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Abstract

The main themes of this thesis are networked dynamic systems and related cooperative
control problems. We shall contribute a number of technical results to the stability theory
of switched positive systems, and present a new cooperative control paradigm that leads to
several cooperative control schemes which allow multi-agent systems to achieve a common
goal while, at the same time, satisfying certain local constraints. In this context, we also
discuss a number of practical applications for our results.

On a very abstract level, we first investigate the stability of an unforced dynamic system
or network that switches between different configurations. Next, a control input is included
to requlate the aggregate behaviour of the network. Lastly, looking at a particular instance
of this problem setting, an estimation component is added to the miz.

To be more specific, we first derive a number of necessary and sufficient, easily verifiable
conditions for the existence of common co-positive linear Lyapunov functions for switched
positive linear systems. This is particularly useful given the classic result that, roughly,
existence of such functions is sufficient for exponential stability of the switched system
under arbitrary switching. Such switched systems may represent a networked dynamic
system that switches between different configurations.

Next, we develop several cooperative control schemes for networked, dynamic multi-
agent systems. Several decentralised algorithms are devised that allow the network to
achieve what may be called implicit, constrained consensus: Constrained in the sense
that the aggregate behaviour of the network (assumed to be a function of the totality of its
states) should assume a prescribed value; implicit in the sense that the consensus is not
to be reached on the states directly, but on values that are a function of the states. This
can be used to assure inter-agent fairness in some sense, which makes this result relevant
to a large class of real-world problems. Initially, three algorithms will be given that work
in a variety of settings, including non-linear and uncertain settings, time-changing and
asymmetric network topologies, as well as asynchronous state updates. For these results,
the general assumption is that the aggregate behaviour of the network is made accessible to
each node so that it can be incorporated into the control algorithm.

Then, a somewhat more specific application is addressed, namely (algebraic) connec-
tivity control in wireless networks. This is a setting where the aggregate behaviour (the
network’s connectivity level, roughly an algebraic measure of how well information can
flow through the network) has to be estimated first before it can be regulated. To that end,
a fully decentralised scheme is developed that allows the connectivity level to be estimated
locally in each node. This estimate is then used to inform a decentralised scheme to adjust
the nodes’ interconnections in order to drive the network to the desired connectivity level.

Finally, three further real-world applications are discussed that rely on the results pre-
sented in this thesis.

ix






Preface

God is love.
Whoever lives in love lives in God,
and God in them.
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CHAPTER ].

Introduction

In this first chapter we briefly establish the context for the work developed in
this thesis and give an overview of its structure. We also provide a number of
motivating examples to set the stage for some of the main results derived in
subsequent chapters.

Chapter contents

1.1  Overview and structure

1.2 Motivating examples

1.1 Overview and structure

With man’s innate desire and drive to expand, conquer, progress, improve and optimise,
the technological tools created in the process also never cease to grow. This growth may
happen both in terms of sheer size and in complexity. In the past century in particular, two
new key ingredients were added to the development: miniaturisation and communication.
On the one hand, systems increased in functionality but at the same time decreased in
size (computers are just one of the many examples for this trend). On the other, systems
also became more and more connected thanks to more efficient, faster, capable and reliable
communication means (think of the banking and stock trading systems, governments, or
indeed the Internet). Both trends combined lead to large systems composed of many
“small” but interconnected components rather than of one large, monolithic block. The
advantages of that are evident — due to the distributed nature of the system it would be
more robust to disturbances than a centralised system with its single point of failure, and
it could also better adapt to locally changing environments. However, it is also clear that
many individuals need to “cooperate” to achieve a common task.

Cooperation is typically defined as the process of working together toward the same
end, and cooperation is clearly paramount between the elements in such networked settings
as lack thereof would certainly not lead to the desired common goal. This may explain
the growing interest in recent decades in enabling large systems to exhibit such needed

cooperative behaviour.
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In this context, the main theme of this Ph.D. thesis is networked dynamic systems
related to which three problems are studied. First, we will be looking at switched positive
systems which, in some sense, may be interpreted as networks of scalar systems that switch
between different topologies. Here, we shall make several contributions to the relatively
young research area of switched positive systems by providing a number of necessary and
sufficient stability conditions for switched positive linear systems. Second, we will investi-
gate networks of systems with switching topologies that have some form of global control
input in order to regulate the network’s aggregate behaviour. In particular, we will de-
rive a number of decentralised algorithms that enable multi-agent systems to cooperatively
achieve a common goal while additionally fulfilling certain localised constraints. Third, an
extension of this problem is studied where an estimation component needs to be added to
the network in order to first estimate the aggregate network behaviour before it can be
cooperatively regulated.

Stability of switched positive systems can be seen as a sub-problem of general systems
theory and switched systems in particular. Cooperative control, in turn, is a relatively novel
concept that is closely related to several “traditional” control approaches, in particular
large-scale systems, decentralised control, and more recently multi-agent systems. These
relevant fields of research will first be discussed in detail in the literature review in the next
chapter. We shall then present our main results in Chapters 3, 4 and 5. The applications
chapter, Chapter 6, will complement the theoretical contributions by providing several
applications where those results could be of use. Finally, we draw some conclusions from

our work and suggest future directions.

Before moving on to the literature review, let us give a few motivating examples for

the work carried out in this thesis.

1.2 Motivating examples

1.2.1 Stability of a wireless network power control algorithm

Various radio communication technologies rely on the so-called Code Division Multiple
Access (CDMA) method to select and use radio channels for broadcast and reception,
Schulze and Liiders (2005).> Tt is based on the general idea in data communications
that several transceivers should simultaneously utilise a single communication channel
to transmit and receive information in order to maximise spacial and temporal use of
the spectrum. This concept is known as the multiple access concept. However, with
multiple sources broadcasting at the same time, the broadcast power needs to be carefully
adjusted and controlled as each transmission between one pair of nodes interferes with the

communication between other nearby nodes in the network. Thus, a compromise needs

I To name two of the most high-profile applications, the Global Positioning System (GPS) as well as
mobile phone standards cdmaOne and CDMA2000 are based on this method.
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to be found for each communication pair — on the one hand power output should be
minimised to limit the interference with other nodes’ communications, but on the other it
must be large enough to guarantee a stable communication link (i.e. the signal needs to
be by a factor larger than the local interference level in order to be correctly picked up by
the receiver).

A seminal power control algorithm for wireless networks is the Foschini-Miljanic (FM)
algorithm, Foschini and Miljanic (1993), which works in a fully decentralised way. It
adjusts and minimises each node’s power output all while observing certain quality of
service requirements. This algorithm has been proved to be stable to various kinds of
perturbations and adverse conditions. However, only recently has it been shown that it is
stable even in the presence of time-varying time-delays.

At the heart of this result (presented in Section 6.1) is a delay-independent stability
property of switched positive systems that ultimately relies on the existence of certain types
of Lyapunov functions. Necessary and sufficient conditions and checks for their existence,

as derived in the third chapter, are thus relevant to a large class of real world problems.

1.2.2 Emissions control in traffic networks

A second example would be a network of cars driving around in a city, where the city
council is trying to implement some form of COs emissions control. Assume the overall
objective would be that the aggregate emissions of all cars participating in the scheme do
not, exceed a prescribed level. Fairness dictates that no car should be allowed to pollute
more than others, thus the cars should adjust their behaviour so that they all produce the
same COg emissions (in other words, reach a consensus on the emissions). But assuming
that the emissions are a direct function of the cars’ speed (and that different cars have
different efficiency levels, depending on their weight, engine, etc.) some cars may be able
to drive faster than others for a given level of permissible emissions.

In order to implement the emissions control scheme the council may place a number
of monitoring units around the city to measure the overall emissions level and broadcast
that (global) information to all the cars in the network, along with the value of the desired
or allowable emission level. Clearly, the cars need to cooperate in order to achieve the
desired emission level since the city-wide (traffic related) emissions are just the sum of the
individual contributions.

To make such cooperation possible we assume that the cars are able to broadcast their
own emission level to vehicles in their vicinity. The so-established communication network
can then be used to reach an “agreement” among the cars on a common emission level.
Additionally, incorporating the information from the city-wide emissions broadcast, the
cars should now be able to conjointly adjust their speed so that the resulting emissions
match those of other cars in the network, and also so that the overall emissions produced

throughout the city reach the admissible level.
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Highlighting some of the particularities of this setting we note that the topology of the
resulting communication network would be constantly changing as the cars drive around
and move in and out of range from each other; the communication network will not neces-
sarily be symmetric — some cars may not be able to broadcast as far as others, or some
of the transmissions may be lost; and the dependence of emissions on the driving speed is
usually non-linear.

Problems of this type will be considered in Chapter 3 and a real-life application along

these lines is discussed in the fifth chapter.

1.2.3 Topology control in wireless sensor networks

Lastly, consider a different type of wireless network, this time one that interconnects small
sensor units or motes. Assume that a large number of such battery powered motes are
dropped roughly uniformly distributed over a defined area. The (usually identically built)
motes would be equipped with a battery, a transceiver, one or more sensors and some kind
of processing unit. Networks of this type are very common and widely used, Akyildiz et al.
(2002). The radio in the motes is used to form a network between all the nodes, and one
objective here could be to adjust the broadcast power of their radios so that this network
reaches a prescribed level of (algebraic) connectivity. However, one may additionally re-
quire that all nodes should last equally long in terms of battery power. The first objective
would be important for certain types of algorithms whose rate of convergence depends on
the level of connectedness of the graph they evolve on, and the second objective guarantees
maximum life-time of the network without node failures (due to power shortage).

Clearly, the power used by the radio directly influences the time-to-live (TTL) of a
node. However, the overall power consumption may vary among nodes depending on their
individual workload, and the batteries may also have slightly varying initial charges. As-
suming that the radio is the biggest power consumer in each mote, they will be able to
influence their TTL by varying the power setting of their radios. But now, depending on
the power used, each node can broadcast information to more or fewer nodes in its vicinity.
As different nodes will use different power settings, the resulting topology of the commu-
nication graph will generally be asymmetric, and changing over time. In this setting, we
would like to find a decentralised algorithm that adjusts the node’s power setting so that
on the one hand all nodes eventually have equal TTLs, but on the other hand also guaran-
teeing a certain guaranteed level of connectedness of the resulting communication network.
This means that again the objective is a combination of local and global constraints, with
additionally an identification component involved.

This problem setting will later be studied in detail in the fourth chapter.

With these motivating examples in mind, let us know move on to the literature review.



CHAPTER 2

Literature Review

This second chapter reviews related work reported in the literature and puts
the thesis into the context of existing research. In particular, we discuss the
areas of switched positive systems, large-scale systems, decentralised control,
and cooperation in networked multi-agent systems.

Chapter contents

21
2.2
2.3
2.4

Introduction
Switched Systems and Positive Systems
Large-Scale Systems and Decentralised Control

Cooperation and consensus

2.1

Introduction

As we mentioned in the introduction, three areas of research are particularly relevant to

this thesis. Before going into the details, let us briefly state their key objectives:

— Switched positive systems focus on systems whose overall dynamics switch over time

between a number of distinct constituent behaviours or dynamics, and whose states

are only defined in and thus confined to the non-negative orthant.

Large-scale systems and decentralised control theory aims at developing a theoreti-
cal framework particularly suited for the analysis and control of large systems, and
typically attempts to find or design constituent system dynamics with the property
that, when connected together, the resulting closed-loop system will be stable. In
particular, the implemented control laws should be decentralised, so that there is no

single, centralised entity that regulates the system.

Networked multi-agent systems, and in particular consensus and cooperation therein:
Attempts are made to develop consensus algorithms or protocols that pose an inter-
action rule specifying the information exchange between agents and usage of com-
municated information to update the agents’ states so that the system reaches an

“agreement” of sorts, and that the system achieves a certain goal “cooperatively”.
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Leaving the first research area aside for a moment, the last two fields generally deal
with systems that are not “monolithically” large, but large in the sense that they are
composed of a great number of interconnected, more granular subsystems that have both
some amount of “self-interaction” as well as some interaction with neighbouring subsystems,
but not every other subsystem. Put differently, the graph describing interactions among

subsystems is assumed to be sparsely connected.

Such a setting naturally lends itself to be treated by decomposing the system into its
“parts” rather than investigating everything as a whole. Similarly, with our growing desire
for even larger, even more complex systems, it may not be attractive to use a single large,
central computer to control the system — be it for economic, reliability or pure technical
feasibility reasons. This becomes evident by considering the many, diverse real world
applications such as power networks, communications networks, large chemical plants and
oil refineries, ecological systems, traffic networks, economic and financial systems, or finite
element discretisations, just to name a few.

In the following literature review, by no means encyclopedic in nature, we begin by
discussing switched positive systems as they are particularly relevant to the third chapter
of this thesis. We then approach the area of large-scale systems and decentralised control,
reviewing some of the most common results used to analyse and stabilise large systems.
Finally, we visit the more recent notion of achieving an aggregate behaviour “cooperatively”
as well as the idea of consensus and agreement in dynamical systems. Cooperative control
may be considered as a separate field from the more traditional decentralised control theory
in that it typically deals with even larger, but more homogeneous systems formed by a

network of interconnected, but all in all similar entities.

2.2 Switched Systems and Positive Systems

The class of switched positive systems refers to dynamical systems that have two important
qualities: They are positive, which means their states are only defined for non-negative
values and that they remain in the closed positive orthant throughout time. Additionally,
they are of switched nature, that is their evolution is not governed by a single but several,
different dynamic system formulations between which the system switches over time, and
which represent different, distinct system behaviours.

Both types of systems play a crucial role in many real world applications: For many
physical variables only positive values are meaningful (for instance, masses, liquid con-
centrations, temperatures, volumes, etc.; but also quantities of objects or probabilities),
and while switched behaviour can be observed in a number of natural sciences, it is most
prevalent in man-made applications (for instance, consider robotic systems switching be-
tween different operating modes, transmission boxes in vehicles, networked systems with

changing communication topologies, event-driven systems, etc.).
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In the following, we begin by giving an overview of switched systems. This is followed by
a discussion of positive systems where restriction of the state to the closed positive orthant
allows for much more comprehensive stability results than are available in the general case.
In the last subsection, we finally present a number of results from the relatively young field

of switched positive systems that unites both fields.

2.2.1 Switched systems

It is generally understood that a switched system consists of a number of dynamic sys-
tems called constituent systems, subsystems or modes (representing different “behaviours”)
together with a switching rule or switching signal that orchestrates the switching among
them. Switched systems are thus closely related to and can be seen as a sub-class of hybrid
systems since they constitute a mix of both dynamic elements (the state evolution governed
by differential or difference equations) and discrete time elements (the piecewise constant
switching function).

A great deal of attention has been given to switched systems for a number of reasons.
First, this framework allows a much more natural modelling of many real-world phenom-
ena which exhibit switching between different, distinct behaviours (common in biological
networks for instance, de Jong et al., 2004). Then, it is also of particular use in the context
of intelligent control systems which attempt to improve overall performance by switching
between different, tailor-made controllers that are more appropriate for different (local)
operating regimes, Ge and Sun (2005). Furthermore, switching between even the simplest,
linear systems can produce very complex behaviours including chaos and multiple limit
cycles, Yang and Chen (2008). Another interesting fact is that even if given two pla-
nar, linear, time-invariant systems that are exponentially stable, stability under arbitrary
switching among the two vector fields associated with these LTI systems is not, in general,
guaranteed to be stable. In other words, it may well be possible to construct a switching
sequence that results in an unstable overall behaviour, Liberzon and Morse (1999). To
illustrate this point, an example of a destabilising switching sequence applied to a system
consisting of two (individually exponentially stable) LTI systems is given in Figure 2.1 on
the following page.

While work on the more general problem of differential equations with time varying
parameters has been ongoing since the early 1900s (Perron, 1930; Maizel’, 1954; Sell, 1963;
Conti, 1967; Coppel, 1978), a new body of literature focusing in particular on switched
systems (where system parameters vary abruptly with time) has been growing since the
1990s. For a more in-depth treatment of the wealth of results (the vast majority of which
only applies to linear systems) refer to the books by Liberzon (2003); Murray-Smith and
Shorten (2003); Li et al. (2005); Ge and Sun (2005); Boukas (2006); Mahmoud (2010) or
the survey articles by Liberzon and Morse (1999); Michel (1999); Decarlo et al. (2000);
Hespanha (2004a); Lin and Antsaklis (2009) and in particular Shorten et al. (2007) on
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Figure 2.1: Trajectory resulting from a destabilising switching sequence in a switched
system of two Hurwitz stable second order LTI systems.

which parts of this section are based. Most of the research can typically be attributed to
two fundamental questions: Is a switched system stable under arbitrary switching, or (if
not) is it stable when certain restrictions are placed on the switching signal?

In the following, we shall discuss some of the literature that dealt with these questions.

Stability under arbitrary switching

Since Lyapunov theory plays a key role in the stability analysis of dynamic systems, it
should come as no surprise that most of the results concerning switched systems also
rely on such ideas. It is easy to see that if a Lyapunov function exists for a switched
system under arbitrary switching — which also includes constant “switching” signals —
then this function must be valid for each constituent system in isolation as well. In other
words, such function would have to be a common Lyapunov function for all subsystems.
Indeed, a classic result for linear (continuous-time) switched systems shows that existence
of a common Lyapunov function is equivalent to uniform exponential stability or absolute
stability, see Molchanov and Pyatnitskii (1989); Dayawansa and Martin (1999); Liberzon
and Morse (1999); Fornasini and Valcher (2011) for more details and the precise definition
of these terms. A similar result for discrete time systems can be derived from Brayton and
Tong (1979); Barabanov (1988). In that context, most of the literature appears to focus on
finding common quadratic Lyapunov functions, but other types such as linear or piecewise

quadratic / linear have also received attention.

Converse Lyapunov theorems Loosely speaking, these results guarantee existence of Lya-
punov functions given stability. They have been established for different types of switched
systems, including linear systems (Molchanov and Pyatnitskii, 1989; Blanchini, 1995), non-
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linear systems (Dayawansa and Martin, 1999; Mancilla-Aguilar and Garcia, 2000), uncer-
tain systems (Lin and Antsaklis, 2005a), systems with dwell-time! (Wirth, 2005b), or
input-to-state stable systems (Mancilla-Aguilar and Garcia, 2001). But while it is useful
to know such correspondence between stability and Lyapunov function existence, finding
tests that guarantee the existence of a common Lyapunov function (and thus stability) is
probably most relevant for practical applications. In the linear case, this basically means:
What conditions must the system matrices of the constituent systems fulfil in order for
the overall system to be stable under arbitrary switching? Such existence questions can be

approached numerically and algebraically.

Numerical tests The advantage of focusing on common quadratic Lyapunov functions is
that their existence problem can be formulated as a set of linear matriz inequalities. If the
resulting system of inequalities is feasible, that is if a solution exists, then the switched sys-
tem will be exponentially stable, Boyd et al. (1994); Ghaoui and Niculescu (2000); Liberzon
and Tempo (2004); Ibrir (2008). A different technique involving periodic switching signals
was derived in Margaliot and Yfoulis (2006). Techniques for the systematic construction
of common piecewise linear Lyapunov functions (which were considered as early as the
1960s in the context of Lur’e systems, Rosenbrock, 1963; Weissenberger, 1969) and com-
mon polyhedral Lyapunov functions have been studied in Brayton and Tong (1979, 1980);
Barabanov (1989); Polanski (1995, 1997); Johansson and Rantzer (1998); Polanski (2000);
Yfoulis and Shorten (2004); Christophersen and Morari (2007). Unfortunately, all these
approaches only provide sufficient conditions for stability, and even if they can answer the
stability question (provided the original problem is not too large), they usually provide

little insight as to why a system is stable or not.

Algebraic conditions These tend to provide more meaningful answers to the stability
question and shine more light on the dynamical properties of switched systems. However,
the general problem of proving common Lyapunov function existence for linear systems
is yet to be solved. There are nonetheless a number of useful results for specific types of
linear systems (all, of course, under the assumption that each of the constituent systems is
stable). For instance, if the system matrices are symmetric or normal, then the resulting
system will be stable under arbitrary switching, Zhai and Lin (2004); Zhai et al. (2006).
Triangular systems also always have a common (quadratic) Lyapunov function Mori et al.
(1997); Shorten and Narendra (1998). In fact, for such systems, exponential stability of the
constituent systems is equivalent to uniform exponential stability under arbitrary switch-
ing. This is particularly useful since even certain non-triangular systems can be brought
into triangular form: For instance, it is well known that if system matrices commute with
each other, then there exists a unitary matrix which can be used to transform each system

matrix into upper triangular form, Horn and Johnson (1985); Narendra and Balakrishnan

1 As well shall see later, these are systems which cannot switch arbitrarily fast, but have a uniform
upper bound on the switching rate.
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(1994). If the system matrices do not commute, but if the Lie-Algebra generated by them
is solvable, then it is Lie’s theorem (Humphreys, 1972) that guarantees that the system is
simultaneously triangularisable.

Extensions to these ideas have been reported in Shorten and Cairbre (2001a,b, 2002);
Solmaz et al. (2007), attempting to relax the somewhat restricting requirement of simul-
taneous triangularisability to pairwise triangularisability. Further necessary and sufficient
stability results for special classes of systems concern pairs of: planar systems (Shorten
and Narendra, 2000, 2002), third-order systems (King and Shorten, 2004, 2006), and sys-
tems with rank one difference (Shorten and Narendra, 2003; King and Nathanson, 2006).
A necessary and sufficient condition for the robust existence of a common quadratic Lya-
punov function (hence implying exponential stability) with respect to certain types of
perturbations is discussed in Hinrichsen and Pritchard (1989); Shorten et al. (2007) where
the concept of stability radii is used. Sufficient conditions based on Lyapunov operators
were developed in Ooba and Funahashi (1997a,b,c, 1999). Lastly, necessary and sufficient
asymptotic stability conditions for general switched linear systems were reported for the
discrete-time case in Lin and Antsaklis (2005b); Bhaya and das Mota Chagas (1994) and
for the continuous-time case in Bhaya and das Mota Chagas (1994); Lin and Antsaklis
(2009).

While all these results are promising they are generally hard or computationally ex-
pensive to check for systems of larger dimensions and/or with many constituent systems.

Also, not all applications require stability under arbitrary switching, as we shall see next.

Stability under restricted switching

Many real-word system cannot switch instantaneously or have a natural upper bound
on the switching rate (consider gear changes in a car for instance); in other cases the
system may not be able to switch from any one mode to any other mode, but must adhere
to a prescribed switching sequence/order (for example, it would be rather unlikely that
an automatic gearbox would chance directly from fifth to first gear). Given such a priori
knowledge of time domain or state space restrictions on the switching signal, it is possible to
find less conservative stability results. Also, another interesting question concerns whether
it is possible to restrict switching to result in a stable overall behaviour for systems that

contain a number of unstable modes.

Slow switching On an abstract level, it is easy to understand how restrictions on the
switching rate can contribute to stability: Assume a switched system is composed of stable
subsystems with the property that, when a subsystem is activated, it exhibits a short
intermittent increase in energy. Since the subsystems are stable, they would absorb the
initial energy increase quickly. But if one switches “too quickly” between the systems,
this increase may build up quicker than it can be absorbed — with the result that the

switched system would not be stable. If, however, the switching rate was restricted and
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each subsystem is given enough time to absorb the temporary increase, then the switched
system would be stable. Recall Figure 2.1 on page 8 which showed a somewhat “fast”
switching sequence — if the same system is switched just a little bit slower, the solution

will actually converge, see Figure 2.2 below.

State 2

3
State 1

Figure 2.2: Trajectory of the same system and same initial condition as used in Fig-
ure 2.1, but this time using a slower switching sequence.

Such ideas of constraining the switching rate have been studied extensively over the past
decades, initially in the context of systems with slowly varying parameters, see for instance
Desoer (1969); Ilchmann et al. (1987); Guo and Rugh (1995). In the switched systems
literature, the term dwell-time captures this concept, Hespanha (2004b); Hespanha and
Morse (1999); Morse (1996); Zhai et al. (2001). It defines the (uniform) lower bound on
the time intervals between consecutive switching instants. A classical result then confirms
the intuition, Morse (1996): If the dwell-time is sufficiently large, a switched system based
on Hurwitz stable subsystems is asymptotically stable for any switching system respecting
the dwell-time constraint. However, it is also intuitive that, occasionally, the dwell-time
constraint may be violated without compromising stability, provided this does not happen
to frequently. This led to the introduction of the more forgiving average dwell-time concept
(Hespanha and Morse, 1999), for which a similar result exists — but since the required
average dwell-time may be smaller than the fixed one it will allow for a broader class of
switching signals. Similar concepts for the discrete time case exist as well, Zhai et al.
(2002). Unfortunately, it appears that most of the existing results only provide rather
conservative bounds on the dwell-time — tight conditions on the truly required minimum
dwell-time are still a topic of research, Shorten et al. (2007). Converse Lyapunov theorems
for the dwell-time case are reported in Wirth (2005a); De Santis et al. (2004); Pola et al.
(2004).
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Apart from defining a minimum time between switches, it may also be required, in cases,
to introduce an upper bound on the time the system is allowed to stay in a mode. Switching
signals obeying such upper bound then may allow a switched system with unstable modes
to be overall stable — as the system is not allowed to spend too much time in the unstable
mode. Work investigating such situations includes Lin et al. (2003); Zhai et al. (2001,
2002); Yedavalli and Sparks (2001).

State-dependent switching As mentioned earlier, the switching may also be constrained
by rules that depend on the state vector of the system. This can come in two flavours —
either the switching is directly a function of the state value (switching is entirely dictated by
the state vector alone), or it is arbitrary but subject to certain constraints that depend on
the state. The latter (more general) set-up is considered in the next chapter. The former,
more common set-up assumes that the state space is partitioned a priori into closed (but
possibly unbounded) regions or “cells” whose interiors are pairwise disjoint but whose union
covers the entire state space (such regions are usually denoted by 2 in the literature), and
each of these ()-regions has a particular subsystem associated to it so that the system
automatically switches into that mode whenever its state enters that region. In other
words, it is assumed that there are a number of hyper-surfaces that completely determine
all the system’s mode switches. Such a situation is illustrated in Figure 2.3 below. Since the
switching can no longer be arbitrary it may be unduly restrictive to require the existence
of a common Lyapunov function. In fact, there may not be such a function altogether —
but the system may still be asymptotically stable. A common approach is then to look for
a family of (local) Lyapunov functions — usually one Lyapunov function for each region
— which are then “pieced together” to create an overall function which then provides for

asymptotic stability.

O

(System 1) 2

(System 2)

Q3
(System 3)

State 2

State 1

Figure 2.3: Illustration of the positive orthant being divided into three pairwise disjoint
and conic § regions. In each of these Q;-regions, only mode i can be activated.
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This idea was applied in Johansson and Rantzer (1998) to switched affine systems
by adopting a numerical technique called the S-procedure (Aizerman and Gantmakher,
1965; Uhlig, 1979). It allows the systematic construction of piecewise quadratic Lyapunov
functions which, combined, then guarantee stability under the state-depending switching
rule. Further results for different system types using this type of Lyapunov function being
mostly based on Linear Matrix Inequalities have been reported in Pettersson and Lennart-
son (1996, 1997); Hassibi and Boyd (1998); Johansson et al. (1999); Feng (2002); Pettersson
and Lennartson (2002); Lee (2008); Yong et al. (2008). An attempt to generalise the piece-
wise quadratic Lyapunov function approach to more general functions of polynomial form

were given in Prajna and Papachristodoulou (2003); Papachristodoulou and Prajna (2009).

Multiple Lyapunov functions This framework is another way of deriving restrictions on
the switching rate (but in some formulations also the switching sequence) in order to guar-
antee stability. It sits somewhere in the middle between time space and state space based
restrictions. As the name suggests, the rough idea is to use not just one but combine
multiple non-traditional Lyapunov-like functions (usually one for each subsystem) to con-
struct another non-traditional overall Lyapunov function — non-traditional in the sense
that it may have discontinuities and may not be decreasing everywhere. This Lyapunov-
like function then dictates the restrictions on the switching sequence. There are several
versions of this concept, but the simplest is to constrain the switching in such a way as to
guarantee that if the system is to switch into one particular mode ¢ then the associated
Lyapunov-like function must 1) be strictly decreasing at that point and 2) its value must
be less than what it was when the system last left that mode. Ideas initially due to Peleties
and DeCarlo (1991, 1992) motivated a number of useful results in that direction, see for
instance as Branicky (1994, 1998); Ye et al. (1998); Geromel and Colaneri (2006a,b); Zhang
et al. (2009a,b). Unfortunately, as in classical Lyapunov theory, it is not straightforward
to choose the candidate Lyapunov functions, in particular those that would minimise the

resulting times.

Before moving on to switched positive system, it should be noted that a third funda-
mental question relating to constraining the switching may be asked: Namely, whether it
is possible (and if so and how) to construct a stabilising switching sequence when one or
more subsystems are unstable. To limit the scope of this chapter, this shall not be dealt
with here, but the interested reader is referred to the survey papers mentioned earlier (in
particular Lin and Antsaklis, 2009).

2.2.2 Positive Systems

A somewhat different restriction arises when studying so-called positive systems (some-
times, if non-linear, they are also referred to as monotone systems with the assumption

that the origin is stable, Riiffer et al., 2010). As we mentioned earlier, these are systems
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where the states only “make sense” for non-negative values — hence, the dynamics must

be such that the system never leaves the closed positive orthant.

Systems with such constraints on the state space have been the subject of many recent
studies in the control engineering and mathematics literature, see for instance Berman
and Plemmons (1979); Berman et al. (1989); Johnson et al. (1993); Farina and Rinaldi
(2000); Kaczorek (2002); Virnik (2008); Haddad et al. (2010) or the proceedings of the
series international symposia on Positive Systems: Theory and Applications (POSTA’03;
POSTA’06; POSTA’09). The interest in such systems is hardly surprising since they are
encountered in as diverse areas as economics (Johnson, 1974; Meyn, 2008), biology (God-
frey, 1983; Jacquez and Simon, 1993, 2002; Arcak and Sontag, 2006), electronics (Benvenuti
and Farina, 1996), social sciences (Bartholomew et al., 1991; de Kerchove and Van Dooren,
2006), communication networks Zander (1992); Foschini and Miljanic (1993); Shorten et al.
(2006), decentralised control Siljak (1978), or indeed mathematics (probabilities are pos-
itive quantities) just to name a few. While both nonlinear and linear positive systems
have been studied, much recent attention has focused on both time-varying (in particu-
lar switched) and time-invariant positive linear systems, and on the Metzler matrices that
characterise the properties of such systems. A classical result states that a continuous-time
linear time-invariant (LTT) system starting in the positive orthant will remain positive if
and only if the system matrix is a Metzler matrix (that is, it has non-negative off-diagonal
elements); in the discrete time case, it must be a non-negative matrix, Farina and Rinaldi
(2000). Note that this property is independent of stability. For discussions on reachability
and controllability in positive systems, which are out of the scope of this literature review,
please refer to Caccetta and Rumchev (2000); Fornasini and Valcher (2005); Valcher and
Santesso (2010).

As for general systems, any type of Lyapunov function may of course be used to study
the stability properties of positive systems. For a general LTI system, the existence of a
quadratic Lyapunov function (which is based on general but positive definite matrices) is
necessary and sufficient asymptotic stability. In the case of positive LTI systems, however,
this matrix has a simpler structure: Here the existence of a strictly positive diagonal matrix
is necessary and sufficient for asymptotic stability, Farina and Rinaldi (2000). Furthermore,
thanks to the positivity property of these systems, co-positive Lyapunov functions may also
be employed to study stability — and as noted in Camlibel and Schumacher (2004), these
may be less conservative as they take into account that the states only evolve in the positive
orthant. For instance, with linear co-positive Lyapunov functions one searches for a strictly
positive vector, which is even more attractive due to the even simpler structure. In the
LTI case the existence of such a linear function is also equivalent to the system matrix
being Hurwitz, see for instance Mason et al. (2009); Horn and Johnson (1991). Stability
properties of positive non-linear systems were recently studied in Mason and Verwoerd

(2009) and Riiffer et al. (2010); positive descriptor systems were considered in Virnik
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(2008). But while positive linear time-invariant system are now completely understood,

time-varying results appear to be scarce.

2.2.3 Switched positive systems

In this last subsection, we now turn our attention to the combination of both system
types. When studying the stability of a switched system that switches between positive
LTT systems, the types of Lyapunov functions mentioned above (i. e. quadratic and linear
co-positive) would naturally suggest themselves. Clearly, since switched positive systems
are a subclass of switched systems, all results mentioned in the previous section on gen-
eral switched systems hold. However, since they do not take into account the positivity
constraint on the state, attempts have been made to find less conservative stability results
that are tailor suited to this system type. Let us conclude this section by reviewing a

number of recent results first for the continuous time, and then the discrete time case.

Continuous-time switched positive systems

Common quadratic Lyapunov functions Necessary and sufficient conditions for existence
of common quadratic Lyapunov functions for arbitrary switching between two continuous-
time positive 2D systems were discussed in Gurvits et al. (2007). An eigenvalue condition
on the product of the system matrices was derived that is equivalent to uniform asymptotic
stability. Attempts to generalise these results and the general problem of finding necessary
and sufficient conditions for systems with higher dimensions so far only include the 3D
case in Fainshil et al. (2009). Common diagonal Lyapunov functions in particular were
investigated in Mason and Shorten (2004). A very recent publication (Alonso and Rocha,
2010) presented general (but only sufficient) existence conditions for common quadratic
Lyapunov functions in both the continuous- and discrete time case for systems of arbitrary
size (both in terms of dimension and number of subsystems) using multidimensional sys-
tems analysis. Their condition relies on a certain test-matrix (which is constructed based

on the constituent system matrices) being Schur-stable.

Common linear co-positive Lyapunov functions Necessary and sufficient conditions for
existence of common linear co-positive Lyapunov functions were initially studied in Mason
and Shorten (2007). A result was presented for switching between two constituent systems
of arbitrary dimensions involving the convex hull of the system matrices being Hurwitz
stable. This work was later extended in Knorn et al. (2009a) to arbitrarily many systems,

which is the content of the next chapter of this thesis.

Common quadratic co-positive Lyapunov functions Additional equivalent conditions
to the previous result were given in the Fornasini and Valcher (2010), including the fact

that such common linear co-positive Lyapunov function may be used directly to construct
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common quadratic co-positive Lyapunov functions (although they are of rank one). Nec-
essary and sufficient existence conditions were also studied in Bundfuss and Diir (2009)
and formulated amounting to feasibility checks of suitably defined linear inequalities, in an
attempt to answer some of the general problems posed in Camlibel and Schumacher (2004).
The work by Gurvits et al. (2007) also includes equivalent conditions for the existence of
such functions for the 2D case with two modes studied.

A different approach involving “most unstable switching laws” was applied to the case

of arbitrary dimensions in Margaliot and Branicky (2009).

Discrete-time switched positive systems

The results for linear co-positive Lyapunov functions find straightforward extensions to the
discrete time case, Fornasini and Valcher (2011). In fact, in said paper it is shown that if a
common linear co-positive Lyapunov function exists, then a common quadratic Lyapunov
function can be found, which in turn implies that a common quadratic co-positive Lyapunov
function must also exist. Switched linear co-positive Lyapunov functions were discussed
in Liu (2009), where existence of such functions can be equivalently formulated as linear

programming problems as well as linear matrix inequality problems.

In some sense, the types of systems encountered so far typically do not involve thousands
of states and are usually of “dense” nature (in the linear case for instance it is never assumed
that the system matrices are sparse). This contrasts with the next class of systems that we
turn our attention to, where the opposite is assumed — “many” states, but overall “sparse”

systems.

2.3 Large-Scale Systems and Decentralised Control

While research in the area of large-scale systems and control therein started in the second
half of the 20th century, they continue to be of interest to this day as shown, for instance,
by the ongoing series of IFAC symposia “Large Scale Systems: Theory and Applications”,
(IFAC TC 5.4, 2010). Although the term “large” is of rather relative nature, we shall
simply assume that it refers to systems that are large enough so that “traditional” analysis
and control techniques start to reach their limits, and where a partitioned interpretation is
of benefit either conceptually or computationally. Many classical approaches pre-suppose
some form of “centrality” — be it centrality of a priori information (system model, pa-
rameters, etc.), centrality of measurements or centrality of actuation. However, as systems
grow larger, complexity also grows rapidly: if not exponentially, it still grows faster than
the system size. This implies that typically sooner rather than later centralised design,
analysis or control approaches cannot be used due to the sheer size of the problem. For
instance, in principle Lyapunov’s Method (Khalil, 1992; Miller and Michel, 2007) can be

applied to large, complex multidimensional systems, but in practice, apart from the fact
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that there is no obvious choice for a suitable Lyapunov function candidate, one would also

quickly encounter computational problems.
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Figure 2.4: Visual representation of a “small” protein—protein interaction network based
on data by Uetz et al. (2000). In these networks, proteins form the nodes, and
they are linked together if they interact in some way or other, resulting in an undi-
rected graph. The graph shown here “only” contains about 500 nodes; other publicly
available data sets contain significantly larger networks, but these are difficult to
visualise.

As stated by Sezer and Siljak (1996), one can usually identify three basic reasons why
it is often necessary to move beyond classic “one-shot” approaches: i) dimensionality, ii)
information structure constraints, iii) uncertainty.

“Decentralising” or decomposing the task at hand (be it modelling, analysis, or indeed
control of a large-scale system), that is breaking the problem down into smaller but inter-
connected sub-problems, oftentimes is not only the only chance at regaining tractability,
but in many cases also allows for much more meaningful insights into the problem, es-
pecially if it is of distributed nature in the first place. Presumably, these sub-problems
could initially be treated independently by analysing their stability properties in isolation,
to then be re-combined again (taking into account the nature of their interconnections)
to give insights into the original, large system. In addition to control theoretic aspects,
questions of interconnection- and communication structure and related stability issues then
become relevant.

An intuitive way of creating large-scale systems is to take a large number of individual
systems and interconnect them. This is “bottom up” approach is typically referred to as

synthesis. Alternatively, at “top down” approach is taken in the decomposition-aggregation
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procedure. Here, the overall system first needs to be broken down into somewhat “in-
dependent” sub-groups (decomposition) to be then studied in isolation and finally “put
together” again (aggregation) to derive properties for the overall system. Both approaches
are illustrated in Figure 2.5 on the facing page.

The latter procedure is prominent in and probably originated from the economics lit-
erature, see for instance Theil (1954); Green (1964). It has been described by Simon and
Ando (1961) as:?

(i) We can somehow classify all the variables in the economy into a small number
of groups;

(i) we can study the interactions within the groups as though the interactions
among groups did not exist;

(#i) we can define indices representing groups and study the interaction among
these indices without regard to the interactions within each group

In the context of large-scale systems, this three-step process takes the following form,
see Sandell et al. (1978):

Step 1: The system is supposed to consist of interconnected subsystems. It is as-
sumed that this decomposition or tearing has already been specified, and that
a description of each subsystem and a description of the interconnection is
available.

Step 2: It is assumed that each subsystem, when considered in isolation, is stable [or
has been stabilised]. Furthermore, some quantitative measure of this stabil-
ity (e. g., a lower bound on the rate of decrease of a Lyapunov function) is
available.

Step 3: A condition is now specified in terms of this quantitative measure and some
quantitative measure of the magnitude of the interconnection, and it is shown
that the interconnected system is stable if the condition holds.

Let us first review how this procedure applies to large-scale systems, starting with
decomposition techniques followed by ways of aggregating the stability properties of the
subsystems to derive stability of the overall system. We then discuss how such systems

may be stabilised.

2.3.1 Decomposition

As we mentioned earlier, decomposition of a given large-scale system is in many cases
the only option one has to analyse the system, even with ever more powerful computing
equipment and increasingly sophisticated numerical tools. While work on how to best
decompose complex systems started in the second half of the last century by the seminal
work of Kron (1963) on electrical networks, it is reported in Himmelblau (1973) that as
early as 1830 and 1843 C. F. Gauss and his student C. L. Gerling successfully solved

2 Emphasis added.
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Figure 2.5: Illustration of the “bottom up” synthesis and the “top down” decomposition-
aggregation approach in the analysis of large-scale systems; the overall large-scale
system is shown on the top, whereas the individual subsystems in isolation are shown
on the bottom.

systems of equations by exploiting diagonal structures. Relevant monographs in the area
include Himmelblau (1973); Sage (1977); Jamshidi (1983); Chen et al. (2004); Antoulas
(2005).

Two basic approaches can be distinguished: Tearing along physical or mathematical
lines. In the former case, the system is broken down according to physical considerations
and the subsystems have a physical coherence usually representing distinct, natural struc-
tures. In the latter case, the system is decomposed by a purely mathematical algorithm
— hence without any consideration for physical meaning — together with, possibly, some
coordinate transformations before and after the decomposition. As the physical decom-
position is strongly application dependent but usually intuitive to perform (given enough

insight into the problem at hand) it shall not be discussed here.

Mathematical decomposition in itself can be of exact or approximative nature. That
is, either they produce equivalent models with identical behaviour, or reduced models
(via model-reduction) that are a simplification of the original system, thus introducing
approximation errors. In the exact case, the objective is to yield subsystems that are as
independent as possible, as then the remaining, hopefully small interactions among sub-
systems can be regarded as perturbations to otherwise isolated systems — which facilitates
their study significantly. In the approximative case, however, one aims to significantly re-
duce the size of the system (that is, approximate the overall system with a low-dimensional
one) while preserving key properties such as stability, passivity or steady-state response,

so that then traditional analysis methods can be applied.
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Exact decomposition

While the influential work by Kron (1963) investigated decomposition along physical lines,
it was Steward (1962, 1965) that first introduced information flow-based algorithms for
identifying sparsity in large systems of equations in order to produce weakly coupled sub-
systems. Further partitioning / tearing methods were developed in Sargent and Westerberg
(1964); Ledet and Himmelblau (1970); Young (1971); Himmelblau (1973). Unfortunately,
most decomposition techniques have been developed for systems of algebraic equations
only; it appears that the systematic decomposition of dynamic equations is still unre-
solved. Therefore, decomposition is usually performed based on the physical or structural

characteristics of the system.

Model reduction

Classical model reduction techniques for dynamic systems (typically in state-space for-
mulation, both continuous- or discrete-time) are numerous, and basically fall into three

categories:

(i) Singular value decomposition (SVD) based methods
(i) Krylov (or moment matching) based methods

(i4i) Iterative methods that combine aspects of both.

As only exact analysis methods are considered in this thesis, we shall not describe these
techniques in detail. The interested reader is invited to refer to the excellent tutorial papers
by Antoulas et al. (1999); Antoulas and Sorensen (2001) and the numerous references
therein.

Nonetheless, model reduction techniques can significantly reduce the size of a system
to a point where traditional analysis techniques become feasible again. However, in the
case of exact decomposition of the system, or where the model is already available in
decomposed form, stability of the overall system cannot be readily determined unless the
stability properties of the subsystems are aggregated by observing original interconnection

structure. This will be discussed in the following subsection.

2.3.2 Aggregation

A natural question to ask is whether stability of an interconnected system can be readily
deduced or derived from stability properties of its individual subsystems. To answer this
question, it is natural to attempt to somehow “aggregate” the stability properties of the
individual systems to determine overall stability. General references discussing the key
results in this area include Siljak (1978); Michel and Miller (1977); Vidyasagar (1981);
Michel (1983); Gruji¢ et al. (1987); Lakshmikantham et al. (1991). It appears that work in
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this area has followed two strands: To derive stability with Lyapunov methods, and with
input-output methods.

For both approaches, two different assumptions are imaginable, see Siljak (1978): Either
the constituent systems are assumed to be stable in isolation, or they cannot function
properly (are unstable) when on their own. This leads to the somewhat philosophical
question whether the increase in complexity by interconnecting the systems will lead to an
improvement in stability and reliability of the aggregate system, or not. Intuitively, in the
second case where the systems are not self-sufficient, interconnection may lead to certain
cooperative effects that could potentially produce overall stability — contrary to the first
case where interconnection may actually produce an unstable system, say for instance due
to unstable feedback loops being introduced by certain connections.

A key property of large-scale systems is uncertainty in the interconnection structure.
Whether this is due to inexact models or time-changing interconnections from structural
perturbations, subsystems generally may connect or disconnect from each other during
operation, and this behaviour needs to be included in any stability analysis of such systems.
To take this into consideration, the concept of connective stability was introduced in Sﬂjak
(1972): A system is connectively stable if and only if it remains stable (in the sense of
Lyapunov) for all possible interconnection topologies, in other words under any structural
perturbation. Since this includes in particular the case where all subsystems are completely
isolated from each other, one generally assumes that all subsystems are stable on their own,
Sandell et al. (1978).3

Lyapunov methods

Indeed, the initial work by Bailey (1965) and the flood of subsequent papers followed this
path by assuming that a Lyapunov function exists for each subsystem in isolation.* Then,
the individual Lyapunov functions can either be cast into another scalar Lyapunov function
for the aggregate system by forming a weighted sum of the original functions, or they can
be combined into what is called a Vector Lyapunov function (Bellman, 1962; Matrosov,
1972, 1973). In both cases, the interconnection structure plays an important role: In order
to derive stability, certain constraints must be placed on the nature and magnitude of the
interactions between the free subsystems.

In the context of large-scale systems, vector Lyapunov functions were first used in
the seminal work by Bailey (1965). Subsequent results — both for linear and non-linear
systems — were obtained by Piontkovskii and Rutkovskaya (1967); Matrosov (1972, 1973);

3 Exceptions to this assumption however are commented on in the section dedicated to Input-Output
based methods, see below.

4 Roughly speaking, a Lyapunov function is a norm-like, positive-definite function that decreases along
all system trajectories — if one such function can be found, then the system can be shown to be stable,
Lyapunov and Fuller (1992). The advantage of using such functions in general is that knowledge of actual
solutions of the dynamic system are not required for the stability analysis, and they do not assume linearity
of the original system.
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Gruji¢ and Siljak (1973); Siljak (1983); Lunze (1989); Nersesov and Haddad (2006), most
of which rely on the comparison principle (Miiller, 1926; Lakshmikantham and Leela, 1969;
Miller and Michel, 2007) to ultimately show stability of the original problem. References
for the scalar Lyapunov function approach include Thompson (1970); Araki et al. (1971);
Araki and Kondo (1972); Michel and Porter (1972); Michel et al. (1982); Liu and Lewis
(1992), and some argue that this approach leads to less conservative stability results than
in the vector case. In fact, it can be shown that many applications of the vector Lyapunov
function approach can be reduced to the scalar approach, Michel (1977).

As mentioned earlier, the nature of the interconnections between the subsystems play
an important role. Both procedures require the construction of certain test-matrices, and
in many cases the required interconnection properties will cause those test-matrices to be
M -matrices (which will be discussed in detail in the next chapter). The special properties
of this class of matrices plays a key role in the technical proofs of the relevant results;

additionally, they elegantly allow to show connective stability, Siljak (1972).

Generalisations Both methods were generalised in a number of ways, Michel and Miller
(1977). To name a few, matriz Lyapunov functions were used in Drici (1994); Martyntiuk
(1998, 2002) to further extend the above techniques to systems with overlapping decompo-
sitions (that is systems, where states may be “shared” among subsystems) as well as to find
more efficient and less conservative stability tests. For decomposition techniques based on
graph theoretic considerations, which can be of great advantage if the connected system is
composed of multiple strongly connected components, refer to Michel et al. (1978); Tang
et al. (1980). Discrete time versions of the above results were presented in Araki et al.
(1971); Gruji¢ and Siljak (1973); Araki (1975); Martyntiuk et al. (1996). Modifications
of both Lyapunov approaches required for dealing with infinite dimensional systems were
considered in Matrosov (1973); Rasmussen and Michel (1976b); Michel and Miller (1978).
This allowed to apply these results to systems with delay (Anderson, 1979; Mori et al.,
1981; Chang, 1985; Xu, 1995), functional and partial differential equations (Ohta, 1981),
Volterra integro-differential equations (Wang et al., 1992) or hybrid systems (Michel and
Miller, 1977). Stochastic systems were considered in Michel (1975a); Ladde and Siljak
(1975); Michel (1975b); Rasmussen and Michel (1976a); Socha (1986) and discontinuous
systems in Michel and Porter (1971); Ruan (1991); Stipanovi¢ and Siljak (2001).

While one can safely say that the stability theory for large-scale systems based on
Lyapunov methods has reached a relatively mature level, Michel (1983), it has one major

drawback: Lyapunov stability only applies to the equilibria of unforced systems.

Input-Output based methods

While this restriction on the system structure is not only removed by input-output based
methods, they also typically give even less conservative results, are more easy to apply in

practise as crucial test parameters (the gains) are more readily related to actual design
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parameters in the overall system, and the equilibrium of the interconnected system does
not need to be know a priori, Sandell et al. (1978). Input-output stability ignores the
internal system description and only focuses on the stability of how the system’s inputs
are mapped to its outputs. In other words, it considers a system to be stable if its outputs
will be bounded for every input signal that is also bounded (in some sense), that is, loosely
speaking, the system cannot be destabilised by the input.®

Literature in this area can again be classified into two main categories, namely deriving
methods involving finite gains, and methods using notions of dissipativity / passivity. Both
approaches of input-output stability (Sandberg, 1964; Zames, 1966; Desoer and Vidyasagar,
2009) have then been applied to arbitrary interconnections of a large number of multi-input
multi-output (MIMO) feedback systems. While such interconnections could be viewed as
one large MIMO-system in itself, as before, it is often preferable to take advantage of its

decomposed form.

Finite gains Initial results that fall in the first category were given by Tokumaru et al.
(1973); Porter and Michel (1974); Cook (1974); Araki (1976); Lasley and Michel (1976).
They followed the typical steps of first assuming that the MIMO subsystems are given in a
particular (but very general) standard formulation (often referred to as input-output feed-
back system), then requiring the operators used in these formulations to have small gains
and the non-linear elements in it to be sector bounded, and finally showing stability of the
overall system by placing further conditions on the gains of the operators that reflect the
interconnection structure. Using such general operator based input-output descriptions
allows the theory to also cover non-linear, time-varying systems both in continuous- and
discrete-time, Callier et al. (1978). The gain condition on the subsystems is required for
their input-output stability (via the small gain theorem, Zames, 1966). The interconnec-
tion gains are usually used to construct a test matrix whose leading principal minors are
required to be all positive. Somewhat similar to the Lyapunov-based approach discussed
in the previous section, M-matrices again play a key role as they fulfil this property, Lasley
and Michel (1976); Moylan (1977); Araki (1978), and also elegantly provide for connective
stability. Placing more restrictions on the isolated subsystems and their interconnection
structure, a number of additional results are possible such as obtaining circle criterion
based (Araki, 1978) or Popov-type (Lasley and Michel, 1976) stability conditions, or using
results from positive operator theory, Sundareshan and Vidyasagar (1977). Graph theo-
retic decomposition techniques were developed by in Callier et al. (1976, 1978) to derive
simpler stability tests; this work also helped Vidyasagar (1980) to derive conditions for
the well-posedness of large-scale interconnected systems. Input-output stability results for

interconnections of stochastic systems were studied in Gutmann and Michel (1979a,b).

5 The general input-output approach for linear systems has also received some criticism however as
the truncation operator required in most proofs introduces a non-linearity and unwanted harmonics in the
frequency domain that make the approach only applicable to certain types of systems, namely small gain
and dissipative systems.
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Dissipativity Another way of approaching input-output stability can be found for inter-
connections of dissipative or passive systems, Willems (1972); Hill and Moylan (1976);
Moylan and Hill (1978); Hill and Moylan (1980). Roughly speaking, the concept of dissi-
pativity is a natural generalisation of Lyapunov theory to open systems (that is systems
with inputs and outputs). In the context of dynamical systems it refers to systems that
cannot produce energy on their own and cannot store all the energy that is given to them,
in other words they “absorb” supplied energy in some way.® The study of such systems
often involves construction of an internal function called the storage function. For stabil-
ity analysis, this function can be seen as (or used to derive) a Lyapunov function for the
system; in thermodynamics, it can be related to the internal energy and entropy of the
system. A classical result (Willems, 1972, 73) shows that any neutral interconnection of
dissipative systems forms itself a dissipative system (which is thus input-output stable as
well); by “neutral” it is meant that the interconnections must be lossless, i. e. not introduce
additional supply or dissipation. This was extended to more general interconnections in
Vidyasagar (1977); Moylan and Hill (1978); Sandberg (1978); Vidyasagar (1979) where
conditions are presented that require certain test matrices reflecting the interconnection
structure to be positive definite. Extensions to discrete-time systems can be found in
Haddad et al. (2004).

Before moving on to the area of decentralised control we note that attempts have been
made to compare and draw parallels between the Lyapunov and input-output stability
based approaches, Araki (1978); Moylan and Hill (1978).

2.3.3 Basic concepts of Decentralised Control

Closely related to the stability analysis of large-scale system is the area of decentralised
control. Its concepts are somewhat complementary to large-scale systems analysis and, over
the last four decades, it has been concerned with developing control techniques that are
particularly suited for these types of systems. The decomposition and analysis techniques
presented earlier also give answers to the fundamental question of how to break down a
given large-scale control problem into manageable and only weakly coupled sub-problems,
which can then be solved in isolation with relative ease. The implementation of such
solutions will be greatly simplified if only locally available information (system states and
outputs) are used, and the reduced communication overhead will certainly have reliability
and economic benefits as well. Furthermore, delays in the information availability and
exchange generally have a detrimental effect on control systems. Thus, if the control
stations only use local information that is presumably more readily and quickly available,

then this approach poses another advantage over centralised solutions.

6 A simple example would be passive components in electrical circuits, such as resistors or capacitors;
a transistor in turn is not dissipative as it is an “active” component.
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There is a large number of excellent books and survey papers covering this vast topic
(including both theory and applications). To name a few, the monographs by Siljak (1978);
Jamshidi (1983); Tamura and Yoshikawa (1990); Siljak (1991); Lunze (1992); Zecevié and
Siljak (2010); Davison and Aghdam (2011) cover the topic more broadly whereas the review
papers by Sezer and Siljak (1996); Sandell et al. (1978); Ikeda (1989); Chae and Bien (1991);
Siljak (1996); Siljak and Zecevié (1999); Jiang (2004); Siljak and Zecevié (2005); Bakule
(2008); Perutka (2010) are also good starting points to explore the field.

In the following, we briefly give an overview of the typical methodologies encountered,
the necessary presumptions to guarantee feasibility of the control problem, and some of

the most common design approaches for both weakly and strongly coupled systems.

Methodologies

When attempting to design suitable controllers given the complexity of large-scale systems,
three basic methodologies can be identified: i) decentralisation, ii) decomposition, iii)
robustness and model simplification, Bakule (2008).

The first one, decentralisation, concerns the structure of the information to be used
in the control system. As stated above, the objective is to only use locally available
information in each subsystem, leading to a more or less independent implementation of
the control stations. Siljak (1991) and Lunze (1992) suggest two different scenarios —
decentralised controller design for strongly or weakly coupled subsystems. In the fist case
there is a strong interdependence between subsystems, hence the controller design for each
subsystem must take into account at least an approximate model of the neighbouring
subsystems, whereas such coupling effects can be neglected in the second case. Clearly,
due to the increased complexity of the resulting closed loop system in the first case, weakly
coupled systems are preferable for controller design.

The decomposition methodology, which was already extensively discussed in the previ-
ous section, serves as a tool to analyse and synthesise large-scale systems, with the main
goal of reducing the computational complexity of the task. Robustness analysis and model
simplification attempt to exploit the nature of the uncertainties or the model in order to

further reduce the complexity of the control design task.

Reachability and decentrally stabilisable systems

As in classic control theory, controllability and reachability requirements need to be satisfied
for any feedback controller design to succeed. By its very nature, the idea of feedback
control consists of regulating a system by some from of action applied to its inputs, where
this action depends on and is a response to the system’s behaviour as reflected by its
outputs. Clearly, in order for the control action to be successful, it must be able to influence
or “reach” the system’s states, and the system’s states need to be sufficiently “represented”

(or at least “observable”) in its outputs for the controller to react appropriately. These two



26 CHAPTER 2. LITERATURE REVIEW

fundamental concepts are defined as input- and output reachability (Sﬂjak, 1978). Inspired
by the work of Lin (1974) on structural controllability, analysis of such system properties is
formalised by graph-theoretic concepts. To apply this powerful machinery, the state-space
model of the system is described as a directed graph (whose vertices are the states, inputs
and outputs, and whose arcs represent interactions among them). Structural conditions
guaranteeing that systems can indeed be stabilised by a decentralised control action include

the so-called matching conditions and non-matching conditions (Ikeda, 1989; Leitmann,
1993; Siljak, 1991).

Weakly coupled systems

Loosely speaking, systems where the interaction between different subsystems are only
“weak” are referred to as weakly coupled systems. In such systems the control design
can be performed independently and based on the individual subsystem models only. This
allows the wealth of classical control techniques to be employed to achieve suitable stability
properties (to name a few, such techniques include for instance pole placement by state
feedback, root-locus or parameter plane methods, Siljak, 1978; Lunze, 1992; Chen et al.,
2004; Lunze, 2008). After stabilisation of the isolated systems, an aggregate model of the
system is built do derive stability of the interconnected system, taking into account the
nature and magnitude of the interactions.

Unfortunately, the more basic control design techniques tend to lead to high-gain feed-
back solutions which may be prohibitive in practical applications — or even infeasible if
the strength of the interconnections is not known a priori. This led to shift of attention
towards adaptive control solutions where the gains are automatically adjusted as needed
for overall stability. An extensive overview of these methods in the context of large-scale
systems is given in Siljak (1996); Perutka (2010).

Nonetheless, weak coupling between subsystems is a desirable property, and the next
section discusses a number of techniques from the decentralised control literature that allow

decomposition of a given system into weakly coupled systems.

Decomposition techniques for decentralised control

The “decomposition principle” stands for a loose collection of methods surrounding the
common goal of breaking down a given large-scale system into a set of lower dimensional
subsystems that are weakly coupled. As we mentioned earlier, such decomposition is often
done based on physical or structural characteristics of the system, provided of course that
the subsystems are sufficiently disjoint in nature. But while tearing along the boundaries
of physical subsystems may yield useful insights into the overall system behaviour and
interplay of its components, it may not necessarily lead to the most efficient decomposition.

Since universal decomposition techniques do not depend on particular a priori engineering
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knowledge about the system, they can usually be applied to larger classes of problems and
additionally lead to computationally more efficient results.

A common decomposition technique, the nested e-decompositions (Sezer and Siljak,
1986, 1991; Zecevi¢ and giljak, 1994; Amano et al., 1996), consists in its basic form of
graph-theoretic algorithm that clusters system states together through symmetric row and
column permutations of the matrices of the state-space representation. It yields a weakly
coupled collection of subsystems where the strength of the coupling (which impacts the
size and number of the subsystems) can be adjusted by varying the e parameter. This basic
approach was extended in many directions to cope with time-delays in the interconnections,
nonlinear and uncertain interactions, stochastic systems or descriptor systems, to name a
few. An extensive list of references for these extensions can be found in Bakule (2008).

Further composition algorithms like the Lower Block Triangular (LBT) compositions
(Sezer and Siljauk7 1996) or input and/or output reachable acyclic decompositions (Sﬂjak,
1991) yield hierarchical interconnection patterns between the subsystems. These structures
offer significant computational advantages when standard feedback controller design or
observer design techniques are used.

Another class of decomposition techniques are the so-called overlapping decompositions
(Sﬂjak, 1991, 1996). When systems are strongly coupled and owverlap, they share com-
mon parts and inputs, which means that control needs to conform with these information
structure constraints. This also means that the overall system will have no effective e-
decompositions in its original form. To deal with these situations, one often-used approach
consists of expanding the original problem (with its strongly coupled subsystems) into a
higher dimensional system where the subsystems then appear weakly coupled and permit a
suitable e-decomposition — an overlapping e-decomposition. A general framework for this
concept and surrounding ideas is given by the inclusion principle, see Tkeda et al. (1981);
Bakule (1985); Siljak (1991); Chu and Siljak (2005).

K 0 0 K1 |Ki2| O 0 K1 0 K3
K= 0 Koo 0 . K= 0 Koy |Ko3| 0 | K= 0 Koo Ko3
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(a) Block-diagnoal structure (b) Overlapping structure (c) BBD structure

Figure 2.6: Different matriz structures after decomposition, c.f. Siljak and Zecevié
(2005).

A related class of decompositions for strongly coupled systems are BBD decomposi-
tions (Sﬂjak, 1996; Bakule, 2008; Zecevi¢ and Sﬂjak, 2005b, 2010). Whereas in disjoint
systems the feedback gain matrices (relating the system outputs to the inputs) can be

transformed into block-diagonal (BD) forms, this is not possible in overlapping systems,
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and only block tri-diagonal (BTD) or bordered block-diagonal (BBD) forms can be achieved
(see Figure 2.6 on the previous page for an illustration of these structures). Nonetheless,
these formulation have still the advantage that they allow controllers gains particularly in
very large and sparse systems to be computed in an efficient way, in particular allowing
those computations to be performed on massively parallelised architectures with minimal
inter-processor communication overheads.

Many of the existing techniques for overlapping systems, see Siljak and Zecevi¢ (2005);
Bakule (2008) for a comprehensive overview, involve linear matrix inequalities (Boyd et al.,
1994) for which efficient solvers exist, Sﬂjak and Stipanovié¢ (2000); Sﬂjak and Zecevi¢
(2005); Zecevié and Siljak (2005a); Swarnakar et al. (2007).

These remarks conclude this section on large-scale systems and decentralised control.
The idea of cooperatively controlling a large system’s behaviour is closely related to the
area of decentralised control, but has been treated somewhat separately in the literature.
Decentralised control is typically concerned with an overall system that is to exhibit a
certain behaviour, and to achieve this, a global control goal is decentralised. In cooperative
control, a somewhat different angle of attack appears to be taken, presenting more of a
bottom-up approach: A large number of individual, largely similar and mostly autonomous
entities is joined up to form an aggregate, networked system that is then to exhibit a certain

behaviour.

2.4 Cooperation and consensus

As mentioned above, consensus and cooperation in networked multi-agent systems has
recently attracted much attention in the research community. For a great introduction
into the field and examples of its many, diverse applications see for instance the surveys by
Ren et al. (2005), Olfati-Saber et al. (2007) and Murray (2007), as well as the collection
of references at Reynolds (2001).

2.4.1 History

Consensus and agreement problems were studied systematically as early as the 1960 in the
context of management science and statistics, Eisenberg and Gale (1959); Norvig (1967);
Winkler (1968); DeGroot (1974). Later, those ideas were picked up in different contexts,
such as fusion of sensor data (Luo and Kay 1989; Benediktsson and Swain 1992; Estrin et al.
2001; Olfati-Saber and Shamma 2005; or see the proceedings of the IEEE conferences on
Multisensor Fusion and Integration for Intelligent Systems), medicine (Weller and Mann,
1997), decentralised estimation (Levy et al., 1983; Mutambara, 1998; Gupta, 2006; Olfati-
Saber, 2007), clock synchronisation (Schenato and Gamba, 2007; Carli et al., 2008), or
simulation of flocking behaviour (Reynolds, 1987; Vicsek et al., 1995; see also Figure 2.7

on the facing page for an example) just to name a few.
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Figure 2.7: Illustration of a flock of birds where, in grossly simplified terms, each bird
adjust its speed and heading relative that of nearby flockmates, which leads to the
coordinated group behaviour often observed in nature (such as in bird flocks, fish
schools, herds, etc.)

2.4.2 Networked dynamic systems

Particularly in the last decade the general problem of consensus finding in networked
dynamic systems has been focused on intensely. It typically comes in many “flavours” de-
pending on the application. These variations include whether the topology of the graph
representing the inter-agent communications remains fixed or changes over time; it is undi-
rected or directed; the agents can manipulate the state on which to reach consensus in-
stantly or only with certain dynamics; if each node’s state is scalar or multidimensional;
whether there are delays in the information exchange; or if all nodes update their states
in a synchronous fashion or on their own pace. While the initial work by Borkar and
Varaiya (1982); Tsitsiklis (1984); Tsitsiklis et al. (1986); Reynolds (1987); Vicsek et al.
(1995) on consensus and coordination was based on bi-directional information exchange
between neighbouring nodes (leading to undirected communication graphs) with rigorous
convergence proofs given in Jadbabaie et al. (2003), this has been extended to include di-
rected communication graphs for instance in Beard and Stepanyan (2003); Olfati-Saber and
Murray (2004); Moreau (2005); Ren and Beard (2005); Fang et al. (2005). Another gen-
eralisation allowed asynchronous consensus protocols so that not all nodes had to perform
state updates at the same instant, Olfati-Saber and Murray (2004); Hatano and Mesbahi
(2005); Blondel et al. (2005); Fang et al. (2005); Cao et al. (2006). Closely related was the
work that also considered changing graph topologies, Jadbabaie et al. (2003); Tanner et al.
(2003b); Beard and Stepanyan (2003); Ren and Beard (2005); Olfati-Saber (2006). Further
generalisations of the problem allowed the inclusion of agent dynamics (typically linear,
second order systems) in the consensus problem, Tanner et al. (2003a,b); Olfati-Saber and
Murray (2003); Olfati-Saber (2006), which play an important role in networks of mobile
agents that move with finite dynamics. In some situations the consensus variable may not
be directly altered by the nodes, but only implicitly. Such a situation is dealt with in
Stanojevi¢ and Shorten (2008, 2009b).
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However, most of these papers only focus on so-called unconstrained consensus appli-
cations. When the consensus, that the system is to reach, should fulfil external conditions
(such as a common heading of a flock of agents, but in a particular direction), three ap-
proaches are usually taken, see Beard et al. (2001); Lawton et al. (2003); Ren and Beard
(2004) and citations therein: leader-following (Wang, 1991; Mesbahi and Hadaegh, 1999;
Singh et al., 2000; Fax and Murray, 2004; Ji et al., 2006), virtual structure based (Lewis
and Tan, 1997; Beard et al., 2000; Shi et al., 2006) or behaviour based (Balch and Arkin,
1998; Anderson and Robbins, 1998; Lawton et al., 2003; Parker, 1998; Chen and Luh, 1994;
Veloso et al., 2000) approaches.

Leader-following

The first concept presents a common technique used typically to make formations of au-
tonomous mobile agents follow desired trajectories. The idea is that all agents in the are
programmed to follow a designated “leader” node, as sketched in Figure 2.8 below. How-
ever, the problem with these architectures is usually that they not only depend heavily
on the leader, but it appears that little discussion of the case where the leader adjusts its
state based on feedback of the totality of the states of the network has taken place, and

most of the systems dealt with in that context are linear.

O O o O0—— O
Leader ‘ /
O | -
Q Regular agent Q Q
(a) Step 1. (b) Step 2. (c) Step 3.

Figure 2.8: Illustration of three steps of a typical leader following based control algorithm.
With the system in a given position (step 1), the leader moves somewhere (step 2)
in response to which the other agents move to follow him (step 3).

Virtual structures

In the virtual structure approach, the entire network of agents is treated as a single entity,
the virtual structure. The desired behaviour is then assigned to the virtual structure
relative to which each member controls its own behaviour. This approach is illustrated

in Figure 2.9 on the facing page.
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Figure 2.9: Illustration of three steps of a typical virtual structure based control algo-
rithm. With the system in a given position (step 1), the virtual structure is moved
(step 2) in response to which all agents move to follow their assigned positions rel-
ative to the virtual structure (step 3).

Behaviour based

In the behavioural approach, each agent’s behaviour is based on a combination (e.g.
weighted sum) of a number of desired behaviours, such as goal seeking, formation keeping,
obstacle and collision avoidance, etc. An example for this is shown in Figure 2.10 below.
A typical application of these techniques are rendez-vous problems with obstacle and col-
lision avoidance, where the agents are to meet in a certain place, but avoid running into

obstacles or crashing into each other during the approach.
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Figure 2.10: Illustration of the behaviour based approach, where the agent’s final action
is a combination of three desirable behaviours: Goal seeking (A), obstacle avoidance
(B) and collision avoidance with other agents (C).

It is in this third class that our work later in Chapters 4 and 5 could be placed, as
the desired behaviour of the agents in our networks is both a combination of localised and

global constraints.

With these remarks we close this literature review section an move on to present our

first sets of results for switched positive systems.






CHAPTER 3

Switching

This chapter develops necessary and sufficient conditions for the existence of
common linear co-positive Lyapunov functions first for the state-dependent and
then the arbitrary switching case for sets of positive LTI systems, both in
continuous-time and discrete-time. Additionally, numeric methods for checking
these conditions are provided, we discuss what can be done if the conditions are
violated, and also provide a few preliminary examples for our results.

Chapter contents

3.1 Introduction

3.2 Preliminaries

3.3 State-dependent switching case

3.4 Arbitrary switching case

3.5 Discrete-time switched positive systems
3.6 Examples of usage

3.7 Conclusion

3.1 Introduction

The focus of this chapter will be on switched positive linear time-invariant (LTI) sys-
tems, and in particular on the existence of common linear co-positive Lyapunov functions
(CLCLF). It presents joint work with Dr. O. Mason and Prof. R. Shorten and has been
published in Knorn et al. (2009a,b).!

In some sense, such systems may be interpreted as a (possibly dense) interconnection of
scalar systems, where the graph describing the system interactions changes abruptly over
time. Now, recall the well known result that the existence of a linear co-positive Lyapunov
function is both necessary and sufficient for the exponential stability of a positive linear
time-invariant (LTI) system, Farina and Rinaldi (2000). In light of our earlier remarks

concerning common Lyapunov functions in general it may appear overly conservative to

I It should also be noted that Theorem 3.2 may be deduced from the independent, more general results
on P-matrix sets given in Song et al. (1999), of which the author was unaware of when the result was
developed.
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study the existence of such Lyapunov functions for switched systems. However, establishing
conditions under which such functions exist is nonetheless a natural place to begin the study
of stability of switched positive linear systems.

For one, common Lyapunov functions are very useful since existence of such functions
implies exponential stability of the overall switched system, Fornasini and Valcher (2011).
Additionally, many of the interesting properties of positive systems can be attributed to
the existence of linear co-positive Lyapunov functions. Of particular interest is the work
by Haddad and Chellaboina (2004), in which the existence of such a function was related
to delay independent stability properties that are possessed by many positive systems.
Exploiting these properties further, we will later demonstrate the use of one of the main

results in the applications chapter (Section 6.1 on page 117).

Contributions

Inspired by this and related work, the main contributions of this present chapter will be
the derivation of tractable conditions for the existence of a common linear co-positive
Lyapunov function for a finite number of LTI systems that are associated either with the
entire positive orthant (arbitrary switching) or with polyhedral regions partitioning the
positive orthant (state-dependent switching). In both cases, compact and easily verifiable
conditions are obtained. We also show that our results directly carry over to the discrete-

time case.

Structure

The rest of this chapter is structured as follows: The next section sets up the notation
and defines linear co-positive Lyapunov functions. We then present our main results both
for the case of state-dependent switching (Section 3.3), and for arbitrary switching (Sec-
tion 3.4). Next, we shall discuss how these results can easily be applied to discrete-time
systems. Finally, before making some concluding statements, Section 3.6 highlights the

significance of our results and gives a number of examples that motivate their use.

3.2 Preliminaries

3.2.1 Notation

For general notational conventions, please take note of the Notation section on page 153.
We say that matrices or vectors are positive (non-negative) if all their entries are positive
(non-negative); this is written as A > 0 resp. A = 0, where 0 is the zero-matrix of
appropriate dimension. A matrix A is said to be Hurwitz stable (or just “Hurwitz”) if all

its eigenvalues lie in the open left half of the complex plane. A matrix is said to be Metzler
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(in the literature also referred to as essentially non-negative) if all its off-diagonal entries
are non-negative (Metzler, 1945).

Also, let C C R™ be a closed, pointed, solid convex cone (or proper convex cone) if and
only if its interior is not empty and ax + Sy € C for any x,y € C and non-negative scalars
«, B. Such cone is called polyhedral if and only if it can be written as the intersection
of finitely many closed half spaces, each containing the origin on its boundary, Berman
and Plemmons (1979). In other words, it has finitely many extremal rays (or generators).
Figure 3.1 below gives an illustration of a polyhedral proper convex cone in ]R?éo with three

extremal rays.

Figure 3.1: Illustration of a polyhedral proper convexr cone in with three generators.

3.2.2 Definitions

A dynamic system is called positive? if and only if, for any non-negative initial condition, all
its states remain in the closed positive orthant throughout time (irrespective of the system
being stable or not). A classic result for LTI systems shows that a necessary and sufficient
condition for this to hold true is that the system matrix A is a Metzler matrix: In that
case (and only that case) eA*, which characterises the solution of the differential equation,
is non-negative for all ¢ > 0 (Luenberger, 1979), implying that all solutions starting from
non-negative initial conditions remain non-negative.

We now define the class of switched positive linear systems considered in the following.

Definition 3.1 (Switched positive linear system, continuous time)
A switched positive linear time-invariant system with N modes and of dimension n is

a dynamical system of the form

z(t) = As(m(t),t)w(t) with z(t=0)=x;>=0 (3.1)

2 Technically, one may also use the word “non-negative”, which would be more accurate, but the term
“positive” is typically used.
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where s : R™ x R — {1,..., N} is some piecewise constant switching signal (or switching
function or switching sequence) which may or may not depend on the state vector x(t),
and where Aq,..., Ay € R™" are the system matrices of the constituent systems (or

subsystems or modes).

Furthermore, we will always assume that all the A; matrices are Metzler matrices (in
order to ensure positivity of the system) and Hurwitz matrices (in order to ensure stability
of each individual mode).

Finally, we define the following type of Lyapunov function:

Definition 3.2 (Linear co-positive Lyapunov function)

T is said to be a linear co-positive Lyapunov function (LCLF)

The function v(x) = v
for the positive LTI system & = Az if and only if v(x) > 0 and v(x) <0 for all x > 0,

or, equivalently, v = 0 and vTA < 0.

For more background on Lyapunov theory and related concepts, especially in the con-
text of switched systems, please refer to the references presented in the literature review

on page 8.

3.3 State-dependent switching case

We first consider necessary and sufficient conditions for the existence of common linear
co-positive Lyapunov functions (CLCLF) for sets of positive LTI systems where each con-

stituent system is associated with a closed convex region of the closed positive orthant.

3.3.1 Main result

Consider the following partition of the state-space: Assume that there exist N — possibly
overlapping — proper convex cones C; € RZ, such that the closed positive orthant R,
can be written as R%, = UX,C;. Moreover, assume that there are N stable positive LTI
subsystems & = A;x such that the ith mode can only be active when the state vector is
in the cone C;.

Our first main result gives a necessary and sufficient condition for the existence of a
CLCLF for this type of switched positive linear system with state-dependent switching.
Formally, we provide a condition for the existence of a vector v > 0 such that vT A;z; < 0

for all non-zero z; € C; for i =1,..., N.

Theorem 3.1 (Existence CLCLF, state-dependent switching)

Given N Metzler and Hurwitz matrices Aq,...,Axy € R™ "™ and N proper convex
cones Cq,...,Cn C RY, such that RY, = UN | C;, precisely one of the following two state-

ments is true:
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(i) There is a positive vector v € R™ such that vIA;x; <0 for all non-zero x; € C; and
i=1,...,N.

(ii) There are vectors x; € C;, withi=1,..., N, not all zero such that sz\; A;z; = 0.

Proof (ii) = —(i):> Assume that (ii) holds. Then, for any v = 0 we have
VAT ...+ Ayey >0 (3.2)

which immediately implies that (i) cannot hold.

—(ii) = (1): Assume that (ii) does not hold, i.e. there are no vectors x; € C; not all

zero such that Zf;l A;x; = 0. This means that the following intersection of convex cones

is empty:
{ Ef;l A;x; : x; € C;, not all zero} N {:B = O} =0. (3.3)
—
(91 02

By scaling appropriately it is easy to see that this is equivalent to:

{ZX Awiiaiec, DY, lall, =1} n{e =0} =0 (3.4)
————
(51 02
where || - ||, denotes the usual spatial 1-norm. Now, O; and O, are disjoint non-empty

closed convex sets and additionally O; is bounded. Thus, we can apply Corollary 4.1.3
from Hiriart-Urruty and Lemaréchal (2001) which guarantees the existence of a vector
v € R™ such that
max v'y < inf v'y (3.5)
yeO, yeO,
As the zero vector is in Oa, it follows infyeo2va < 0. However, as O is the cone {x = 0}
it also follows that infyeOZva > 0. Thus, inf,cp, v'y = 0. Hence, vy > 0 for all y € Oy
and it follows that v = 0. Moreover, from (3.5), we can conclude that for any i = 1,..., N
and any x; € C; with [ja;|l; = 1, vTA;@; < 0. As ;N {x = 0: ||z||; =1} is compact, it
follows from continuity that by choosing € > 0 sufficiently small, we can guarantee that
v. := v + ¢l = 0 satisfies v] A;z; < 0 for all z; € C; N {a: =0 || = 1} and all
i=1,...,N.
Finally, it is easy to see that v! A;x; < 0 is true even without the norm requirement
on ;.

This completes the proof of Theorem 3.1. O

3 That is, we show that if (ii) is true, then (i) cannot hold.
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Comment  The theorem thus provides a necessary and sufficient condition for the exis-
tence of a CLCLF. Condition (ii) basically means that if (and only if) there is a non-trivial
linear combination of the all the columns of the different constituent system matrices (us-
ing vectors taken from the corresponding cones) that yields a non-negative value then no
CLCLF exists for the switched system. Unfortunately, to the best of the author’s knowl-
edge, this condition in its present form is difficult to check numerically. However, a slight

reformulation changes this. /

3.3.2 Numerical test based on a linear program

To establish a simple numerical test, we note that polyhedral proper convex cones C with

k extremal rays in the non-negative orthant of the R%, can be expressed as

k

C::{m‘m:ZaiQ(i), aiZO,izl,...,n} (3.6)
i=1

where Q € ]Rgék is the (non-singular) generating matriz of the cone, and Q) denotes the

ith column of Q. This generating matrix can then be included in the second condition of

the previous theorem to yield the following corollary

Corollary 3.1 (Existence CLCLF, state-dependent switching, polyhedral cones)
Given N Metzler and Hurwitz matrices Ay, ..., Ay € R™*™ and N polyhedral proper
convex cones C; of the type (3.6) such that RZ, = UN | C;, precisely one of the following

two statements s true:

(i) There is a positive vector v € R™ such that vTA;x; <0 for all non-zero x; € C; and
i=1,...,N.

(ii) There are vectors w; ¥ 0 not all zero such that vazl B;w; = 0, where B; :== A;Q;.

Proof Virtually identical to that of Theorem 3.1.

The advantage of this reformulation now is that condition (ii) can be checked efficiently
by running a simple feasibility check on a suitably defined linear program, Bertsekas et al.
(2003). For example, it is straightforwart to see that (ii) is fulfilled if and only if the

following linear program is feasible:

argmax 1Tw

. ~ - - (3.7)
subject to Bw >0, w>0, w=Xx1

where B corresponds to the horizontally concatenated B;, and w to the vertically stacked

w;. It is then straightforward to run a feasibility check on this linear program, to provide
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an answer in polynomial time. For similar results, the reader may refer to Rami and Tadeo
Rico (2007).

Comment  As we noted before in the literature review, such numerical tests will certainly
be useful in practical applications. However, their major drawback is that they typically
give little insight as to why a system may be stable or not. They only answer the stability
question with “yes” or “no”, but in case the answer is “no”, do not help establishing why
this may be the case. /

In the following section, we will present an analytical test for the arbitrary switching
case, completing initial work reported in Mason and Shorten (2007). Furthermore, we shall

also comment on how it can give more extensive insights in the stability question.

3.4 Arbitrary switching case

An important special case of the previous results is when each of the cone generating
matrices Q; are the identity matrix. In that case, each switching restricting cone is the
positive orthant itself, meaning that there are no more switching restraints and arbitrary
switching between the modes is allowed. Then, condition (ii) of the corollary above offers
another interpretation: The convex hull of the (polyhedral convex) cone generated by all
the columns of the A; must not intersect the closed positive orthant except in the origin
in order for a CLCLF to exist.

However, additional necessary and sufficient conditions for the existence of a CLCLF
for each of the constituent systems can be derived — guaranteeing stability of the overall

system under arbitrary switching. This will be given by Theorem 3.2 below.

3.4.1 Main result

Before stating Theorem 3.2, we need a technical result which will simplify its proof sig-
nificantly. The following lemma is in fact very similar to Theorem 3.1, when each of the

generating matrices Q; is the identity matrix.

Lemma 3.1
Given N Metzler and Hurwitz matrices Ay, ..., Ay € R™*"™ the following two state-

ments are equivalent:

(i) There is a non-zero v = 0 such that v'A; <0 for alli=1,...,N.*

(i) There are no w; > 0 such that Zl]\il A;w; =0.

4 Note that with the assumptions of the lemma, vTA; will always be non-zero for a non-zero v > 0.
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Proof (i) = (ii): Assume there is a non-zero vector v >= 0 such that v'A; < 0 for all
t=1,...,N. Thus,

vA +...+v"Ay <0 (3.8)

and for any set of strictly positive vectors w; > 0,

v'Ajw, + ... +v Aywy <0 (3.9)
vT(A1w1 +...+ANwN) <0 (3.10)
so that

In other words, there are no vectors w; > 0 such that vazl A;w; =0.

(ii) = (i): Assuming that there are no vectors w; > 0 such that Zfil A;w; =0, we

can write
{A1w1+...+ANwN Lw; FO}Q{O} :(Z) (312)

Since the A; are all Metzler and Hurwitz matrices, it is easy to show that this implies

{A1w1+...+ANwN:wi>-0}ﬁ{a:>-0}:(2) (3.13)
———
(91 02

This corresponds to the intersection of two open convex cones, O; and O,. As this inter-
section is empty, the two cones are disjoint and there must exist a separating hyperplane
between them, see for instance Rockafellar (1970). In other words, there is a vector v € R™
such that

viy<Oforallye @ and v'y>0foralyecO, (3.14)

From the second inequality we get that v has to be non-negative (and non-zero). The first

inequality, in turn, can be written as
v Aw; + ...+ v Aywy <0 for all w; = 0 (3.15)

Furthermore, since v > 0, and since the inequality has to hold for any choice of (strictly
positive) vectors w;, each individual summand must be less than or equal to zero. How-
ever, this can only be the case if vTA; < 0 for i = 1,..., N, which completes the proof of
Lemma 3.1. ]

Some additional notation is also required for the presentation of our second main result.

Let the set containing all possible mappings o : {1,...,n} — {1,..., N} be called S, n,
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for positive integers n and N. Given N matrices A;, these mappings will then be used to

construct matrices A,(A1,..., Ay) in the following way:
— | A (2) (n)
Ay (Ar. Ay) = Al A, Al (3.16)
that is, the 7th column Ag) of A, is the ith column of one of the Aq,..., Ay matrices,

depending on the mapping o € S,, n.
We can now state the following theorem giving a necessary and sufficient condition for
the existence of a linear co-positive Lyapunov function for arbitrary switching between

finitely many positive LTI systems of finite dimension:

Theorem 3.2 (CLCLF existence, arbitrary switching)
Given a finite number of Hurwitz and Metzler matrices Aq,..., Ay € R"*"™, the
following statements are equivalent:

(i) There is a strictly positive vector v € R™ such that v'A; <0 for alli=1,...,N.

(i) Ay(A1,...,An) is Hurwitz for all o € S, n.

Proof (i) = (ii): Assuming that there exists a positive vector v € R™ such that vTA; < 0
for all ¢ = 1,..., N, this of course implies, when looking at the columns of the matri-
ces A;, that vTAEj) <0 for any i = 1,...,N and 7 = 1,...,n. Thus, it follows that
v'A,(Aq,...,AN) <0 for all 0 € S, y. Next, we note that since the A;,..., Ay are
all Metzler matrices, by construction so must be all the A,(A1,...,An), 0 € Sy n. Fi-
nally, applying Theorem 2.5.3 from Horn and Johnson (1991), we have that all matrices
A;(Aq,...,AN), 0 € S, N, must be Hurwitz.

—(i) = —(ii): We show that if there does not exist a vector v as described in (i), then
at least one of the matrices A,(Ay,..., An) is not a Hurwitz matrix for some o € S, n.
To begin, assume that there is no non-zero v > 0 such that v'A; < 0foralli=1,..., N
(note that this is a stronger assumption than the non-existence of a strictly positive vector
v, as stated in (i); we will relax this assumption below). From Lemma 3.1 we then know

that there is at least one set of vectors w; = 0 such that
Aiwi +...+Aywy =0 (317)

Next, we express wa,...,wy in terms of w; using diagonal matrices: w; = D;w;
where D; = diag {di(jj)} and di(jj) >0foralli=1,...,Nand j=1,...,n. We can then
rewrite Equation (3.17) as

A1D1’UJ1 + A2D2w1 + ...+ ANDN’U.Jl =0 (318)
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and thus, since w; > 0, we must have for the determinant

To simplify notation, define for each mapping o € S,y the following product
po =[]0 (3.21)
j=1

for which we note that p, > 0 for all o € S, n since di(jj) > 0 for all ¢ and j. Using the
fact that the determinant of a matrix is multilinear in the columns of that matrix, we can

now express the left-hand side of (3.20) as

det (A1D1 o ANDN) = Y podet (AU(Al, . ,AN)) (3.22)
€S, N

Recall that the determinant of any square matrix is equal to the product of its eigenval-
ues. Since the eigenvalues of a Hurwitz matrix in R™*"™ have strictly negative real parts,
its determinant will either be strictly positive (when n is even) or strictly negative (when
n is odd), but never zero. Thus, using (3.22) in (3.20), we conclude that there must be at
least one o € S, ;v for which A,(Aq,..., An) is not a Hurwitz matrix.

To recapitulate, we have shown so far that if there is no non-zero v > 0 such that
v'A; <0 for all i, then at least one of the A,(Aj,..., Ay) matrices has to be non-
Hurwitz. However, in order to finish the proof, we need to extend this result to strictly
positive v, as stated in the theorem. So let us assume that there is no common v > 0 such
that vTA; <0 for all i = 1,..., N. If, additionally, there was no v > 0 either such that
vTA; <0 for all 4, then the desired result follows from the above discussion. However, if
there was such a v > 0, an additional argument is needed.

Assume that no v = 0 satisfies vTA; < 0 for all i. Letting A;(¢) := A; + €1, x, where
e > 0 and 1,,«, is the n X n matrix of all ones, it then follows that there cannot be a non-
zero v = 0 achieving v"A;(¢) < 0 for all 4. This can be proved by contradiction: Assume
there was such a vector v = 0 for which v"A;(¢) < 0 for all i and ¢ > 0. Then

’UT(AZ' + slnxn) =<0 (3.23)

vA; <0—cv 1,4n (3.24)

v'A; <0 (3.25)

for e > 0 and ¢ = 1,..., N, which contradicts the first assumption; thus, there is no
non-zero v = 0 so that vTA;(e) <0 foralli=1,...,N.

Now, choosing ¢ > 0 small enough to ensure all A;(e) are still Hurwitz and Metzler
matrices, it follows from our earlier argument that there is at least one o € S, n so that
A, (A1 @)y .uy AN(E)) is non-Hurwitz.

Finally consider a sequence of €, such that ¢, — 0 as k — oo and where the ¢, are small

enough so that all A;(ey) are still Hurwitz and Metzler matrices. Since these matrices and
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thus all A, (Al(gk), ol AN(Ek)) depend continuously on e, it follows for all o € S, n
that

Ag(Al(Ek),...,AN(Ek)) —)Ag(Al,...,AN) as Ekﬁo (326)

And since there is at least one 0 € S, y for which A, (A1 (Ek)y- s AN(gk)) is non-Hurwitz
this will also be the case for A,(A1,...,AN).

This completes the proof of Theorem 3.2. O

3.4.2 Remarks

Theorem 3.2 states that IV positive LTI systems have a common linear co-positive Lyapunov
function v(z) = v'x if and only if all the A, (A1, ..., Ay) matrices are Hurwitz matrices,
for all o € S, . We recall that in this case any switched system formed with any number
of these subsystems would be uniformly asymptotically stable under arbitrary switching.

We note also that if the A;Q; matrices from Section 3.3 are all square Metzler and
Hurwitz matrices, then this Hurwitz condition can also be used to give a solution to the
state-restricted switching problem.

A piece of MATLAB® code to conveniently check the Hurwitz condition (ii) of Theo-
rem 3.2 is given at the very end of this chapter. Note that this requires the computation
of the spectra of N™ matrices of dimension n x n. This may, on a computational level, be
significantly more expensive (and possibly even infeasible) compared to the linear program
based test described earlier. However, a very recent paper by Narendra and Shorten (2010)
provides an efficient, necessary and sufficient test for Hurwitz stability of Metzler matri-
ces. The test involves recursively checking the sign of main diagonal entries of a sequence
of lower dimensional matrices that are created by adding two matrices and is thus very
inexpensive to perform.

Finally, as stated earlier, the above result may also be derived from the independent,

more general results on P-matrix set by Song et al. (1999).

3.4.3 Insights from Hurwitz condition

We stated earlier that analytical results as shown above can lead to more insights into the
stability problem as compared to numerical tests. Hence, before extending our results to
discrete-time systems, we would like to give an example in support of this claim.

Assume a set of matrices does not pass the stability test given by statement (ii) of
Theorem 3.2. In particular, assume that it is the matrix A,, that is not Hurwitz stable,
oo € Sp,n. If one has some form of control over the entries in the original matrices
Ai,..., Ay, what can be done so that A,, may eventually become Hurwitz? Clearly,
sufficiently decreasing the entries on the main diagonal and/or the off-diagonal entries will

eventually make the matrix become Hurwitz stable. While this is straightforward to show
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(see for instance Horn and Johnson, 1991, Chapter 2.5), it is also somewhat intuitive given
the fact that A is Hurwitz if and only if there exists a vector v > 0 such that Av < 0, and
hence decreasing the non-negative off-diagonals as well as decreasing the negative diagonal
elements works toward satisfaction of that inequality. An additional argument is given by
the following observations.

Assuming we have some form of control over the matrix entries, another question one
may now ask is which matrix element in particular to manipulate first?® In this context,

it is useful to note that, by construction, any Metzler matrix A can be written as
A=P—al with P = 0 and for some « > 0 (3.27)

and Hurwitz stability of A is equivalent to o > p(P). Thus, if A is not Hurwitz, p(A)
is “too large” for the given a. Now, to work toward satisfaction of the inequality, the
question is which element p(*) would have (locally) the biggest impact on p(P) in order
to decrease it?7 Assuming A is irreducible, we can give the following argument. Given the
irreducibility assumption, the non-negative matrix P will also be irreducible. Application
of the Perron-Frobenius theorem then guarantees that its Perron root will be algebraically
simple (Horn and Johnson, 1985, Theorem 8.4.4) and the corresponding left- and right
Perron eigenvectors will be strictly positive. This allows us to apply a standard result (see
for instance Stewart, 1973) concerning the partial derivatives of simple eigenvalues of a
matrix with respect to the matrix entries: Given some matrix (p(ij)) = P € R™"™ with
a simple eigenvalue A\ and corresponding normalised left- and right eigenvectors 1 and &
such that nT€ = 1, then

O\
ERGI)

= nWel) locally, for each i,j = 1,...,n (3.28)

This means, in the case where P is non-negative and irreducible, that the Perron root
will always decrease if any element in the matrix is decreased (which is consistent with
our earlier remarks). But furthermore, if both Perron eigenvectors can be computed, one
immediately knows which entry (7, j) to target first — namely that where n@eU) is largest.

Application of this result to the original problem and A,, gives an indication which

entry a,(jj) where k = o0¢(j) in the original system matrix Ay € A;,..., Ay to modify

first. However, this is only a local result, i. e. having reduced a,(;j ) somewhat may suddenly
cause a different entry (potentially in a different system matrix) to have the largest impact
on driving A,, toward Hurwitz stability. In fact, the off-diagonal elements can only be
reduced to zero but not beyond (in order for the matrix to stay Metzler) — and even if
one particular off-diagonal element is reduced to zero the matrix may still not be Hurwitz.
Lastly, one may wonder what the impact of reducing a,(;j ) might have on other matrices
in A, that include it? Clearly, our earlier observations guarantee that reducing entries in
the matrices always makes them “more stable”, in other words decreasing the elements in

one matrix will never destroy the Hurwitz stability of other matrices in A,.

5 The author is very grateful to Prof. S. Kirkland for pointing him in this direction.
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3.5 Discrete-time switched positive systems

As we mentioned earlier, most of the results for continuous-time switched positive linear
systems can easily be applied to discrete-time systems as well, Fornasini and Valcher (2010).

The discrete time version of the system given in Definition 3.1 on page 35 would be
x(k+1) = Agam),mnz(k) with x(k=0)=xz9 =0 (3.29)

where s : R® x R — {1,..., N} is again some piecewise constant switching function that
may or may not depend on the state vector x(k), and where the system matrices A; € R™"*™
for each i = 1,..., N must now be non-negative in order to ensure positivity, and Schur-
stable (i.e. all their eigenvalues must lie inside the unit circle).

A linear co-positive Lyapunov function v(z) = v"z for such systems would then have
to fulfil

v(x) >0 for all non-zero x>0 (3.30)
v(z(k+1)) —v(x(k) <0 for all k>0 and «x(k)>0 (3.31)
Clearly, it will be a CLCLF for the switched system (3.29) if (and only if) it is a LCLF for

each constituent system, that is if and only if
v(Aix) —v(x) =v (Ai—T)x <0 for all i=1,...,N and non-zero = > 0

Thus, by letting A; = (A; —1) for i = 1,..., N, all our earlier results directly apply to
the discrete-time case as well, noting that all A; will of course be Metzler (the off-diagonal
elements remain non-negative after subtraction of the identity matrix) and Hurwitz (since
the spectral radius of the A; is strictly less than one, subtracting the identity matrix will

shift all eigenvalues into the open left half of the complex plane).

3.6 Examples of usage

While we will give in Chapter 6 an in-depth discussion of an application where our results
are used to prove stability of a power control algorithm for wireless networks, we still would

like to give a few examples here at this point to illustrate our above results.

3.6.1 Numerical example

As a short example for Theorem 3.2, consider three Metzler and Hurwitz matrices

—12 6 6 -12 4 0 -9 2 8
A =|1 -10 2|, A=|6 -10 9|, A3=|6 -10 4
) 3 —10 4 3 —13 3 0o -11

It turns out that the A,(A;, Az, Az) are all Hurwitz matrices, for any o € Ss3; hence

a switched positive linear system with these matrices will be uniformly asymptotically
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stable under arbitrary switching. If, however, the (3,1)-element of Aj is changed from 3
to 5 — note that after change Ag is still a Metzler and Hurwitz matrix — then the matrix
Az = [Agl) A§2) Ags)} will have an eigenvalue A &~ 0.06 which violates the Hurwitz

condition.

3.6.2 Switched positive systems with multiplicative noise

Consider the class of switched positive systems
IB:A(t)w, A(t) S {Al,...,AN}

If all N constituent systems share a co-positive linear Lyapunov function, then it follows

that the system
& =A{t)D(t)x, A(t)e{A...,An}

where D(t) = diag {d(t)} for i = 1,...,n is a diagonal matrix, is also exponentially
stable, provided that the (%) (t) are strictly positive and bounded for all ¢ and . Systems

of this type arise in situations where the state is reset (for example, by quantisation).

3.6.3 Robustness of switched positive systems with channel

dependent multiplicative noise

An important class of positive systems is the class that arises in certain networked control

problems. Here, the system of interest has the form:
&= A(t,x)x+ [Ci(t,z) +...+ Cp(t,z)|x

where we assume (A(t,x) + Ci(t, ) + ...+ Cy(t,x)) to be always Metzler and Hurwitz
(for all t and € RY,), where A(t,z) € R"*" is Metzler, and where C;(t,z) = 0 is an
n X n matrix that describes the communication path from the network states to the ith
state; namely it is a matrix of unit rank with only one non-zero row. Further, we allow the
network interconnection structure to vary with time between N different configurations,
so that A(t,z) € {Ay,..., Ay} and Ci(t,x) € {Ciy,...,Ciy} for i = 1,...,n. Our
principal result can then be used to give conditions such that this system is exponentially
stable. Further, by exploiting simple properties of Metzler matrices (all off-diagonal entries

are non-negative), we get the robust stability of the related system:
&= A(t,x)x + [Ci(t,z)D1(t) + ...+ Cp(t,x) Dy (1)

where D;(t) is a non-negative diagonal matrix whose diagonal entries are strictly positive,

but with entries bounded less than one, i = 1,...,n.
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3.7 Conclusion

In this chapter our main results were two necessary and sufficient conditions for the exis-
tence of a certain type of Lyapunov function for switched positive linear systems, namely
common linear co-positive Lyapunov functions (CLCLF). As we noted earlier, results of
this type are very useful as, loosely speaking, existence of such functions implies exponen-
tial stability of the overall switched system.

First, we considered the case where the switching rule of the system depends on or
is restricted by the system state. More concretely, the state space was assumed to be
partitioned by (possibly overlapping) proper convex cones that were each associated with
one of the constituent subsystems (but multiple cones could be associated with the same
mode). Then, with the system’s state being in a given location of the state space, the
system could only be in the mode(s) associated with the cone(s) that included that location.
For this setting, two necessary and sufficient conditions were given for the existence of
CLCLFs: The first one applied to any type of proper convex cone (provided they are
convex), while the second one required the cones to be polyhedral. The latter result
had the advantage that it directly allowed a simple linear program to be defined whose
feasibility was then equivalent to the Lyapunov function existence. However, both cases
gave little insight into the overall existence problem and in particular what could be done
if the condition was violated.

This led to a second result which applied to the general, arbitrary switching case (in
which, of course, the constrained switching cases is included). We showed that existence
of CLCLFs is equivalent to a Hurwitz condition on a set of matrices that contains all
matrices that can be created by recombining the columns of the original system matrices.
Apart from being very general, this algebraic condition had the additional benefit of giving
insights into what could be done (and to which subsystem) if the condition was violated.

Finally, after commenting on how our results directly carry over to the discrete time

case, three examples were given to illustrate some of the implications of our work.

At this point, we shall leave the domain of switched positive systems for now and
consider cooperative control problems in the next two chapters. Although our subsequent
results apply to general (not necessarily positive) systems, they may be interpreted as

adding an additional feedback loop to a system that switches between different topologies.
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Chapter appendix

The following MATLAB® code for easy checking of the Hurwitz condition Theorem 3.2(ii)

can be obtained from http://goo.gl/JM31u.

function [result,perm] = check_hurwitz(Ac)

%Checks Hurwitz condition for all column permutations
%
% [result,perm] = check_hurwitz(Ac) where

% Ac — cell array with the A _j matrices in it

% result — TRUE (all matrices are Hurwitz), FALSE if not
% perm — indices of all the permutations of colums for
% which the condition is violated

%
% Florian Knorn, florian@knorn.org, 14 April 2011

%% Some error catching

if nargin ~= 1

error( 'Please provide cell array with matrices' );
end
if ~iscell(Ac)

error( 'Please provide =cell * array with matrices' );
end

%% Initialisations

result = true;

N = length(Ac);

n = length(Ac{1});

perm = [];

maxrho = —1e10;

rhoperm = [J;

sigmas = char(zeros(N"n,n));

%% Generate permutations

for i = l:length(sigmas) % count from 1 to N*n in base N
sigmas(i,:) = dec2base(i —1N,n);

end

% Convert strings generated by dec2base back to numbers
sigmas = abs(sigmas) — 47; % numbers
sigmas(sigmas>10) = sigmas(sigmas>10) — 7, % letters



http://goo.gl/JM31u
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%% lterate through permutations
for i = l:length(sigmas)

% create A_sigma for Hurwitz test
A_sigma = zeros(n,n);
for j = 1n % columns
temp = Ac{sigmas(i,j)};
A_sigma(:,j) = temp(.,));
end

% perform Hurwitz test
rho = max(real(eig(A_sigma)));
if  rho > maxrho
maxrho = rho;
rhoperm = sigmas(i,:);
end
if  max(real(eig(A_sigma)))>0
result = false;
perm = [perm;sigmas(i,:)];
end

end
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CHAPTER 4

Switching and Feedback

This chapter presents a new paradigm for cooperative control and consensus in
multi-agent networks with switching topologies. We present and prove stability
of three algorithms in this framework that make different assumptions on the
overall setting and available information in the network, and provide several
simulation results to demonstrate their use.

Chapter contents

4.1 Introduction

4.2  Preliminaries

4.3 Algorithm 1: Complete knowledge of system
4.4 Algorithm 2: System only partially known
4.5 Algorithm 3: Dynamics and controllers

4.6 Extension to asynchronous state updates
4.7  Conclusion

4.A  Chapter appendix

4.1 Introduction

The objective of this chapter is to develop a novel cooperative control scheme that applies
to a very general class of problems. It presents joint work with Prof. M. Corless and Prof.
R. Shorten and has been published in Knorn et al. (2011a,b). On a very abstract level,
our overall approach may well be interpreted as a switched system with an added feedback
loop.

While the overall setting will be introduced properly in Section 4.2, let us briefly state
it here. Consider a system that consists of a large number of interconnected agents (say,
a fleet of cars with inter-car communication capabilities) that all have some form of local
behaviour (driving speed). This local behaviour has both a local and global effect (CO4
emissions locally, which result in the total emissions produced by the fleet globally). The
objective now is twofold: (i) regulate the global effect or behaviour of the network (such
as limit the overall emissions) subject to (ii) some additional local constraint in the form

of an inter-agent agreement on some quantity of interest that depends on each node’s own

o1
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behaviour (equalise emissions between cars for instance which depend on the car’s driving

speed). This very general setting is encountered in many more situations, such as:

— cooperative charging of electric vehicles in smart grids

(global constraint: total power available, local constraint: charging time);

regulation of inflation in economic networks

(global constraint: inflation, local constraint: inter-bank interest rates);

— distributed Quality-of-Service control in cloud computing applications
(global constraint: total bandwidth, local constraint: server load, see Stanojevi¢ and
Shorten 2009a);

— thermal aware load balancing in large data centres

(global constraint: total work load, local constraint: server temperatures)

Clearly, while cooperative control and the control of networked systems are active topics
of research across various disciplines, many fundamental questions remain unanswered. Our
objective in this chapter is to provide a new cooperative control paradigm that addresses
problems of this type. To do this we exploit the fact that there is usually a non-unique
solution to the global regulation problem. In the CO; emissions example for instance,
the aggregate emissions are just the sum of the individual emissions and hence there is
no unique distribution of individual contributions that results in one particular amount of
global emissions. Indeed, the key idea will be to use this degree of freedom to solve the
global regulation problem while at the same time fulfilling some additional local constraints.
For example, in each of the above applications, not only do we seek a certain global
behaviour, but we also require some level of inter-agent fairness (in the CO5 example for
instance we wish to regulate CO2 emissions such that each car is equally polluting).

The idea of inter-agent fairness or “agreement” immediately brings about the notion of
consensus and coordination in multi-agent networks. However, as discussed in the literature
review, most of the work in this area assumes bi-directional communications (undirected
communication graphs) between agents, often does not cater for time changing topologies
in the communication network, and, in many cases, does not consider dynamics involved in
state changes (or only very specific types of linear dynamics for specific applications). Most
importantly, however, while many consensus schemes will correctly produce an agreement,
it appears little work has been done to control and use this consensus value in order to

influence the overall network behaviour and achieve some form of “common goal”.

Contributions

In the present work we thus not only attempt to be free of these commonly made assump-

tions — in particular the graph symmetry assumption upon which much of the underlying
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mathematical machinery of the previous work is based — but aim at additionally influenc-
ing the consensus value reached in order to meet a global objective. To achieve this, we
start with a classic consensus scheme, but add an external input to regulate the consen-
sus value according to a global performance measure that depends on the entirety of the
network’s states. Our results will be applicable to a wide range of situations, in particular

when only limited knowledge about the network is available.

Structure

The remainder of this chapter is structured as follows: The next section will introduce
the problem setting more concretely and define some necessary notation and assumptions.
This is followed by three algorithms and convergence proofs thereof (together with a num-
ber of comments and simulations) that give a solution to the problem making different
assumptions on the problem setting. These form the main contributions of this chapter.
Finally, after extending our results to the case of asynchronous communications, we will

draw some conclusions, discuss open questions and suggest some future directions.

4.2 Preliminaries

4.2.1 Overall setting and problem statement

We consider the following situation. In a network with n > 1 agents or “nodes” and a
number of directed communication links' that may change over time, each node i has
a physical state (or just “state”) that it can change, either directly or indirectly through
certain dynamics. Furthermore, associated to each node is also what we call a utility value:
This value directly depends on the node’s physical state and represents some particular
quantity of interest that is somehow related to, but usually different from, the physical
state. This dependence is given by each node’s utility function, which is generally assumed
to differ between nodes.

Additionally, we define a certain global value that depends directly on all the nodes’
physical states; this dependency is given by the global function. By suitable means of
communication (or decentralised estimation) either all or just some nodes in the network
have access to this global value.? Finally, we assume that the agents (locally) share their
current utility value through (directed) communication links. This set-up is illustrated

in Figure 4.1 on the next page.

1 This could be due to each node broadcasting information about its state at regular intervals, and other
nodes in proximity picking up this broadcast — but these nodes do not necessarily have to communicate
back.

2 That is, either the global value can be measured or estimated locally by the nodes, or it will be
communicated to them by some form of “external” broadcast (for instance sent from a base station that
itself can estimate or measure that value).
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Figure 4.1: Illustration of the basic setting. Fach node has a state r and a utility function
f(r) associated with it which describes the utility value’s dependency on the state.
The global property g(r(l)7 . ,r(”)) depends on all the network states.

Problem statement

The objective is now for all nodes in the network to reach consensus on their utility values,
while also, jointly, driving the global value to a prescribed, “desired” value. This should be
achieved in a fully decentralised way, using simple algorithms that will operate in a variety
of settings, including non-linear utility functions that are only known approximately, when
not all nodes have access to the global value and when the state updates are not necessarily

performed synchronously.

Solutions to the problem

To address this problem setting, we will develop and prove convergence of three differ-
ent decentralised algorithms that are designed to achieve the objectives in three different

situations:

(i) Physical state: No dynamics involved, can be changed instantly.
Utility functions: Must be perfectly known.

Global value: All nodes must have knowledge of.
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(ii) Physical state: No dynamics involved, can be changed instantly.
Utility functions: Only lower and upper growth bounds must be known.

Global value: Not all nodes must have knowledge of.

(iii) Physical state: Dynamics may be involved in state change.
Utility functions: Only approximate knowledge required, can be filtered values.

Global value: Not all nodes must have knowledge of (but at least one).

Additionally, in each case the underlying communication network can be directed and
time varying, both the utility functions as well as the global quantity’s dependence on the
network states can be non-linear, and the state updates in the network must not necessarily
be performed synchronously (in other words, asynchronous communications are covered by

our approach as well).

4.2.2 Notation

Our problem setting is best described using typical notions from graph theory, Harary
(1969). Let ¥V = {1,...,n} be the vertex set of the network and let A; € V x V be the
edge set representing the (directed) communication links at time k = 0,1,... between the
nodes. We shall always assume that each node can also communicate with itself, i. e. there
is always a self-loop on each node. The overall directed graph describing the communication
structure of the network at time k is the pair ¢, = (V, Ay), where we explicitly assume
that the communication links may change over time, but not the node set. The set of (in-
Jneighbours of node 7 is called W, ,Ei); it contains all the nodes j that can send information
to node 4 (which also includes node i itself), i.e. ngi) ={j|(,i) € Ar }. In a slight abuse
of notation we then define the graph’s adjacency matriz A as follows: a,(cij) =1lifje ngi),
and a,(fj ) = 0 otherwise. Strictly speaking, this would be the transpose of the adjacency
matrix as defined in the standard literature. Similarly, we say that % is the graph of a
non-negative square matrix Sy if for each 4,5 =1,...,n, s,(jj) # 0 if and only if j € Néi).

The network is called connected (in the literature also referred to as strongly connected)
if there exists a path from every node to every other node in the network, respecting the
orientation of the edges. This is the case if and only if the adjacency matrix is irreducible
(Horn and Johnson, 1985, Theorem 6.2.24). We shall either assume in the following that
all networks dealt with are strongly connected, or, if this is not the case, we use the concept
of joint connectivity: A set of graphs is called jointly (strongly) connected if the union of
those graphs is (strongly) connected.?

A matrix P € R™*"™ is called row-stochastic if all its entries are non-negative and all
its row-sums equal one, in other words p(*) > 0 and P1 = 1. Similarly, row sub-stochastic

matrices are defined to be real valued, non-negative matrices whose row-sums are less than

3 The union of a set of graphs on a common vertex set is defined as the graph consisting of that vertex
set and whose edge set is the union of the edge sets of the constituent graphs.
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or equal to one (but with at least one row-sum strictly less than one). A strictly row
sub-stochastic matrixz is a row sub-stochastic matrix where all row-sums are strictly less
than one.

Let r](:) € R be the physical state of node i at time k where £ = 0,1,..., so that
r; forms the state vector of the network. Node i’s utility value t) € R depends on the
physical state via a continuous and strictly increasing wtility function f® : R — R, that
is tS) =7 © (T](ci)). Further properties of the utility functions (such as invertibility) will
be assumed where necessary. Note that for convenience we will often write the utility
functions in vector form, i.e. we use 7, = f(¢r) to represent t;ci) = f(i) (r,(f)) for each 1.
Furthermore, let g : R™ — R be a global function that depends on all the states, which
we assume to be element-wise strictly increasing. Desired values are usually denoted with
subscript asterisks, so that, for example, the desired value for the global function is always
denoted by g.. Based on this desired value, the solution to the problem thus consists of a

vector 7, for which f(i) (Tf)) =t, for all 7 and g(r.) = g..

4.2.3 Growth conditions

Throughout we shall assume that the utility functions and the global function are contin-

uous and satisfy the following growth conditions

Assumption 4.1 (Bounded growth rates)
There are positive constants d,d™, hD h@ such that

, (®) — f@@) .
49 < F(ra) = £79(rs) < d9D  forall rg,ry € R with rq # 14 (4.1a)
Ta —Tb
, Are;) — o
) < g(r + Arei) — g(r) < D for all v € R"™ and all Ar € R with Ar #0

- Ar
(4.1b)

foralli=1,...,n.

Loosely speaking, the growth conditions require the utility functions to be strictly increas-
ing with a rate that is bounded away from zero and upper bounded; the global function
must also be strictly increasing with a non-zero but also upper bounded rate coordinate-

wise.

4.2.4 Feasibility and existence of unique solution

Before presenting our main results we need to first show that indeed a unique solution to
the overall regulation problem exists. As we show next, the existence of such a solution is
guaranteed by the above growth conditions.

First, we note that the conditions on the continuous utility functions guarantee that

they are strictly monotone increasing and unbounded; hence each utility function has a
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continuous inverse go(i) so that
go(i) (f(i) (r)) =7r and f(i) (ap(i) (t)) =t (4.2)

for all t,r € R. Let (t) := [eW (W), ..., gp(”)(t("))]T denote the inverse of f(t).
Furthermore, with ¢, = ¢,1 define

0(t.) = g(p(t.)) = gl (t.1)) (43)

In order for our problem to have a solution, it is thus necessary and sufficient that the

equation 6(t.) = g. has a solution for ¢, for all g, that is, the function 6 is invertible.
When a solution for ¢, exists, the solution for the state vector is given by 7. = (t.1).

We now show that, as a consequence of the growth conditions, the function 6 is indeed

invertible. Using the result in Section 4.A.1 on page 80, we obtain that, for any t,,t, € R,

0(ta) — 0(ty) = g(p(tal)) — g(w(ts1)) (4.4)
" WO RO
= ;c( fta—ty)  where = <l < ) (4.5)

From this it follows that 6 satisfies the growth condition

0(ta) — 6(t)

0<e < a— <e for all ¢4, t, € R with t, # ¢ (4.6)
a — Ub
where
" p(@) - LA
c= Z; 70 and c= Z; Fo) (4.7)

Satisfaction of the above growth condition implies that € is invertible, hence, our problem

always has a unique feasible solution.

With all these definitions given we are now ready to derive the main contributions of
this chapter. At the heart of each of the algorithms presented in the following sections will
be a recursive update law according to which the nodes are to adjust their physical state.
We would like to emphasise the fact that these update laws indeed represent a decentralised
approach — they only require locally available information from neighbouring nodes, and
the global term (which is assumed, ideally, to be estimated in a decentralised fashion as
well).

4.3 Algorithm 1: Complete knowledge of system

The first algorithm provides a control law that will be suitable for situations where the
utility functions are invertible functions and are perfectly known to the designer. Situations

like these are encountered, for instance, in the computer communication networks space,
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Stanojevi¢ and Shorten (2008). Also, the value of the global function must also be accessible

to all nodes at all times.
Before stating it, let us present the following lemma which will simplify the proof of

our main result.

Lemma 4.1 (Consensus with common input)

Let P, € R™ ™ be a sequence of matrices taken from a finite set of primitive, row-
stochastic matrices with strictly positive main diagonal entries, and ﬂ(wk, k) a sequence of

real numbers.
If xp, = (zg) e xl(cn) )T evolves for some xx—9 = g € R™ according to
Try1 = Prxy + ﬂ(mk, k)l (4.8)
then the elements of @y will approach each other over time, that is

lim 2”2 =0 (4.9)

k—o0

foralli,je{l,...,n}.

Proof For k > 1, define

&y = op1 where o = kz_:lﬂ(ac(z),z) (4.10)
i=0
Since Py is row-stochastic,
P.z;, = P, [O’kl} =0, Pl =011 = x3, (4.11)
Hence
Tpy1 = Tp + 19($k,k:)1
= Py, + 9 (ak, k)1 (4.12)

Letting yr = oy — &, it follows from (4.8) and (4.12) that yip+1 = Pryk. Since all
the Py are taken from a finite set of primitive and row-stochastic matrices, there exists a

constant scalar ¢ such that
lim y;, = 91 (4.13)
k—o0

see for instance Hartfiel (1998). This means that as k — oo, the elements in y; approach

a common value, 9. Since xy, = Yr + ox 1 the desired result follows. O
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4.3.1 Main result

The basic idea of the following algorithm consists of running a classical consensus scheme
directly on the utility values with an additional global term added in each node. The actual
required state update is then calculated (“reverse engineered”) from these new utility values

using the inverse utility function.

Theorem 4.1 (Algorithm 1: Complete knowledge of system)

Consider the standard situation as described in the Notation section and assume that
the utility functions £ and the global function g are continuous and satisfy the growth
condition. Furthermore, assume that each node, using the inverse of its utility function,

can calculate its physical state corresponding to a particular utility value.

For any initial condition ry=9 = T9 € R", and any sequence of strongly connected

communication graphs, suppose that the nodes iteratively update their physical states based

on
t,(f}rl = t,(f) +7 Z (t,(cj) — t,(f)) + u(g* - g(rk)) (4.14a)
jen®
rl(czll = ¥ (tgbj*l) (4.14b)
for some
1 2
0<n<—— and O<p<= (4.15)
n—1 c

Then, the physical state vector ), converges asymptotically to v for which f*) (rii)) =t

for all i and g(ry) = g«.

Proof The control equation (4.14a) can be expressed as

i1 = Skt + p[g. — g(e(t))]1 (4.16)
where
) 1_2].6-/\[]5'077 ifj=1
s =13y if j e N (4.17)
0 otherwise

Clearly Sy, is a row-stochastic matrix. The bounds in (4.15) on 1 guarantee that, for
all 7, the elements sgi) and s,(cij ) are positive for j € N, éi). Thus the graph corresponding to
S} is the (strongly) connected communication graph at time step k; this implies that Sy
is irreducible. Furthermore, since the main diagonal entries of S}, are all strictly positive,

this matrix is primitive (Horn and Johnson, 1985, Lemma 8.5.5). Noting that the number
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of strongly connected graphs on n nodes is finite, it follows that all the S} matrices are
contained in a finite set.

Having shown these properties of the S} matrices we can now readily apply Lemma 4.1
which guarantees that t,(j) — t,(cj ) S 0ask grows. Considering the fact that in any practical
implementation of this algorithm quantisation effects will inevitably occur, this implies

that the evolution of each utility ¢” will eventually be described by

b1 =t + 1 (g — 9(p(tr1))] (4.18)
= (ty)

It is well know that such one-dimensional iterated maps have a unique and globally asymp-
totically stable fixed point ¢. = ¥(t,) if

‘ﬂ)(lfa) — P(ts)

< 1 4.19
Py | SP< (4.19)

for any t,,t, € R and t, # 5, Hilborn (1994). So let us determine suitable bounds for u so
that the above inequality is satisfied and the system will indeed converge to a fixed point.

Considering any t,,t, € R with t, # t;, we have

P(ta) = (ty) = ta — ty — p[0(ta) — 0(ts)] (4.20)
where 0(t) = g(4(t1)). We have already shown that

0 < ¢ < Ot) = 0t)

<e 4.21
c t 1, = C (4.21)

from which the following bounds can be established

1—pe < Y(ta) — ¥ ()

< <1l—-pc<l1 (4.22)
ta — b

Thus, condition (4.19) holds if 1 —ué > —1, that is, u < 2/¢ which is one of the hypotheses
of the theorem. Convergence of the one-dimensional system (4.19) to ¢, corresponds to all
the utility values of all nodes converging to the same value t.; since ©(t.) = t,. can only
be the case if g(cp(t*l)) = ¢g«, we obtain the result that g(r.) = g. where r{ = fOt,),
i. e. the original system converges to the desired solution.

This concludes our proof of Theorem 4.1. O

Comment  The control law (4.14a) has two components: One aimed at achieving con-
sensus on the utility values, the other at regulating the global value. In order to make
this control law easier to understand and implement we suggested a rather specific form
for the consensus part — it only involves one parameter (the gain 7) together with the
summation over the differences of utility values. As we stated earlier, the bounds on the

gain n are used ensure that this formulation results in primitive, row-stochastic averaging
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matrices Sk so that Lemma 4.1 can be applied. Clearly, this specific formulation does not
necessarily have to be used, and Theorem 5.1 on page 97 in the next chapter, whose claims
are similar to Lemma 4.1, would allow for a much broader class of averaging schemes to

be employed. /

4.3.2 Simulations

To produce time varying graphs for our simulations, we made use of random geometric
graphs with time varying connection radii (or distance parameters), see Penrose (2003);
Santi (2005). A geometric graph is created by distributing nodes over a defined area
(typically, the unit square is used), associating a connection radius to each node i and
then connecting it to all the nodes j that lay within node i’s connection radius (which
could be thought of as a “broadcast radius”, that is an area within which other nodes j can
receive information from node 7). In all the examples here, each node’s physical state is
interpreted as its connection radius,* and thus, as the states change so will the network’s

topology. All examples use graphs with n = 25 nodes.

! ! ! ! ! !
20 25 30 35 40 45 50

Time step k

Figure 4.2: Simulation of Algorithm 1.

The global and utility functions used for the simulation of Algorithm 1 were of the

quadratic type, see Section 4.A.2 and Figure 4.8 on page 81. For these functions it is

4 However, if a state is less than 0 or larger than 1.5, it is interpreted as 0 or 1.5 respectively to determine
the graph topology.
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straightforward to determine the growth-bounds as required by the theorem and calculate
the bounds on the gains i and 7 used in the update equation.

Figure 4.2 on the previous page shows the results for a desired global value of g, =
54, when the network was initialised with a common physical state of T(()i) = 0.35 for
t =1,...,25. The subplots show the evolution over time of the value of the global term
(with the desired value marked by the dashed line), the physical states and the utility
values, respectively. As can be seen, the network quickly reaches consensus on the utility
values. The general increase in the physical state values is driven by the, initially, lower
than desired global value, which then pushes the global value towards its target value.
The physical states (interpreted as the connection radii for the underlying communication

graph) remained large enough for the network to be strongly connected in each time step.

In closing, note that the theorem requires a very precise setting where perfect knowledge
of the utility functions (and their inverses in particular) is required. Additionally, every
node needs to have access to the value of the global term which may not be possible in
all applications. In that regard, the algorithm and its generalisation developed in the next
section requires weaker assumptions on the setting and thus is relevant to a much larger

class of applications.

4.4 Algorithm 2: System only partially known

In this section we present a second, more general algorithm for consensus and cooperative
control of a global goal, together with an extension (presented after some simulation results)
that allows it to work even in the case where not all nodes have access to the global value.
Also, as shown in Section 4.6 on page 75, it can be easily extended further to situations
where the communication network is not necessarily strongly connected (which allows the
algorithm to handle asynchronous communications, or to tolerate a certain amount of

communication failures).

4.4.1 Main result

The implementation of this method only requires limited knowledge of the utility functions
as well as the global function. By limited, we mean that only the growth bounds need to

be known, not the actual functions itself.

Theorem 4.2 (Algorithm 2: System only partially known)

Consider the standard situation as described in the Notation section and assume that
the utility functions £ and the global function g are continuous and satisfy the growth
condition. For any initial condition rr—o = ro € R™ and any sequence of strongly connected

communication graphs, suppose that the nodes iteratively update their physical states based
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on
7,](;_"_1 — Tk + Z (3) (t(J) t(z ) + M( )Uk (423)
jen®
where
« — g(Pra1— if k+1 is a multiple of M :=n — 1
— 9(res1-n) if ple of (4.24)

0 otherwise

and there exist constants €1, €2, u, it > 0 such that

ij . i ij 1
7712 D > e for j e ./\/',5 ) , and Z 77,(C D < R (4.25)
jent

and
O<p<u <p (4.26)

Then, if i > 0 is sufficiently small, the state vector vy converges asymptotically to the
vector ry for which f(i) (rii)) =t, for all i and g(ry) = g«-

Proof Using the growth properties of the utility functions, we have

no

r1 t,(:) = d,(j) (Tkl_?_l — Tkl)) where 0<d? < d,(:) <d® . (4.27)

Hence, multiplication of update law (4.23) by d,(j) results in

), =t +dy S g (t(j) - t(“) +dP 0 o, (4.28)
jen®
that is,
t, = st + 30 s 4 dl o (4.29)
jen®
where

N L=d )ZJGN(” ) i j=i
o = o, it j e N0 (4.30)

0 otherwise

Using the result in Section 4.A.1 on page 80 again, we obtain that

g« — 9(Thi—m) = g(sa(t*)) - 9( (1) Z C,(; 2 ,;zl_M) (4.31)
=1
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where
B9 _ h®
0< S5 <a’ < om (4.32)
This allows us to rewrite Equation (4.28) as
Skt — BQk (ti—nr — ti)  if k41 is a multiple of M
tk+1 = (433)
Siktr otherwise
where, for each i =1,...,n,
ql(:J) — Mk d(1 c(])/,u (434)

Since Sit. = Si1t. = 1t. = t., we subtract ¢, from both sides of (4.33) and define
Aty =t — t. to get the following reformulation of (4.23)

SipAty — iQrAtrpar  if k+1 is a multiple of M
Aty =  SHAE Qi Aty P (4.35)

S Aty otherwise

We can now use this expression to show that Aty converges to the zero vector — which,
of course, implies that the states converge to the desired solution of the problem.

If the system starts at k = 0 then, after M iterations, Equation (4.35) results in

::gg
—_—
AtM = Sn,QSnfg C SO Ato — ,L_LQn,QAtO (436)
= (So — 1Qn-2) Aty (4.37)
~— ——
::Zo

and after another n—1 steps

Aton o = S1At, 1 — [iQan3At, (4.38)
= Z1At, (4.39)
In general, for l =0,1,..., we have
Aty = ZiAtiy (4.40)
where
— 1Q (111) M1 and S, = S(1)(n1)-1 - - - Si(n-1) (4.41)

The evolution of the Aty vectors is thus governed by the product of Z; matrices, at
which we must hence take a closer look.
To this end, we first show that the S; matrices are row-stochastic and positive. To

do this we first show that the Sy matrices are primitive and thus fully indecomposable
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row-stochastic matrices whose non-zero elements are uniformly bounded away from zero.

It is clear from (4.30) that Sy is a row-stochastic matrix. Now note that

S =1 g 3 n >1 - qi 3 ) > d%ey > 0 (4.42)
JeN? jen?

Also, when j € ./\/',gi) we have

s = dOp) > gDy > dey > 0 (4.43)
where
d = min {d?} and  d:=max{d?} (4.44)

The above positive lower bounds on the elements s,(jj ) for JjEN, ,gi) imply that the graph
corresponding to S} is the (strongly) connected communication graph at time step k.
Since the diagonal elements of Sy are positive this implies that Sy is primitive (Horn
and Johnson, 1985, Lemma 8.5.5). Applying Theorem 2.2 of Brualdi and Liu (1991)
we can thus note that Sy is fully indecomposable for all k. However, a product of the
n—1 fully indecomposable n x n matrices yields a strictly positive matrix (Hartfiel, 2002,
Corollary 2.5) and hence the S; are all strictly positive (row-stochastic) matrices.

We now obtain a lower bound on the elements of every S;. It follows from (4.42) and

4.43) that the non-zero elements s\) of S must satisfy
k

sgfj) > Smin where Smin = min {451, J(l)sg, cee &<”>52} (4.45)

Since each element of S; is the sum of a number of positive terms, where each term is the

product of at most M elements of S} matrices, and syin < 1, we must have
5](;]) > (Smin)M = Bmin (4.46)

for all 7, j and k.
Regarding the Q) matrices, it follows from (4.34) that, for all &,

7 h(9) (i) _h@
or
0< Gmin < Q;(jj) < Gmax (448)
where
' I (RO - R
Gmin = d <;) min { = } and (max ‘= dmzax {d(—z) (4.49)

Thus, provided

— . . M
0 < ﬂ < Smin _ (Smln) (450)

Qm ax Qm ax
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every Z; matrix will be non-negative; furthermore, since S; is row-stochastic the row sum

of every row of Z; will be bounded above by
Kk:=1— iqmin <1 (4.51)

This implies that the Z; matrices are strictly row sub-stochastic and thus satisfy

| Z1At o0 < K| At s (4.52)
where || - || denotes the usual maximum-norm. It now follows from (4.40) that
[AtG1ymlloe < Bl AEM |00 (4.53)

for all I; hence
1At < K| Ato]loo (4.54)

Since each Sj matrix is non-negative and row-stochastic, it satisfies || SpAt||c < ||At]c0;

hence

|Atr]loo < &'[|Atollee  when  IM<k<(+1)M—1. (4.55)

Thus Aty converges to zero as k goes to infinity.
This concludes the proof of Theorem 4.2. O

Speaking loosely, an implementation of Algorithm 2 would look as follows. In each time
step, a node listens to the utility values broadcast by other nodes in the vicinity, and also
broadcasts its own. It then takes the weighted average of these values and updates its own
physical state. If additionally the time step is a multiple of n — 1, it would also listen for
the global broadcast of the global value (or the node estimates it, if this is possible in the
application), and stores this value. At the same time, it fetches the global value from n—1
iterations ago and incorporates it in the state update.

Let us now provide some simulation results of this procedure.

4.4.2 Simulations of Algorithm 2

For the simulations of the algorithm based on Theorem 4.2, which are shown in Figure 4.3
on the facing page, we used piecewise linear utility functions; the global function was
selected to be of affine form, see again Section 4.A.2 and Figure 4.8(b) on page 81. The
parameter bounds were chosen within certain bounds based on which the growth-bounds
as required by the theorem were derived.

As described in Theorem 4.2, the states only incorporate the value of the global term
every n — 1 = 24 time steps. These updates are marked by the dashed, vertical lines in the

second subplot.
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Figure 4.3: Simulation of Algorithm 2.

While in each time step the averaging scheme pulls together the utility values, each
update with the global term pulls them apart again (but brings the global value closer
to its desired value). As the targeted value is approached, however, the influence of the
global term gets smaller and smaller and eventually the averaging scheme brings a “lasting”
consensus to the utility values, at a point where the global term has reached the desired

value.

4.4.3 Extension when access to the global term is limited

The previous result assumes that all nodes always have access to the global value when it
is needed. In order to make our results also relevant to applications where this assumption
may not always be practical or possible to guarantee (for instance in the presence of
communication failures), we provide the following corollary to Theorem 4.2. It relaxes
the assumptions to the more general setting where not all nodes have access to the global
term. In fact, it is sufficient for only one single node to have access to the global value.
This “special” node could for instance be placed in a strategic position where it can either
measure or determine the global value its, or receive from an external source (“bridge
node”).

To model this more general scenario, consider any time step k where the global term

9(Trp1—nr) is needed and let 7y, C {1,...,n} be the non-empty set of nodes which incorpo-
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rate the global term in their state update at time k. Then, recalling the original algorithm

in (4.23), the more general algorithm under consideration is modelled by

= 5 () -8 0ol (456)
jeN®
where
. s — g(Tra1— if k+1 is a multiple of M =n—1 and ¢ € 7,
o0 )9 9(res1-n1) p ¥ (4.57)
0 otherwise
for all k =0,1,.... We have now the following result.

Corollary 4.1 (Restricted access to global term)
The results of Theorem 4.2 on page 62 still hold when not all (but at least one) node

includes the global term in the state update whenever it is required.

Proof The proof of the corollary is almost identical to that of Theorem 4.2; only some
small modifications are needed. Proceeding as before, the algorithm can still be described
by (4.35) where S}, is the same as before and the rows of @y, corresponding to the nodes
which update with the global term at k are the same as before; however the rows of
Q). corresponding to those nodes which cannot incorporate the global term at k are zero.
Thus Qy is not necessarily strictly positive. However, since the assumptions of the corollary
guarantee at least one positive row, the Z; matrices defined in (4.41) will still be row sub-
stochastic but not necessarily strictly row sub-stochastic (as they were under the hypotheses
of Theorem 4.2).

However, as we show now, products of the form Z;,1Z; are strictly row sub-stochastic.
To this end suppose that A, B € R™*™ are positive, row-stochastic or row sub-stochastic
matrices, and at least one row-sum in B is strictly less than one. We show that then
the product AB must be strictly row sub-stochastic. Let b = B1 and w = AB1 be
the vectors containing the row-sums of B and the product AB respectively. Since B is
row-stochastic or sub-stochastic, we have ) < 1 for all j and, by assumption, there is at
least one jo for which bU0) < 1. Since w = AB1 = Ab, it follows from the definition of
the matrix product that for each i = 1,...,n, w® = > al@pld) . As all elements in A
are positive, Z?Zl al@ < 1,b0) <1 for all j and bU0) < 1, we must have

w® =57 al) = 37 a1 — )
j=1 j=1

<1-— a(ijo)(l _ b(jo))
<1 (4.58)

In other words, the product AB is strictly row sub-stochastic.
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Using (4.40) we obtain that for | = 0,2,4,...,
Aty = (Z14121) Aty (4.59)

Since the elements of each matrix Z; are uniformly bounded away from zero and each
matrix has at least one row whose sum is uniformly bounded above by a number less
than one, it follows that the matrix product Z; 1 Z; is positive, strictly row sub-stochastic
with row sums uniformly bounded above by some k < 1. As demonstrated in proof of

Theorem 4.2, one can now prove again convergence of Aty to zero.

This concludes the proof of Corollary 4.1. (]

Simulations of this extension to Algorithm 2 where only a small number of nodes have

access to the global value are given in Section 4.6.3 on page 77.

We shall now move on to our third main result that makes even less assumptions on

the utility functions.

4.5 Algorithm 3: Dynamics and controllers

While the third proposed algorithm shares some similarities with the previous two, it differs
conceptually from them in that it is more abstract, modular and allows different nodes to
use different controllers to adjust their physical state. In fact, the combination of controller
and utility function (the “control loop”) may even have a dynamic behaviour, and can be
heterogeneous (that is, different nodes may use completely different controller types or
utility functions).

The following approach can be interpreted as “decoupling” the adjusting of the physical
states (control action) from the iterative calculation of “target utility values” that are
designed to converge to the actual solution of the problem. As is the case with the previous
two algorithms, this algorithm is also intended to be implemented in a fully decentralised
way.

Concretely, we envisage the following structure: First, in a distributed averaging step
the current utility values are averaged using some distributed averaging scheme. To this,
if k£ is a multiple of M = n — 1, a term ,ua,(:) which is proportional to the error between
desired global value and actual global value is added. This yields the target utility values
@)

51521 = agji)t,(:) + Z agfj)tgj) + ;w](j) (4.60)

JeN®

where Ay, = (a(*?)) represents the distributed averaging scheme, O'](:) is as defined in (4.57)
for Algorithm 2 and p > 0 is a sufficiently small gain which is to be determined.
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Figure 4.4: Illustration of the interplay of calculation of the target utility values t and
the control action to adjust the physical states r accordingly.

Each node then passes its target utility value to its controller, which (over a certain
finite time span) manipulates the physical state () in order to drive the node’s utility value
toward its target value. After that control action, new target values will be calculated based
on the resulting new utility values as well as the value of the global function, and so on.
This interplay of calculating the target values and then adjusting the states accordingly is
shown in Figure 4.4 above.

To leave this third approach as modular as possible, we will not specify any specific
averaging scheme or controller type. All that will be required for convergence is that
it must be possible to express the averaging scheme as multiplication by row-stochastic
matrices with non-zero entries uniformly bounded away from zero, and that the controllers

reduce the control error to within some specified range.

4.5.1 Main result

As for the previous two algorithms the questions is again: Does there exist a gain p such

that the resulting system is stable and converges to the desired solution?

Theorem 4.3 (Algorithm 3: Dynamics and controllers)
Consider the standard situation as described in the Notation section and assume that

the utility functions f@ and the global function g are continuous and satisfy the growth
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condition. Suppose that the communication structure of the network allows it to run a
distributed averaging scheme on the utility values. Furthermore, each node is assumed to
use a controller that is designed to adjust the mode’s physical state in such a way as to

drive its utility value towards the target utility value.

If the averaging scheme can be represented in each time step as a mon-negative row-
stochastic matriz Ay whose graph is strongly connected and with all non-zero elements
uniformly bounded away from zero by some v > 0, and if the controllers guarantee

o (tgb) t (1)

i) <t -0 < a(e? —80) (4.61)

k1T el =
in each control phase for some constant o', & which satisfy
—/(1=7)<a <a® <1 (4.62)

then a positive gain p can be found for any initial condition ry—g = ro so that the system

converges to t, — t,1 and g(ry) — ga.

Proof We will show that any algorithm under consideration here can be reduced to one

considered in Corollary 4.1. Satisfaction of the inequalities in (4.61) is equivalent to writing

t](clj-l - t15+1 = ﬂ(z (t(z - tl&i—l) with o < ﬂl(ci) <al) (4.63)
that is,
=0+ 0B ) o0
Recall that
g;)_l _ (u)t(z 4 Z a(”) (J) + HU() (4.65)
JeN®

Since Ay is row-stochastic, we must have a,(fi) =1- Zje/\/“) a,(fj) and hence
k
t%kz)rl _ t(z) Z agj)(tg) (1)) + Mo(%) (4.66)
JEN,E“

Recalling (4.64) now results in

O I S I N (4.67)
]Eng)

where

B = (- g ) =1 50 (1.69)
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Thus the algorithm is an example of those considered in considered in Corollary 4.1. We
now show that the hypotheses of Corollary 4.1 hold. First note that 77,(;]) >(1- d(i))v > 0;

hence
n,(fj) > e where €1 = ymin {(1 - @(i))} >0 (4.69)
We also note that

Z () = (1- 5;?)) Z al? (4.70)

jeN jeND
= (1-8) (1-a™) (4.71)
N e’ N’
<1—a® <l—v
<1-—[y+2"(1—7)] (4.72)

Since v + V(1 —v) > 0 for j € N,Ei), we obtain the desired result that
Z nl(cij) <1—eg9 where €2 =7+ (1 —~)min {g(i)} >0 (4.73)
jen®
We also obtain that

)

O<p<p <p (4.74)
where
f = pmin {1 - &(i)} and [ = pmax {1 - Qé(i)} (4.75)

So, clearly, i can be made sufficiently small by choosing p sufficiently small. Application

of Corollary 4.1 concludes the proof of 4.3. O

Comment It is easy to see that the lower bound in (4.62) is automatically satisfied if the
controllers are designed to produce no overshoot. By “no overshoot” we mean specifically

that during each control phase the utility values never exceed the target values, in other

words if for instance t,(f) < ltN ,521 then the utility value during that control phase will always
be less than or equal to 1?15321. /

4.5.2 Simulations of Algorithm 3

The set-up used for our simulations of the third algorithm was the following. In a network

on n = 10 nodes the global functions were again of affine type (as for the simulations of

Algorithm 1), the utility functions, in turn, were of quadratic type (as for Algorithm 2).
The averaging scheme in this example was based on random, strongly connected row-

stochastic matrices with non-zero entries uniformly bounded below by ~ = 0.02.
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The controllers used were discrete-time implementations of PID and PI controllers,?
randomly assigned to nodes, Visioli (2006). For both controller types the parameters
were tuned as to guarantee that the resulting closed loop system would not produce any
overshoot. The gains in the PI controllers were intentionally reduced somewhat in order
to produce a slightly slower step response and increase the heterogeneity between the

controllers.

0.51

9(r) 4

| | | | | |
0 5 10 15 20 25 30 35 40 45 50

Controller time step k.

Figure 4.5: Step-response of the closed loop control part in the simulation of Algorithm 3.

As for the plants (that is, the physical state updates) we chose first order low-pass
filters (see for instance Oppenheim et al., 1996) with randomly chosen smoothing parameter
¢ €[0.55, 0.85] to simulate a system were the physical state cannot be changed instantly.5

To illustrate the behaviour of the resulting controller-plant combination (together with
the non-linear utility functions), a step response of the closed loop system is shown in
Figure 4.5 above: The system was initialised with a physical state distribution such that
all the utility values would be equal. At k. = 10 the target utility values were then set to
t() = 4.5. While the first two subplots showing the global value and physical states are not
of particular interest here, the third subplot clearly reveals the two “groups” of nodes —
those with the slower PI controllers and those with the faster PID controllers. At k. = 30

5 For easier implementation, we used the “velocity formulation”, that is the output of each controller is
calculated recursively with: ug) = ugzl + kp (e,(:) — e,(:ll) + Ky eg) + kq (e,(:) — 261(;21 + e,(ciEQ). For the
PID-controllers, the parameters were set to kp, = 0.10, k; = 0.09 and kg = 0.03; for the PI-controllers in
turn, kp = 0.02, k; = 0.05 and kq = 0.

6 Specifically, the new states were calculated as r}j}rl = C(i)u,(:) +(1— C(i))r,(j).
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(that is, after 20 control iterations), the error between actual utility value and target value
relative to the initial value is less than 0.1% for each node.

While this observation does not guarantee that the control error is less than 0.1% at
the end of every control phase (since the system is not necessarily in steady-state at the
beginning of each control phase) it is still reasonable to assume that the error is reduced
sufficiently in order to guarantee the bounds (4.62).

This closed loop based on 20 control iterations was then also used in the actual simu-
lation of a system operating according to Algorithm 3, shown in Figure 4.6 below.

The dashed vertical lines in the third subplot indicate each time a new target utility
value was calculated. The global term was incorporated every (n—1)-20 = 180 time steps.
Again, consensus is reached on the utility values and the global term reaches its target

value of g, = 0.44 as desired.
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Figure 4.6: Simulation of Algorithm 3.

To round off this chapter, we note that until now we have only considered networks
where the state updates are all performed in a synchronised fashion. That is, for a given
time step k, the nodes first exchanged all the relevant state information with each other,
and then, jointly, performed the update based on the state information at time k to reach
the new state value at k + 1. However, this perfectly synchronised way of performing the
updates may not always be easy to implement, or even guarantee at all. The next and

final section of results in this chapter is to remedy that situation.
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4.6 Extension to asynchronous state updates

We now extend our above results to asynchronous communications and state updates by
no longer requiring the communication graphs representing the information flow in the
network to be strongly connected in each time step (as above), but rather only jointly
strongly connected over time, with a fixed and constant time horizon m > 1. In other
words, it is only required that the union of any m consecutive graphs taken from that
sequence must yield a strongly connected graph. That way, the communication between
nodes can be “staggered out”, with nodes updating their state right after they have received
information from a neighbour, rather than having to wait until they have received the
states from all their neighbours and until all the other nodes are also “ready” to perform
the (synchronised) update.

In each of our three results above, the update equations (or their transformed versions
in the proofs) contain a consensus term based on row-stochastic and primitive matrices.
In case of asynchronous updates, these matrices would also be row-stochastic, but not
necessarily primitive. Rather, they would contain a number of rows that only have a
1 in the main diagonal entry and 0 everywhere else (corresponding to nodes that have
not received any state information from any other nodes). The key idea of the following
extension is that non-zero elements in these matrices do not “get lost” (thanks to the
positive main diagonals); only new non-zero entries can appear. Hence, intuitively, all one
needs to do is “wait long enough” until eventually these matrices become primitive. This

is laid out in detail in the following sub-sections, with which we shall close this chapter.

4.6.1 Asynchronous version of Algorithm 1

Corollary 4.2 (Algorithm 1, asynchronous updates)
The results of Theorem 4.1 on page 59 still hold if the sequence of communication

graphs is jointly strongly connected over some finite and constant time horizon m > 1. __

Proof Recall that Algorithm 1 given by Theorem 4.1 can be written as
tes1 = Skt + pg" —g(ri)]1 (4.76)

The proof of that theorem relied on the convergence result given by Lemma 4.1 on page 58,
the proof of which in turn required a sequence of primitive matrices so that Theorem 1.9
of Hartfiel (1998) could be used.

Now, in the case of only jointly strongly connected graphs, primitivity of individual
S matrix cannot be guaranteed. Rather, we need to interpret the product of the Sy
matrices as blocks of m matrices multiplied together, since only these “sub-products” yield
primitive, row-stochastic matrices (thanks to the main diagonal entries in each matrix Sy

being strictly positive). Additionally, since there are ounly finitely many possible graph
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topologies on n nodes, there can only be finitely many different m-blocks of S} matrices,
which implies a uniform, non-zero lower bound on the non-zero matrix elements in all these
m-blocks. Both properties make the use of Lemma 4.1 on page 58 possible again to show
that, ultimately, system (4.16) converges to a scalar system. The rest of the proof then

follows again the lines of the proof of Theorem 4.1. O

4.6.2 Asynchronous versions of Algorithms 2 and 3

Corollary 4.3 (Algorithms 2 and 3, asynchronous updates)
The results of Theorem 4.2 and Corollary 4.1 still hold if the sequence of communication
graphs is jointly strongly connected over some finite and constant time horizon m > 1,

provided M =n — 1 is replaced with M = m(n — 1).

Proof Only a small modification to the proof of Theorem 4.2 and Corollary 4.1 is needed

to show the above result. For k=0, 1,..., let

Si = Simiyi1 S (4.77)

km
Since all the S matrices are non-negative row-stochastic matrices with strictly positive
diagonal elements, each matrix 5’,; is row-stochastic, has positive diagonal elements and
its graph corresponds to the collection of communication graphs from time step km to
(m—+ 1)]2: — 1. As any collection of m consecutive graphs is assumed to be jointly strongly
connected, it follows that S % is irreducible, and since it has positive diagonal elements, it is
primitive and thus fully indecomposable. The algorithm under consideration still satisfies

(4.40) where

S =Swym-t--- S (4.78)
However, here M = m(n—1). Thus,

S = Suyiniyt - Siin) (4.79)

Having established the above properties of the S’l; matrices, the remainder of the proof
follows Theorem 4.2 or Corollary 4.1. ([l

Comment  The generalised forms of Algorithm 2 given by Corollaries 4.1 and 4.3 are
designed to tolerate certain communication problems. In the case of Corollary 4.1 this
robustness is achieved at the cost of very small gains (" on the global term; see (4.50).
Observing (4.51) and (4.55) it is not difficult to see that smaller gains produce slower
convergence.

However, various simulations using sufficiently “general” graphs (rather than patho-

logical cases like the directed n-cycle) have shown that those gains can, in fact, be set
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significantly larger than required by the theoretical results above, which suggests that

these bounds are loose and may be improved on. e

Our third algorithm can also be modified to accommodate for asynchronous communi-

cations in the same manner as described above; simply let M = m(n — 1).

4.6.3 Simulations of the extensions of Algorithm 2

The communication graphs in the previous two simulations were, by design, all strongly
connected. For the simulations of the modification of the second algorithm as presented
in the corollary, we also used state-dependant disc graphs, but randomly removed, in each
time step, a number of edges in order to deliberately disconnect the graphs. The amount
of edges removed (in average 75% of the edges), however, was experimentally chosen in
order to guarantee (almost always) that every set of m = 3 consecutive graphs would form
a jointly connected graph, as required by the corollary. Thus, the updates using the global

term were performed only every 3(n — 1) = 72 time steps.

| | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time step k

Figure 4.7: Simulation of Algorithm 2 (corollary).

Additionally, we also randomly prevented nodes from accessing the value of the global
term (in average, only 25% of the nodes were allowed to use the global term during at each
global term update step).

The results from the simulation under these harder conditions are shown in Figure 4.7

above and closely resemble that of the previous case. Due to the less frequent updates,
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however, convergence to the desired global value takes much longer but is achieved nonethe-

less.

4.7 Conclusion

Consensus problems have attracted a large amount of attention in recent years. The
present chapter’s contributions in that area are three fully decentralised cooperative control
algorithms that not only allow a network to reach consensus either directly or indirectly
(that is, with or without utility functions involved), but also enable the nodes in the
network to cooperate and achieve a global, common goal that depends on the aggregate
behaviour of the network.

Our first result concerned the well-controlled case where the utility functions and their
inverses are perfectly known a priori. The nodes then use the inverse utility functions to
calculate the state updates.

The second contribution consisted of an algorithm that requires less precise knowledge
of the problem setting and involved functions. All that needed to be known were upper
and lower bounds on the growth rates of the global- and utility functions, but not the
functions themselves. Also, through Corollary 4.1, we allowed for an even broader class of
applications where not all nodes need to have access to the global value.

Our third piece of work took a somewhat different approach. The idea consisted of
decoupling the adjusting of the physical state from the iterative calculation of desired
values for the utility values. This enabled us to cater for networks where the state cannot
change instantly, where only filtered versions of the state are available, but, probably most
importantly, where different nodes may have completely different dynamics and controllers.
The key property required for convergence in these networks was that the controllers must
be designed so that they drive the physical states / utility values (in finite time) to within
a certain range of the calculated target utility values.

Each of the three algorithms was accompanied by simulation results that demonstrated
the effectiveness of our approach, and they were then extended to the case of asynchronous
communications and state updates.

Applications for each of the three algorithms can be found for instance in the computer
communication networks space (Algorithm 1, Stanojevié and Shorten, 2008), emissions
control of vehicles (Algorithm 2, see Chapter 6) or group coordination of mobile agents
(Algorithm 3, Olfati-Saber, 2006).

Limitations

While the theoretical contributions of this chapter may well present a new paradigm for
cooperative control, there are a number of limitations that should be resolved especially

for practical applications. As we mentioned before, the gains required in our proofs are
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much too small for any practical purpose. Since they are of very conservative nature,
it should certainly be possible to improve on them. However, this may involve different
mathematical approaches such as directly treating the problem as a switched system and

subsequently searching for (common) Lyapunov functions.

Before moving on, we recall again that our general assumption was that all nodes (or
at least one node) have access to the global term — typically provided to the network
through some external entity that is able to determine, measure or estimate this value.
However, there are situations where no such external entity may be available, feasible or
even desirable (as it would constitute a single point of failure). To avoid such problems, the
nodes would have to estimate the global property themselves. This would typically have
to be done conjointly and in a distributed way in order to be more robust and, potentially,
to also average out localised phenomena (it would, for instance, not be very accurate to
measure the COq levels in only a single location in the city — if a strongly polluting lorry
had its engine running next to the COg sensor then the measurement would clearly be
biased and not representative for the city as a whole).

The next chapter will focus on one such application where it is actually possible for the
nodes to estimate the global property one their own. In some sense, the approach we shall

present next may be seen as a special instance of Algorithm 1 of this chapter.
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4.A Chapter appendix

4.A.1 An expression for the global term

This proof has been moved here in order to improve the flow of the original chapter.
Given global and utility functions which satisfy the growth conditions, we show here

that, for any t,t, € R",

n

9(e(t) —g(e(t) = Z;C(i) (£ —t9)  where g:i << Z((;) (4.80)
Letting r = (¢) and r. = ¢(t.), we start by showing that
Ag = g(e(t)) —g(e(t) = g(rs) —g(r) (4.81)
can be expressed as
Ag = zn:é(i)Ar(i) where B <&@ < p® (4.82)

i=1

and Ar() = Tii) — 7 The change Ag corresponds to the change of the value of the global
function when moving from r to .. Now, instead of going “directly” from r to r, we can
also reach r, by only changing one coordinate at a time, that is we basically break up
the “cumulative change” Ag into the changes caused by moving along each coordinate. To

express this mathematically, we recursively define the vectors rq,...,r, by
TO=T and ri =7ri_1+ AriWe; for i=1,...n. (4.83)

Clearly, the r; vectors correspond to the “corner points” of the “path” if one starts at r
and then moves by Ar(1) along the first dimension, then by Ar(®) along the second and so
on. By construction, in the end r,, = r,.

As a consequence of the growth properties of g, we have
g(ri) — g(rii1) = g(rio1 + ArWe;) — g(ri_y) = dD Ar® (4.84)

where ]_”L(i) < < B(i), and since
Ag=g(ra) —g(ro) =Y [g(ri)—g(ri—1)] (4.85)
i=1

the result (4.82) now follows.
Next, we replace the difference r, — r by the corresponding difference t, —t. As a

consequence of the growth properties of the utility functions (), we have

FOED) — O 0y = g () _ D) = g AR (4.86)
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where 0 < d® < d® < d®_ But since t& = fO(r®) and £ = fO (") we see that
()4 _ gl A0 (4.87)

Hence,

(1) _ 1(3)
. ty t . . _,.
Ar® = ——m—  vhee  0< d¥ <dW <q® (4.88)

Combining (4.82) and (4.88) now yields the desired result (4.80).

4.A.2 Global- and utility functions used in our simulations

For some simulations, the utility functions were chosen to be of quadratic form on the

interval [0, 1.5], and linear outside this range. Specifically, the functions were of the form

oegi) (7"(1'))2 + ozgi)r(i) + oegi) ifo<r@® <15
@ = ¢ g06) 4 plo if () < 0 (4.89)
Bg)r(") + By) otherwise
where the coefficients agi),ag),ag) were chosen within appropriate bounds to guarantee
invertibility on the interval [0, 1.5]. The coefficients ﬂgi), e ,ﬂii) where also chosen ran-
domly, but in such a way as to guarantee that the overall function would be continuous
(i.e. that the linear segments join up with the quadratic part). A set of 25 randomly

generated functions of this type are shown in Figure 4.8(a).

(a) Quadratic type (b) Piecewise linear type

Figure 4.8: Illustrations of the utility functions t = f@(r(®) used in the simulations
of Algorithms 1 and 2.

In other simulations we used piecewise linear utility functions, shown in Figure 4.8(b),
also based on randomised coefficients.

The global functions used were also either of quadratic form

g(r)=d+ i g (r™) (4.90)
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where the ¢(? were of a similar type as (4.89), or of affine form
g(r) =d+ Zc(i)r(i) (4.91)
i=1

where the parameters ¢(¥ > 0 and d > 0 were also chose at random.
All random parameters were chosen within certain bounds from which the required

growth conditions for the theorems were then easily derived.



CHAPTER D

Switching, Feedback and Estimation

In this chapter, we add an estimation component to the general cooperative con-
trol problem, proposing a decentralised control scheme for requlating the topology
of a wireless sensor network. First, an algorithm is developed that approzimates
the connectivity level as measured by the second largest eigenvalue of a stochastic
normalisation of the system’s adjacency matriz. These estimates are then used
to inform a cooperative control algorithm that iteratively requlates the network’s
connectivity to some desired level.

Chapter contents

5.1 Introduction

5.2 Preliminaries

5.3 Decentralised estimation of the second eigenvalue
5.4 Decentralised connectivity control

5.5  Simulation results

5.6 Conclusion

5.1 Introduction

The previous chapter presented a number of algorithms designed to solve a regulation
problem involving both global and local constraints, operating in a variety of different
settings with different assumptions. However, the common assumption throughout was
that the global term is “provided” to one or more nodes in the networks so that they could
integrate it into the control scheme. In contrast to this work, the present chapter now
investigates an example where this assumption cannot be made. The global term thus
needs to be estimated by the network itself. The following presents joint work with Dr. R.
Stanojevi¢, Prof. M. Corless and Prof. R. Shorten and has been published in Knorn et al.
(2009c,d).

Recent years have witnessed a growing interest in the control community in problems
that arise when dynamic systems evolve over graphs. But while the most high profile of
these applications are clearly in consensus applications such as formation flying, synchro-

nisation problems and sensor networks, there are also many other applications where the

83
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manner in which the network topologies change affects the performance of algorithms that
evolve over these graphs. In such applications, an essential requirement is that the topol-
ogy of the graph be such that some basic properties required to support communication
and control are satisfied, the most basic of these being that the network be connected.
Considerations of this kind have given rise to the emerging field of network topology con-
trol.

The work in this chapter is inspired by the third motivating example we gave in Sec-
tion 1.2.3 on page 4: A wireless sensor network that is based on stationary nodes (i. e.
nodes that do not change their geographical location) that are able to adjust the transmit
power in their radios and hence control the area over which they can broadcast informa-

tion.!

This means that by changing their broadcast radius (that is the distance from the
transmitter up to which information can be reliably received) the nodes can directly in-
fluence the topology of the resulting communication network. Using the terminology of
the previous chapter, each node’s broadcast radius would be its physical state. No utility
values will be considered in the present context, in other words the utility function is the
identity function. The global quantity of interest will be the communication network’s
level of connectedness or an algebraic proxy thereof (this will be defined more precisely in
Section 5.2).

Recall that, roughly speaking, a graph is (strongly) connected in the classic graph-
theoretic sense if there exists at least one path from any one node in the network to any
other. As we saw in the previous chapter, graph connectivity is an essential component in
situations where a group of networked nodes must work together, in a decentralised man-
ner, to achieve a common task. This issue of graph connectivity is therefore very important
and has achieved much attention in various contexts. It appears that this work has followed
three lines of enquiry. In the graph theory literature, attempts have been made to identify
and grow graphs with pre-specified connectivity properties; see Fallat and Kirkland (1998);
Ghosh and Boyd (2006); Boyd et al. (2004) and the references therein for an overview of
this work. In the computer science and networking communities several attempts have
also been made to identify local (node based) constraints that guarantee certain forms of
graph connectivity. For example, the sector rule proposed in Wattenhofer et al. (2001)
is one such rule that gives rise to certain types of connected graphs. Recently, work in
this direction has been extended to reflect not only topological considerations, but also the
effect of physical constraints such as power and interference, in achieving these objectives.
Finally, a third strand of work has recently emerged in the control and robotics community.
Roughly speaking, this work involved using feedback principles to achieve graphs with a
desired topology. Examples of this work can be found in Ramanathan and Rosales-Hain
(2000); Ji and Egerstedt (2005); Gennaro and Jadbabaie (2006); Cabrera et al. (2007);

Dimarogonas and Kyriakopoulos (2008) and the references therein. In particular, Gennaro

1 Such networks are widely used in many engineering problems, see for instance Akyildiz et al. (2002)
for a very detailed survey of the area of wireless sensor networks.
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and Jadbabaie have proposed an interesting approach to distributed control of the sec-
ond smallest eigenvalue of the communication graph’s Laplacian, Gennaro and Jadbabaie
(2006). Those ideas were further developed in Yang et al. (2008). In this line of work,
however, nodes have a fixed communication radius and change their positions relative to
each other in order to achieve a desired connectivity level, with the consequence that the

communication graphs are always undirected graphs.

Contributions

Clearly, regulation of the connectivity of a given graph is difficult because graph con-
nectivity is a global property, whereas typically, nodes (or agents) can only act locally.
Thus, any algorithm for maintaining graph connectivity must be decentralised if it is to
be of any practical value. Our objective here is to propose one such algorithm; namely,
a decentralised algorithm that is simple to implement yet efficiently regulates the connec-
tivity level of a given graph to some pre-specified value. To that end we first develop and
prove convergence of a decentralised estimation scheme whereby each node can estimate
the level of graph connectivity (as a proxy for the level of connectivity we will use the
second largest eigenvalue of a stochastic normalisation of the graph’s adjacency matrix).
We then present a control strategy to regulate the graph connectivity about a specified
set-point. This approach may be seen as an adaptation of Algorithm 1 described in the
previous chapter, but in contrast to our earlier work, the global function encountered here
(which now describes the dependency of the eigenvalue on each node’s broadcast radius)
is neither continuous nor strictly monotone. Simulation results are also given to illustrate
the theoretical contributions, and we present examples to show that our control framework
is sufficiently general to allow other constraints such as local power, interference, or node
density to be part of a connectivity /interference trade-off as well.

The work carried out in this chapter differs from that in the literature in a number
of aspects. Firstly, some of the previous results are of a probabilistic nature, i.e. they
draw statistical conclusions of the type “in average, roughly every third graph of this kind
should be connected”. However, the application scenario that we have in mind consists of
a concrete situation where a number of sensors are placed randomly in space (for example,
a set of nodes dropped over a lake, each node communicating only with a subset of its
neighbours). In this case, drawing probabilistic conclusions is of little help, as we would
like to find results for particular instances of the problem. We are also interested in
situations where information mixes quickly across the graph, which means that we must
specifically account for the speed at which information passing takes place — and not just
that the graph is connected (in the classic graph-theoretic sense). Finally, as before, we
wish to develop algorithms that can be used irrespective of graph type where again we
wish to break free of the assumption that the underlying graph structure is symmetric.

This again delineates the work presented here from much of the recent results in the area.
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Finally, we argue that our algorithms are very simple to implement and require minimal
computational requirements, and give rise to graph growing techniques with truly scale-free

properties.

Structure

In the next section we introduce the basic idea behind our approach and describe the
general set-up and notation. We will then present our decentralised estimation scheme that
iteratively approximates the second largest eigenvalue. We discuss in Section 5.4 how this
value could be used to control the networks connectivity by proposing a simple controller
based on these estimates, and determine the conditions for the stability of the decentralised
closed loop system. Results from simulations are then presented in Section 5.5. Finally

conclusions and future directions are given in the last section.

5.2 Preliminaries

5.2.1 Basic idea

Our basic idea for connectivity estimation is based on the observation that dynamic systems
or algorithms evolving on graphs often reveal topological properties about the graph itself.
One such algorithm is the distributed averaging or consensus algorithm, which is strongly
related to the theory of Markov chains and to (non)homogeneous matrix products. While
the primary focus of the work reported here is not on the dynamics of consensus algorithms,
it is important to note here that the second eigenvalue of the averaging matrix (see notation
section below) determines the rate at which the nodes in the network achieve consensus.
Roughly speaking, as a graph becomes less connected this second eigenvalue becomes closer
to unity, when rate of convergence is used as a measure of connectivity. Further, as we
shall see, a simple algorithm can be used, together with elementary techniques from system
identification, to locally estimate this eigenvalue in a decentralised manner.

Let us briefly illustrate these basic points in Figure 5.1 on the facing page. Here, we
show the average value of the second largest eigenvalue in magnitude of the averaging
matrix of random (regular) graphs.? The averaging matrix was constructed directly from
a stochastic normalisation of the adjacency matrix of the underlying graph. In the plot, the
value of the second largest eigenvalue drops monotonically with increasing graph regularity
(fixed number of neighbours per node). Although this is a very special type of graph, it

shows that a single value can give an indication of the connectivity situation of a graph.

Comment  Classically, the second smallest eigenvalue of the Laplacian (or transition
Laplacian) matrix of a graph has been used as an algebraic measure for connectivity,

Fiedler (1973); Chung (1997). However, usually Laplacians are only defined for undirected

2 A d-regular graph is a graph where each node has exactly d neighbours (here chosen at random).



5.2. PRELIMINARIES 87
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Figure 5.1: Average of the magnitude of the second largest eigenvalue of the averaging
matriz of d-regular random graphs with 200 nodes.

graphs, and this is an unnatural restriction that we would like to eliminate. In contrast,
the second largest eigenvalue (in magnitude) of an averaging matrix is also an excellent
candidate to indicate the degree of connectivity of an entire graph (independent of the
fact whether the underlying graph is directed or not) with the added benefit of being
easily approximated locally in each node using computationally inexpensive estimation

techniques as shown below. /

Knowledge of global information such as level of connectivity, based on purely local
information, offers a wide range of local node actions with the objective of connectivity
maintenance, one of which is will be presented in this chapter. For example, in the context
of wireless networks, one possible action is for nodes to adjust the power of their radio
transmissions, based on the local estimate of connectivity. Concretely, this could mean to
reduce the communication radius if the connectivity is estimated to be larger than required
(as decreasing the radius will lead to reducing the number of neighbours, hence reducing

connectivity). A pseudo-protocol for such a strategy is given in Figure 5.2 on the next

page.

That such a strategy is well posed is evident and follows from the basic observation that
if all nodes increase their communication radii sufficiently, then the graph will eventually
become more densely connected. The issues that make the realisation of such strate-
gies challenging in a practical environment concern decentralised estimation of the second
largest eigenvalue of the averaging matrix, and proving that the resulting closed loop strat-

egy is robustly stable. Resolving these issues will be the main concern of this chapter.
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1: Deploy pre-configured nodes and initialise network by
choosing random initial communication radii such that
network is connected.

2: By running a consensus algorithm on the network, each
node estimates the second largest eigenvalue of the aver-
aging matrix based on the convergence of its own state.

3: For each node, if the estimated eigenvalue is smaller than
some desired value, decrease the broadcast radius; if the
estimate is larger, increase the radius.

4: Go to 2.

Figure 5.2: Pseudo-protocol for the overall scheme.

5.2.2 General setting

Building on Section 4.2.2, we assume that a consensus / averaging algorithm evolves on the

graph ¢. Formally, associate to each node i = 1, ..., n in the network a state (¥ € R. The
state of node i at time k is denoted xl(;), and the network’s state (i. e. the states of all the
nodes combined) is the column vector xj = (xl(cl) Y e x,(cn) )T. For eachnode:i =1,...,n,

a distributed averaging scheme can then be written as

. L L @) >0 ifje NO
z,(;j_l = Zp(”)zg) where Zp(”) =1 and P J . (5.1)
j=1 j=1 0 otherwise
for k =0,1,2,... with some initial condition ngio = z(()i). It is easy to see that this relation

can be written for the overall network as
Try1 = Pxy where Tp—o = Xo (5.2)

and where the stochastic, non-negative P = (p()) is called the averaging matriz.

Let XV ... A be the eigenvalues of P and assume that they are ordered so that
IAD| > |)\(j )‘ when ¢ < j. To make matters more tractable we shall assume in the following
that P is always diagonalisable.?> Further, by making this assumption we have that P
has n linearly independent eigenvectors, vV, ..., v(™ corresponding to the eigenvalues
AL Am) (with a slight abuse of our usual notation, v and A\ denotes the ith
eigenvector-eigenvalue pair). Thus these eigenvectors form a basis for R™ and every initial

state g can be uniquely expressed as

o = Dy 4 (@@ .y )y, m) (5.3)

3 Since the set of diagonalisable matrices is dense in the set of stochastic matrices, this assumption is
an entirely reasonable one to make.
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for some scalars ¢, ..., ¢™ . Since Pr(®) = \(Op),
— M (Au))ky(l) +c@ (A@))ky(?) IR (D) (Mn))’cy(n) (5.5)

If the underlying graph is strongly connected, and since P has positive entries along the
main diagonal, it follows that P is primitive, Horn and Johnson (1985). Thus, the Perron
eigenvalue A1) = 1 is simple and all other eigenvalues are smaller in magnitude. Also,

v() =1 as P is row-stochastic, hence

and
o - 1] < DO Bae)  with  Bao) = 0[] ] 6.)
where | - || denotes some norm.

In this case, x5, converges exponentially to ¢(1)1 and the rate of convergence is bounded
by ’)\(2)‘. In other words, the rate of convergence of the distributed averaging can be
measured by the magnitude of A(2). Together with the intuition that the more the graph
is connected the faster the averaging should converge, we can now see that |)\(2)‘ may very
well be used as a proxy for the level of connectivity of the graph and the rate at which

information can flow through it.

5.3 Decentralised estimation of the second eigenvalue

We now provide a simple method by which all nodes in the network may estimate \(?)
based only on local measurements.

Our basic idea is as follows. Once we know whether A is real or complex (non-real),
different methods can be used to accurately estimate its magnitude based only on local
measurements. For example, when \(?) is real then the direct estimation method described
by Proposition 5.1 will yield a correct estimate of |)\(2)‘. Also, the dynamic system that
governs the evolution of zl(:) = x,(j) — xl(gzl can be modelled asymptotically as a first order
linear system (with a noise term that decays to zero) if A(?) is real valued. The parameters
of that linear system can then be identified through an estimation method such as the
classic recursive least squares algorithm (RLS, see for instance Haykin, 2002) providing
another estimate of the absolute value of A2, When A is complex (non-real), a third
estimation method, based on Proposition 5.2 below can be applied. Thus with appropriate
numerical conditioning of the values of z,(j), estimation of A?) can be carried out in a

straightforward manner.
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i) (1)

) =) 2,

1:

2: A = Estimate_real (z(?)())

3: B = RLS_real (z)())

4: C = Estimate_complex (z*())
5: if [A—B|<e¢

6: return A

7: else

8: return C

9: end if

Figure 5.3: Pseudocode for the overall estimation scheme of ‘)\(2)|.

However, it is usually not clear a priori whether the averaging matrix P has a real or
complex (non-real) second eigenvalue (the exception being undirected graphs where \(?)
is always real valued). Thus we must develop a method for determining whether or not
this eigenvalue is real or complex (non-real). To that end, we use the three estimators
presented above and run them in parallel. Specifically, we first obtain estimates for A(?)
from the estimator based on Proposition 5.1 as well as the recursive least squares scheme,
both of which are guaranteed to work only when A is real. If both estimates of A(?)
match up to a certain degree (that is, the absolute difference between the two values is
less than some threshold €), we assume that Aq is real and use these estimates. However,
if the estimates do not match sufficiently, we consider A(?) to be complex (non-real) and
use the estimate obtained based on the Proposition 5.2 (which is guaranteed to converge
to the correct value in that case). The pseudocode for this strategy is given in Figure 5.3.

In the rest of the section we provide the details explaining what each of the functions
Estimate_real (), RLS_real() and Estimate_complex() do. All three functions require
the distributed averaging algorithm to be run on the network, and each node is assumed

to be able to store a small number of its own past states.

5.3.1 Estimate_real()

The following Proposition provides a method of estimating the value of the second largest

eigenvalue of the averaging matrix provided the eigenvalue is real valued.

Proposition 5.1 (Decentralised estimation of real valued \(?))
Let 9 = (V,.A) be a strongly connected network with averaging matriz P such that its

second largest eigenvalue in magnitude \?) is real and satisfies ‘)\(2)’ > ’)\(j)‘ forall j > 2.

Consider any node v and let z,(j) = z,(:) —zgll where xy, is determined by the distributed

averaging algorithm (5.2) running on the network with a sufficiently general initial condi-
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tion. Consider any positive integer m and for k > m+ 1, let

A2 — - (5.8)
Zk—m
be node i’s estimate of |)\(2)‘. Then limy_ o 5\,(;’2) = |)\(2)‘.
Proof Recall from (5.6) that for any node i:
O _ 0 @k |50 (A2 e
2’ =+ (AP) ch (W) v\ (5.9)

=2

::wl(:)

where v(7) denotes the ith element of the jth eigenvector of P. We then have for k > m+1

i i i k(i k=1 (i
I ey PR O\ ) M Sl O M
i NG i - k—m (i k—m—1 (i
Zl(clm -T](c,m_xélm,1 ()‘(2)) Q/J;Qm - ()\(2)) ](czm,1
i -1 @
(2)\m wl(c) B (>‘(2)) 1/’121
= ()" —; T (5.10)
@) (@) L@
k—m ( ) k—m—1
O
T Vk,m
and taking the mth root of the absolute values of both sides
Z(Z) 1/m ,
k _ h(2 (&) |1/m
) = A wy, (5.11)
Zk—m
————
5\](:‘,2)

From the last equation we can see that the estimate 5\,(;"2) approaches the true absolute

value of the second largest eigenvalue if and only if the ’w,(;)m’ — 1, as k grows. Since

0 _ 069 5,0 (A) e 19
Uy, =Py +ZC NGl v (5.12)
=3
it will converge to ¢@ (2 as k grows, as by assumption ‘% r <1forj=3,...,n

For a general initial condition ¢(2)p(%2)

wi" | = 1 and thus A{"® — [A®)] as k — . O

is non-zero and, using (5.10), we now have that

In summary, if the prerequisites are met, for kK > m+ 1, each node can iteratively refine

its estimate of ‘)\(2)’ with (5.8) so that it converges to the true value of |\(?)| as k grows.

Comment It also follows from the proof that larger the gap between ’)\(2)‘ and |G|

the faster the estimates S\S’Q) will converge to the true value of [A(?)]. /
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5.3.2 RLS_real()

When A®) is real we can also use a recursive least squares algorithm for estimating A\(?).
It can be seen from (5.10) that by letting m = 1 we have for k = 1,2,... the following
relationship (asymptotically)

|z,(€:)_1| ~ ‘/\(2)’ . ’z,(:)‘ (5.13)

Applying a suitably parametrised recursive least squares algorithm, see for instance Astrom
and Wittenmark (1997), should then also yield good estimates for ‘)\(2)|.

5.3.3 Estimate_complex()

The next proposition provides a method for estimating the magnitude of a complex (non-

real) valued A(?). When A\(? is complex (non-real), its complex conjugate A(®) is also

an eigenvalue of P with the same magnitude. If we assume that ’)\(2)‘ > ‘)\(j)’ for all

J > 2 then, recalling (5.6), it is straightforward to show that, for each node 7, the variable
(4)

z,(j) = x,(j) — 1,7, can be written as
20 = (A 4 2O (@) 4 3@ "o (5.14)

where O,(:) — 0 as k — oo and ¢®,&(® £ 0 for a sufficiently general initial condition of

the averaging algorithm.

Proposition 5.2 (Decentralised estimation of the magnitude of a complex (non-real) A(?)) _

Let 9 = (V,A) be a strongly connected network with averaging matriz P such that its
second largest eigenvalue in magnitude A2 is complex with non-zero imaginary part and
A®| = 3O > 3D for j > 2.

Consider any node © and let

i i) _(i i) \2
&m0 (40 19
where z,(f) = z,(:) - xgzl and xy, is determined by the distributed averaging algorithm (5.2)
running on the network with a sufficiently general initial condition. Consider any positive
integer m and for k > m+ 3, let
C]ii) 7
(@)

k—m

5062 _

ko= (5.16)

be node i’s estimate of ‘)\(2)’. Then limp_, o 5\,(:’2) = ‘/\(2)‘.
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Proof For any node i, substituting expression (5.14) into (5.15), and dropping the super-

scripts “(D” and “(®” to increase legibility, yields

Ck

FAk+EXk+|MkOk}Pﬂba—%éX”2+ﬁAWQCKk—2ﬂ ..
. —-[cAkflﬁ—ékal—+|A|k4()k_1}2
= e[ WA 4 N2 R B G
— |2 A|2F {5\2 a2 2)\5\} + M@0,
= |\ [|C|2()\ N4 Ok} (5.17)
where
Ok:lMQ{OhQ[CG%)k+C(ﬁ)k]
.+ O [c (ﬁ)kQ—l—c(%)kQ] + 040p—2 ...

.20k1%-§yH+a(%yH](ﬁd} (5.18)

We note that since Oy — 0 as k — 0, we also have

lim O =0 (5.19)
k— o0

Furthermore, since ¢, # 0 and A has nonzero imaginary part, |c[?(A — X)? is nonzero, and

thus (¢ in (5.17) is also non-zero for k sufficiently large. Finally,

2A=N2+0
Ck _ |>\|2m |C| ( _ ) +~ k (520)
Ck—m leP(A=X)2 + Ok—m
From this last expression and (5.19) we obtain that
T
Jim | = |Al (5.21)
k—oo | Ck—m
which completes the proof. (Il

Based on this proposition, if A(?) is complex (non-real) and each node calculates an
estimate of ’)\(2)‘ through (5.16) then the estimate will converge to the true value as k

grows.

5.3.4 Remarks

The decision heuristic presented (Figure 5.3 on page 90) assumes that the first two es-
timators (which are designed for real valued A(?) only) produce wrong and in particular

differently wrong estimates, so that there is a sufficiently large disagreement between both
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schemes so that it can be detected — clearly, if both schemes produced wrong but identical
estimates, then our heuristic would consider these wrong estimates to be correct. However,
our assumption of sufficiently different biasses between the schemes is plausible given the
fact that the first scheme only uses two samples for the estimation, whereas the recursive
least squares scheme uses the entire history of samples attempting to minimise the square

error between model and observed data.

An alternative approach can be used by employing several instances of the first estima-
tion scheme, but using different m parameters. It can be shown (and this will indeed be
observed in the simulations below) that in the presence of complex valued A®) the esti-
mates produced by the scheme will exhibit some periodic, oscillatory behaviour. Roughly
speaking, this oscillatory behaviour is due to the expression of the ’w,(;)m’ in (5.11) not
converging to 1; rather it consists of a fraction of trigonometric functions that produces
these oscillations (a similar behaviour can so also be shown for the RLS based estimator).
In particular, the m parameter will affect the phase of these oscillations. Thus, using
multiple instances of the first estimation scheme with different m parameters may be an

alternative approach to detect whether A(?) is real valued or not.

Next, by its very nature, when running the consensus algorithm over a connected
network, the states of all nodes will converge to a common value. In that case, the difference
(@)
k

in states z;’ will tend to zero. On the one hand, numerical calculation of the z,(f) will be

less and less precise as the z,(j) approach zero, and on the other, when using the algorithms

based on Propositions 5.1 and 5.2, the division of zl(:) by z,(czzm resp. g“,gi) by Q,@m will also
become more and more numerically problematic. It is, however, not too difficult to solve
these problems. Simply, whenever some node’s state x,(j) agrees with all of its neighbours
on the top s digits, it shall stop broadcasting those top s digits and keep exchanging only

the lower weight digits.

We must assume that in an actual implementation sufficiently exact numerical compu-
tations can be provided as the current approach does not take into account the inherently

limited accuracy of numerical calculations in digital processors.

Finally, in this section we have assumed that there is a spectral gap between A
(and its conjugates) and the remaining eigenvalues of the matrix P. Since the set of
matrices satisfying this property is dense in the set of stochastic matrices, this assumption
is also entirely reasonable. However, the case where |A(| = [A®)| > [A#®| > ... can
also be accommodated in our framework by including more estimators, similar to the ones
presented above, and by modifying the logic described in Figure 5.3 on page 90 accordingly.
This is omitted here for ease of exposition, and because the aforementioned case is a low

probability event.



5.3. DECENTRALISED ESTIMATION OF THE SECOND EIGENVALUE 95

5.3.5 Demonstration of estimation

In the following two examples, we generated a two-dimensional random geometric graph
with random connection radii for each node. These type of graphs are often used when
modelling wireless networks, in particular wireless sensor networks, Penrose (2003); Santi
(2005). A random geometric graph or disc graph is created as follows: Place n nodes
uniformly distributed in the unit square, then interconnect the nodes based on the so-
called distance parameters or connection radii of the nodes. That is, each node i has a
parameter 7(?) based on which it connects (or “sends information”) to other nodes that are
closer than r(® from it: if some node j is at (Euclidian) distance d) from node i then

there is an edge from node i to node j (i.e. node j is in reach) if and only if d(*) < 7(9),

Time step k

Figure 5.4: Comparison of the estimation schemes for real valued \?) ~ 0.80.

Figure 5.4 above and Figure 5.5 on the next page show the outputs of our three esti-
mation schemes as well as their combination for two different situations: one where A is
real, and one where A(?) is complex (non-real). For each case we have plotted each nodes’
estimates of |/\(2)‘ as a function of time (iterations of the estimation schemes), provided
by the different algorithms, as well as the combination of using our proposed decision
heuristic. From top to bottom, the subplots show the evolution of the estimates based on
A) Proposition 1, B) recursive least squares and C) Proposition 2; as well as their combi-
nation in the last subplot. The true value of |)\(2)‘ is indicated by the dashed horizontal

line.
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Figure 5.5: Comparison of the estimation schemes for complez \(?) ~ 0.63 + 0.05i.

Comment The following parameters were used. The random disc graphs on n = 20 nodes
were created using connection radii r(?) uniformly distributed in the interval [0.1,0.6].
We used m = 5 in the algorithm based on Proposition 5.1, and m = 1 in that based on
Proposition 5.2. The initial estimates of the recursive least squares algorithm was set to
0.5. Finally, the combination of the estimates was done using the threshold ¢ = 0.005.

When the network has a real valued A(?), it can be seen that the each node’s estimates
using the first two estimators converge quickly to the correct value. The estimates of the
third estimator also converge, but to the wrong value.? Since the two estimators targeted
at a real valued A(?) both converge to the same value, the error between them quickly
both drops below the preset threshold, and the combination scheme correctly switches to

returning the value of the first estimator.

In the complex (non-real) case, Figure 5.5, the situation is different. Both the estimates
of the estimators aimed at real valued A?) do not converge to the correct value of |)\(2)‘,
but rather oscillate around it. The error between them is sufficiently large so that the
combination scheme returns the value of the third estimator, which in turn now provides

correct estimates.

4 In fact, it is not difficult to show that in this case the estimate which Estimate_complex() converges

to will actually be A(2)/|]A()|/A(2).
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5.4 Decentralised connectivity control

We now present our algorithm for decentralised connectivity control. Please note that, by
an abuse of notation, we shall simply use A in the remainder of this chapter to refer to
|)\(2) | As mentioned already, we wish to adjust the communication radius of each sensor in
the network, {r(l), . ,r(”)} based on a local estimation of A, with the ultimate objective of
regulating A to some neighbourhood of a target value; namely so that ‘)\ — )\*’ < ¢ for some
A« € (0,1)and e > 0. Since we are trying to address situations in which individual sensors
may fail resulting in a change in network connectivity, we are inherently dealing with
situations where the network topology is slowly (but not constantly) changing. In what
follows we therefore make the assumption of quasi-stationarity; specifically, we assume that
the local estimators operate over very fast time scales when compared with the local control
actions (local radius updates). This assumption greatly facilitates analytical tractability
and makes our convergence proofs somewhat easier to develop. Finally, since there may be
many sets of communication radii {r(l) o, } that guarantee |)\ — )\*| < g, we shall
make additional assumptions to guarantee that the closed loop algorithm converges to a
common set of radii; namely, we seek a control action that guarantees convergence of all
radii to the same value. We emphasise again that this assumption is made to facilitate
analytical tractability, but it can also be motivated from a practical standpoint, where
having all nodes use the same broadcast radius should contribute to similar battery lifetimes
of the nodes. However, our framework is sufficiently general to allow other quantities of
interest to be included (for instance, equal numbers of neighbours, maximum numbers of

neighbours); although, the convergence proofs will change accordingly.

5.4.1 Consensus with input

Our control algorithm is again motivated by the intuitive idea that adding the same value
to each member in a consensus scheme will not hinder the eventual agreement between the
members. This was already noted in Lemma 4.1 on page 58. However, this notion can be
applied to a much broader class of consensus schemes as we show using the recent results
of Moreau, 2005.

Theorem 5.1 (Generalised consensus with common input)

Let 4, = (V,Ak) be a sequence of strongly connected graphs, G(mk, k) be a sequence of
finite real numbers and f be a map on Y satisfying the following conditions. Associated
to each directed graph G = (V, A) with node set V = {1,...,n}, each node i €V and each
state & € X", there is a compact set ED(A)(x) C X satisfying:

(i) fO(x, k)€ ED(Ax)(x) VhkeN  Vxem,

(i) ED(A)(x) = {x(i)} whenever the states of node i and its neighbouring nodes j are

all equal,
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(iii) ED(A)(x) is contained in the relative interior of the convexr hull of the states of
node i and its neighbouring nodes j whenever the states of node i and its neighbouring

nodes j are not all equal,

(iv) ED(A)(x) depends continuously on x, that is, the set-valued function £V (A) : X" =

X is continuous.®

Then, if xy = (acg) e :Cé") )T evolves for some xx—g = xg according to
Tpp1 = f(a:k, k) + H(mk, k)]_ (522)
the elements of xy will approach each other over time, that is

lim 2’2 =0 (5.23)

k—o0

foralli,je{l,...,n}.

Proof Start by defining
Yi ‘= T — 0% 1 where o = 0(x (i), 1) (5.24)

Then opy1 = o + O(mk, k) and

Yk+1 = Tht1 — Ok+11

2 g, k) +0(ai k)1~ [or + 0(on )1

5.24
(:)f(yk+0k1 , k) — okl (5.25)

=g(yr,k)

Now, if g satisfies all of the assumptions (1)—(4) of the theorem, the results from Moreau
(2005) guarantee that all entries in y;, will converge to a common value, and hence, through
(5.24), the values in @) have to approach each other. So let us test g for each of the four

assumptions.
(i) For all nodes i € V,

9D (yi k) = (s + oxl, k) — o € ED(A) (g + 1) — 0% (5.26)

=:£0) (A) (yr)

Clearly, if f(zi,k) € ED(Ax)(zx) for all i € V, k € N and € &A™, and if
Q) (Ak) (mk) is compact, then €@ (Ak) (yk) is also compact given o is bounded.

5 Put simply, these four conditions require that the updated state of each node must be a strict convex
combination of its own and its neighbours’ states, and that the update function must be continuous.
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ii) Whenever the states of node i and its neighbours are all equal, that is y(i) = y(j ) for
k k
all j € N

£ (Ak) (yr) = eW (Ag) (yr + oxl) — o = {yl(:) +top}—op= {yl(cl)} (5.27)

(iii) Assume the states of node i and its neighbours j € N® are not all equal. If
EW (Ay) (zx) is contained in the relative interior of the convex hull (conv{-}) of

the states of node ¢ and its neighbours, we have
(@) (9)
V(A (@) € convh {2} }
e (.Ak) (:Bk — ol + akl) C convh {xéj) + o) — ak}
JENG

eW (Ak) (yk + Uk]_) — oy C cojr\lfx(/l)l {y,(cj) + O'k} — ok
JeNt
and with convh{-} being a linear operator

£ (Ak) (yk + o'k]_) — o C convh{y,(cj) + ok — Uk}
JEN @

& (4) (4)
£ (Ax) (wr) € comvh iy} (5.28)

(iv) If P (.Ak) (:Bk) depends continuously on xj, so will £(%) (.Ak) (:Bk + O‘k].) — o0l =
£V (Ar) ()-

We have thus established, that the update map g satisfies Assumption 1. Assuming
that the graphs never disconnect, we can now apply Theorem 1 from Moreau (2005). It
guarantees that the entries in yj, will converge to a common value, and thus, through (5.24)

the states xy have to approach each other so that z,(j) — z,(cj) —0ask—o00. [

5.4.2 Application to decentralised connectivity control

In the context of decentralised connectivity control, both Lemma 4.1 and Theorem 5.1
are very useful. Roughly speaking, they indicate that consensus algorithms with an input
term, that can depend on the consensus states, eventually become scalar.® That is, their

stability and convergence properties are eventually governed by the scalar equation
Tht41 = Tk + H(xk, k) (529)

Since the properties of such systems are well understood, the above theorems offer inter-

esting possibilities for the design of control laws.

6 And while this convergence is asymptotic, in any practical implementation of this algorithm quanti-
sation effects will be unavoidable, hence the system should become scalar in finite time.
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With this in mind we propose updating individual radii using a convex combination of
their neighbours’ values, plus an input term that depends on the estimated second largest

eigenvalue. Specifically, we propose the following decentralised control law
rier = Pore+ [ A(re) = A1 (5.30)

for some ry—g = r9. Here Py is now a sequence of primitive, row-stochastic averaging
matrices on the graphs induced by 7y, )\(T) is the magnitude of the second largest eigen-
value of the averaging matrix P as in (5.2) for the graph induced by 7, and u > 0 is a
suitable control gain. We are then guaranteed by Lemma 4.1 that the radii will converge
to a common value.

The next step is thus to determine conditions on the control gain u so that )\(rk) will

indeed converge to (a desired neighbourhood of) A..

Comments At this point, the similarities to the work from the previous chapter become
evident. The proposed control law has a similar structure with its local and global com-
ponent. However, the local component does not include utility functions (or rather, the
utility functions are the identity function) and, most importantly, the global function is
neither continuous nor monotonous.

We also note that any other consensus scheme (to which Theorem 5.1 can be applied)
may be used here. The proposed controller is decentralised in that each node only requires
the radius information of its neighbours, information that can easily be broadcast along
the communication that is necessary to run the consensus algorithm needed to estimate
Ak in the first place.

Last, (5.30) has strong similarities with the Lur’e problem, see for instance Narendra
and Taylor (1973); Vidyasagar (2002); Khalil (1992) and references therein for the precise
problem statement and the wealth of results related to it. However, the classic results
cannot be applied to the problem presented here since the non-linearity does not satisfy
the continuity assumption that is usually made, nor does it guarantee a unique solution

(as well shall see in the next section) which is also required to apply these results. /

5.4.3 Conditions for convergence of the decentralised control law

As we have shown, it follows from the closed loop dynamics that we can assume that
eventually all radii have converged to a common value. In that case, (5.30) will be reduced

to a scalar equation for the whole network:
Thal =Tk + p {)\(rk) — )\*} (5.31)

for some rg—g = 7r9. Note that we write )\(rk) since the second largest eigenvalue of
the averaging matrix of the network depends on the communication radius used by the

nodes. Ideally we would like to ensure that )\(rk) asymptotically approaches A, under
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Figure 5.6: Plot of A(r), the magnitude of the second largest eigenvalue of the averag-
ing matriz of a random (undirected) disc graph on 20 nodes as a function of the
(common) communication radius .

the assumption that the estimation part of the algorithm can be completely decoupled
from the closed loop control. As we shall see, even under this considerable simplification,

proving stability is nontrivial. In particular, two practical issues arise.

Quantisation The first complication arises from the following observation. Normally,
with problems of this type, one makes use of the fact that the eigenvalues of the consensus
matrix vary as a continuous function of the matrix entries. In what we are proposing, the
entries of P are either zero, or jump to some non-zero value as we adjust the communication
radius of each node. In other words, the matrix entries vary abruptly as a result of the
control action; consequently, the result of this is that A(r) also changes abruptly. Thus, it
is clear that not every arbitrary second largest eigenvalue value in the (0,1 ) interval can
be achieved through feedback of the proposed type. Rather, the network can only produce
a finite set of values, corresponding to the (limited number of) different possible topologies
of the network with a fixed number of nodes in fixed locations. This fact is depicted in
Figure 5.6 above. The plot shows how the magnitude of the second largest eigenvalue
changes with the (common) communication radius for a given random disc graph on 20
nodes. Note that the curve is not continuous, but broken up into segments. A given
magnitude of the second largest eigenvalue never corresponds to just a single radius, but a
range of radii. Thus the best we can hope for is to converge to some neighbourhood of ..
Of course, for our application, this is entirely satisfactory as both connectivity and bounds

on rates of information transmission in the network are controlled using this strategy.
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Monotonicity A second complication arises due to the fact that we do not precisely
know the relationship between A(r) and r. In fact, the previous example shows that this
relationship need not even be monotonic. However, it is reasonable to assume that the
aforementioned relationship is approximately monotonic. This follows from the following
argument. Our strategy is motivated by the intuition that as the radii of the individual
nodes increase (decrease), roughly speaking, the second largest eigenvalue of P also will
decrease (increase). Referring to Hartfiel (1998), we know that the coefficient of ergodicity
of a stochastic matrix is an upper bound on the magnitude of the second largest eigenvalue,
so |A| < 7(P). Recall that for a stochastic matrix P, using the 1-norm, 7(P) is defined as

#(P) = X max HP@) — pW H (5.32)

2 i#j 1

where P(®) denotes the ith row of P. Thus, when the rows of P become ever closer to each
other as measured by the 1-norm, 7(P) decreases, and thus the magnitude of the second
eigenvalue will also eventually decrease. So even though we are not assured of a locally
monotonic relationship, in principle it should still be possible to regulate the magnitude
of this second eigenvalue to a neighbourhood around some target value, if we have some

knowledge of the approximate manner in which A(r) varies with r.
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Figure 5.7: Illustration of a monotonic \(r) curve with some relevant points highlighted
relative to A, highlighted.

Before we present our convergence results, some further notation is helpful. Once again,

to ease exposition please refer to Figure 5.7 above as we give the following definitions. Let
A:=inf {A(r) : A(r) > A} and  X:=sup{A(r) : A(r) < A\, } (5.33)

Then A < A, < A. Put simply, for any )\, there is a feasible A “just above” and “just

below”, called A and X respectively. Now define the following radii

ro=inf {r: A(r) <A} and Fr=sup{r:A(r) > A} (5.34)
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Then A(r) > A for r < r and A(r)

< X for r > 7. The radii r resp. 7 then are the smallest
resp. largest radius so that A\(r) < A

resp. A(F) > A. Finally, we also define the closed
interval R = [r,7].

With the above definitions, the following two theorems provide simple conditions on the
controller gain u so that the system (5.31) converges to within the interval R (attractivity),
and stays in that interval once it has entered it (invariance). Note that estimates of these
bounds may be calculated a priori for graphs with typical geographic distributions (or they
could be estimated in real time by each node in a decentralised fashion). The important
point to note is that the convergence of the controlled system is guaranteed provided that
the controller gain is small enough.

The following Theorem 5.2 contains a condition on g which guarantees that if the
system starts in R it will remain in R. Application of the theorem requires that the graph

of X satisfies the following condition when 7 is in R: There exists £(°) > 0 such that
6O (r—r) < A= < O (r—7) for r<r<r (5.35)
These bounds are illustrated in Figure 5.8 below.

A

>~

s

>

L ot T r
Figure 5.8: Illustration of the bounds on A(r) as required by Theorems 5.2 and 5.5. See
also Figure 5.11 for a real example of this sketch.

Theorem 5.2 (Invariance of R)

Consider a scalar system described by (5.31) and let kK0 and the interval R be as

defined above. Suppose that the control gain u > 0 is chosen such that

pr® <1 (5.36)

Then whenever ry—g € R, the resulting sequence i, will stay in R for all k > 0.
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Proof Suppose that r, € R. We need to show that ry; € R. Then we will have
demonstrated invariance of R. We first show that ry; < 7. Since p > 0 and pue(® <1, it
follows from condition (5.35) and r; € R that

n[A(re) = A] < = [y, — 7]
< pr® 7 — 71
< T —rp; (5.37)
hence
Tk4+1 = Tk + ,u[)\(rk) — )\*}
ST +T Tk

<7 (5.38)

Next, we show that rg1q > r. Since p > 0 and un(o) < 1, it follows from condition
(5.35) and r € R that

wA(re) = A = —psO[rp — 1]

>r—rp; (5.39)
hence
Thk4+1 = Tk + ,u[)\(rk) — )\*}

2Tk +T =Tk

>r (5.40)

To discuss convergence of the solutions of system (5.31) to R we let

r—rg if rp <T
dr =40 if r<r,<7T (5.41)
rE —T if L >T

be the distance of ri from R. Then we say that r; converges to R if limy_oo dx, = 0.
The next theorem contains a condition on p which guarantees that all solutions of the
system converge to R. Use of this theorem requires that A\ satisfy the following sector

conditions: There exist constants £ > k(1) > (0 such that

7}@(1)(7” —r) <Ar) =\ < ,,1(2)(7’ — Tm) for O<r<r (5.42)
&P —rn) SAr) = A < —xD(r=7)  for  F<r<V2 (5.43)

where 7y, := (r + 7)/2. An illustration of these sector bounds is given in Figure 5.8.
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Theorem 5.3 (Attractivity of R)
Consider a scalar system described by (5.31) and let kK9, kM) k() and the interval R

be as defined above. Suppose that the control gain i > 0 is chosen such that ux®) <1 and
pr® <2 (5.44)

Then every solution of (5.31) converges to R.

Proof Letting o := max{ 1—pucM | pr®—1 } we will show that
dk+1 S Ozdk (545)

and hence dj, < o*dj—g. Since by assumption |a| < 1, we then obtain that limg_,o di, = 0.
Since R is invariant, we need only discuss the situations for which r, ¢ R as well as

rr+1 ¢ R. There are four cases to consider.
(i) rr <r and rg41 < 7. In this case d, = r — 7 and
A1 =17 — Thy1
=r—7K— ,U[)\(Tk) - A*}
<r—r—peP[r -]

< (1= p™) [r = ry]
< (1= pst)dy, (5.46)

that is dpy1 < (1 — ps™)dy, and thus (5.45) holds.
(ii) rx < r and rg4q1 > 7. In this case d, = r — 7 and
A1 =Tp41 — T
=7+ M[A(rk) — )\*} -7
<7+ /m(Q) [rm — rk} -7
< (1= ps@yry + pr@ry — 7 (5.47)

Recalling that s < 2 and rp, = (r + 7)/2, we can see that

(2) (2)
un@)rmf<1w; )F+MH2 T
(2) (2)
<- <1 - u'; ) r+ MQ r
< —(1— pr®)y (5.48)

Hence
i1 < (1= pe®)rg = (1= ps®)r
< (urs® = 1)dy, (5.49)

and thus (5.45) holds.
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(i) r4 > 7 and rg41 < 7. In this case d = 1, — 7 and
diy1 =7 — Th41
=r—7rK- M[A(m) - )\*}

r =1 — k' [rm — 1y

—(1— un@))rk +7r— ,LLK(2)Tm (5.50)

IN

IN

Again, we can see that since ux® < 2

(2) (2)
Z*MH@)Tmf <1 MUK >r UK 7

77

<(1- K(Q))

(5.51)

Hence

IN

—(1 = p@)r 4+ (1 — ue@)7
< (ue® = 1)dy, (5.52)

dry1

and thus (5.45) holds.

(iv) r, > 7 and 1,41 > 7. In this case dy = ry — 7 and

di41 =Th41 — T
=ri+ u{)\(rk) - )\*} -7
<rp =7+ ps[F—rg]
<(1- /m(l))[rk — 7
< (1= pusM)dy, (5.53)

that is dpy1 < (1 — puxM)dy, and thus (5.45) holds.

O

In summary, the theorem gives a condition on the control gain so that the closed loop

system (5.31) converges to the interval R.

Comments If A(r) is not monotonic with = then it is possible that lim, 7 A(r) > A
where the notation means that the limit is taken from the left; see Figure 5.9 on the facing
page. If this occurs, one cannot satisfy (5.35) with any £(©) > 0. In this case (5.35) can be
satisfied by replacing 7 with 7. where 7. = 7 + ¢ and € > 0; of course x(®) will depend on

g; see Figure 5.9. A similar remark holds if lim, ., A(r) < A..
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T 7 T+e r

Figure 5.9: Illustration of \(r) curve that is not monotonic.

Furthermore, it is possible that with the above control law the network may accidentally
become disconnected. The closer A, is to one, the more likely this may happen: For
instance, assume at time step k the estimated A\ is smaller than A,. In that case, all the
nodes will reduce their radius by a certain amount (that is, by ;L[)\k - )\*}) Now, if the
updated radii are so small that a particularly “outlying” node becomes “out of reach”, the

graph will disconnect.

However, in general, the disconnection of the graph can easily prevented by setting a
certain minimum radius that the nodes are allowed to use: this would be the smallest com-
mon radius (plus, maybe, a safety margin) that would still guarantee connectedness of the
network, i.e. it would correspond to the largest inter-node distance. This information can
either be pre-programmed into the nodes at the time of deployment (if a the corresponding
maximum inter-node distance can be guaranteed), or after deployment. In any case, this
only needs to be done once, as we assume that the nodes do note change their position

after deployment. /

5.5 Simulation results

To conclude this section, we now present some simulation results. Most of the plots shown
in this section are based on random disc graphs of 50 nodes, with initial radii uniformly
distributed in [0.1,0.6], and A, = 0.8.

First we show a series of plots to illustrate the pertinent features of our stability proofs,
then we show the general performance of our proposed controller, and finally examples of

modified control objectives.
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5.56.1 Example 1: Controller stability bounds

Figure 5.10 and Figure 5.11 show an experimentally obtained A(r) curve, the second figure
being a close-up view of the first. Picking A\, = 0.8 we indicate the values of A and A, as

well as r, 7 and ry, with dotted lines.

Figure 5.10: Actual \(r) of a random disc graph on 50 nodes, with an example of the
bounds as required for by Theorems 5.2 and 5.3 drawn for A\, = 0.8.

We then determined the bounds £, x(!) and x(?) on the curve, which are indicated by
the thicker lines, similar to Figure 5.8. The actual values of those bounds are x(® ~ 14.3,
k() ~0.17 and k) ~ 8.72.7 When controlling the nodes’ radii with (5.30), Theorem 5.2
requires that p has to be less than 1/ £ ~ 0.067 to guarantee invariance of the corre-
sponding interval R ~ [0.321,0.322]. Attractivity of R according to Theorem 5.3 in turn
requires ju to be less than 2/x(2) ~ 0.23.

Thus setting ;1 = 0.05, we re-initialised the network with randomly distributed radii in
the [0.1,0.6] and ran the controller on the network. As we can see in Figure 5.12 on the

next page the convergence of both the radii and A is smooth and fast.

7 Note that tighter bounds can be found.
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Figure 5.11: Magnified view of the region around (A«,Ty,) from the previous plot.
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Figure 5.12: Evolution of A\, and the individual nodes’ radii r](ci) in the 50 node network

analysed in Figure 5.10, for A = 0.8, with u = 0.05.
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5.5.2 Example 2: Combining Control and Estimation

In the previous example we displayed the converged values of the estimation scheme. To
show in more detail how estimation and control scheme work together, we present Fig-
ure 5.13. Plotted is again the evolution of the nodes’ radii under control action (5.30) as
well as the estimates of A, shown in the upper subplot. These estimates where calculated as
described in Section 5.3. We allowed 100 time steps for the estimation scheme to converge,
before taking a control action based on the new estimates.

It can be seen that after every topology change all nodes’ estimates converge to a com-
mon value and that the control scheme successfully regulates the second largest eigenvalue
of the network to A, = 0.8.

RS
T

0.6 4

|
0.8 i f

0.4 4

0.2 4

0.8 | 4

0.6 4

(9

0.4 F

0.2 4

0 1 1 1 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time step k

Figure 5.13: FEvolution of the estimates of A\x and the individual nodes’ radii r,(:), as

the controller updates the radii every 100 iterations of the estimation scheme, for
A = 0.8, with p = 0.05

5.5.3 Further Examples of control

Next, we present another example that depicts how the (true value of the) second largest
eigenvalue in magnitude and the nodes’ radii change over time, as the nodes control their
radii using (5.30).

Figure 5.14 shows a situation where A\, = 0.5 was required. As this represents a very
densely connected network, all nodes had to increase their radius. In turn, in Figure 5.15
we start off with an extremely highly connected network (it was almost fully connected),

and all nodes have to significantly decrease their radii to achieve the desire A, = 0.8.
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Figure 5.14: FEvolution of \;, and the individual nodes’ radii r,(j)

for Ax = 0.5, with u = 0.05.

in a network of 50 nodes

15 20 25 30
Time step k

Figure 5.15: FEvolution of \;, and the individual nodes’ radii r,(j) in a network of 50 nodes

with very large initial radii, for A\, = 0.8, with u = 0.05.

The plots in Figure 5.16 on the following page show a scenario where the network had
to react to a change in topology: At k = 30 we randomly removed half of the nodes from
the network, thus reducing the graph size to 25 nodes. The resulting network’s second
largest eigenvalue in magnitude is larger than desired (i.e. it is less connected), and thus
the controller compensates this by increasing the remaining nodes’ radii until A, = 0.8 is

achieved again.
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Figure 5.16: FEvolution of A\, and the individual nodes’ radii T,(f) in a network of 50 nodes,
where 25 nodes are removed at k = 30 (for A\, = 0.8, with = 0.05).

5.5.4 Validation of control results

In Figure 5.17 on the next page we compare the converged radii of our controller for several
different A, (circles) with the second largest eigenvalue in magnitude of the averaging
matrix of random disc graphs created with different initial radii (crosses). Until now
we have only shown individual results from single instances of graphs. This plot is to
demonstrate that our estimation and control scheme works over a whole range of set
points, for any number of trials.

The data points marked by crosses were obtained as follows. Picking 17 different values
of r we generated 1000 random geometric graphs (on 50 nodes) for each radius. Next, we
calculated the second largest eigenvalue of the resulting averaging matrix of each graph
A(r), and finally plotted the average value against the initial » value used. In turn, the data
points marked by circles were generated by choosing 14 different values for A\, generating
1000 graphs and running the control algorithm on the network. The resulting converged
(common) radii 7cony(A«) were then averaged and the value plotted against the particular
A« chosen.

As all points appear to lay on the same curve, the plot indicates that nodes radii set
by the controller indeed converge to the corrected value over the entire range of sensible

A« values.
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Figure 5.17: Crosses x: average A(r) of 1000 geometric graphs on 50 nodes created with
common radius r. Circles o: Average converged radii Toony after control targeted
at different Ay values, for 1000 trials each (where the initial radii where randomly
distributed).

5.5.5 Examples of other control objectives

As we mentioned in Section 5.2, our control scheme is general enough to allow objectives

other than a common radius while achieving a desired ..

Imagine a situation in which some nodes are equipped with a longer-lasting power
supply and we can allow those nodes to have a larger radius than most of the other nodes
in the network. This would correspond to weighting the nodes’ radii in the averaging
scheme. It is possible to include such weighting in our framework, and all the proofs
directly hold with but a small modification, Knorn et al. (2009¢). An example of this
is given in Figure 5.18, where by design we wish one node to have twice the radius as
the others, and one node half the radius. As can be seen, the eigenvalue of the network
converges quickly to its desired value of A, = 0.8, and the nodes radii converge to a common

value with the exception of the two nodes of different weighting.

Comment Note that such a weighting will result — contrary to the other cases — in
a directed network (that is, a non-symmetric averaging matrix), even in steady state. As
we mentioned earlier it is an important feature of our algorithms that they work in both

undirected and directed networks. e

Finally we now present an example where a completely different control objective is
desired. Regulating the second largest eigenvalue in magnitude, here we do not care about
the radii but rather about the number of neighbours of each node. In Figure 5.19 on the

following page we required the nodes to achieve consensus on the number of neighbours,
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15 20 25 30
Time step k

Figure 5.18: Evolution of \;, and the individual nodes’ radii r,(j) in a network of 50 where
two nodes where to have twice resp. half the radius as their peers. Again, \s = 0.8
and p = 0.05.

rather than the radii. Although one needs to redo the proof of stability, we can see that

the network converges to a stable solution.

0 20 40 60 80 100 120 140 160
Time step k

Figure 5.19: FEvolution of \;; and the individual nodes’ radii r,(f), 50 nodes, consensus on

number of neighbours.

5.6 Conclusion

In this chapter we have presented a general framework for controlling the topological

properties of a network of distributed sensors. This work is closely related to the contents
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of the previous chapter, with the important difference that the global term is not provided
“externally” but estimated in a distributed fashion by the network agents themselves. As
before, our framework breaks free of many of the assumptions of previous work such as
graph symmetry, and utilises only simple ideas from control and estimation to regulate
important graph properties. Conditions for the stability of our algorithms are presented.
Roughly speaking, these results state that if the nodes are not too aggressive in the manner
in which they expand or contract their neighbourhood set, stability is assured. This bears
a strong resemblance with the growth bounds that were required in the previous chapter

in order to calculate the controller gains.

Limitations

While the results reported in this chapter are certainly promising, there a number of
limitations to our theoretical contributions. The first concerns the estimation of the second
largest eigenvalue in magnitude, where it would be beneficial if an estimation scheme could
be found that can estimate it irrespective of whether it is real or complex (non-real) valued
and hence does not require a decision-heuristic as presented here.

Next, the separation of time scales between estimation and control scheme may be an
unnecessarily restrictive assumption. In fact, initial tests have shown that estimation and
control scheme may well be “interleaved” in the sense that single iterations of each scheme
can be performed in alternation without compromising convergence (provided the gains
are small enough).

Last, the overall convergence proof here relies on the convergence to a scalar equation,
which makes it difficult to derive precise convergence rates for the overall problem. It may
be an interesting problem to attempt to prove convergence without this intermediate step

and derive concrete convergence rates.

The last chapter of this thesis will discuss three applications where the main results

from the previous chapters are applied to a number of real-world problems.






CHAPTER 6

Applications

This chapter presents three practical applications for some of the results pre-
sented in the previous three chapters. In particular, they involve stability con-
ditions for a power control algorithm (application of our CLCLF result), coop-
erative control of emissions in a fleet of plug-in hybrid electric vehicles as well
as a real implementation of a small network of wireless motes (as applications
for the cooperative control results).

Chapter contents

6.1 Stability of the Foschini-Miljanic algorithm
6.2 Emissions control in a fleet of Hybrid Vehicles

6.3 Real-world implementation of cooperative control

6.1 Stability of the Foschini-Miljanic algorithm

113.81102ptThe first application we discuss uses one of our common linear co-positive
Lyapunov function results from Chapter 3 to derive conditions for stability in the presence
of time-varying time-delays and arbitrary switching in a popular distributed power control
algorithm for wireless communication networks. This section is based on joint work with
Dr. A. Zappavigna, Prof. P. Colaneri!, Dr. T. Charalambous? and Prof. R. Shorten; it is

accepted for publication in the Automatica journal, Zappavigna et al. (2011).

6.1.1 Introduction

Some Code Division Multiple Access (CDMA) based power control algorithms aim to as-
sign power to wireless nodes in a distributed fashion, while guaranteeing a certain Quality
of Service (QoS), Schulze and Liiders (2005). In real communication systems, especially
ad-hoc networks, distributed algorithms require communication among the nodes. But

processing time (coding and decoding), propagation delays and waiting for availability of

I Dr. Zappavigna and Prof. Colaneri are with the Dipartimento di Elettronica e Informazione, Politec-
nico di Milano, Italy.

2 Dr. Charalambous was with the Department of Computing, Imperial College London, United King-
dom.

117
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channels for transmission all introduce delays into the network. Additionally, the nodes
may be mobile, entering or leaving the network, causing the network topology to change
constantly. Hence, any stability analysis of distributed algorithms for such realistic situa-
tions should consider time-delays in the network and changing network topologies.

The authors in Foschini and Miljanic (1993) proposed a power control algorithm, the
now well known Foschini-Miljanic (FM) algorithm, that provides distributed on-line power
control of wireless networks with user-specific Signal-to-Interference-and-Noise-Ratio (SINR)
requirements. Furthermore, this algorithm yields the minimum transmitter powers that

satisfy these requirements.

Previous work

As we shall see, this study will involve switched positive systems where the states are
delayed. Systems with time-delays naturally occur in many applications and have been
studied extensively over the past few decades, see for instance the book by Lewis and
Anderson (1980); Hale and Lunel (1993); Hennet and Tarbouriech (1997); Haddad and
Chellaboina (2004); Hével (2010) and the book by Mahmoud (2010).

In the context of switched systems, various types of delays are usually considered, in
particular single, constant delays (Li et al, 2009) or multiple but constant delays (Sun
et al., 2008; Liu et al., 2008; Ding and Shu, 2010). The recent result by (Sun et al., 2008)
discusses switched systems with time-varying time-delays, but focuses on finding stabilising
switching laws and hence does not cover the arbitrary switching case. Concerning the
Foschini-Miljanic algorithm, it was recently shown in Charalambous et al. (2008) that it is
globally asymptotically stable for arbitrarily large but constant time-delays, and the article

did not consider time changing network topologies.

Contributions

In this section, making use of recent advancements in positive linear systems and in partic-
ular Theorem 3.2 from Chapter 3, we consider both the effects of time-varying delays and
changing network topologies (in other words, arbitrary switching). For that we present a
new theoretical result concerning the stability of such systems. This result is then used
to show that the Foschini-Miljanic algorithm is globally asymptotically stable even un-
der those harder, more realistic conditions, provided a condition similar to Theorem 3.2
is satisfied. Our results are of practical importance when designing wireless networks in

changing environments, as is typically the case for CDMA networks.

Structure

The remainder of this application section is structured as follows: Section 6.1.2 provides

some helpful mathematical preliminaries. Then, we introduce the channel model used
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for modelling the wireless communications as well as the Foschini-Miljanic power control
algorithm. In Section 6.1.4, a stability condition is derived for the Foschini-Miljanic algo-
rithm, showing its stability under arbitrary switching and time-varying delays. Finally, an

example as well as some concluding remarks are given.

6.1.2 Mathematical preliminaries

In what follows, we will establish the mathematical framework for our study and give a
useful result on positive systems that is needed to prove our later results. We shall deviate
slightly form our usual notation in that the variable ¢t now denotes the (continuous) time
variable, so that x(t) is the value of @ at time time. Subscripts are either used to index
subsystems in a switched system, to indicate different delayed states, or to denote specific
switching instants. In general, it should be clear from context and the explanations we
give when defining new variables as two what the index is referring to.

We shall consider the following type of linear system with m different delayed states

whose time-delays are time-varying:

z(t) = Az(t) + i Bz (t — 7i(t)), t>0 (6.1a)
k=1

a(t) = p(t) =0,  te|-7,0] (6.1b)

where x(t) € R%,, A € R"*" is a Metzler matrix, B, € RZ;" are non-negative matrices
forallk =1,...,m, ¢(-) is a bounded, piecewise continuous vector function and the delays

71 (t) are assumed to satisfy:

Assumption 6.1 (Bounded time-delays)

All the k =1,...,m time-varying time-delays 71 (t) are bounded, piecewise continuous

functions in t, satisfying
0<m(t) <7 <7  forallt>0 (6.2)

where T = max,{7x}.

Comments  Systems of the type (6.1) are referred to as delay differential equations or
functional differential equations; an extensive overview over such systems can be found in
Hale and Lunel (1993); Kuang (1993); Diekmann et al. (1995).

Furthermore, while for most practical applications piecewise continuity of both the
initial condition function ¢(-) and the time-delays 74 (¢) will suffice, all results will in fact
hold for locally Lebesgue integrable functions, Rudin (1976); Rami (2009). e

Recall that a dynamical system is said to be positive if its state trajectories remain in

the positive orthant for all ¢t > 0 (provided that the initial condition is positive). Thanks
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to A being Metzler and the By being non-negative, it is easy to show that the system
above is indeed positive, see for instance Rami (2009).

We can now present a useful result on switched positive systems with time-varying
time-delays that are based on (6.1), where both the system matrix A and delay matrices
Bjy; switch arbitrarily (but not infinitely fast). Given N constituent subsystems we make
the common assumption that the switching instants are defined in all the real time axes
and that infg(tx+1 — tr) > 0, where ;1 and t; are two consecutive switching instants, so
that the switching rule has no accumulation points.

The following theorem states that the existence of a common linear co-positive Lya-

punov function v(x) = ¢’

x with ¢ > 0 for all un-delayed modes of the system is sufficient
to guarantee the asymptotic stability of the system for bounded time-varying delays and

arbitrary switching.

Theorem 6.1 (Stability of switched positive linear systems with time-varying delays)

Consider the switched positive system with time-varying time-delays for t > 0

&(t) = Ag(t)w(t) + Z Bkyg(t):c(t — Tk (t)) (6.3a)
k=1
z(t) = (t) = 0, te[-7,0] (6.3b)
where x(t) € R, o0 : R — {1,..., N} is some (piecewise constant and left-continuous)

switching signal (defined in all the real time axes and with infy(tg41 — tx) > 0, where
te+1 and t, are two consecutive switching instants), A; € R"™*™ are Metzler and By €
RIG™ are non-negative matrices, i = 1,..., N, and the delays 7,(t) are assumed to satisfy

Assumption 6.1. If there exists a strictly positive vector ¢ such that

k=1

c' <Ai+ZBk,i> <0, Vi=1,...,N (6.4)

then system (6.3) is asymptotically stable.

Proof The full proof of this theorem is given in Zappavigna et al. (2011). To give a
rough outline, the main idea of the proof is to make use of certain monotonicity and or-
der preserving properties exhibited by these systems and their counterparts with constant
time-delays. The switched system is examined between each two consecutive switching
instants and it is shown that it decreases exponentially in each of these time intervals,

from which overall stability can then be deduced.

Comment Note that with the assumptions of the theorem, system (6.3) will also remain

positive throughout time. /

Now, given this result, the question would be how to check for the existence of such Lya-

punov function. From the third chapter, recall Theorem 3.2 which provided a (necessary
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and sufficient) test for the existence of a common linear co-positive Lyapunov function.
The following corollary is just a slight reformulation of that theorem in order to fit the

current setting, reproduced here mainly for convenience:

Corollary 6.1 (CLCLF existence)

Given N Metzler matrices A; and m - N non-negative matrices By, ;, then there exists
a strictly positive vector ¢ = 0 such that c' (A; + Y 4y Br,i) =: c"A; <0Vi=1,....N
if and only if As(Al, . ,AN) is Hurwitz for all s € S, .

Proof See Theorem 3.2 on page 41.

6.1.3 Wireless communications

Having laid out some necessary mathematical groundwork, let us now present a model of
the wireless communications and later the famous Foschini-Miljanic power control algo-

rithm.

Channel model

We consider a network in which the links are unidirectional and each node is supported
by an omnidirectional antenna. The link quality is measured by the Signal-to-Interfer-
ence-and-Noise-Ratio (SINR). Let S and R denote all transmitters and receivers in the
network, respectively. In a network with n communication pairs (n = |S| = |R]), the
channel gain on the link between transmitter i € S and receiver j € R is denoted by ¢(*¥)
and incorporates the mean path-loss as a function of distance, shadowing and fading, as
well as cross-correlations between signature sequences. All the ¢(%/) are positive (since all
nodes are equipped with omnidirectional antennae) and can take values in the range (0, 1].
Without loss of generality, we assume that the intended receiver of transmitter ¢ is also
indexed by i. The power level used by transmitter i is denoted by p(?, and (¥ denotes the
variance of thermal noise at the receiver 7, which is assumed to be an additive Gaussian
noise.

The interference power at the ith receiver consists of both the interference caused by
all the other transmitters in the network ki ¢U9pl) and the thermal noise ¥ in node

7’s receiver. That means the SINR at the receiver 7 is

(i) y(3)
(i) _ 9P
SINR™ = Zj#g(ji)p(j) + @ (6.5)
Due to the unreliability of the wireless links, it is necessary to ensure Quality of Service
(QoS) in terms of the SINR in wireless networks. That is, a transmission from transmitter ¢
to its corresponding receiver is successful (error-free) if the SINR at the receiver with

respect to that transmission is greater than or equal to the capture ratio v(9), which depends
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Figure 6.1: Illustration of a wireless ad-hoc network with 5 communication pairs. The
channel gains for each pair {S; — R;} is shown as well as the interference caused
by S1 on the other four receivers.

on the modulation and coding characteristics of the radio. In other words, it is required
that
(#1) p(2)
9P (i)
> .
> 9Pl + v =7 (6.6)

Inequality (6.6) describes the QoS requirement of a communication pair (i,¢) while a trans-

mission takes place. After manipulation, (6.6) becomes

(i) .
7 g i 13

pi 2| D TV + (6.7)
i I g

In matrix form, for a network consisting of n communication pairs, this can be written as
p=TZp+n (6.8)

(p(l) p(n)); I' = diag {V(i)}; 2 = gUd /gl if 4 = j| zero
nM g ) with 7" = 4y /g Finally, letting C := I'’Z,

where we define p"

otherwise; and 57 = (
I-Chpzn (6.9)

We note that C has strictly positive off-diagonal elements which implies that it is
irreducible. By the Perron-Frobenius Theorem (Horn and Johnson, 1985) we then have
that the spectral radius of C' is a simple eigenvalue, while the corresponding eigenvector is
positive elementwise. A necessary and sufficient condition for existence of a non-negative
solution to inequality (6.9) for every positive vector n is that (I — C)~! exists and is
non-negative. However, (I — C)~! = 0 if and only if the spectral radius p(C) < 1, or,
equivalently, (C — I) is Hurwitz (since (C — I) is Metzler), see Horn and Johnson (1991).
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The Foschini-Miljanic power control algorithm

The Foschini-Miljanic (FM) algorithm is given by the following distributed power update
formula Foschini and Miljanic (1993):

dp () (@
dt

97 )

— kD | —py(t) + 4D » (6.10)

0D R

j#i
where k(") > 0 denote the proportionality constants and v() denote the desired SINR. Tt
is assumed that each node i has only knowledge of the interference at its own receiver.

In matrix form, for a given network configuration this yields
p(t) = —K(I— C)p(t) +n (6.11)

Since the transmitter uses measurements from its intended receiver, delays are inevitably
introduced into the system for a number of reasons such as processing time (coding/decod-
ing), propagation delays and availability of the channel for transmission. Consequently, a

realistic analysis of the algorithm must consider, time-varying delays:
glid) v

dpD () ol @ (i) ) )
L — w0 |p (1) + ;g(ii)p (t-r90) +
j#i

e (6.12)
where we assume that 7(9)(t) satisfy Assumption 6.1. In matrix form this can be written

as

p(t) = —Kp(t) + K (Z Byp(t — m,(t)) + 77) (6.13)
k=1
where K = diag {x(V}, and b;:j) is zero if j = k or i # k, or equal to y(*¥) g9 /g(kk)
otherwise. Note that >, _, By = C.
Assuming feasibility of the solution, and defining x(t) = p.— p(t) to describe the
deviation from the desired power levels p, = (I—C)~!'n = 0 in order to satisfy (6.9), then
the stability of (6.13) is equivalent to and can be assessed by study of the following system:

(t) = —Kx(t) + i KBz (t — 74(t)) (6.14)
k=1

for which it is easy to see that the origin is the equilibrium. If its initial condition is non-

negative (which can be guaranteed by starting from all zero power levels) then (6.14) defines

a positive system as the diagonal matrix —K is Metzler and the K B} are non-negative.

6.1.4 Main results

Our main result states the following: In some situations all the possible variations in the

gain matrix may be known a priori, and thus there is a finite number of configurations
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that characterise the possible configuration of the system. In such situations, the next
theorem provides a sufficient condition for stability of the Foschini-Miljanic algorithm
under time-varying delays and when the topology changes arbitrarily among N different

configurations.

Theorem 6.2 (Stability of the FM-Algorithm)
Consider a set of N different network configurations that are described by matrices
C,=>,_ By, wherei=1,...,N, and let A; := C; — L

If the Ay(Ai,...,AN) are Hurwitz for all s € Sp N, then the power control algorithm
(6.13) is asymptotically stable under arbitrary switching (defined in all the real time axes
and with infy (tg+1 —tg) > 0, where tr1 and ty, are two consecutive switching instants), for
any time-varying delays 7 (t) satisfying Assumption 6.1, for any initial states p;(0) > 0,

and for any proportionality constants k™ > 0.

Proof By construction, all A; are Metzler matrices. A,(A1,..., Ayx) being Hurwitz for
all s € S, v is a necessary and sufficient condition, according to Corollary 6.1 to say that
there exists a positive vector ¢ > 0 such that e (—I+ Y ;_, Bg;) < O for all i. This
again also means that since K is a diagonal matrix with strictly positive entries, then
é"(-K +Y.;_, KBy;) <0 for all i, where ¢' = c' K~ = 0.

By Theorem 6.1, comparing (6.14) to (6.3), this is sufficient to guarantee stability. . O

Comment  As we mentioned earlier, Theorem 6.2 may also be formulated in terms of
feasibility of suitably defined linear programming problem. One such program might be
for example: Find a vector ¢ > 0 such that cT[Al .. Axn — I} < 0. e

6.1.5 Example

To illustrate the theoretical result presented by Theorem 6.2, we now consider a three
dimensional model consisting of three modes such that the above stability condition is
fulfilled. It is given by the following matrices

0 0.18 0.23 0 035 0.15 0 0.36 0.61
Ci1=0.31 0 0.04|, C2={0.40 0 0.45|, Cs=1047 O 0.28 (6.15)
0.22 0.12 0 0.37 0.53 0 0.71  0.26 0

From Theorem 6.2, if for all s € S35 the matrices Cs(C1, C2,C3) have a spectral
radius less than one then the power control algorithm (6.13) is asymptotically stable under
arbitrary switching. In the example here, indeed the largest spectral radius over all matrices
max, {p(Cs(C1,C2,Cs))} ~ 0.985 < 1 (corresponding to the permutation s = (3,2,3))

and thus the resulting system would be asymptotically stable under arbitrary switching.
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Figure 6.2: Simulation of the switched network represented by the matrices in (6.15). The
plot shows the evolution of the deviation from the desired power levels pilzj o The
switching sequence o(t) is also shown with the dash-dotted line (that is, if o(t) = 1
then the network is represented by matriz C1, and so on).

Figure 6.2 above confirms this. It shows the results from a simulation run, plotting

the deviations from the desired power levels Ap(¥)(t) = pii)g(t)
(i) !

time for each of the three states, where p,; denotes the desired power level of the ith

— p(t) as a function of

state in the kth subsystem. The switched system used was based on the above matrices,
where the time-varying delays have been simulated with different sinusoidal generators (of
the type 7(t) = asin(8t + ) + §) and the switching sequence has been chosen randomly
(it is indicated with the grey dashed line in the plot). As suggested earlier, the system
was initialised with zero power levels. It can be seen that indeed the deviations disappear
asymptotically.

Note that if, for instance, the (1,2) element in the matrix Cy was equal to 0.45 instead
of 0.35, then its spectral radius p([Cg(l) C§2) Cg(,g) D ~ 1.015 which would violate the
stability condition.

These examples conclude our first application that makes use of one of the main results
from Chapter 3 in order to derive conditions under which the Foschini-Miljanic algorithm
is asymptotically stable, in particular in the presence of time-varying delays and changing

network topologies.
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6.2 Emissions control in a fleet of Hybrid Vehicles

The second application is inspired by the motivating example from the first chapter. It
has been submitted as a contribution to the Joint 50th IEEE Conference on Decision and
Control and the 2011 European Control Conference, Knorn et al. (2011b).

6.2.1 Introduction

Reducing greenhouse gas emissions as well as emissions of directly harmful gases and par-
ticulates are one of the major challenges of the future. In the European Union for instance,
see Spence et al. (2009), attempts to reduce emissions include schemes to encourage opti-
mum driver behaviour (emissions reducing driving style for instance), more efficient use of
the transport network (traffic management and smart navigation systems to reduce conges-
tion, dedicated lanes for specific vehicle types, real-time information systems for locations
of available parking spaces, etc.), or to modify the transport demand (improved logistics

to reduce commercial traffic, better public transport, more low-polluting vehicles, etc.).

Contributions

In this section, we would like to make a contribution to these efforts by proposing a novel
emissions control scheme that makes use of our cooperative control results from Chapter 4.
In a fleet of Plug-in Hybrid Vehicles (PHEV) we intend to regulate the energy mix used
by the cars (that is whether the car should rely more on electric or combustion based
propulsion) in order to control the fleet-wide emission of greenhouse gases or harmful

particulates.

Structure

In the following, we shall provide some background on the environmental issues that under-
line the need for better emissions control schemes and mention some of the recent technical
developments that should make this possible. We shall then discuss the implementation
of our proposed control scheme and finally give some simulation results that validate our

vision.

6.2.2 Background

Attempts by large cities like London (Mayor of London, 2008) or Berlin (Schoemburg,
2008) to reduce emissions have received much public attention, particularly due to the
direct impact they have on the public’s mobility. They try to either discourage drivers to
take their car into the city centre by charging a significant fee for doing so, or by strictly only
allowing (certified) low-polluting vehicles to enter. While these attempts indeed succeed

in somewhat diminishing the number of vehicles in the typically congested city centres,
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they basically are open-loop schemes that do not use feedback to respond to the actual
situation. Factors like the weather, the time of day, day of the week, or public holidays all
have a significant impact on air quality and green house gas emissions. Another problem is
that although cars become greener and greener, there are more and more cars in circulation
so that the effects of more efficient and less polluting engines is offset by the ever growing
number of cars, Mayor of London (2008).

Research and development in the field of electric vehicles has progressed significantly
in recent years. Hybrid electric vehicles (HEV), which combine a conventional internal
combustion engine (ICE) based propulsion system with an electric engine, were introduced
to the mass market around the early 2000s, and, apart from their economic advantages
in terms of fuel economy and their “green appeal”’, a number of additional factors have
led to fast growing sales, Gallagher and Muehlegger (2008). Just to name a few, strong
tax incentives in most countries make a compelling argument for these low-emission ve-
hicles; social preferences and awareness for environmental quality or energy security have
increased; fuel prices can rise and already have risen sharply in the past, with a consis-
tent upward trend over time; most major car manufacturers now offer hybrid cars in their
portfolio, broadening the range of available models from small city cars to big SUVs and
even vans. Nonetheless, consumer adopting rates could still be improved upon, Lane and
Potter (2007).

A new generation of hybrid vehicles are so-called Plug-in Hybrid Vehicles (PHEV).
These cars have a much larger battery than traditional hybrids and are designed to be
charged not only while driving (through regenerative breaking for instance), but more
importantly by means of “plugging” into an external power supply such as a wall socket
when the car is parked. At the current state of the art, this allows the car to drive several
tens of kilometres purely on electric power, hence producing zero local emissions. The
electrical energy, however, still has to be produced somewhere: This can either happen in
a “clean” fashion (such as wind, solar, water or nuclear power based) or a “dirty” fashion
(traditional fossil fuel based power plants). But while the latter also pollute the air and
produce greenhouse gases, the overall emissions and harmful particulates may be filtered
more effectively and, since power plants are usually located far away from urbanised zones,
their pollution does not accumulate in the cities as is the case with traditional, fossil fuel
based transport. Thus, the air quality in densely populated areas — which pose major
health concerns (Friends of the Earth Trust, 1999; Gorham, 2001) — will be improved
either way.

Unfortunately, market adoption of PHEVs is still somewhat slow, mainly due to eco-
nomical reasons and technical limitations of the current battery technology. In short, it
appears that battery technology still needs to improve in order for this class of vehicle to
be economically viable, Axsen et al. (2008). Additionally, very few vehicles currently can
drive farther than 100km in purely electrical mode, and this figure drastically reduces in

cold weather conditions. For that reason, the combustion engine currently serves mainly
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as a range extender, allowing the car to run (as commonly expected) several hundreds of

kilometres — but at the expense of local air pollution.

Battery
Electric motor Differential

5 gears

Reservoir Combustion
é engine

Figure 6.3: Illustration of a simple parallel drive train configuration in hybrid electric
vehicles.

6.2.3 Controlling emissions, maximising driving distance

Hybrid electric vehicles clearly offer many new and exciting possibilities for urban mobility.
For the first time, cars can be truly context-aware. In principle, it is possible to combine
GPS and engine management unit to enable vehicles to choose where to be most polluting.
For example, it makes eminent sense for a hybrid vehicle to switch to full electric mode
in the neighbourhood of schools or hospitals. In the following application we explore, at a
very high level, a fleet-wide notion of such context awareness. We wish to, in a manner that
is fair, adjust the behaviour of the hybrid electric vehicles such that city-wide pollution
and/or emissions are regulated. Before proceeding, we give a few words on hybrid electric

vehicle fundamentals.

Hybrid vehicles come in several power-train configurations, the most common of which
would be the parallel power-train configuration, illustrated in Figure 6.3 above. In this
set-up, a combustion engine works in conjunction with an electric motor to provide extra
torque, or, particularly in the case of plug-in hybrids, to extend the driving range. An
interesting variation of this basic design idea is the so-called power-split hybrid configu-
ration: It uses power-split devices (such as planetary gear sets combined with additional
clutches) to allow a precise control over the different power paths from the engines to the
wheel. One essentially attempts to decouple the power supply from the power demand by
the driver. The end result is that the two methods of propulsion can either run exclu-

sively or in conjunction (“blended mode”). In other words, it is possible to “mix” the power
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sources and vary between emission-free, all-electric mode (but with very limited range) or
emission-producing combustion-based mode (allowing for much larger driving ranges).
Let us now propose a scheme to manage this trade-off in order to cooperatively regulate

3

COg4 emissions® in a fleet of n vehicles, while maximising their overall driving range for a

given level of overall emissions. For that, we shall make the following assumptions:

(i) The participating PHEVs have a parallel power-train configuration that allows arbi-
trary blending between the power output of the combustion engine and the electric

motor.

(ii) The drive train power mixing can described by a convex combination, in other
words the car can seamlessly interpolate between the two extremes (all-electric or

all-combustion).

(iii) The vehicles are equipped with some broadcast-based vehicle-to-vehicle communi-
cation system (such as the proposed 802.11p protocol for Co-operative Awareness
Messages, Bilstrup et al., 2008) that allows each car to broadcast its current emis-
sion level to other cars in the area. The emissions need not be measured in real-time
but could be derived from offline measurements, taking into consideration the cur-

rently used power blend.

(iv) Information about the aggregate COy emissions are available to each car. They
could either be measured externally and broadcast to the fleet (through the Traffic
Management Channel for instance, TMC Forum, 2007), or the cars could collec-
tively estimate them through some distributed averaging scheme such as discussed

in Chapter 5.

(v) The emissions control scheme should be fair in the sense that no car should be allowed

to have higher emissions than others.

6.2.4 Implementation

Given these assumptions, this set-up can easily be cast into the framework presented in
Chapter 4.

Let us begin by defining the blending parameter r® e [0, 1] for each car 4 that
describes the energy mix used for propulsion. By convention, let () = 0 if the car is
in all-electric mode, and 7(¥) = 1 if the car is propelled purely by the combustion engine.
This blending parameter would be the “physical state” in our earlier terminology. With the
assumption that the power blending can be described as a convex combination, the utility
functions would then be linear functions that map the interval [0, 1] of the blending-

parameter (V) into the corresponding range of emissions ¢(?) that vary between 0 (when

3 Note that we use CO3 emissions here only as an example — our scheme can easily be applied to any
other type of emissions.
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in emissions-free all-electric mode) and ¢ (i), the nominal CO5 emissions of the combustion

engine. Specifically,
1@ = @ (T(i)) = OfF® (6.16)
as illustrated in Figure 6.4 below.

t=f o |
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Figure 6.4: Illustration of the emissions as a function of the power blending parameter.
On the left, the vehicle is in fully electric mode producing no emissions; on the right
it relies completely on its combustion engine and produces the maximum amount of
emissions.

The global function in this setting is simply the sum of all the CO2 emissions, that is
g(r) = Zf(i)r(i) (6.17)
i=1

The overall objective is to maximise driving range for each car in fair way, given a
certain “budget” of permissible aggregate emissions. Thus, in order to satisfy the fairness
requirement, the emissions between the different cars must be equalised. At the same time,
in order to maximise the driving distance, the cars should rely on their combustion engines
as much as possible.

These two objectives can easily achieved using Algorithm 2 on page 62. In order to

implement the following slightly simplified version of the control law (4.23)

i = S (1) =) + o (6.18)

jeN?
we need to calculate suitable gains 77,(:) and p. Given the linear / multi-linear nature of
the global- and utility functions involved here, this task is straightforward, and we shall

briefly demonstrate this process for a small fleet with n = 4 cars. Assume the cars have
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nominal emissions £ = (100 120 140 160 )", measured in g CO5/kg. Now, recall that the

gains n,(fj) had to satisfy (4.25) on page 63:

ij : i ij 1
n,(cj) >e; for j¢ N,§ ) and Z n,(cj) < = e (6.19)
JeND

which, in the simplified case, means

B >e,  and  (n-1)p" <

S 7(1.) — E9 (620)

for each i = 1,2, 3,4. Thanks to the linear / multi-linear nature of the global- and utility

functions, we have dW =q® = p(0) = () = (), Picking e; = €9 = 1.5-1072 and setting

the gains as

_(i) 1-— ng(i)
kTN

it is straightforward to check that both inequalities in (6.20) are satisfied for each i.

for k=0,1,... (6.21)

Next, we need to set small enough gains p on the global term so that (4.26) is satisfied.

Using (4.50) on page 65, this yields in the current setting
p=21-107° (6.22)

With this example on how to actually implement the emissions control scheme, let us

now present three simulations of this set-up.

6.2.5 Simulations

The following simulations we generated for fleets of n = 4 as well as n = 50. The former
simulates the numerical example we just discussed; the latter uses a much larger fleet with
cars whose emissions are realistically distributed among the different emissions classes
based on currently available CO5 emission statistics, Figure 6.5 on the following page.*

In each case, the topology of the communication graph was changed randomly in each
time step (but so as to always guarantee strong connectedness). For each simulation run,
the agents were initialised to use a 50/50 power mix, that is r,(fio =0.5foreachi=1,...,n.
From then on, the blending-parameter was modified iteratively based on the update law
presented earlier. In each case, the desired aggregate emissions level g, was set to be 25 %
lower than that at time £ = 0, thus requiring all the cars in the network to adjust their
energy mix in order to reduce overall emissions by 25 %.

In all the following figures, the first sub-plot shows the evolution over time of the overall
emissions g(ry) (with the desired level g, indicated by the dashed line), the next sub-plot
displays the corresponding evolution of the blending-parameters 7(?), and the last sub-plot

gives the evolution of the emissions ().

4 These statistics give the distribution of emissions produced by “regular” cars among the different EU
emission classes. While the combustion engines found in PHEVs should have lower emission levels than
regular cars we still used this data for lack of emissions statistics for PHEVs.
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B Emissions class Fc:?iz:)sn
A (< 120g CO5/km) 9.3%
A B (120-140g CO5/km)  45.9%
e C (140-155g CO2/km) 27.6 %
\15 D (155-170g COs/km) 104 %
E (170-190 g CO2/km) 4.7%
D F (190-225g CO,/km) 1.9%
C G (> 225g CO2/km) 0.2%

Figure 6.5: Distribution of the fleet’s cars among the different EU emission classes, data
based on statistics from the Department of Transport (2010).

Fleet of 4 cars

The control gains for the first simulation were set as derived above, and the results from the
simulation run are shown in Figure 6.6 on the next page. The plots show that eventually the
global emissions in the first subplot converge to the desired level, and that all cars indeed
equalise their local emissions (third subplot). The detail view on the right shows the first
15 time steps during which consensus on the emissions is quickly reached. From then on,
the agents jointly decrease their blending-parameters as to reduce the overall emissions to
the desired level. The overall view on the left, however, shows that convergence ultimately
can be considered rather slow, which is due to the conservative nature of our results.

To further illustrate this fact, we also ran a second simulation based on the same
network and initial conditions, but this time setting the gain (¥ 20 times higher than

in the previous case. As shown in Figure 6.7, this resulted in an about 10 times faster

convergence rate.
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Figure 6.6: Simulation results for the fleet of 4 cars, gains set in accordance with Theo-
rem 4.2. Left: Full view, right: detail view of the first 15 time steps.
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Figure 6.7: Same network as in Figure 6.6, but the gains i) were set 20 times larger
than in the previous case.

Fleet of 50 cars

Simulating a larger fleet, Figure 6.8 on the following page shows the results for a fleet of

n = 50 cars. The “jumps” in all the sub-plots at times k that are multiples of n — 1 = 49
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are due to the inclusion of the global term in the update rule at those instants. For these
simulations, again a larger gain i (Y was used.

Note that in all simulations, as expected, some agents use a larger blending-parameter
than others. These would be cars with overall less polluting engines, which means they
are allowed to rely more on their combustion engines. This in turn means that these cars
should be able to drive farther than others, so that their “eco-friendliness” is rewarded with

extended range.
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Figure 6.8: Fleet of n = 50 cars, gains ug) set manually.

Comments In the simulations here the update law from Algorithm 2 was used only in its
basic. In a real-world setting, however, one may be required the employ the two extensions
for asynchronous state updates and limited access to the global term.

Also, the control scheme as presented in Chapter 4 requires the states (and utility
values) to be defined for the entire field of real numbers. In the application presented
here, however, both variables are only defined on compact intervals. We thus assume that,
with the blending-parameters all initialised properly, the solution is feasible and does not
drive the parameters beyond their domain of definition. If, however, this was the case, the
blending-parameters would simply saturate in either fully electric or combustion mode.

Lastly, the CO- emissions of cars are typically strongly dependent on the driving speed
as well as the individual driver’s behaviour — both of which is not taken into account here.

We rather focus on the average emissions that would be produced in typical city traffic.
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Furthermore, the frequency at which new aggregate emissions measurements are provided

determines the rate at which the discrete updates occur. e

This concludes our first application of Algorithm 2 which aimed at cooperatively reg-
ulating CO2 emissions in a fleet of plug-in hybrid electric vehicles. Before moving on, we
would like to stress again that we used CO5 emissions purely for illustration purposes, any
kind of emissions (such as the directly harmful respirable dust produced by combustion

engines) or combinations of different emissions may indeed be considered.

6.3 Real-world implementation of cooperative control

The last application that we would like to discuss is an actual real-world implementation

of Algorithm 2 (Theorem 4.2 on page 62).

6.3.1 Introduction

All our earlier results were developed with real word implementations in mind, so in order
to see whether indeed our theory can be put into practice, a test and validation program
was jointly developed with Dr. Ronan Farrell and Mr. James Kinsella. Both are with
the Callan Institute here at the National University of Ireland Maynooth, which has great
expertise and resources in electronic, hardware and software systems as well as wireless
communications.

Over the course of one year, thanks to the kind help of Mr. Kinsella a total of six
wireless motes was developed, built and programmed in order to set up a small wireless
network of autonomous agents in which to test our results. Five of the six motes that were

built are shown in Figure 6.9 on the following page.

Contributions and structure

This section briefly describes a validation experiment of our theoretical contributions in

Chapter 4 by developing an actual hardware/software implementation of Algorithm 2 in
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Figure 6.9: The five “regular” motes.

the presence of real-world limitations and problems (in particular, communication failures
and limited hardware capabilities).

In the following, we shall first describe the overall set-up as well as the hardware and
software layout of the wireless units. We then present and analyse the results from two

indicative experiment runs.

6.3.2 Overall setting

Among the six motes built, five were reqular nodes that formed the actual multi-agent net-
work. Those nodes were completely autonomous units, in that they were battery powered
and only communicated wirelessly. The sixth mote acted as a master node: It “measured”
and fed back the global term to the network. Additionally, it was used to start off the
experiment and also collect debug information from each of the five regular nodes. This
information consisted of data packets containing the node’s id, physical state and utility
value, and this data was directly relayed to a PC so that the system’s state could be
recorded and displayed in real-time.

The experiments themselves consisted of each node initialising itself with a fictitious
physical state and utility function (as in the simulations in Chapter 4, those functions
were either of linear or quadratic type, cf. Section 4.A.2 on page 81). Then, the consensus
protocol given by Algorithm 2 was run: The nodes broadcast their utility value using their
radios and receive similar broadcasts from neighbouring nodes as well as the master the
global term from node in order to update their own state. The global function used in the
master node was the mean function, that is the master node calculated and fed back the

mean of the physical states of all the nodes. The desired global value was changed several
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times over the course of each experiment in order to demonstrate the network’s ability to
react to and track such changes.

The controller gains were calculated in a similar procedure as presented in the previous
section, but again manually increased by one order of magnitude in order to reduce the

overall run time of the experiments.

Hardware

All the nodes were built on small printed circuit boards (PCB) with the following basic

components:

(i) CPU: Microchip PIC 18LF4550 (8bit, 32KB Flash, 2K RAM, USB)
(i) Radio: Texas Instruments CC1100 (ultra low power, sub-1 GHz transceiver)
(iii) Power: 3z AA batteries, regulated to 3.3V

(iv) Interface: 2 status LEDs, 1 reset button, serial connector

The master node additionally had a physical USB port wired to the CPU so that it

could be connected to a PC for real-time monitoring of the network’s behaviour.

Software

The software for the motes was written in C/C++ and consists of a simple firmware
to initialise and control the hardware components as well as an algorithmic block which
contains the actual implementation of the consensus algorithm.

Roughly, the software set-up operates as follows (please also refer to the flow charts in
the next two sections). First the master node had to be powered on, then the other nodes.
When a node has finished booting up and is ready for the experiment the begin it was set
to continuously broadcast its initial state to signal its readiness.

The experiment would start when the master node had received the initial states from
all the nodes in the network. At that point, the master node would broadcast a trigger
signal to start the consensus algorithm in each node. In each iteration, the nodes were
programmed to exchange their utility states with each other and update their state accord-
ingly. However, every n — 1 = 4 iterations they were additionally instructed to send out
debugging information directly to the master node (containing their id, physical state and
utility value). This information was required for two purposes: (i) to enable the master
node to calculate the global value and subsequently feed the difference between desired

and actual global value back to the nodes, (ii) to protocol the evolution of the experiment.
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Software layout of master node
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Software layout of regular node
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6.3.3 Practical issues

For reasons of simplicity the wireless communications between the nodes were not realised
using one of the established wireless communication protocols. Rather, they were imple-
mented in a straightforward round-robin or time division multiple access (TDMA) fashion.
Simply speaking, this means that the nodes take turns broadcasting. To coordinate this,
first the master node would broadcast the global value. Relative to this broadcast the
different nodes would broadcast with different, fixed delays so that the transmissions are
“staggered out” and collisions are avoided. That way the n — 1 iterations between the
global term updates were performed. At the end of these iterations the nodes would spend
another round broadcasting their debug data packets to the master node. Having received
this data, the master node would then broadcast the new global term and the cycle starts

anew.

In terms of timing, each node’s broadcast window was about 200 ms wide so that the
n — 1 iterations usually took around 4 seconds. Then, roughly another second was spent
transmitting the debug data packets. Finally, the master node had 200 ms to broadcast the
updated global term. Hence, all in all, the network would perform about 11 to 12 global
term updates per minute, provided no data packets were lost (which cause some global

term updates not to be performed).

(a) Experiment 1 (b) Experiment 2

Figure 6.10: The static communication networks used in the two experiments (master
node not shown).

Due to technical reasons and limited space for the experiment, every node would pick
up every other node’s broadcast. This would result in a rather uninteresting, complete

graph. We thus manually added an exclusion list to each node which instructed it to
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ignore broadcasts from certain nodes. With this method, we created two different network
topologies,® which are shown in Figure 6.10 on the facing page (master node not included).

Furthermore, due to the unreliable nature of the nodes and wireless communications,
many data packets were dropped. This shall become evident in the somewhat “non-smooth”
evolution of the states (as compared to the computer simulations from Chapter 4). How-
ever, this effect will always be encountered in real-world applications and thus allows us
to demonstrate the robustness of our work to such communication problems.

Lastly, the microprocessors only used finite precision arithmetics and the states could
only assume integer values. While we did not explicitly took this into account in the present

work, it shows that our algorithm is also robust with regards to such perturbations.

6.3.4 Results from experiments

We shall now discuss the results from the two experiment runs. In the first experiment,
the network was using utility functions of quadratic type. Initially, the target value for
the global value was set to 750, which means that the network’s physical states had to be
adjusted so that their mean would equal 750. The master node was instructed to auto-
matically switch the desired global value to 400 once the networks states have converged
(that is, when the precision of the arithmetic-logic-unit was reached). This occurred about
11 minutes into the experiment.

Figure 6.11 on the next page was generated using the data recorded during the first
experiment, that is the debug-data received from the master node and the global value
that it had calculated and broadcast to the nodes. The first sub-plot shows the difference
between actual and desired global value, which starts off positive since the average value
of the physical states (shown in the second sub-plot) is clearly below 750. As the physical
states increase, the difference starts to disappear. At the same time, the utility values in the
thirds subplot approach each other quickly and eventually converge to perfect consensus.
Then, after about 11 minutes, the target global value was changed to a different, lower
value, which meant that the physical states had to generally decrease in order to meet it
— which can indeed be observed in the plots.

A similar picture is painted in Figure 6.12. This time, the utility functions were of
linear type, and the global value changed three times throughout the experiment (from
200 to 600 to 400). Again, the network behaves as desired.

Comment  As in the emissions control application earlier, gains were set higher than
required by the theorem. This was particularly important in this application as the system
was somewhat unstable, with nodes more or less randomly crashing. The gain on the
global term was double from the first to the second experiment, which clearly resulted in

faster convergence times. e

5 In order to limit the complexity of the code we did not change the network topology over the course
of an experiment.
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Figure 6.11: Fuvolution of the deviation from the desired global value (which changed
at t =10:50min), the physical states and the utility values of the five nodes in the
network. Utility functions: quadratic-type, global function: mean of physical states.
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Figure 6.12: Linear-type utility functions, desired global value changed at t =1:40min
and t =6:40min.
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This concludes our real-world validation of Algorithm 2. The results from the experi-
ments certainly support our claims of the robustness of our proposed cooperative control
scheme. We shall now close this application chapter and move on to draw some final

conclusions of the work presented in this thesis.






CHAPTER [

Conclusion

In this last chapter we summarise the contributions of this thesis and suggest
possible future directions for continued research in the relevant areas.

Chapter contents

7.1  Summary

7.2  Future directions

7.1 Summary

In the first chapter we gave several examples to motivate the work carried out in this
thesis. The first one concerned a transmit power control algorithm for wireless networks.
The famous Foschini-Miljanic algorithm is a distributed control scheme that is known to
be robust to various types of perturbations, in particular time-varying time-delays of the
states. We noted that switched positive systems theory can be used to explain this robust-
ness and give conditions under which stability can be guaranteed. The second example
suggested a municipal emissions control scheme for a fleet of cars. The idea was to regu-
late each participating car’s driving speed in order to control on a global level the overall
fleet emissions while also equalising the local emissions among cars (fairness). The final
motivational example concerned a topology control problem in wireless sensor networks.
The objective was to find a decentralised algorithm which regulates the broadcast power in
each node so that a certain overall connectivity level was maintained in the network while,
at the same time, balancing battery lifetimes among all the nodes in order to maximise
the network’s lifetime without node failures (due to insufficient battery power). All three
examples or variations thereof were later revisited in Chapters 5 and 6.

Chapter 2 then reviewed literature from related fields of research, in particular the areas
of switched positive systems, large-scale systems, decentralised control, and cooperation in
networked multi-agent systems.

The third chapter was concerned with deriving easily verifiable stability conditions for

switched positive linear systems, in particular by giving conditions for the existence of
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common linear co-positive Lyapunov functions. We noted that these switched systems
may represent a networked of interacting scalar systems which switches between different
interaction topologies. As we noted in the literature review, existence of any type of com-
mon Lyapunov functions, in general, is sufficient for exponential stability of a switched
linear system. In that context, the first result that we presented dealt with a switched
positive linear system where the switching could not occur arbitrarily, but depended di-
rectly on the states: Given a state space covered with (possibly overlapping) convex cones
each of which was associated with one of the constituent subsystems, the system was only
allowed to switch to whichever subsystem(s) that was (were) associated with the cone(s)
the system was in at that point. Our result then stated that existence of a common linear
co-positive Lyapunov function is equivalent to the cone generated by all the columns of all
the constituent system matrices not intersecting the positive orthant. As this condition
is somewhat hard to test in general, we presented a reformulation of this result that per-
mitted easy checking by running a simple feasibility test provided the cones encountered
were polyhedral. Attention was then turned to the arbitrary switching case, for which a
necessary and sufficient existence condition was found that consisted of an extended Hur-
witz condition on all the system matrices. These results were complemented by remarks
concerning the insights gained from the algebraic condition, their applicability to discrete

time systems, and a number of possible applications for them.

The following chapter, Chapter 4, discussed a novel cooperative control paradigm for
networked systems. To achieve this, a global feedback loop was added to the network,
relating back the aggregate network behaviour to each agent. To formalise the discussion,
we began by defining more concretely the oft-encountered system setting that we had
already briefly presented in the first chapter. We then derived and proved convergence
of three basic algorithms that allowed the network to cooperatively achieve a common
goal given certain local and global constraints. In terms of the existing literature on
consensus and coordination, our results can be interpreted as enabling an implicit and
constrained consensus to be found in a fully decentralised setting, running on directed and
time-changing communication network topologies. Of the three algorithms, the first one
assumed perfect knowledge of all the system parameters, in particular (the inverse of) the
utility functions; the second algorithm was much less demanding in that only bounds on
the slopes of global- and utility functions were needed; the third algorithm was even more
general, even allowing for dynamics to occur in the utility functions. Extensions to these
algorithms additionally enabled them to be deployed in even more demanding settings,
such as situations where synchronous state updates cannot be guaranteed, and where the
global value may not be accessible to all the nodes. However, for all these results one key
assumption was made: the global term had to be known by at least one node. This could
be satisfied either by some external entity providing it to the nodes, or by the network

measuring or estimating it itself.
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One such situation where the global value can indeed be estimated in a decentralised
fashion was discussed in the subsequent Chapter 5. Hence, in comparison to the previous
chapters, an identification component was added to the problem. The main contributions
of the chapter solved the problem posed in the second motivational example: A wireless
networks where the level of connectivity of the communication network needs to be reg-
ulated, as there are several algorithms that evolve over such networks whose convergence
rate directly depends on the algebraic connectivity level. As proxy for the connectivity
level we used the second largest eigenvalue in magnitude of the stochastic normalisation of
the adjacency matrix. This value is closely related to the traditionally used Fiedler eigen-
value of the graph Laplacian, but it has the advantage that it is also defined for directed
graphs. Additionally, a fully decentralised scheme can be devised that allows this value to
be estimated locally in each node — one of the main contributions of the chapter. Once
obtained, this estimate was then used to inform a decentralised control scheme that locally
adjusted the network topology to successfully regulate the overall connectivity to some
desired level, even if the network can only assume a discrete number of different topologies
and hence connectivity levels.

The sixth chapter then gave three further applications for our main results, in part
following up on some of the motivational examples. The first application discussed con-
cerned the Foschini-Miljanic power control algorithm for wireless networks. Our arbitrary
switching result from Chapter 3 was used to provide sufficient conditions for the algo-
rithm’s stability under time-varying time-delays and arbitrarily changing network topolo-
gies. Next, we suggested an emissions control scheme for a fleet of plug-in hybrid electrical
vehicles that was based on our second cooperative control algorithm proposed in the fourth
chapter. This application is similar to the third motivational example as it proposes a de-
centralised scheme to regulate (in a fair way) the total emissions of the cars participating
in the scheme. Lastly, the third application we considered was a real-world implementa-
tion of the same cooperative control scheme, validating our claims that the algorithm can
indeed be implemented, even with all the imperfections and limitations that are inherent

in real-world applications.

7.2 Future directions

In closing, let us suggest a few different directions that the present work may be extended

in.

Switched systems in general are very hard to analyse, as reflected by the fact that the
vast majority of results in this area only concern linear systems. It is thus not surprising
that there are still many fundamental questions that remain unanswered in the non-linear
case. Similarly, our contributions from Chapter 3 also hold only for linear positive sys-

tems. Unfortunately, the linearity assumption in relation to positive systems in particular is
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somewhat problematic: Most real world systems are non-linear and the classical approach
of linearising these system would inevitably destroy any positivity properties (as lineari-
sation yields states that describe the deviation from the operating point and these error
coordinates may thus assume negative values). Hence, there is a clear need for non-linear
results in the field of positive systems and positive switched systems in particular.
Nonetheless, in some cases the linearity assumption may be justified; one example for
this was encountered in the Foschini-Miljanic application we discussed earlier. In this ap-
plication, the need for results covering switched positive systems with time-delays became
apparent. Consequently, further work further investigating the effects of delays on the

system’s stability would certainly be of benefit.

While the results of Chapter 4 are certainly promising, a number of open questions
remain and should be the subject of further investigations. For instance, the gain p in the
second and third algorithm may become very small in larger networks, and there is much
experimental evidence that the bounds presented here tend to be rather conservative. This
can be explained, in part, by the fact that for sufficiently connected graphs (and not patho-
logical worst-case scenarios such as, for example, directed n-cycles) significantly less than
n — 1 multiplications in (4.36) on page 64 would be required to produce strictly positive S
matrices — which in turn means that the corresponding sy, value in (4.46) on page 65
would be much larger and ultimately allows u to be increased. One possible future exten-
sion of our work that accounts for unlikely topological effects is via a stochastic formulation
of this problem. Here, expected quantities are controlled rather than deterministic ones.

Also, in the second and third algorithm, the nodes incorporate the global term in
their state updates every M steps. A number of simulations and tests have shown that
the system may well include the global term in every time step and thus achieve faster
convergence. In the future, it would be interesting to see if a proof can be developed that
allows the inclusion of the global term in every time step, as this may speed up overall
convergence.

Other open questions in a problem setting as encountered here concern the effect of
communication delays, quantisation effects when using finite precision arithmetics (for
instance when implementing our algorithms on digital processors without floating point
precision, as was the case in Section 6.3) or the effect of nodes joining or leaving the
network. These issues may possibly be addressed using ideas from previous (unconstrained
consensus) literature such as Kashyap et al. (2007); Nedi¢ and Ozdaglar (2010).

Furthermore, the present work only considers a single physical state and single utility
value associated with each node; in a more general setting, nodes could have two or more

states associated with them. This may lead to a MIMO-like formulation of our problem.

Concerning the graph topology control problem, although examples are presented to
illustrate the efficacy and promises of this approach, there are also a number of open

questions that remain to be resolved. The most important of these concerns the fact that
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the relationship between the network states and the eigenvalue locus is not known exactly
a priori (and thus the required bounds & for Theorems 5.2 and 5.3 on page 105). However,
this should not be a problem for most practical applications where the graph setup is
roughly known in advance, since then estimates of those parameters could be obtained
off-line using simulations of typical graphs. Another approach would be to attempt to
estimate them in an adaptive fashion as the consensus algorithm evolves.

Furthermore, another interesting problem to study would be to attempt to reproduce
our results without the assumption of separation of time scales between the estimation-
and control parts in the overall scheme (Section 5.4 on page 97). Indeed, some preliminary
experiments have shown that estimation- and control iterations may be interlaced (that
is, individual estimation and control updates may simply be alternated), without affecting
the system’s stability or convergence to the correct solution.

Another extension to the chapter’s work may be to not consider “binary” adjacency
matrices (where the entries are either 1 or 0) but rather matrices where those elements
would transition smoothly from 1 to 0 as nodes get further apart from each other and loose
their communication link. In that case, we suspect that the eigenvalue locus will become
a smooth function of the nodes’ connection radii.

Lastly, as in the previous chapter, further investigations may also consider communica-
tion delays, quantisation effects or the impact of using only finite precision arithmetics on
the control scheme, as well as the quantitative effect on the eigenvalue locus when agents

join or leave the network.

Moving on to the applications chapter, future directions for the Foschini-Miljanic appli-
cation may include finding additional stability conditions for constantly changing network
topologies where it is not possible to identify finitely many different configurations. Further,
a comparison of our results with the stability conditions of the undelayed Foschini-Miljanic
algorithm could lead to a better understanding of the impact of delays on the overall algo-
rithm. Lastly, on a more abstract level, it would be of great interest to determine whether
the delay-independent stability properties exhibited by positive systems are due to their
monotonicity or positive properties.

In the work on fleet-wide emissions control, future studies should consider the effect of
nodes joining and leaving the network, how effects like saturation of the states could be
incorporated directly into the mathematical framework, and ideally derive tighter bounds
on the maximum permissible gain for the global term (as the bounds presented here are
only sufficient for stability, and we have shown in the simulations that they can be increased
significantly without compromising stability). Also, it would be interesting to attempt a
real-life implementation of our suggested application.

Our last application using the purpose built wireless motes also raised a range of ques-
tions. For instance, what is the effect of quantisation in the states on the cooperative

control algorithms, as caused by real-world, finite precision arithmetics? We suspect that
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quantisation will not be able to destabilise the system; similar to the quantisation effects
encountered in the graph connectivity problem, one cannot expect to converge asymptoti-

cally to the theoretical solution, but rather only to a neighbourhood of it.

In overall conclusion, the cooperative control algorithms should present a new paradigm
for cooperative control. However, with the gains set strictly according to the rather con-
servative, theoretical limits, convergence rates are much too slow for actual applications.

Hence, further work deriving tighter bounds for these gains is imperative.
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Notation

Scalars; lowercase letters

Vectors; lowercase bold letters (always supposed to be column vectors, if not trans-

posed), or elementwise in parentheses: (x(l) @ g )T
oD a(12)}

Matrices; uppercase bold letters, or elementwise in brackets: [a(m) 2(22)
Sets; uppercase calligraphic letters

Typically an upper bound to the variable x

Typically a lower bound to the variable x

Typically the “desired” value of x

The value of variable x at time k, sometimes also denoted z(k)
Identity matrix of suitable dimensions

The nth unit vector of suitable dimension

Zero matrix of suitable dimensions

The field of real numbers

The n-dimensional Euclidean space

The closed positive orthant of the R™

The open positive orthant of the R"™

The space of n x n matrices with real entries
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