies on the nonlinear mutation model advice us about the election of decision
time, which is important for the efficacy in the proactive switching. An example study showed
that long decision times (more than 4 months) should be avoided, because they do not provide any
considerable extension in the viral time escape. The clinical trial SWATCH suggests a switching
time of 3 months, however, based on simulation results we suggest that the decision time should
be analyzed for every case. This problem could be consider as an oscillating control, which can be
formalized and might provide good results in treatment scheduling.

Based on the nonlinear mutation model, we investigated when infected people with HIV should
start therapy. The question is still a point of discussion between clinicians and no general consensus
has been achieved. Simulation results suggest that there is no reason to expose the patient to the
strong effects of HAART therapy during the first three years of infection. This is because CD4+T
cell counts are over acceptable levels (more than 400 copies/ml) and we could not find any evidence
that an early therapy would help in the long-term for the viral escape. Nevertheless, treatment
can not be delay for later stages (more than 7 years). HAART is still not effective for long-term
reservoirs, which promotes the last depletion in CD4+T cells.

A very important problem which remains open is the design of observers in HIV, that is some cells
can not be measured frequently and other like macrophages are very difficult to estimate. In prac-
tice, state observer based switching control may provide a suitable and implementable therapeutic
strategy.
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