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Abstract

This thesis outlines approaches to improve the signal processing and anal-

ysis of Near-infrared spectroscopy (NIRS) based brain-computer interfaces

(BCI). These approaches were developed in conjunction with the implemen-

tation of a new customized flexible multi-channel NIRS based BCI hardware

system (Soraghan, 2010). Using a comparable functional imaging modality

the assumptions on which NIRS-BCI have been reassessed, with regard to

cognitive task selection, active area locations and lateralized motor cortex

activation separability. This dissertation will also present methods that

have been implemented to allow reduced hardware requirements in future

NIRS-BCI development. We will also examine the sources of homeostatic

physiological interference and present new approaches for analysis and at-

tenuation within a real-time NIRS-BCI paradigm.
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Chapter 1

Introduction

Research in the area of brain computer interfaces promises significant rewards. To

grant communication of any kind to someone who has lost this most basic and defining

facet of the human condition is a goal of unparalleled importance. Similarly the ability

to interrogate cerebral hemodynamics in a safe, non-invasive and convenient manner

provides a valuable tool in the arsenal needed to achieve this goal.

Near-infrared spectroscopy first came to the fore in the nineteen seventies as a

method of measuring cerebral and myocardial oxygen sufficiency (Jobsis, 1977). Us-

ing radiation in the near-infrared range an optical window of tissue transparency was

discovered, thus allowing non-invasive optical interrogation of underlying biological

structures.

Later, it became possible to expose a much higher detail of cerebral hemodynamics

allowing the investigation of functional activity (Villringer et al., 1993). Near-infrared

spectroscopy as a brain-computer interface modality was pioneered by Coyle, Ward,

Markham & McDarby (2004b) and has since become a well recognized approach to

providing an alternative communication channel to those who have lost voluntary motor

control.

1



1.1 Motivation

1.1 Motivation

This document extends the work of Coyle et al. (2004b) by developing a custom-made

flexible multichannel NIRS-BCI. Customized hardware was designed and built by Sor-

aghan (2010) in conjunction with this research allowing many of the improvements

outlined in further chapters. This work aims to address problems from a signals per-

spective along the entire processing chain which includes mental task choice, optical

generation and acquisition, data processing systems, experimental control and feature

classification.

There is no single solution to improving NIRS as a BCI modality. This disserta-

tion outlines the background of and challenges in the NIRS signal processing chain

(Matthews et al., 2008a). We will then investigate approaches to modify and improve

these techniques to make the more effective use of the signals detectable. Develop-

ments should also improve cost effectiveness so as to allow the modality to become

more pervasive.

To achieve these goals this document will take a modular approach similar to that

of the system implemented. Firstly we will examine the mental process and tasks

available for implementing a computer control structure. Next we will revisit NIRS-

BCI assumptions with a small study using a comparable functional mapping modality

in conjunction with findings from the literature. We then define a custom NIRS-BCI

hardware system which was designed in parallel with this work (Soraghan et al., 2008a,

2009b; Soraghan, 2010). This hardware is specifically constructed to allow formulation

and testing of alternative approaches to the challenges, e.g. non-stationary physiological

noise removal.

A new software system is outlined to allow control of all aspects of an experiment

or BCI application such as stimulus timing and biofeedback (Matthews et al., 2008b).

This allows versatility and enables rapid prototyping of new systems in a field demand-
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ing further research. A novel approach to NIRS optical control and multiplexing is

implemented that maintains system performance while reducing overhead in hardware.

Finally, we will examine detected hemodynamic trends and implement novel approaches

to optimize channel selection, hemodynamic analysis, and feature classification.

1.2 Contributions

The contributions of this thesis are as follows:

• Implementation of a robust and versatile software system to assist the research

in terms of hardware control, signal acquisition, and user feedback.

• Development and implementation of a spread spectrum communications tech-

nique that maintains sufficient signal quality while reducing hardware require-

ments.

• Application of a signal decomposition method known as empirical mode decom-

position to NIRS signals to reduce homeostatic physiological interference and also

aid signal analysis.

• Adaptation of a model based analysis technique from functional magnetic res-

onance imaging to allow optimum channel selection and improve separation of

right hand and left hand functional activity in motor cortex structures.

• The application of novel real-time feature classification methods to the selected

optimum channels.

1.3 Dissertation Outline

Chapter 2 deals with the necessary scientific background behind this work. It includes

information pertaining to functional areas of the brain, oxygen transportation in the
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blood, and cranial circulation. Photon transportation in tissue is also discussed, as well

as brain imaging modalities and an introduction to the physics and function of both

functional magnetic resonance imaging (fMRI) and NIRS. Finally, Chapter 2 briefly

outlines the area of brain-computer interfacing.

Chapter 3 details the current state of the art in NIRS-BCI and the current chal-

lenges in mental task selection, software, hardware, physiological interference reduction

and feature classification. Chapter 4 presents a small fMRI study which is assessed in

conjunction with current findings in the literature,with a discussion of functional activa-

tion in the motor cortex. It focuses on active area locations, separability, inter-subject

variability, overt versus imagined motor actions, and the impact these findings have on

NIRS.

Chapter 5 includes an outline of the hardware developed in parallel with this

work and its versatility in allowing examination of different aspects of the NIRS-BCI

paradigm. Chapter 6 discusses the implementation of a robust software platform for

NIRS-BCI research. It further defines the specifications for such systems and details

an implementation designed specifically for NIRS-BCI. In this platform, the optical

multiplexing is moved entirely into software. In light of this, a novel spread spectrum

approach to NIRS optical multiplexing is presented.

Chapter 7 implements novel homeostatic physiological noise removal and signal

analysis techniques, model based methods of optimal source selection, and feature clas-

sification. Finally, Chapter 8 draws conclusions and presents future direction for NIRS-

BCI signal processing and analysis.
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Chapter 2

Background

Neuronal activity produces distinct changes in regional cerebral blood flow (rCBF)

which is the basis for many functional imaging modalities (Villringer & Dirnagl, 1995).

Near-infrared spectroscopy (NIRS) takes advantage of trends in blood-oxygen levels

related to this shift in rCBF to identify localized functional activity in the brain (Vill-

ringer et al., 1993). Using cognitive tasks it is possible to record repeatable, volitional

and detectable mental activity using NIRS. This activity forms the basis of a brain com-

puter interface. The developments presented in this dissertation, analysis of functional

activity and advances in NIRS-BCI techniques, are all based on these premises.

The purpose of this chapter is to act as a primer to anatomical and biological pro-

cesses pertinent to this thesis, describe modalities used in the non-invasive measurement

of functional brain activity, and introduce the paradigms of brain-computer interfacing.

2.1 Physiological Processes & Structures

This section will explain the physiological process and structures important in the

development of a NIRS-BCI.
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2.1 Physiological Processes & Structures

2.1.1 Brain Anatomy

The adult brain weighs on average about 1.5kg and is made up of four physical sections;

Cerebellum, Cerebrum, brain stem and Diencephalon or lymbic system. In its early

embryonic form it is made up of three membrane enclosed sacs or vesicles (Gray, 1918).

These vesicles, called the mid-brain (mesencephalon), the fore-brain (prosencephalon)

and the hind-brain(rhombencephalon), go on to form the structures familiar in the

adult brain (Figure 2.1).

Figure 2.1: The Basic structure of the embryonic brain.

The embryonic hind brain forms the medulla-oblongata, pons and the cerebellum

and continues to expand to form a fourth ventricle. The mid-brain becomes the cerebral

aqueduct that serves as a communication hub for motor function, eye movement and

auditory control. The mid-brain in conjunction with the medulla-oblongata and pons

make up the brain-stem in an adult brain as seen in Figure 2.2.
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Figure 2.2: Connections between the cerebrum and brain stem and associated parts.
(From Gray, 1918)

The fore-brain undergoes the greatest change from the embryonic stage. It expands

laterally to form two more hollow vesicles which become the lateral ventricles and

the walls of the fore-brain form the cerebral hemispheres. The posterior part of the

embryonic fore-brain forms also forms part of the lymbic system. In the search for

detectable, volitional, repeatable functional activation this work will mainly concentrate

on the cerebrum.

The cerebrum consists of two hemispheres generally with contralateral control re-

sponsibilities. The surface area is maximized due to its folded nature. These folds

or gyri allow for a much larger area to form inside the cranium than would otherwise

be possible. The cerebrum is believed to be mainly responsible for movement control,

sensory processing, olfaction, learning, memory, language and communication.

For functional analysis purposes the cerebrum is classified into four lobes: frontal,
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occipital, parietal and temporal as shown in Figure 2.3. These areas were originally

defined by which bone of the cranium they are under. In Section 2.1.2 we will discuss

in greater detail the functions of each lobe.

Figure 2.3: The Cerebral Lobes are highlighted above. (From Gray, 1918)

2.1.2 Functional Areas

2.1.2.1 Frontal Lobe

The frontal lobe is considered to be responsible for higher reasoning, mathematical

ability, and verbal fluency (Kandel et al., 2000).

The frontal lobe is involved in motor skills, including speech, and cognitive func-

tions. The motor cortex, located anterior to the parietal lobe receives connections from

the somatosensory cortex, processes and initiates motor functions. The frontal lobes

are also important for language skills. Broca’s area, a region on the left side of the

frontal lobe, is involved in processing language and controlling the muscles responsi-

ble for speech (Martin, 2006). Other functions of the frontal lobes include learning,

thought and memory.
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2.1.2.2 Parietal Lobe

The parietal lobes contain the primary and association cortices for somatosensory func-

tions that receive and process all somatosensory input from the body, such as touch

and pain. A region called Wernicke’s area, distal to the temporal lobe, is important for

understanding the sensory (auditory and visual) information associated with language.

2.1.2.3 Occipital Lobe

The occipital lobe contains the primary visual cortex and is responsible for processing

visual signals. Raw signals from the retina pass through the lateral geniculate nu-

cleus of the thalamus before continuing on to the visual cortex. Peristriate regions of

the occipital lobe are responsible for colour and movement discrimination as well as

visuospatial processing (Kandel et al., 1991).

2.1.2.4 Temporal Lobe

The temporal lobe processes auditory information from the ears and relates it to Wer-

nicke’s area of the parietal lobe and the motor cortex of the frontal lobe.

2.1.3 Neuronal Structures

The fundamental component of the brain and nervous system is the neuron. Neurons

are responsible for the transmitting of nerve impulses throughout the nervous system.

The brain itself consists of approximately 1011 neurons (Stevens, 1979).

Neuronal cells consist of three main parts, the soma, dendrites and the axon. The

soma is the main cell body containing the nucleus and controls protein synthesis, ge-

nomic expression and metabolism. The dendrites branch into the soma and are the

receiver pathways for signaling from other neurons. The axon emerges as a single

structure from the soma and branches to other neurons, constituting the output sig-

naling pathway of the cell (Marieb, 2003). The point of contact that neurons share is
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referred to as the synapse.

Figure 2.4: A Neuron. The inputs (Dendrites), the cell body (soma), and the output
(axon). The myelin sheet insulates the axon on some neurons heightening the speed of
nerve impulses along its length.

The synapse consists of a small gap called the cleft bracketed by the pre and post-

synaptic endings. Signals between neurons flow from the pre-synaptic to the post

synaptic ending via the cleft. These synapse are membrane to membrane junctions

that allow the chemically mediated transmission of electrical signals. The electrical

signals, or action potentials, are a result of changes in the potentials of the cell mem-

brane in relation to the movement of charged ions (Nicholls et al., 1992). Neuronal

excitation increases the membranes permeability to sodium ions which causes a de-

crease in membrane potential referred to as depolarization. Hyperpolarization is the

inverse process, creating an increase in the membrane potential. At a certain threshold

depolarization causes the neuron to transmit an action potential along the length of its

axon. Hyperpolarization causes a reduction in the transmission of action potentials.
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As soon as the potential has been transmitted the sodium permeability is dramatically

decreased, potassium permeability increases and the resting state balance is restored

(Nicholls et al., 1992).

When the action potential reaches the pre-synaptic ending it releases molecules that

traverse the cleft and bind to the post-synaptic ending. These molecules are called

neurotransmitters and cause shifts in the permeability of the post-synaptic membrane

which in turn feeds the same process in the connected neuron (Kandel et al., 1991).

2.1.4 Oxygen Transportation

Oxygen is required to maintain most forms of animal and plant life on the planet

acting as the oxidizing agent in cellular respiration. Aerobic (as opposed to anaerobic)

respiration involves a set of metabolic processes that combines nutrients with oxygen

to produce energy.

Oxygen acts as a terminal electron receptor in the electron transport chain that

makes up certain parts of cellular respiration. This process creates Adenosine triphos-

phate (ATP) which is the cellular energy source.

In humans, oxygen is drawn in from the air through the mechanical action of the

lungs. From there it passes through the walls of the alveoli where it enriches oxygen

depleted blood from the veins and enters the arteries and is pumped back around the

body by the heart.

The blood in vertebrates is made up of plasma, platelets, red and white blood cells.

The plasma is 90% water and carries hormones, glucose and dissolved CO2 for excretion.

The plasma is the main carrier for excretory substances for the body (Jalonen, 1981).

Platelets, which are formed in the bone marrow, are pivotal to homeostasis which leads

to the formation of blood clots. White blood cells or leukocytes contain the ability to

fend off infectious disease and are the mainstay of the immune system.

Red blood cells contain the oxygen carrying molecule hemoglobin and are the most
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abundant cells of the blood. The ability of hemoglobin to carry blood around the

body to feed the necessities of cellular respiration shall be a highly important theme

within this dissertaion. The next section deals briefly with the chemical and mechanical

processes of oxygen-hemoglobin interactions.

2.1.4.1 Functions of Hemoglobin

Over 95% of oxygen carried in the body’s arteries is bonded to hemoglobin. The amount

of the gas that can be dissolved in the plasma is dependent on the gas’s partial pressure

and only makes up 1.5% of oxygen demand throughout the body. Oxygen supplied by

this method alone would never be sufficient to maintain the cells of the entire body.

Figure 2.5: Structure of the human hemoglobin molecule.(From Wikipedia Commons)
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Hemoglobin is an iron containing metalloprotein that is the main carrier of oxygen

around the body (Dickerson & Geis, 1983). A red blood cell contains about 250 million

hemoglobin molecules. Excluding water, hemoglobin makes up about 97% of the red

blood cell’s composition. Each molecule can bind to four oxygen molecules (Curtis &

Barnes, 1989). This binding allows the blood to carry about 65 times more oxygen

(Clark, 1997) than could be allowed according to Henry’s Law which states:

At a constant temperature, the amount of a given gas dissolved in a given type and

volume of liquid is directly proportional to the partial pressure of that gas in

equilibrium with that liquid.

The process whereby oxygen attaches and detaches to the hemoglobin molecule is

dependent on the partial pressure of oxygen in the lungs versus the tissues requiring

supply (De Villota et al., 1981). When de-oxygenated hemoglobin acquires a single

oxygen molecule it becomes easier for more oxygen to attach to the group until the

molecule is saturated. This property presents a sigmoidal response of oxygen saturation

dependent on oxygen pressure (Chappell, 1985). In Figure 2.6 we see this sigmoidal

response, known as the dissociation curve.

Hemoglobin can take other forms and also bind with molecules other than oxy-

gen. These variants can change the properties of the oxygen transportation process

as well as interfere, to different degrees, with the process of in-vivo oxygen saturation

measurement.

2.1.5 Cerebral Blood Flow

The cerebral arteries supply the brain with blood carrying oxygen and nutrients both of

which are vital to its function. Figure 2.7 displays the three main arteries that supply

the cerebrum, anterior cerebral artery, middle cerebral artery and posterior cerebral

artery. The circular form of these interconnected arteries is referred to as the circle
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Figure 2.6: Hemoglobin-Oxygen dissociation curve. The curve shows the oxygen satu-
ration in the blood at a given partial oxygen pressure. (Wikipedia Commons, released
under GNU Free Documentation License. A copy of this license is available in appendix
C)

of Willis. This arrangement allows consistent and continuous supply of blood to the

structures of the brain (Berne & Levy, 1996).

The continuous supply of blood to the brain is vital. Even a short interruption to

this supply induces subject blackout within seconds and permanent damage within a

few minutes (Berne & Levy, 1996). Due to this nearly 15% of the total cardiac resting

output is dedicated to the blood supply to the brain. The direct supply of blood to the

neurons of the brain is mediated using small branches from the arteries called arterioles.

These arterioles enter the cortex at right angles and branch out to all areas requiring

supply. Figure 2.8a shows an arteriole penetrating the cortex from the sub-arachnoid

space through all levels of the cerebral cortex. Figure 2.8b is an image from a rat cortex
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Figure 2.7: Image of the main cerebral arteries forming the Circle of Willis.

demonstrating the density and organization of the cortical microvasculature.

2.1.6 Neuro-vascular Coupling

2.1.6.1 Neuro-vascular Correlates to Mental Activity

During neuronal activities, like the neurotransmitter recycling and the post action

potential restoration of ionic gradients, energy is required in the form of adenosine

triphosphate (ATP). Activity within neurons enacts a set of processes to maintain the

necessary supply of ATP. Figure 2.9 is illustrative of the following process. Initially,

upon activation, the necessary ATP is synthesized with anaerobic glycolysis. This

produces small quantities of ATP but not enough to maintain activation and the ATP

production quickly transfers to aerobic glycolsis, or oxidative glucose metabolism. This

latter process is dependent on a continuous supply of both glucose and oxygen from
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(a) Diagram of the arteriole entering the cortex

(b) Arteriole organization in the cortex of a rat

Figure 2.8: Images of arteriole structures for blood supply to the cortex. Images
reproduced from Berne & Levy (1996)

hemoglobin as discussed earlier. The supply of both these substances is controlled

by the regional cerebral blood flow (rCBF). The blood vessels of the brain respond

accordingly to the increased requirements. The mechanism by which the blood vessels

respond is still a matter of debate and will be discussed later. The increase in demand
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Figure 2.9: Physiological changes associated with neuronal activation. Reproduced
from Pasley & Freeman (2008)

for glucose and oxygen initiates an increase in rCBF. The magnitude of this increase

is matched by that of the glucose consumption but not that of oxygen consumption.

This leads to an oversupply of oxygen (over saturation of HbO2) which is detectable

using NIRS and fMRI (Pasley & Freeman, 2008).

As discussed, there is a causal link between neuronal activation and changes in rCBF

but the mechanism of this correlation is not well understood. An initial hypothesis on

this mechanism came from Roy & Sherrington (1890).

“We conclude then, that the chemical products of cerebral metabolism

contained in the lymph which bathes the walls of the arterioles of the brain

can cause variations of the calibre of the cerebral vessels: that in this re-

action the brain possesses an intrinsic mechanism by which its vascular

supply can be varied locally in correspondence with local variations of func-

tional activity.”

This work suggests the changes in rCBF are mediated directly by energy demand
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implying feedback systems relating to ionic and molecular by-products. In this theory,

vasodilation is triggered by these glycolic by-products altering the blood flow to the

region. A re-examination of this work shows that the link between neural activity and

rCBF was correctly identified but the coupling mechanisms suggested are believed to

be over-simplified and unverified in subsequent studies (Friedland & Iadecola, 1991).

A number of alternate theories are under investigation. One theory suggests that

there is evidence linking neuronal innervation to smooth muscle cells that mediates

rCBF (Hamel, 2004). Another theory proposes that neuronal signaling occurs via

neurotransmitters in a feed-forward fashion (Attwell & Iadecola, 2002). This theory

relies on the concept of the importance of astrocytes linking these neurotransmitters

to vasodilation (Harder et al., 1998; Takano et al., 2006).

In the next sections we proceed to examine the functional imaging techniques that

take advantage of the oxygenation changes caused by neurovascular coupling.

2.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI), originally termed Nuclear Magnetic Resonance

(NMR), was first developed in the early seventies. Using the magnetic spin of hydrogen

molecules it became possible to image certain substances, including human tissue, far

beyond what x-ray was capable of. The first image from an NMR scanner was published

in 1973 (Lauterbur, 1973). Human trials were published only four years later in 1977

(Damadian et al., 1977). Currently MRI is used world wide in medical diagnostics and

research. Figure 2.10 is an example of a high resolution structural scan of a human

brain.

The next section will briefly cover the basic theory behind MRI and extend it to

the detection of functional activity concentrating on activity in the motor cortex.
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Figure 2.10: Structural Image from an MRI scan. This example shows how MRI allowed
non-invasive detailed imaging of structures

2.2.1 Physics of MRI

Using strong magnetic fields, radio transmitters and an assortment of detectors for both

radio frequency (RF) and magnetic signals it is possible to build 2 and 3D images which

are detailed enough for clinical diagnostics or physiological assessment of functional

activity. Before we can fully understand the ramifications of this technology we must

first understand the background of magnetic and resonance.

2.2.1.1 Magnetism

Magnetism, when applied to materials is descriptive of how the material’s components

behave when in a magnetic field. Magnetic fields arise generally from a number of

sources and in certain types. Electric currents passed through a conductor generates

magnetic fields and is the basis for large electro-magnets and electric motors. Certain

materials have specific magnetic properties. These magnetic properties exist due to

orbiting electrons generating an angular momentum also referred to a magnetic moment

(Bushberg et al., 2002). Although there are numerous type of magnetism, we will only

explain those necessary to the understanding of MRI.
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The strongest naturally occurring source of magnetism is ferromagnatisim. It is

common in metals iron, nickel or cobalt. These materials have clusters of atoms in

which the directionality of the poles within the substance is uniform. These clusters

are referred to as domains. When these domains do not all have uniform direction,

the material is considered un-magnetized. Introducing a magnetic field near an un-

magnatized ferromagnetic material will cause the domains to line up and the material

becomes “traditionally” magnetic. Ferromagnetic materials are also the only magnetic

materials that retain their properties after the removal of the field.

Figure 2.11: The positive charge of a proton in the nuclei of a hydrogen atom exhibits
magnetic properties and allows it to align with an external magnetic field.

Paramagnetism is when a material has an unpaired electron that induces a pos-

itive magnetic moment. Outside an external magnetic field there is a net magnetic

moment of zero due to the random directionality of these spins. Hence the properties

of paramagnetic materials can only be fully observed within an externally applied field.

Diamagnatisim is the weakest form of magnetism and similarly to paramagnetism

its effects are only visible within an externally applied field. Diamagnetic materials
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exhibit a weak repulsion of magnetic field flux. All materials can be shown to have

diamagnetic properties in a strong enough magnetic field. Conversely the force is so

weak a material with any other magnetic properties will overpower its effects nearly

instantly.

Figure 2.12: Inside a strong magnetic field protons will align parallel with the field
direction Z. The directions are slightly imbalanced toward the positive field direction
due to it being at a lower energy state for the protons. There protons will precess
around the Z axis at the Lamour frequency.

MRI uses the magnetic properties of hydrogen atoms in fat and water molecules

to image biological tissue. The positively charged proton in the nucleus of a hydrogen

atom spins about its axis. This effect, called nuclear magnetism causes the hydrogen

proton, shown in figure 2.11, to act like a very small magnet.

When an external magnetic field, of field direction Z, is applied to these protons

they align either toward or directly opposite the direction of the field. Referred to

as the Zeeman effect either direction of alignment is a specific energy state for that

proton. The energy state reached in aligning toward Z is slightly lower hence there is a

net detectable increase of the magnetic field strength in the Z direction. Without this

MR imaging would be impossible. These protons, within the field, precess around the
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Z axis. This is called resonance.

2.2.2 Resonance

Resonance occurs when a proton is aligned in a magnetic field. Shown in figure 2.12

the protons precess around the axis of direction of the main magnetic field B0. As

before we will refer to this as the Z axis. The frequency at which a particle resonates

is called the Lamor Frequency. This frequency is derived from the gyromagnetic ratio

of the particle multiplied by the magnetic field strength.

ω0 = γB0

Where ω0 is the Lamour frequency, γ is the gyromagnetic ration and B0 is the

magnetic field strength. The gyroscopic ration is a constant and is unique to the

nucleic structure.

Figure 2.13: The application of an RF pulse at the Lamour frequency causes the proton
to spiral away from the longitudinal Z axis to the traversal XY plane.

If an RF pulse, generated at the Lamor frequency, is applied at 90◦ to the precessing

protons they begin to tip away from the Z axis to the XY plane as seen in figure 2.13.

Macroscopically, the net detectable magnetization of the aligned protons spirals away
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from the Z axis. When the RF pulse is removed the protons return to their original

state over time. The time it takes to return to baseline is variable for different tissue

types. It is this time discrepancy that allows differentiation of internal detail after the

imaging process.

2.2.3 Relaxation Times

There are a number of measured relaxation times that can supply different information

for imaging.

2.2.3.1 T1 Relaxation

The T1 is the measured time relating to a return to the net magnetization in the Z

direction. The energy absorbed by the protons from the RF is released after the signal

is stopped. This energy is released as a retransmission of the original RF frequency and

as heat to surrounding tissues or lattice. This is referred to as spin lattice relaxation.

There is an exponential rate of return and the T1 time is specifically the time taken for

the net magnetization in the Z direction to reach 63% its original length. For imaging

purposes it is known that white matter in the brain has a short T1 time, gray matter

has a slightly longer time and cerebrospinal fluid is longer again (Pooley, 2005).An

image generated from these timing contrasts is referred to as a T1 weighted image.

Figure 2.14a and figure 2.10 are examples.

2.2.3.2 T2 Relaxation

When the RF pulse is applied the spins of all the protons become phase aligned creating

a net magnetic effect in the XY plane. Once this RF is removed the protons start to

dephase due to a number of effects. For a pure T2 time the interaction of the individual

protons magnetic fields is the only cause of dephasing. This is referred to as spin-spin

relaxation. Where as T1 relaxation times are in the region of seconds, T2 times are in
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the millisecond region. Figure 2.14b is an example of a T2 weighted image.

(a) T1 Weighted image and the comparative graph
of T1 times for tissue types

(b) T2 Weighted image and the comparative graph
of T2 times for tissue types

Figure 2.14: Examples of T1 and T2 weighted images with associated timing graphs

2.2.3.3 T2* Relaxation

T2* (pronounced T2 star) relaxation times are related to the reality that Spin-spin

interactions are not the only influence on the dephasing. The other causes are the

presence of other magnetically susceptible materials, magnetic field inhomogeneities

and chemical changes in the tissues. These have the effect of significantly shortening

the measured T2 times.

2.2.4 Functional Imaging

In the early nineties it became possible, using high magnetic field and fast T2* re-

laxation times, to image functional activity (Ogawa & Lee, 1990; Ogawa et al., 1990).

Hemoglobin, after it has been de-oxygenated becomes paramagnetic, as opposed to

the diamagnetic oxy-hemoglobin, displaying a contrast on MRI images. As discussed

in Chapter 2 hemodynamic activity is thought to be linked to neural activity due to

increased aerobic glycolisis in the neuronal cells.

At the onset of neural activation, there is an increase in cerebral blood flow (CBF),

cerebral blood volume (CBV), and oxygen delivery. As discussed in chapter 2 the area is
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supplied with more oxygen than it needs so there is an increase of the ratio of oxygenated

to deoxygenated hemoglobin. The increase in the quantity of the diamagnetic oxy-

hemoglobin increased the T2* time for a particular area hence an increase in contrast

on a T2* weighted image.

Although the hemoglobin quantities are quite small the effect of the magnetic sus-

ceptibility in the paramagnetic deoxy-hemoglobin has a significant effect. This induces

a 1% – 10% intensity change of the T2* data during an activation task (Thulborn et al.,

1982).

2.3 Near-infrared Spectroscopy

Near-infrared spectroscopy (NIRS) is an analysis method which uses electromagnetic

radiation in the near-infrared spectrum (around 650–950 nm). Radiation at these wave-

lengths is passed through a substance and the collected light intensities are used to

determine the properties of the substance. NIRS has been used in the areas of quality

control, pharmaceuticals and medical diagnostics (Cope, 1991) to name but a few ap-

plications. In the context of this thesis, discussion is confined to the ability of NIRS to

interrogate cerebral tissue to determine functional brain activity.

Studies performed by Jobsis (1977) discovered an optical window of tissue trans-

parency in the near-infrared spectrum allowing light, within this range, to penetrate the

skull and interrogate the surface of the cerebral cortex. When interrogating a smaller

substances it is possible to use trans-illumination methods. Trans-illumination records

ballistic photons traversing the entire substance. This has been applied in a clinical

setting for infants (Cope, 1991).

When using NIRS to investigate the adult cortex it is necessary to use reflectance

mode spectroscopy. Optical sources are placed at right angles to the scalp over partic-

ular areas. The photons enter the scalp, skull and cortex tissue and undergo multiple
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2.3 Near-infrared Spectroscopy

scattering events. A small percentage of the transmitted photons are back reflected and

emerge within a few centimeters of the injection point. During the scattering they may

reach up to a centimeters into the cortex (Okada & Delpy, 2003). Monte-Carlo pho-

tonic modeling has been used to show the scattering photons that exit at the detector

locations follow a banana shaped path to reemerge from the scalp (Okada et al., 1997).

Figure 2.15 shows the results of a Monte-Carlo model of tissue scattering (Humphreys,

2007). It is possible to see this banana shaped path the photons follow.

Figure 2.15: 3 Dimensional plot of the paths of detected photons in tissue generated
with a Monte-Carlo model. Figure reproduced from Humphreys (2007)

The changes in oxygenation in the tissue caused by the neuronal activity covered

earlier alters the tissue opacity to NIR light. This, in turn, alters the number of reflected

detectable photons.
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2.3.1 Photon Tissue Interactions

The substances in the blood that induce changes in tissue opacity are referred to as

chromophores. Two chromophores of particular interest in fNRIS are HbO2 and HbR.

The concentrations of these chromophores change in specific manners during cerebral

activation. These chromophores also have wavelength dependent optical absorption

properties that allows NIRS to monitor changes in their concentration.

Figure 2.16: Wavelength dependent changes in the absorption properties of HbO2 and
HbR. Figure reproduced from Coyle (2005)

Figure 2.16 shows the changes in the extinction coefficients of HbO2 and HbR

versus the wavelength of interrogatory light (Cope, 1991). To adequately differentiate

both chromophores, two wavelengths must be chosen either side of the point where

the extinction coefficients cross, also referred to as the isosbestic point. This point is

defined as a specific wavelength at which two chemical species have the same molar

absorptivity. A review of the specific factors of wavelength is available from Uludag

et al. (2004).

With the correct choices made it is possible to calculate relative changes in chro-

mophores concentration using the Beer-Lambert law.
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2.3.1.1 Beer-Lambert Law

The Beer-Lambert law states that the attenuation in light intensity is proportional

to the concentration of an absorbing compound in a non-absorbing medium and the

path-length of the photons.

If we let A be the attenuation in dB; I0, the intensity of the incident light; I1, the

intensity of the detected light; l, the distance that the light travels through the material

(the path-length); c, the concentration of chromophores; α, the absorption coefficient

of the chromophore; λ, the wavelength of the light; and k, the extinction coefficient

then:

A = αlc = log10
I0
I1
, α =

4πk

λ
(2.1)

Equation 2.1 provides a simple means to relate light absorption to underlying chem-

ical concentration.

2.3.1.2 Modified Beer-Lambert Law

When considering the interrogation of brain tissue it is necessary to modify this equation

to account for the highly scattering nature of the medium. The modification must

include an additive term to account for scattering losses and a term for the change in

the optical path-length.

A = log10
I0
I1

= α l cDPF +G (2.2)

The Differential Path-length Factor (DPF ) is a scaling term to account for the

increased path-length due to scattering while G is an additive scalar term incorporating

the scattering losses. The DPF can be determined from experimentally derived studies

Duncan et al. (1995) making the key measurement the change in transmitted light

intensity. It is this change that constitutes a signal correlated with neural activity. An
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2.3 Near-infrared Spectroscopy

fNIRS-BCI utilizes this measurement principle along with instrumentation capable of

measuring A accurately to determine optical correlates of hemodynamics.

2.3.2 Detectable Activation Trends

During localized neuronal activation it is possible, using NIRS, to identify the specific

chromophore trends. The work of Edvinsson et al. (2002) identified three main factors

that influence these trends. The first is an increase in Cerebral Blood Flow (CBF)

the second is an increase in oxygen consumption and the third is an increase in Cere-

bral Blood Volume (CBV). Figure 2.17 illustrates the effect these three trends have

on ∆HbR and ∆HbO2Ḋuring functional activation these three trends occur simultane-

ously, with the detected NIRS signal highlighting the dominant influence of the above

trends (Coyle, 2005).

These detectable trends are descussed in detail in Chapter 3.
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2.3 Near-infrared Spectroscopy

Figure 2.17: Changes occurring in cerebral oxygenation during stimulus. Stimulus
occurs at time t. Reproduced from Coyle (2005)
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2.4 Brain Computer Interfacing (BCI)

This dissertation deals with the signal and systems issues surrounding optical Brain

Computer Interfaces (OBCI). This section outlines the background of BCI research

including a discussion of generic BCI models, non-invasive brain activity monitoring

modalities and common cognative tasks asscoiated with BCI control.

This section aims to outline the basic, pertinent information necessary for further

chapters in this dissertation. Comprehensive reviews of the field of BCI research can

be found in the work of Wolpaw et al. (2000), Mason et al. (2007) and Allison et al.

(2007).

2.4.1 Generic BCI Models

A device can be described as a BCI if it provides a subject with a communication chan-

nel to an external environment independently of voluntary muscle control (Soraghan,

2010; Vallabhaneni et al., 2005). These systems are employed in cases of severe motor

disability with the aim of returning the control of certain functions that have been lost.

BCIs can be characterized in a number of ways based on the different modali-

ties of physiological measurement (Electroencephalography (EEG) (Guger et al., 2001;

Pfurtscheller et al., 2006), Electrocorticography (ECoG) (Hill et al., 2006), Magneto-

encephalography (MEG), Magnetic Resonance Imaging (MRI) (Weiskopf et al., 2004;

Yoo et al., 2004)), mental activation strategies (dependent versus independent), degree

of invasiveness and so on (Mason et al., 2007).

Figure 2.18 is an illustration of a generic BCI model. A functional brain scanning

modality is used to detect signal relating to brain activity. This signal is digitized and

passed on for further processing. The next stage filters and analyses this signal for

predefined activity templates. If detected, these templates are classified and used to

control a device and possibly fed back to the user.
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Figure 2.18: Generalized concept of a Brain-computer Interface

2.4.2 BCI Suitable Non-invasive Modalities

2.4.2.1 Electroencephalography (EEG)

Electroencephalography (EEG) measures electrical activity of the brain non-invasively

via electrodes placed on a subjects scalp. Berger (1929) demonstrated it was possible to

measure these electrical signals in humans creating a modality which is now used widely

in clinical diagnosis and functional activity studies. EEGs are performed by attaching

electrodes to the scalp of a subject over particular areas believed to be associated with

certain brain activities. This placement is defined by the 10-20 electrode system of the

international federation (Jasper, 1983). The measured activity is related to the activity

of millions of nerve cells under the electrode. These signals are characterized in both

the frequency and time domains and both domains have been used in BCI research.

2.4.2.2 Functional Magnetic Resonance Imaging (fMRI)

As previously discussed in Section 2.2 fMRI tracks changes in the blood oxygen level

dependent (BOLD) signal. Studies have shown this signal to be closely linked with the
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electrical signals measured using EEG (Logothetis, 2003). This signal is also closely

linked to the measurements of fNIRS (Strangman et al., 2002b) modality discussed in

Section 2.3.

2.4.3 Cognitive Responses used in BCI

2.4.3.1 Neural Rhythms

EEG signals are often analyzed in the frequency domain, and can be classed by their

spectral peak into different bands or rhythms. Abnormalities in EEG rhythms may

result from injury, disease, infection or surgery and is therefore an important tool in

neuropsychological testing (Martin 1997). In functional analysis the EEG rhythms may

be affected by different thoughts, actions or state of mind, e.g., planning to perform a

movement can attenuate the Mu band.

2.4.3.2 Evoked Potentials

Evoked potentials (EP) are a subset of detectable mental activity used in EEG based

BCIs. They are described as electrical potentials recorded from the nervous system

using EEG. EPs mesured in the occipital region during external stimuli of the visual

system are referred to as Visual Evoked Potentials (VEP)

The P300 or oddball response is a positive peak in potential that occurs after the

presentation of unusual stimulus which is prominent in the Parietal lobe. This stimulus

might be characterized by a familiar name in a list of unfamiliar names or similarly

with images and faces.

An EP associated with movement is the readiness potential (RP). Prior to a per-

formed movement a slow negative potential shift can be detected in the motor cortex

region (Misulis & Spehlmann, 1994).

Evoked potentials resulting from visual stimulation (VEP), oddball paradigms (P300)

or preparation for movement (readiness potential) have been used in a number of BCI

35
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applications. These signals are endogenous responses, which minimize training periods.

The implementations of these signals by various BCI research groups are discussed in

the following sections.

2.4.3.3 Slow Cortical Potentials

Electrical signals from the brain that vary in amplitude slowly are known as slow cortical

potentials (SCPs). These are DC shifts in the EEG signal lasting from a few hundred

milliseconds up to several seconds or minutes. Negative SCPs are typically associated

with movement and other functions involving cortical activation, while positive SCPs

are usually associated with reduced cortical activation. Subjects can learn to control

their SCPs by means of visual or auditory feedback.

2.4.3.4 Neuro-vascular correlates

Neuro-vascular correlates describe the hemodynamic response detectable by fNRIS and

fMRI. By monitoring specific regions of the cortex it is possible for a subject to vo-

litionally induce this response using targeted mental tasks such as imagined or overt

motor movement or mental arithmetic.

2.5 Chapter Conclusion

The background knowledge required to produce a NIRS is extensive and spans a number

of fields including physics, biology, physiology, psychology and computer science. This

chapter has attempted to present the necessary information to understand the processes

and mechanics of NIRS-BCI.
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Current Challenges in NIRS-BCI

This thesis postulates the importance of a broad view of NIRS-BCI to enable improve-

ments in all areas of system design and signal processing. To achieve any improvements

it is first necessary to examine the current research in the area and assess the challenges

that remain there. To this end this chapter will examine the processes behind NIRS

and review the work of other groups involved in NIRS-BCI. We start with an analysis of

the cognitive strategies used to produce volitionally driven physiological measurement

changes. This is followed by a review of hardware and software systems and concludes

with an outlining of issues introduced by physiological noise in NIRS-BCI research and

current solutions therein.

3.1 Mental Activation Tasks in NIRS

Chapter 2 outlines the basic process behind neuro-vascular coupling. This process

is the basis for functional NIRS (fNIRS) investigation. For an effective NIRS-BCI

it is necessary to define a set of volitional mental tasks that produce repeatable and

detectable hemodynamic changes. In NIRS BCI research there are two main functional

areas that are generally interrogated. The first is the motor cortex where movement,
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3.1 Mental Activation Tasks in NIRS

both actual and imagined, are triggers for activation (Porro et al., 1996). The second

is the frontal cortex where activities such as mental calculations (Inouye et al., 1993),

object visualization and certain imagined verbal activity (singing)(Boso et al., 2006)

are triggers. Firstly, we must assess how functional activation manifests itself in NIRS

signals.

3.1.1 Functional Activation Characteristics

3.1.1.1 Cerebral Blood Volume

Certain groups use only the shifts in measured regional cerebral blood volume (rCBV)

as the trigger for experiments (Naito et al., 2007). Due to the influx of blood to an

activated area an increase in rCBV is indicative of possible activation in the interro-

gated region. Using fNIRS this increase in rCBV is characterized by a decrease in

detected light intensity because of higher absorption in the tissue. Classifying these

trends requires the use of recorded raw light intensities and can be done with a sin-

gle wavelength. This makes it a simple mechanism though unreliable due to constant

and widespread shifts in rCBV unrelated to activations. In cases of stroke it has been

shown that meausres of CBF perform better at identifying and characterizing brain in-

jury than CBV (Sorensen et al., 1999). A more reliable method for assessing functional

activation is the measurment of changes in blood oxygen levels.

3.1.1.2 Blood Oxygenation

Using the modified Beer-Lambert law outlined in Chapter 2 it is possible to calculate

the concentration changes in both oxy-hemoglobin (∆HbO2) and deoxy-hemoglobin

(∆HbR) (Villringer et al., 1993). Many fNIRS-BCI implementations have used ∆HbO2

alone as the classification signal (Coyle, 2005; Ranganatha et al., 2007). ∆HbO2 trends

during activation have a much higher amplitude than that of ∆HbR . During an

activation ∆HbO2 rises sharply in the first 3–5 seconds. This is due to the “watering-
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3.1 Mental Activation Tasks in NIRS

the-garden” effect where the brain over saturates an active area to supply neurons with

oxygen (Mayhew, 2003). However ∆HbR has been shown to be be a better indicator of

localized activation(Mayhew, 2003). This feature is demonstrated during data analysis

performed in Chapter 7.

Figure 3.1: Changes occurring in cerebral oxygenation during stimulus. Stimulus occurs
at time t. Reproduced from Coyle (2005)
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Figure 3.1 shows examples of trends visible in ∆HbR and ∆HbO2 during stimulus.

Certain frontal activations have been shown to exhibit the decrease in ∆HbO2 and

increase ∆HbR seen in the second example in Figure 3.1 (Soraghan, 2010). A recent

study has attributed this trend to neuronal hyperpolarization in the area leading to

arteriolar vasoconstriction (Devor et al., 2007). Another recent study has been carried

out with reference to the Fast Oxygen Response in Capillary Event (FORCE) (Kato,

2004). This study stated that there was an oxygen exchange event occurring in capil-

laries in the activated region. Should these results be adequately replicated this effect

holds promise for improving the throughput in an fNIRS-BCI.

3.1.2 Locating Activity

Before describing specific mental tasks used in BCIs it is important to outline a standard

for locating these activities versus scalp markers. The standard adopted here and in

other NIRS research is that of the EEG 10-20 system (Coyle, 2005; Ranganatha et al.,

2007; Ward et al., 2007).

Figure 3.2 shows the 10-20 system. Each point is defined as a distance from a center

line running from the nasion (bridge of the nose) to the inion (back of the skull) on

the surface of the scalp (Jasper, 1983). Studies have been performed to show that each

point is related to some underlying cortical structure (Homan et al., 1987).

3.1.3 Motor Cortex

Motor cortex activation is used in all BCI modalities. The advantage of motor cortex

activation is it generally requires little or no user training although motor imagery

training has been shown to improve detection rates (Hwang et al., 2009). Mental

strategies that require training can over time become frustrating for subjects and lead

to abandonment (Spinney, 2003). Another advantage to using motor based activation

is the areas of the brain where this action is attributed is in the cerebral cortex making
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Figure 3.2: The EEG 10-20 system for electrode placement. The line from the nasion
to the inion defines the zero line. Then even numbered points are on the right and odd
numbered points are on the left.

is accessible to NIRS imaging.

Figure 3.3 is a representation of the motor cortex. We can see that large areas of

the motor strip are responsible for the hands and tongue due to the need for precise

movement. The size of the area associated with hands and fingers lead many BCI

modalities to use fist clenching or finger opposition, both actual and imagined, as

cognitive tasks including NIRS-BCI (Coyle, 2005; Ranganatha et al., 2007; Soraghan,

2010; Ward et al., 2007).

Activity in the primary motor cortex is shown to be correlated to most motor actions

(Allison et al., 2000). To consider the entire process of movement, the supplementary

motor area (SMA) must also be included. The SMA is believed to be where motor
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3.1 Mental Activation Tasks in NIRS

Figure 3.3: Representation of the distibution of motor control throughout the cortex.

planning is achieved (Shibasaki et al., 1993; Tanji & Shima, 1994). Motor activity for

the hands manifests itself under C3 and C4 according to the 10-20 system (Homan

et al., 1987). The specific hemodynamic activity is characterized as an increase in

∆HbO2 and a decrease in ∆HbR as shown in Figure 3.4.

In Chapter 4 we will investigate the validity of motor activity in NIRS-BCI paradigms

and examine inter-subject variability of activation locations using a small fMRI study.

3.1.3.1 Lateralized Activations

During a single handed activation it is widely assumed that only the contra-lateral

hemisphere of the brain demonstrates a response (Cramer et al., 1999). It has been

shown experimentally that both hemispheres can respond similarly (Coyle et al., 2004a).

It is therefore necessary to develop systems to correctly classify differences between left

hand and right hand activations. Two methods that have improved classification rates

are Hidden Markov Models (HMMs) and Support Vector Machines (SVMs). Using

finger tapping and motor imagery experiments on five subjects these systems were
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Figure 3.4: Hemodynamic during a motor activity task. Characterized by an increase
in ∆HbO2 and a decrease in ∆HbR

able to achieve accuracy above 80% for overt finger tapping and above 70% for motor

imagery (Ranganatha et al., 2007). HMM performed best overall, bettering SVM by

16% in motor imagery classification.

Feature extraction and classification represent the final step in an optical BCI design

process. Ultimately the overall performance is determined through careful consideration

of every stage in the signal processing schema.

3.1.3.2 Overt vs Imagined Motor Action

Motor imagery for mental activation has proven effective in a wide range of BCI modal-

ities. The first NIRS motor imagery studies for BCI, done by Coyle (2005), showed

detectable and repeatable activations but with lower classification rates than overt

movement. This approach is common among other BCI groups (Ranganatha et al.,
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2007; Soraghan, 2010).

Motor imagery can be induced by the imagination of first-person activation or

observation of the same third-person activity (Jeannerod, 1995). It has been shown

that motor imagery retains many of the recorded neural correlates induced by overt

motor activity. Many functional neuroimaging studies have shown that motor imagery

activates the areas involves in early motor control and planning (Decety et al., 1994;

Roth et al., 1996).

Motor imagery has been encouraged within the BCI community due to the ability

to detect activation in an able bodied person that could be replicated by a disabled

person. An argument that remains open for further investigation is that an instruction

to a disabled person to imagine moving, for example, a limb that they have no control

over is redundant. In order to get the best response the subject should attempt to

move said limb. Recent studies have shown overt movement to be more effective, more

comfortable and keeps subjects more alert during experiments in able bodied subject

experiments (van de Laar, 2009). Without further study the reliance of imagined

movement for able bodied subjects may be an unnecessary constraint.

Throughout this thesis the experiments (Chapter 4 & 7) analyzed use both overt

and imagined motor tasks. They are compared and the differences are highlighted.

3.1.4 Frontal Cortex Activity

The frontal lobe is believed to be responsible for reasoning, reward processes, long term

planning and a number of other higher level functions. Placing NIRS optodes in the

region of FPz on the 10-20 system, it is possible to detect activity using a number of

volitional tasks. Instructing the user to imagine a known 3D shape and then rotate it

has been shown to elicit cortical activity in MRI studies (Cohen et al., 1996).

In NIRS, studies have been performed using two types of tasks to elicit a hemody-

namic change. Instructing a subject to sing a song fast in their head has been used
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effectively for locked in patients by Naito et al. (2007). Another common task instructs

subjects to perform mental arithmatic calculations (Bauernfeind et al., 2008; Soraghan,

2010).

Mental calculation studies were performed in parallel with this work by Soraghan

(2010) and show that an inverted response relative to activity in the motor cortex.

That is an increase in ∆HbR and a decrease in ∆HbO2 as shown in Figure 3.5.

Figure 3.5: Hemodynamic during a mental calculation task. Characterized by a de-
crease in ∆HbO2 and an increase in ∆HbR

3.1.5 Discussion

Within the NIRS-BCI experimental paradigm, the mental tasks chosen to ellicit mental

activity have mainly focused on the motor and frontal cortex activation. In Chapter 4

and 7 we will examine experiments from both, with the aim of highlighting the possi-
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bilities for improvement in efficiency by using different locations and task instruction

within the same experiment.

3.2 Hardware Systems

In Chapter 5 a bespoke NIRS-BCI designs is outlined. The system described there was

created in parallel with this research with the aim of creating an entire system versatile

enough to address problems throughout the signal processing chain. In this section

we outline the challanges imposed by NIRS-BCI on hardware systems and review the

systems common to other groups involved in this area.

3.2.1 Interrogatory Signal Synthesis Problem

NIRS requires the generation of optical signals which then must then be detected

reliably and consistently post tissue interrogation. We refer to this as the interrogatory

signal synthesis problem.When discussing the hardware / software chain of a NIRS

system it is necessary to consider the problem in different terms than that of EEG.

Firstly optical source wavelengths must be correctly chosen (Uludag et al., 2004) and

in some way modulated so that different wavelength information can be extracted at

acquisition time. Multiple source per detector (multi-channel) setups add another level

of complexity to the signal multiplexing. Optical acquisition systems must be sensitive

enough to detect and demodulate wavelength and channel data. To maximize the

results for any NIRS-BCI system, Chapter 5 and 6 demonstrate the advantage of fully

customizable systems.

3.2.2 Commercial Systems

There are a number of commercial multi-channel devices in existence for NIRS studies.

Each takes a number of different approaches to the interrogatory signal synthesis prob-
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lem. The OMM-1000 (Shimadzu Corporation) is a 20 channel device that uses three

wavelengths (780nm, 805nm, 830nm) per source (Miyai et al., 2001; Ranganatha et al.,

2007). Sources are laser diodes and optical detection is done using photon multiplier

tubes. Multi-channel multiplexing is achieved by cycling through all the source-detector

parings using a time division approach. The entire sampling cycle can be performed at

14Hz and is digitized using a 16-bit analog to digital converter.

The TechEN CW systems can be specified with up to 32 sources and detectors (The

CW6 version). Laser diodes are modulated using carrier frequencies and the detectors

are Hamamatsu avalanche photo-diodes (Huppert et al., 2006). Demodulation is per-

formed in hardware using Texas Instruments DSP processors. Effective sampling rates

can be set up to 25Hz depending on the number of source detector pairings. Recently

an API was provided by TechEN that allow signals to be monitored and processed in

real-time and TechEN. The system is designed to integrate with the HomER NIR data

analysis software for offline and statistical processing.

3.2.3 Custom Designs

Customs system have been designed by a number of research groups. Single/dual chan-

nel systems using LED and laser diodes have been implemented specifically aimed at

NIRS-BCI applications (Bauernfeind et al., 2008; Coyle, 2005). These systems concen-

trate on hemodynamic changes and attempt to classify activations in real-time.

3.2.4 Discussion

We have seen above an example of the NIRS equipment available to the general research

community. The difficulties presented by most of these systems exist in the signal

processing realm. Users tend to have no control over raw optical data and the options

provided for implementing processing systems on the hemodynamic data in real-time

are unsuitable. As stated earlier, it is necessary to create fully customizable system to
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achieve improvments along the entire data processing chain.

The work presented in this document address these problems using the first custom-

built multi-channel NIRS system designed specifically for BCI applications (Soraghan

et al., 2008a, 2010). It allows examination of all approches including optical sources,

signal generation, modulation, acquisition, processing and classification.

3.3 Software Systems

Currently there is no software package designed specifically for NIRS-BCI analysis.

NIRS-BCI research groups have developed systems independently to suit particular

purposes. Here we will examine two systems to build a set of best requirements for

such systems. The first, BCI 2000, is a general purpose BCI software platform used

predominately with EEG-BCIs (Krusienski et al., 2007; Wilson et al., 2009; Yamawaki

et al., 2005) but also with EcOG (Leuthardt et al., 2006) and EEG-fMRI combinations

(Hinterberger et al., 2004). The second is an offline NIRS data analysis system, HomER

(Huppert, 2006).

3.3.1 BCI2000

The BCI2000 system is one of the most prominent BCI software systems (Schalk et al.,

June 2004). It was designed as a general purpose BCI interface. The BCI2000 consists

mainly of four modules. The source module handles data acquisition while the signal

processing module handles data processing. The user application module handles user

feedback during experiments and the operator module is the control system for the

researcher preforming various studies. These modules are all controlled via a graphical

user interface.

The entire system is open source and written in Borland C++. The source module

can be re-configured for different acquisition systems and any supplementary devel-
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opment is done in C++. The processing module has easily configurable filter sets.

Extending modules for processing can be written in C++ and it is also possible to

include Matlab MEX files.

3.3.2 HOMER

HomER is a Matlab based NIR data analysis package developed by The Center for

Functional Neuroimaging Technologies (Huppert, 2006). It requires the input of the

demodulated optical intensities and calculates hemodynamic concentrations. HomER

can preform noise removal and generate statistics associated with averaged activations.

Finally, this software also allows topographic mapping of activations according to op-

tode placement maps.

3.3.3 Discussion

These examples possess all the components required in versatile and robust software

systems for NIRS-BCIs. While it might be possible to adapt current platforms to

provide the functionality necessary for such systems, the relative novelty of nearly all

NRIS-BCI research demands new approaches to accomodate new advances in the field.

In Chapter 6 we will outline a NIRS-BCI software system created for the hardware

described in Chapter 5. This software will provide the functionality to control all as-

pects of the systems including experimental setup, user feedback, hardware interaction

and timing, data processing and recoding and signal processing. Developed using Na-

tional Instruments Labview it also allows rapid prototyping of new processing methods

that can be implemented both offline and online and provides data replay systems for

simulated real-time testing (Matthews et al., 2008b).
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3.4 Physiological Interference

A substantial quantity of the energy in fNIRS signals is composed of physiological

signals other that the hemodynamic response of interest. This physiological interference

is caused mainly by heartbeat, respiratory influences and a number of low frequency

oscillations attributed to blood-pressure changes and other factors.

Due to the spectral overlap these signals collectively make functional activation

difficult to detect without substantial post-processing. Figure 3.6 shows the frequency

spectrum of a single wavelength fNIRS time series during an experiment. The physio-

logical noise sources are particularly apparent in this domain.

Many approaches to fNIRS noise removal evolved from methods used in other brain

scanning modalities. Experiences with EEG and fMRI serve as good examples for

extension to fNIRS. Several of these methods have been implemented in clinical fNIRS

research but have yet to be incorporated into an fNIRS-BCI system. There are still

numerous avenues available to improve the SNR prior to feature extraction in an fNIRS-

BCI. This section explores the major sources of noise and examines the methods that

have been implemented to deal with these artifacts in all areas of fNIRS research. We

will discuss these methods and highlight those that prove most useful to fNIRS-BCIs.

3.4.1 Pulse Artifact

During NIRS measurement the influence of the cardiac cycle is a significant source

of noise. The systolic increase in blood pressure during a cycle traverses the body

and manifests in pressure and volume changes in the cerebral arterioles as a result of

cardiac pumping. This periodic increase in blood pressure and volume reduces the

opacity of the tissue which manifests in the variation of detected optical intensities of

NIR equipment. This periodicity generally exists in the 0.8–1.2 Hz.

Another challenge of the influence of the cardiac cycle on the NIR signal is the beat
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Figure 3.6: Sources of noise in fNIRS signal

to beat variation in frequency and amplitude. Due to these characteristics, it must be

classed as non-linear and non-stationary process. Stationarity in a signal implies that its

statistical characteristics do not change over time (Shiryaev, 1996) whereas a non-linear

system is described as system whose outputs are not a linear combination of its inputs.

Both these properties pose difficulties in using standard signal processing methods.

This variability in the signal has proven useful in clinical scenarios as certain types of

variation can be indicative of ill health (Bigger et al., 1992). In NIRS measurement

however these inhibit the filtering of this interference to clearly detect hemodynamic

sifts.

Given the cardiac cycle’s spectral distance for the signal of interest it is possible to

define low-pass filter stopbands wide enough to attenuate the interference with little

disruption of the desired signal (Bauernfeind et al., 2008; Soraghan et al., 2009a; Ward

et al., 2007). Online fNIRS-BCIs have used simple moving average filters to reduce
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the effect of the signal prior to the thresholding for feature extraction (Soraghan et al.,

2006).

The previously mentioned analysis software HomER (Huppert, 2006) uses a Type II

Chebyshev low-pass filter by default to smooth out the heart rate (Ranganatha et al.,

2007). Other approaches have also calculated a mean value between cardiac peaks and

troughs. Next an interpolation is performed through those mean points to produce a

smoothed signal (Coyle et al., 2007). Another approach is to use a system where all

the beats are averaged. This average waveform is then matched against each individual

beat using a linear regression algorithm and the resulting waveform is subtracted from

the signal (Gratton & Corballis, 1995).

A recent study used narrower source detector spacings to collect information on

global interference patterns and train adaptive filters to cancel them. This proved

effective when the near and far sources correlated well during rest periods. Results

were generally poorer when this correlation was not as strong (Zhang et al., 2009).

3.4.2 Low Frequency Interference Sources

There exists a set of low frequency interference sources within the NIRS signal which

present challenges to activation detection. These can be grouped as follows:

• Influence of respiratory function ∼0.3Hz

• Low frequency changes (∼0.1Hz) possibly related to blood pressure regulation

(Cooley et al., 1998).

• Very low frequency changes (∼0.04Hz) believed connected to thermal or bodily

fluid regulation (Seydnejad & Kitney, 2001).

The final two components have been generally termed the Mayer Waves (Cooley et al.,

1998), or vasomotion, V-signal and spontaneous oscillations (Elwell et al., 1999). Sim-

ilarly to the arterial heart beat these are non-linear and non-stationary signals. The
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Figure 3.7: Effect of subject position on Mayer wave (Coyle et al., 2004a)

causes are not well understood but there are many non-linear mathematical models

published attempting to ascertain their underlying causes (Seydnejad & Kitney, 2001).

Placing a subject in a near-supine position reduces the amplitude of the oscillation (Fig-

ure 3.7) but does not entirely eliminate it. Mayer Waves are particularly problematic

at 0.1Hz given its spectral overlap with volitionally induced hemodynamic changes.

Common signal processing approaches include standard band-pass filtering but

given the spectral overlap with the activations it cannot be guaranteed that signals

of interest are attenuated in the process. Another approach to removal is to use an

algorithm from the IEEE 1057 standard to fit a sine wave to the data (Coyle et al.,

2007). This sine wave is then subtracted leaving a denoised signal. Difficulties arise

when attempting to implement this approach in a real-time setting.
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3.5 Motion Artifact

Subject motion is a source of significant disruption in the fNIRS signal and is termed

motion artifact. Motion artifact disruption is caused by many different factors. Move-

ment of the optodes and detectors can change the angle of incidence of the transmitted

and detected light, increasing the affect of the reflectance of the skin surface. Motion

can cause an increase in blood flow through the scalp or, more rarely, an increase in

blood pressure in the interrogated cerebral regions. The orientation of the head can

affect the signal due to gravity’s influence on the blood (Izzetoglu et al., 2005). These

compounded effects are a significant source of noise if the head is not physically re-

stricted. Implementing fNIRS in a completely mobile scenario increases these effects.

The ambulatory interference of walking and totally free head motion would further

increase the amplitude and change the nature of the artifact.

A common approach to motion artifact removal in many brain scanning modalities

is that of adaptive finite impulse response (FIR) filtering. This requires collection of

additional information about the noise in order to alter the filter coefficients. Such

information can be collected through accelerometers attached to the head to record

movement. The advantage of this approach is that it makes real-time filtering possible.

Weiner filtering functions effectively for offline cleaning of data in both stationary and

ambulatory scenarios but has yet to be implemented in a fNIRS-BCI (Izzetoglu et al.,

2005).

As motion artifact causes the largest statistical variance within the data set it is

possible to implement a Principal Component Analysis filter to remove it. This method

is used in the NIRS analysis software HomER (Huppert, 2006) and has performed well

in offline BCI analysis (Ranganatha et al., 2007).
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3.6 Chapter Conclusion

Although many groups are currently working in NIRS BCI development many difficul-

ties still remain. The concepts to be presented in this thesis will detail the choices of

mental activation strategies and help confirm, with the aid of the literature and inde-

pendent fMRI experiments, the validity of these choices. We will provide evidence in

support of our contention: that robust multi-channel hardware and versatile software is

required in order to improve signal detection. These customizable systems will, in turn,

enable the next generation of NIRS system to be lower in cost and complexity. We will

also outline new approaches of signal analysis for future study as well as improvements

to physiological noise removal techniques.
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Chapter 4

Revisiting NIRS-BCI

Assumptions

In the previous chapters, we have established that fNIRS is capable of detecting consis-

tent and volitional patterns of hemodynamic activity associated with different mental

tasks. The measurement of brain activity, as related to hemodynamic trends, has

stemmed from insights gained from functional magnetic resonance imaging (fMRI)

(Bandettini et al., 1992; Ogawa & Lee, 1990). Previous research in fMRI has proven

invaluable in the establishment of experimental protocols in fNIRS-BCI development.

This chapter will outline this research and will examine shortcomings and avenues for

improvement within these established protocols. To this end a small fMRI study is

presented, along with reviews of associated literature, to assess the validity of the as-

sumptions in task selection and protocol design. Specifically we will focus on motor

cortex tasks and ascertain their effectiveness within an fNIRS-BCI paradigm.

Many NIRS-BCI research groups focus on the use of motor activity as mental tasks

(Coyle, 2005; Ranganatha et al., 2007; Soraghan, 2010; Ward et al., 2007). As described

in Chapter 2 the motor cortex, posterior to the frontal lobe, is responsible for motor

control. Motor tasks are common in most BCI research due to the intuitive nature
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of task instructions and because detected responses are repeatable and consistent in

both character and location (Allison et al., 2000). Motor activity is still considered

an applicable mental activity even when the motor cortex has been damaged (Cao

et al., 1998). This following experiment allows the investigation of cerebral locations of

activation, activation separability and the effect of using imagined versus overt motor

movement on the response intensity (Ersland et al., 1996).

4.1 Experimental Design

4.1.1 Motivation

There have been a number of concurrent NIRS fMRI studies performed to establish

the correlation between the two modalities (Strangman et al., 2002b; Toronov et al.,

2001). Using this correlation a small study was conducted to examine the assumptions

established regarding motor tasks in NIRS-BCI paradigms. These assumptions encom-

pass the location of activities, the particular motor task detectable using NIRS and

the validity of overt versus imagined movement. We also make direct measurements of

inter-subject variability (ISV) of activity locations on the subjects within this study.

4.1.2 Protocol

The protocol for the MRI experiment was designed to elicit separable activations from

different areas along the motor strip. With this in mind four motor tasks were chosen.

• Left Hand

• Right Hand

• Both Feet

• Tongue
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Each task was to be performed both overtly and imagined. This will allow the

examination of the difference between overt and imagined paradigms.

These experiments were performed in a Siemens Allegra scanner with a magnetic

field strength of 3T. Behind the chamber a projector displayed the cues which can be

observed by the subject via a mirror mounted on the head transmit coil. To ensure

adequate time separation of each activation, each cue was displayed for 16s followed by

rest periods of 30 seconds (Soraghan, 2010). The protocol was created and displayed

using PyEPL (Geller et al., 2007), a python based experiment design software. Each

task was repeated eight times and tasks were presented in a random order.

Following the functional scans a T1-weighted 32 slice axial and a T1-weighted MP-

RAGE structural scans were performed. These scans are performed to provide anatom-

ical structure images upon which the functional scans are overlayed. In post processing

the functional images are registered to the 32 slice axial scan which share similar spatial

resolution. This represents a intermediate step to allow accuracy when the functional

images are finally overlayed on the high resolution MP-RAGE.

The full experimental protocol was as follows:

• Subjects: Two healthy male subjects with an average age of 25. Both subjects

were right handed according to the Edinburgh Handedness Inventory (Oldfield,

1971).

• Preparation : Subjects were placed in the scanner in a supine position. The

head transmit coil was placed over their heads and the mirror was positioned so

they could best see the cues being projected behind them.

• Guidance : Each subject was briefed on the cues they would receive prior to the

experiment. The experiment began when the subject was placed in the chamber

and could see the screen. The cues started with “The experiment begins shortly...”

then after a short time a “Get Ready...” instruction was supplied. The stimulus

58
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instructions were:

1. Overt Right Hand

2. Overt Left Hand

3. Overt Both Feet

4. Overt Tongue

5. Imagery Right Hand

6. Imagery Left Hand

7. Imagery Both Feet

8. Imagery Tongue

Between each stimulus a rest period was signaled using “ +” symbol on the

screen. Within an fMRI experiment these stimulus instructions are referred to as

experimental variables (EVs).

Figure 4.1: fMRI protocol Diagram

• Timing : Each stimulus was presented in 8 blocks, each block consisting of 16

seconds for the cue and the rest period for 30 seconds. The order of the presented

stimulus was randomized to avoid habituation (Dale, 1999).
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Figure 4.2: fMRI protocol Diagram.Each column displays the block onsets of an EV.
The numbers assigned to each column correspond to the EV listed in the experimental
protocol (Section 4.1.2)
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4.2 fMRI Post-Processing

Upon completion of these trials, the functional data was processed using the software

FSL (Smith et al., 2004; Woolrich et al., 2009). To ascertain which areas of the brain

were most active during the course of each stimulus, the design of the experimental

protocol was used to generate a general linear model (GLM) of the data. In further

discussion of this analysis the smallest three dimensional area the scanner can distin-

guish is referred to a volumetric pixel or a voxel. The results are analyzed using a

general linear model.

4.2.1 General Lineal Models

A general linear model (GLM) is a statistical analysis method for univariate data

(Mardia et al., 1979). They facilitate a series statistical tests and hypothesis testing

according to pre-defined models of data variation. They are formulated as follows

Y = XA+ E (4.1)

where Y is the recorded data, X is a design matrix describing the expected results,

A is the parameters to be estimated and E is the error or noise in the system. The

model parameters A are estimated using linear regression and the resultant model XA

is statistically compared to Y .

4.2.2 GLM applied to fMRI

Applying this analysis to fMRI data allows the statistical analysis of functional activa-

tion. The analysis is often referred to as statistical parametric mapping (SPM) (Friston

et al., 1995).

To perform this analysis, firstly, the timings of the stimulus onsets are gathered

from the experimental control system. Each EV has a stimulus train generated from
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these timings. To adequately model the expected responses of the data a representative

hemodynamic response function (HRF) is chosen. This analysis uses the probability

density function from a gamma distribution as descriptive of an HRF (Ciuciu et al.,

2003; Rajapakse et al., 1998). The point processes associated with each EV’s onset

timings are convolved with this HRF to produce the GLM design matrix. Figure 4.3

shows the design matrix of the model where each column is representative of an EV.

The column numbers match the numbered EVs listed in Section 4.1.2.
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Figure 4.3: GLM Design Matrix. The numbers assigned to each column correspond to
the EV listed in the experimental protocol (Section 4.1.2)

A linear regression is performed between the design matrix and the recorded data.

For every voxel a parameter estimate (PE) value is returned relating to every EV

indicating the ‘goodness’ of the fit along with an error measure.
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4.2.3 Statistical Mapping

To create statistical maps on fMRI image data, it is first necessary to apply a set of

statistical measures onto the PE from the GLM. The PE is divided by the error to give

a t value indicating the significance of the the fit for that voxel. The t value along with

PE and the error are then used to calculate a Z statistic for each EV against each voxel.

A Z-test is a statistical test that compares sample and population means to determine

if there is a significant difference. The Z-test only requires that the population have a

normal distribution which we can assume in this case using the central limit theorem

(Billingsley, 2008) and that the mean of the population is known.

The Z-test unit is the number of standard deviations the particular sample is from

the mean of the population. Applying this analysis on the PEs and errors across all

voxels it is possible to generate a statistical measure of the location of activations. To

generate images of these statistical maps a lower bound is set on the Z-statistic for a

particular EV. Voxels with values above this threshold are marked as active.

When analyzing information from time-series data the figures in further sections

overlay a partial model of the response data. These partial models represent only the

predicted response of a single EV and are useful for the purposes of visually highlighting

correlations in time-series data.

63



4.3 Experimental Results

4.3 Experimental Results

The results obtained from this statistical processing of the experimental data are pre-

sented here. Z-statistics are thresholded and adjacent active voxels are clustered for

analysis.

4.3.1 Functional Activations

From the processed data there is discernible activation in particular regions along the

cortex. The data from the post statistical processing generates clusters of active voxels.

These are listed in order of size. The largest cluster is the area of greatest activation

during a particular EV.

In both subjects, the cluster locations are mapped to the standard brain map sup-

plied by FSL. These active regions lie generally along a region posterior to the frontal

lobe or Brodmann’s Area 4. This area is generally believed to hold the primary motor

cortex (Brodmann, 1994; Macdonell et al., 1999; Mazziotta et al., 1995).

EV Vox. per Cluster Z-Max Z-Max Location (Voxel Space)

X Y Z

Overt Feet 370 20.1 33 36 28
Overt Left Hand 412 12.2 46 37 21
Overt Right Hand 303 19.2 42 37 23
Overt Tongue 278 18.1 45 32 17
Imagined Feet 336 15.1 33 35 28

Imagined Left Hand 3827 20.1 33 36 28
Imagined Right Hand 283 10.8 37 37 28
Imagined Tongue 54 8.42 33 35 28

Table 4.1: List of largest clusters for each EV. Z-Max is the largest Z value in the
cluster. The last three are the XYZ location of the voxel with the largest Z value.

Table 4.1, shows an example of the data from the largest clusters of voxels associated

with each EV for Subject One. Table 4.1 also shows the largest Z statistic within the

voxel cluster and the 3D coordinates location of that voxel.

Figure 4.4 shows two time series plots of the fMRI data from Subject 1. The first is
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Figure 4.4: fMRI time-series data associated with overt both feet activation from Sub-
ject 1 with a partial model overlayed

the time series recorded from a single voxel with the highest Z statistic in the cluster.

The second is the averaged time series from all the voxels in the cluster. Both series

are overlayed with a an activation model for a single EV (Overt Both Feet) which is

referred to as a partial model.

4.3.2 Activation Locations

As discussed in the last section, functional activation is statistically derived in voxel

clusters for each EV. These voxel clusters are registered to the structural brain images

and then rendered into viewable images. Figures 4.5 and 4.6 show the registered images

in slices for the four overt activation types for subject one. From left to right the images
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are presented from the coronal, transverse and sagittal planes respectively. From a first

viewing these areas seem to align with the motor strip (Rao et al., 1993).

(a) Overt Both Feet (b) Overt Left Hand

Figure 4.5: fMRI activation clusters for four stimulus types

As can be seen from figure 4.5b and 4.6b both the left hand and the tongue have

elicited bi-lateral activation. While non-problematic for the tongue, this bi-lateral

activation make separation and differentiation of left and right hand activation difficult
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(a) Overt Right Hand (b) Overt Tongue

Figure 4.6: fMRI activation clusters for four stimulus types

(Kim et al., 1993). There is a clear intensity difference between hemispheres for left

hand activation. The more intense cluster on the right hemisphere is the left hand

control area in accordance with the literature (Strick & Preston, 1982).

Next we will examine in detail the locations of each activation
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4.3.2.1 Activation Area: Feet

Using a registration of a standard brain image it is possible to accurately map the

functional areas to documented locations. Figure 4.7 is a 3D mapping of the functional

voxel clusters for the feet activation. From the image it is possible to see the activation

centered to the top of the brain in the pre-frontal area. The activation itself spreads

out in both hemispheres and there is a quantity of activity on the surface.However,

both subjects showed that the largest concentration of hemodynamic activity during

feet activation was deeper in the cortex than in hand activation.

Figure 4.7: 3D mapping of images for surface correlation: feet overt

4.3.2.2 Activation Area: Left Hand

The left hand activation seen in Figure 4.8 is strongest in the right hemisphere in

accordance with the contralateral nature of brain activity. There is however quite a

significant activation of the left hemisphere. This is indicative of the occasional bi-

lateral activation mentioned in Chapter 2 (Cramer et al., 1999). This activation also

occurs quite close to the surface of the cortex.

Figure 4.8: 3D mapping of images for surface correlation: left hand overt
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4.3.2.3 Activation Area: Right Hand

Figure 4.9 is an example of the mapping for the right hand activation. The right hand

activation is more substantial for both subject’s than the left, perhaps due to it being

the subjects dominant hand. The right hand activation, unlike the left, elicits almost

no bilateral activation for both subjects which correlates with studies of hemispheric

asymmetry (Kim et al., 1993).

Figure 4.9: 3D mapping of images for surface correlation: right hand overt

4.3.2.4 Activation Area: Tongue

In figure 4.10 the activation of the tongue activation is mapped onto the white matter.

Unlike the previous images which showed the surface pial matter the tongue is generally

much deeper and bilateral. This presents difficulty in using the tongue within a NIRS

paradigm due to the depth of the activation.

Figure 4.10: 3D mapping of images for surface correlation: tongue overt

4.3.3 Cortex Depth

To ascertain the depth at which these activations occur within the cortex we use Figure

4.11 which is an activation map rendered with skin and scalp components. The feet
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activation (Figure 4.11a) can be seen as a wide cluster spread just against the skull in

the central region of the cortex although the most active regions within the feet clusters

are a few cm below the surface of the cortex.

(a) Overt Both Feet (b) Overt Left Hand

(c) Overt Right Hand (d) Overt Tongue

Figure 4.11: 3D mapping of images for surface correlation

Both hand activations, seen in Figure 4.11b & 4.11c, also spread out across the skull.
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These wide activation patterns are indicative of a signal reachable and detectable using

NIRS (Okada & Delpy, 2003). The tongue activation, seen in Figure 4.11d, however

has a much narrower skull contact indicating it may be more difficult to detect reliably.

4.3.4 Locational Impact for NIRS

As mentioned in the previous section this location information is valuable for the cre-

ation of NIRS-BCI experimental protocols. First, the choice of optode locations can be

challenging without some other measure like fMRI data. Second, it is possible now to

make distinctions into which activation types are applicable to NIRS studies.

As we showed in Section 4.3.3 the tongue activation, while significant, has quite a

narrow point of contact with the skull. The peak of the tongue activation also occurs

much deeper into the cortex than other activation types. This makes it undesirable as

part of a NIRS-BCI.

4.3.5 Inter-subject Variability

With this fMRI data it is possible to analyze the differences in the locations of activation

between the two subjects. This allows a clearer idea of how optode positions may change

on a subject-by-subject basis.

When positioning fNIRS sources and detectors the locations C3 and C4 from the

10–20 electrode placement system are used as a guide for the hands area of the primary

motor cortex (Coyle, 2005). Hand activations for both subjects produced responces in

the vicinity of these locations though the differences between the locations of strongest

activation could differ by up to 2cm. The areas most active during hand movement in

subject one was slightly posterior to C3 and C4, where as, it was slightly anterior in

subject two.

Although this small difference is unlikely to cause an issue within fMRI studies

it presents serious issues in single-channel fNRIS systems. The only option avail-
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able to maximize signal strength of such a system is a trial and error approach to

source/decetor placement (Coyle, 2005). This alone highlights the necessity of multi-

channel approaches for fNIRS.

4.3.6 Overt & Imagined Motor Movement

Using imagined movement paradigms are common in the BCI community. It is therefore

worth investigating the differences in the activation strengths and locations during both

overt and imagined trials.

Activations Num voxels mean median max Voxel X Voxel Y Voxel Z

IBF 802 2.64 2.46 14.11 33 36 28
OBF 802 6.76 5.71 20.14 33 36 28

ILH 1258 2.57 2.26 10.28 31 32 27
OLH 1258 6.91 6.03 19.86 21 36 25

IRH 797 3.38 3.2 10.77 37 37 28
ILH 797 6.34 5.51 19.22 42 37 23

IT 1625 1.6 1.39 8.42 33 35 28
OT 1625 6.06 5.42 18.13 45 32 17

Table 4.2: Comparison of overt and imagined activations. Largest voxel cluster for
each activation along with the number of voxels in the cluster, mean, median,and max
Z value and the location of the voxel with the largest Z within the cluster.

Table 4.2 is a collection of statistics comparing the overt and imagined activations

over specific areas. The areas chosen were masks of the entire region of voxels that

are thresholded as active areas for these EVs. The table reports the max, mean and

median of the averaged Z-statistics across that area for each EV.

The table clearly demonstrates that in all cases the imagined activations are weaker

than the overt. For further comparison, Figure 4.12 shows the same time series as

Figure 4.4 but in this image the partial model for the imagined activations has been

overlayed also. This location was the source of the largest activation for overt feet

movement.

The imagined activity, although present, is clearly of a lower intensity than the overt.
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Figure 4.12: Raw Time Series Data overlayed with the cope models for overt and
imagined foot movement

This will allow us to compare the similar recordings with NIRS and overt movement can

be used as a testing and validation for able bodied subjects. Imagined movement will

prove difficult to extract in a single-trial paradigm but methods of consistant detection

via NIRS would be a significant achievement of any bespoke NIRS-BCI.
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4.4 Conclusions

We have seen that a hemodynamic distinction is possible between different types of

motor activity, namely left and right hands but there is symmetric hemispheric activity

which make the distinction difficult. This is reflected in Haihong & Cuntai (2006) and

Ranganatha et al. (2007). Although, consistent discrimination of these activations will

allow an increase in bit rates in a NIRS-BCI by increasing the number of experimental

cues or creating multi-selection options for users. Both tongue and feet present some

difficulties due to their activation location and depth on the cortex.

This study indicates that for long-term fNIRS study of a single subject a preliminary

fMRI study is advantageous. If this is unfeasible, multi-channel fNIRS is shown to be

a necessity to locate the areas of highest activity.

In the following chapters we outline the development of a customizable multi-

channel fNIRS system specifically directed at BCI applications. Chapter 7 outline

systems similar to the GLM for detecting the most active channels for single trial

experiments.
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Chapter 5

Customized, Versatile

Multi-channel Real-time

CWNIRS Hardware Design

To achieve the aim of improving fNIRS-BCI approaches and implementations we first

outline a new custom-built hardware system capable of facilitating these improvements.

Chapter 3 highlights the importance of customizable systems while Chapter 4 exposes

the necessity of multi-channel systems to realize the best results from fNIRS as a

BCI modality. This chapter will detail the work done in parallel with this research

by Soraghan, Matthews, Markham, Pearlmutter & Ward (2010). We will outline the

design and creation of a highly customizable, multi-channel CWNIRS system for BCI

applications.

5.1 Introduction

The first fNIRS-BCI implementation was designed by Coyle (2005). It was a custom-

made, continuous wave fNIRS-BCI. The system is composed of two lock-in amplifiers
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(Ametek 7265), two avalanche photodiodes (APD, Hamamatsu C5460-01), two fiber

optic bundles, an LED driver driving four, single wavelength LEDs (760 nm*2, and

880 nm*2, Opto Diode Corp.), and function generators. Coyle et al. (2004a) used a 16-

bit Keithley digital-to-analog converter PCMCIA card as a data acquisition module,

sampling four output channels from the lock-in amplifiers (which demodulated the

detectors). An illustration of that system is shown in Figure 5.1.

Figure 5.1: Components of the NIRS-BCI developed by Coyle (2005)

This system was expanded upon by Soraghan et al. (2006) who added two further

acquisition systems for applications in simple gaming and for conceptualizing a novel

NIRS-BCI application in stroke rehabilitation (Ward et al., 2007). These extra acquisi-

tion systems allowed the interfacing of external devices to provide subject feedback and

interaction. Published descriptions of fNIRS-BCI provide an exposition of the systems

and their applications (Coyle et al., 2004a,b, 2007; Soraghan et al., 2006).

In extending this work it became necessary to design a new hardware system that

can incorporate new approaches at every point in the data processing chain. With the

advances in semi-conductor production the facilities exist to customize and optimize

NIRS systems for particular applications (Wolf et al., 2007). It is possible to charac-
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terize different NIRS hardware systems using criteria like light source type, wavelength

selection, light detection systems and processing/feedback systems (Strangman et al.,

2002a).

The system described here was designed as a modular and versatile platform to

quickly prototype and test solutions to many different aspects of NIRS-BCI. These

include signal conditioning, acquisition and generation, physiological noise analysis,

and classification. For a detailed exposition of the hardware specifications and design

please refer to Soraghan (2010). What follows is a concise description of the instrument

as it pertains to the rest of the dissertation.

5.2 Hardware Summary

Initially, the hardware necessary perform fNIRS must be specified. Figure 5.2 shows a

block diagram of the major components.

Figure 5.2: Block diagram of General NIRS system design

The initial advancement from the design of Coyle et al. (2004a) was to develop

77



5.3 Generation and Acquisition Systems

a scalable, multi-channel NIRS platform. Whereas, the original system was a dual

channel system using hardware-based lock-in amplifiers for demodulation of detector

outputs, this new design was based on a more flexible software-based modulation-

demodulation system, inspired by the work of Everdell et al. (2005). Thus, the new

system was initially designed to use multiple carrier frequencies to modulate the optical

sources. This required equipment with generation and acquisition rates as well and

a powerful central processing unit to coordinate data timing, synchronization, and

triggering.

In the following sections, the system components illustrated in Figure 5.2 are de-

scribed, including the optical light source and detection equipment, specified to max-

imize the detection of oxy-hemoglobin (∆HbO2) and deoxy-hemoglobin (∆HbR) con-

centration changes.

5.3 Generation and Acquisition Systems

5.3.1 Specification

In order to maximize the number of sources and detectors that could be implemented

in a frequency based modulation strategy, the acquisition and generation hardware

has a number of constraints. The modulation system envisioned would be capable of

generating carrier signals (sinusoidal). The previous implementation of Coyle et al.

(2004a) used modulation frequencies up to 20kHz and demodulation via lock-in ampli-

fiers. This upper limit was deemed to be appropriate for further advancement. For the

acquisition, The Nyquist-Shannon sampling theorm would require acquisition rates of

at least twice that of the highest generated frequency (Shannon, 1949). To ensure as

little noise be introduced due to poor signal acquisition resolution the requirement for

acquisition was set at ten times the highest frequency. Thus, a 200kHz acquisition rate

system was desired to allow sufficient reconstruction of these sinusoidal signals.
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5.3.1.1 Generation Requirements

• Sine wave generation.

• Generation frequencies up to 20kHz.

• Multiple generation channels.

5.3.1.2 Acquisition Requirements

• Acquisition rates of 200kHz;

• Multiple input channels.

• Simultaneous sampling on all channels without reduction of acquisition rates.

• On-board analog anti-aliasing filters and amplifiers.

5.3.2 Design Choices

A National Instruments (NI) solution for data processing was chosen. The selection

ensured simplified, robust timing interactions between generation and acquisition cards

and allowed central control of both, through a single workstation running Labview.

The generation and acquisition cards chosen are housed in a proprietary NI interface

chassis (PXI-1033). This chassis connects to a Workstation via a PCI-express card in

the Workstation. Timing and synchronization is ensured by having a 10MHz clock

shared between the cards on the chassis backpane, with communication via the real-

time system integration (RTSI) bus.

5.3.2.1 Generation Card

The PXI-6723 is a multi-function digital-to-analog converter (DAC). It provides 32

analog output (AO) channels (13-bit), with signal generation up to 800kS/s. For the

24 AO channels needed to drive the LEDs, a 60kS/s rate is achievable. The generation
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card is coupled to the LED driver (for optical sources power and stability) via BNC

cables, and two breakout boxes. The high power required for the LED sources are

provided by axillary power supplies, rather than by the DAC card.

5.3.2.2 Acquisition Card

Acquisition is handled using two PXI-4462 cards. Each unit has four channels, capable

of simultaneously sampling at 204.8kHz. This is a key feature of the CWNIRS system

to ensure scalability without a reduction in sampling rate as the number of channels

increase. The modules have analog filters for anti-aliasing, along with analog amplifiers

to maximize the use of the 24-bits available .
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5.4 Optical sources and Signal Conditioning

Optical source selection was governed by a number of factors. Optical sources for

NIRS applications can include laser diodes or light emitting diodes (LEDs) (Strangman

et al., 2002a). Laser diodes have the advantage of producing energy that is effectively

monochromatic and spatially coherent. This allows much higher powers and translates

to higher signal-to-noise for NIRS applications. Nevertheless, the main drawback of

laser diodes is that of safety (Sliney & Wolbarsht, 1980). The power and coherence of

the energy produced is capable of causing damage, especially to the eye. This issue has

moved a number of NIRS research away from lasers, especially in the area of neonatal

investigation (Bozkurt & Onaral, 2004).

LEDs do not suffer from the same safety issues as laser diodes and are cheaper to

produce (Soraghan et al., 2008b). LEDs are lower in power though and the wavelengths

produced are spread around the central wavelength (broadband). Given the cost and

safety issues it was decided to use LEDs in this design. Moreover, LEDs can be placed

in direct contact with the scalp and multiple wavelengths can be housed within the

same package (Soraghan et al., 2009b).

Another factor, wavelength selection, is crucial to the correct conversion of the

recorded light levels to changes in HbR and HbO (Uludag et al., 2004). As mentioned

in Chapter 3 wavelength of light chosen to best resolve both chromophores are either

side of the isosbestic point (Figure 5.3).

In the case of ∆HbO2 & ∆HbR wavelengths should be chosen either side of 800nm

in order to allow for spectroscopic determination of both. The choice of wavelength is

bounded to between a large optical absorption of hemoglobin around 650nm and that

of water at 950nm. The wavelengths chosen in this system were 760nm and 880nm.

A more detailed discussion of wavelength selection can be found in Sato et al. (2004)

and Okui & Okada (2005).
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Figure 5.3: Wavelength dependent changes in the absorption properties of HbO2 and
HbR. Figure reproduced from Coyle (2005)

5.4.1 Optical Current-Driving Circuitry

The light sources specified above are current driven devices and the current is propor-

tional to their optical output power. The system must be able to control and modulate

these LEDs at specific frequencies. Given that the signal generation cards generate

varying voltages, a linear relationship between the potentials generated and the cur-

rent supplied to the LEDs must be ensured.

Although this is a common problem in electronics containing LEDs it is made

increasingly complex in this case because of a number of factors. These additional

constraints are that the system must allow modulation from DC (for time-division

multiplexing) to several kHz, and that the LED packages contain numerous dies all on

a common anode.

Hence, a new driver was designed to cater for these constraints. This driver uses

PNP transistors for current amplification, and uses differential operational amplifiers

(op-amps) to detect the voltage drop across the current-limiting resistors for the LEDs.

Negative feedback of these signals ensures stability and linearity in the optical output
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Figure 5.4: LED Die configuration. (Image courtesy of Soraghan (2010))

of the LEDs (Soraghan et al., 2009b).

5.4.2 Customized Optical Sources

Optical sources were custom design for this project to ensure the correct specification.

Previous prototypes used separate LEDs for each wavelength but this proved difficult

in coupling to the subject (Coyle, 2005) and introduced some potential error. A spec-

ification for dual wavelength LEDs was submitted to Opto Diode Corporation. The

resulting design was a single LED package containing five dies. In practice, 760nm dies

have lower output powers and are more highly absorbed in the tissue than 880nm. To

solve this problem four of the five dies in the LED package are at 760nm (see Figure

5.4). This is especially important as 760nm is pivotal in the detection of concentration

changes of ∆HbR (more sensitive) which is a better localizer for metabolically active

tissue (compared to ∆HbO2) (Hirth et al., 1996).

The final LED design (OD-1894) is contained in a TO-39 header with a lensed cap.

It has five leads (4 + 1) with a common anode for all dies. The lens cap ensures a

10◦ beam angle. The output of the 760nm dies are ±10nm with a 30nm full width
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Figure 5.5: Spectrometer recording for LEDs wavelength spread. 760nm and 880nm
respectively. (Image courtesy of Soraghan (2010))

half maximum (FWHM), with 40mW ±10mW optical output power (note: this power

incorporates all four 760nm die in the P-1894 package). The single 880nm die is also

±10nm with a 80nm FWHM, but with an optical output power of 13mW ±1mW.

Figure 5.5 shows spectrometer recordings of both LEDS, where the wavelength spread

of each LED can be observed. The shoulder to the right of the central peak in the 880

recordings is from limitations in the manufacturing process and has been observed in

other optical sources from the same company (Soraghan, 2010).

5.5 Light Detection

5.5.1 Specification

As discussed in Chapter 3 there is significant attenuation (7–9 orders of magnitude)

of the optical power by the tissue traversed. With this in mind, the choice of optical

detector is limited to highly sensitive devices. It must also be capable of detecting

optical energy in the NIR range and have appropriate response characteristics in line
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with a CWNIRS system.

The choices in this area are varied (Strangman et al., 2002a) but can be narrowed

according to sensitivity, operating voltages, active area, optical coupling, size, etc. A

high-sensitive, low noise, avalanche photodiode (APD) detector was the solution of

choice, as it is for many NIRS systems (Boas et al., 2004).

5.5.2 Avalanche Photodiodes

The choice made for this experimental system was Avalanche photodiodes (APDs),

specifically the Hamamatsu Photonics, C5460-01 module. This device has a wavelength

range between 400nm and 1000nm, high sensitivity of −1.5 × 108V/W , and a 3mm

diameter active area. This APD has a detection bandwidth from DC to 100kHz and

can detect optical energy as low as 0.005nW.

This satisfies many of the conditions necessary for the optical detection in this NIRS

system. This equipment was mounted in a die-case enclosure and coupled to a 610mm

fiber-optic bundle using a custom-design connector to maximize light transport to the

active area (Soraghan, 2010, Chapter 5). The fiber-optic bundles are then connected

to a subject using a source-detector probe holder, which is described next.

5.6 Source-Detector Coupling & Configuration

5.6.1 Specification

The method of coupling the optical components to a subject presents a number of

issues. Intuitive solutions like helmets or solid mounting systems do not provide the

kind of versatility required for these experiments. The holders need to be easily movable

and flexible to suit various head shapes. It is also necessary that they not cover too

much area, which can make hair parting difficult. This is needed to expose sufficient

naked scalp for the sources and detectors, since hair (and hair follicles) are a significant
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absorber of NIR light.

5.6.2 Configurations

Each holder was created using brass tubing to hold LEDS and detector fibers semi-

rigidly in place. These were soldered on to thin brass sheets which were cut to remove

anything structurally unnecessary to maintain flexibility. This was then glued (hot-

melt) into felt for the comfort of the subject.The final result is a semi-rigid structure

with a soft underside that could deform sufficiently to suit various head shapes.

Figure 5.6: Optet Configuration for Frontal Studies

The configuration of the optode holders was dependent on the location of the record-

ing on the head and the size of the area of scalp being investigated. Figure 5.6 shows

the design of a holder typically used for investigating metabolic activity in the frontal

cortex. It is narrow and long in order to fit the forehead comfortably.

Figure 5.7 depicts an early probe holder design used to cover semi-circular areas of

motor cortex. It covers a small area but can facilitate up to seven light sources and a

single detector.

The final design (shown in Figure 5.8) covers a large area and was designed to be

used for interrogating the motor areas and is an excellent option when attempting to

locate a metabolically active area. In this design, each detector can see four sources.

Note: non-neighboring light sources (< 3cm apart) in this probe holder are deemed too

distant to provide sufficient signal for this detection system, due to the high scattering
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Figure 5.7: Optet configuration for small area searches

Figure 5.8: Optet configuration for large area motor studies

nature of the underlying tissue (Elwell et al., 1999).
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5.7 Chapter Summary

This chapter has outline the construction of a flexible and versatile NIRS-BCI system.

This hardware was designed and constructed in conjunction with the Soraghan (2010)

dissertation. This hardware is a multi-channel extension of the work of Coyle (2005)

and is specifically designed and optimized for BCI experiments. The following chapter

introduces versatile software systems to run on this device as well as improvements to

the optical multiplexing systems originally designed.
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Chapter 6

Reconfigurable NIRS Software

Systems

In this chapter we shall discuss the implementation of a reconfigurable software plat-

form for the hardware systems in the preceding chapter. Chapter 3 has outlined the

necessity for customizable and robust software control systems. As well as supplying

user interaction and experimental design functions, these systems should also be for-

mulated to improve approaches to the interrogatory signal synthesis problem described

in Section 3.2.1. To fully realize advances in fNRIS-BCI we must have control over

optical signal generation and acquisition.

In creating a platform of this type it is necessary to define the requirements for

achieving all the goals predicated by the experiments. The next section will deal with

other software platforms of this type and compare them according to the specific re-

quirements of the NIRS modality.
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6.1 Software Design Considerations

We must outline the software chain needed to create a versatile and robust system.

The aim of this work was to create a single software platform to control all aspects

of the research thus making it unnecessary to continuously switch between hardware,

software and programing languages. It was also designed to reduce the workload on

the researcher when creating new approaches to data analysis. These new approaches

should also be applicable offline and on real-time data.

6.1.1 Software Requirements

An fNIRS-BCI requires a range of functionality within its control system. Initially

three essential requirements were specified.

• Uncomplicated hardware control and interfacing

• Software modulation / demodulation to replace a cumbersome hardware system

• The ability to rapidly implement and test real-time DSP and classification meth-

ods

Secondary requirements included integrated diagnostic capability, convenient raw

data storage for offline analysis, experimental design control and aural subject cues.

Before looking into the implementation of the requirements, we must examine the

hardware system being controlled. Figure 6.1 shows the conceptual flow diagram of the

intended system.

6.1.1.1 Hardware Cofigurability

A clear advantage of any software system is its ability to integrate any type of hardware.

In order to implement any fNIRS-BCI control the final aim is a device that can process

data in real-time. The basic usage of these systems should be accessible to researchers
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Figure 6.1: Software block diagram illustrating the main elements of control needed
within this fNIRS-BCI.

other than computer scientists and engineers. Hardware integration and control must

be implemented so it can remain opaque to the end user. This was one of the foremost

considerations when choices were made in the design of this system.

6.1.1.2 Experimental Design Implementation

Subject cues are highly variable depending of the interrogated region and there are

numerous feedback types possible. All this variation should be invisible to the subjects

and easily configurable for the researcher. The main requirements for the experimental

design will involve timings, cues, feedback options and trial randomization.
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6.1.1.3 Novel Method Prototyping

Although any BCI software system should have some basic options for data processing

it is necessary that novel methods be implemented to test their validity. The mechanism

by which these methods are implemented must be simple yet comprehensive enough to

allow maximum flexibility. NIRS as a BCI modality still requires significant research

into data processing routines and noise removal techniques.

The next section is an exposition of a software system that implements these require-

ments and is followed by an description of a novel software controlled demodulation

scheme.

6.2 Integrated Software Systems

We will expand upon the software system described by Matthews et al. (2008b). This

system is designed to integrate seamlessly with the National Instruments hardware

specified in Chapter 5. The software provides the researcher with the ability to control

all aspects of of the experimental process. Modules are provided to control the following:

• Hardware interactions.

• Signal modulation / demodulation.

• Experimental paradigm control.

• Data visualization.

• User interaction.

• Physiological noise removal.

• Feature extraction & classification.

.
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6.2.1 Software Development

To increase the efficiency in design and development, both hardware and software were

based on products supplied by National Instruments (NI). As well as providing a wide

choice of signal generation and acquisition hardware all NI equipment can be controlled

via a single software development platform Labview.

Labview provides an integrated development environment for graphical or data

flow programming language, sometimes referred to as “G”. It marries the code de-

velopment with the user interface design using the Front Panel (user interface) and

the block Diagram (source code). Subroutines and functions are referred to as Vir-

tual Instruments (VIs). Each VI contains both a front panel and block diagram. The

execution flow of a program is determined by the left to right position of the VI blocks.

(a) The Front Panel (b) The Block Diagram

Figure 6.2: Example of a simple virtual instrument. The front panel has user controlled
sliders to specify frequency and amplitude. The graph displays a sine wave with those
attributes. The block diagram generates an array of numbers and using the frequency
and amplitude from the front panel calculates the sine function.
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Figure 6.2 is an example of a VI that calculates and plots a sine wave given the user

input of frequency and amplitude. The front panel (Figure 6.2a) has sliders for setting

the frequency and amplitude and a graph to contain the plot. The block diagram

(Figure 6.2b) is equivalent to the source code. A “For” loop generates an array of

numbers. Those number are scaled to the equivalent of 10 seconds of data sampled at

20Hz. That data, plus the frequency and amplitude inputs from the front panel, are

used to calculate the sine data. That calculation itself is in a loop so the graph can be

changed interactively by the user.

6.2.2 User Interfaces

Designing an interface to any software platform is an important part of any development

process. In this section we break the systems user interfaces into two categories. The

first is control interfaces, which allow the researcher to set up new experiments and

control the hardware interaction. VIs have been written to configure source detector

pairings, acquisition and generation speeds and LED output powers.

The second, subject interfaces, are customizable by the researcher to present various

cues and feedback to subjects during an experiment.

6.2.2.1 Control Interfaces

The control interfaces were designed to allow maximum flexibility to a researcher with

the least difficulty setting up an experiment. Figure 6.3 is the main experimental

control screen.

From this screen it is possible to supply user cues and associated audio cue files

if desired (Fig. 6.3-B). The researcher can pick the number of cues to use as well as

how often each may be repeated and timing information (Fig. 6.3-A). The background

function of the system automatically takes the rest period time and randomizes it

between the time supplied and twice that time for each trial. The order in which
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Figure 6.3

the cues are presented is also randomized. The file input boxes (Fig. 6.3-C) allow

customization of LED setup info, the directory for results storage, the directory for

audio cues and finally a link to the subject view front end.

6.2.2.2 Subject Interfaces

There are a number of subject views depending on the specifics of the experiments.

Figure 6.4 is a selection of cues from a non-feedback experiment. A subject would only

ever see one of these at a time during an experiment.

Figure 6.4-A & B are simple motor cortex cues, “O” for overt and “Im” for imagi-
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Figure 6.4: Three examples of visual cues supplied to a subject during an experiment

nary. Figure 6.4-C is a mental arithmetic task. The numbers presented are randomly

generated during the course of the experiment.

Figure 6.5 is an experimental view that gives the subject an indication of the fluc-

tuations in ∆HbR and ∆HbO2 during an experiment. The particular version shown

in Figure 6.5 indications activity along the motor strip. Each indicator is labeled with

the location of the optode according to 10-20 system (Fig. 6.5-B). Subject cues are

supplied at the top of the screen (Fig. 6.5-A).

Basic knowledge of Labview allows a researcher to alter existing subject interfaces

or design entirely new VIs and insert them into the data processing chain.

6.2.3 Hardware Control

A significant advantage of basing this software on the Labview platform is it’s dedi-

cated hardware compatibility. Data acquisition and generation is performed with Na-
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Figure 6.5: A view of hemodynamic feedback supplied to the subject with cues supplied
along the top of the screen

tional Instruments (NI) equipment and Labview is designed to integrate easily with

their hardware. Labview is also designed for general-purpose hardware interaction,

allowing the ability to introduce more acquisition and generation systems if the need

arises.

Labview through the PXI chassis, allows for micro-second synchronization be-

tween the acquisition and generation cards. Generation and acquisition rates are all

controlled through a single VI. This VI sets up the coordination between generation

and acquisition cards. The clock signal from one of the acquisition cards is routed to
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Figure 6.6: Hardware Block

one of the RTSI lines. All the other cards on the system use this signal for synchro-

nization. With the current hardware sampling can be taken from up to 8 APDs and

generation allows up to 16 LEDs (32 generation channels, 2 wavelength per LED).

6.2.4 Data Processing & Classification

The software was designed specifically to allow simple integration of data processing and

classification routines. As discussed in Chapter 3 a typical fNIRS signal is saturated

with different types of physiological noise. Problems also arise when using a high

number of channels and with the application of processing routines simultaneously to

all channels. Potential loss of data and compromised hardware timing can result.

This system was designed to allow easy integration of the standard Labview filter

functions into the signal processing chain. User defined signal processing functions in

C or C++ can be integrated via a DLL or such functions can be written directly in

Labview and included in the processing chain. Most processing functions have been
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optimized for real-time operation. The system also enables the display of the timings

for each process, leaving the researcher capable of calculating a time-budget allowed

for each processing stage.

Figure 6.7: Block Diagram for the calculation of the Modified Beer-Lambert law

As with the flexibility of the signal processing functions, it is also possible to select

from a number of different classification routines. Creating and including new clas-

sification schemes can be done using Matlab, DLLs or Labview code. A standard

Labview library includes a function allowing Matlab source code files to be directly

inserted into the control chain. This minimizes development and test times, giving

the researcher a quicker insight as to whether a function can perform adequately in

real-time.

An example is Figure 6.7. This is the block diagram for calculating the Beer-

Lambert sample by sample. The function takes in a single sample for 760nm, a single
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Figure 6.8: Icon for the Beer-Lambert Calculation

sample for 880nm and a running updated mean value for both. These values are used

in conjunction with some constants (per experiment, these can also be configured else-

where) like subject age, inter-optode distance to calculates the relative concentrations

of ∆HbR and ∆HbO2. Once a function has been completed it can be saved as a

standalone VI and included in a larger program. Figure 6.8 is how the Beer-Lambert

function appears in another program. To “call” this function it is simply a matter of

connecting the correct inputs and outputs.

6.2.5 Test Systems

The ability to analyze hardware and software performance and troubleshoot any prob-

lems that may arise is important for any software of this type. Included within this

system is a diagnostic section that allows the researcher to inspect the raw signals

coming from the system in real-time. It is possible to cycle through each data input

channel and view the performance of LEDs and APDs. This tool is also used to check

if source-detector positioning is appropriate and all channels are responding correctly

before an experiment.

Figure 6.9 is an example of a testing interface for experiment preparation. The

researcher uses this VI to ensure all LEDs are transmitting and being detected with

sufficiently high resolution. It is possible to examine the spectrum of the data from each

APD connected to the system as well as the demodulated values from each wavelength.

Another useful test system allows the replay of pre-recorded data for testing data

processing routines. This system requests the location of the raw optical data file saved
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Figure 6.9: Front panel for the signal testing system. This can be run by the researcher
to test the strength of the signal from each APD and each individual wave-length.

from a previous experiment. Once a file is selected the system uses hardware timing

clocks to serve out the samples at their original sampling rates. This allows simulated

real time testing of novel methods.

6.2.5.1 Data Storage

At the end of each experiment the raw light intensity data is stored in a file for additional

offline analysis. This data is also formatted as a file for use with the HomER NIRS

analysis tool (Huppert, 2006). All data is timestamped with millisecond values from

the hardware timing clock as well as a stimulus marker to differentiate rest and active

regions for each sample in offline analysis.
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6.2.6 Conclusion

We have described a robust and customizable software system for design and control

of fNIRS-BCI experiments. The next section uses this system in conjunction with the

hardware from Chapter 5 to implement and test a new approach to the signal synthesis

problem.

6.3 Software Controlled Signal Synthesis

As discussed in section 3.2 there are avenues for improvement to be found in investi-

gating the interrogatory signal synthesis issues. This section outlines the approach to

the multiplexing of the optical signal required within this interrogatory signal synthe-

sis problem. The methods implemented here are specifically designed to reduce the

overhead in equipment and cost for a NIRS-BCI while reducing communications chan-

nel interference. Using the theory of spread spectrum communication it is possible to

remove complex signal conditioning hardware for LED current generation and reduce

acquisition and generation equipment specifications. These spread spectrum techniques

also offer less narrow band channel crosstalk, multi-path fading and higher noise immu-

nity than their frequency based counterparts (Dixon, 1994). This approach also allows

for lower computational overhead, lower hardware costs for simplified NIRS-BCI and

incorporates all the signal advantages of using a spread spectrum system.

6.3.1 Current Demodulation Strategies

A key reason for designing a new software system was the ability to discard a costly and

bulky hardware demodulation system. A difficulty of NIRS measurement is that the

optical intensity is attenuated by about 10−8 during tissue interrogation. To allow the

signals to be recovered, each wavelength is modulated by a carrier signal. In previous

systems, separate hardware lock-in amplifiers were used to demodulate the signals
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(Coyle, 2005). This new system removes the need for expensive and cumbersome lock-

in amplifiers and moves all demodulation into software (Everdell et al., 2005). Where

previously the system was constrained by the requirement of these amplifiers, this new

software alternative allows for more scalable and cost effective multichannel design. It

also allows for investigation of as yet untested demodulation strategies.

Using the original demodulation scheme NIR light interrogates the region of in-

terest from multiple LED sources. This light is then detected by a single APD. The

APDs output is digitized by the data acquisition card and placed in the acquisition

buffer for processing. This data, retrieved in windowed blocks, is processed with a

Hanning-windowed FFT, producing a complex spectrum. This spectrum is passed to

the frequency search function. The specific search frequencies are specified either in

a text file or can be adjusted in the software prior to the experiment. The function

also takes a search window for each frequency specified as a percentage of the sampling

frequency. This approximates an amplitude modulation strategy similar to that of AM

radio.

This process can be repeated for any number of input channels constrained only

by the processing time and physical hardware channels. The hardware of this system

has eight usable input channels. Experiments have been conducted using seven input

channels with usually 4–6 dual-wavelength LEDs visible per APD.

Here we will examine a new approach to the demodulation system using the theories

of spread spectrum communication. We will outline the basics of multi-user communi-

cation, the theory behind spread spectrum communication and the implementation and

implications for NIRS. We will also compare this new approach to other multiplexing

methods and present the results of experiments.
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6.3.2 Multi-user Communication

To acquire ∆HbR & ∆HbO2 concentrations in a single source-detector NIRS system

two wavelengths or light must be transmitted through the same medium. These signals

must in some way be separable from each other. In communications theory the solution

to these problems are referred to as multiple access methods. These solutions are used

when multiple signals wish to share the same communication channel. In this case the

physical channel is tissue in the region of interest.

With a multichannel NIRS systems (Multi-source, single detector) the problem re-

mains the same except the overhead in channel allocation, detection and demodulation

is increased. Multiple access methods are all based around sub-dividing the band-

width in some way so as to avoid interference between simultaneously communicating

channels.

Figure 6.10: Multi-user communication.
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6.3.2.1 Common Multiple Access Methods

There are several multiple-access methods available within communications theory.

Commonly these approaches are broken down into four categories: space, time, fre-

quency and code division. Different NIRS systems use different implementations of

multiple access methods from these categories. An advantage in NIRS from a com-

munications perspective is the central control of transmission and detection. Many

multiple-access methods are designed to accept un-synchronized communications or

have to implement extra methods establishing synchronization.

Space-division multiplexing (SDM) is the term for transmitting from a location

where no other signal is present to interfere. A common example would be CB radios

with low transmission range. They all transmit on the same frequency but will only

relay information from other radios within range. This category would equate in NIRS

to setting distances between source-detector groups large enough so they don’t interfere

with each other.

A time division system relies on a frame duration T being subdivided into N different

non-overlapping slots where N is the number of transmitters. Each transmitter is then

assigned a time slot for transmission. This method, known as Time Division Multiple

Access (TDMA), avoids interference by prohibiting simultaneous transmission (Proakis

& Salehi, 1995). The OMM-1000 (Shimadzu Corporation) used by Ranganatha et al.

(2004, 2007) for NIRS-BCI investigations synchronizes the timing between its sources

and the PMT detectors. The optical detection is cycled one wavelength at a time.

Frequency division systems or frequency division multiple access (FDMA) subdi-

vides the frequency bandwidth into N non-overlapping channels (Weinstein & Ebert,

1971). Each transmitter is assigned a sub-channel band over which to transmit. An

example is amplitude modulation (AM) where each transmitter is assigned a carrier

frequency and modulates the amplitude of that frequency to transmit information. An-

other is frequency modulation (FM) where the carrier frequency itself is shifted within
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the sub-channel band to convey the information (Proakis & Salehi, 1995). NIRS sys-

tems using FDMA are common (Coyle, 2005; Everdell et al., 2005). The hardware

systems outlined in Chapter 5 were initially specified to use FDMA as its main form

of communications (Soraghan, 2010).

Finally we will examine in detail the theory behind code division multiple access

(CDMA). The background of this multi-user access method is based on spread spectrum

communication theory. In this method the transmissions are spread across the available

bandwidth.

A pseudo-random noise (PN) sequence is assigned to each transmitter. For demod-

ulation to be possible the chosen sequences must be orthogonal to each other. Without

this constraint information would leak across channels. Each bit of information to be

transmitted is modulated using these an entire sequence. The receiver is aware of each

sequence used for each transmitter. After synchronizing with the transmitter it can

demodulate the information transmitted. In section 6.3.3 we will examine, in detail,

the theory behind developing a CDMA communications system.

6.3.2.2 Space Division Multiplexing and NIRS

Using a multi-channel NIRS system to detect multiple activation types introduces the

problem of possible cross talk between areas. Using the fMRI data from Chapter 4 and

Monte-Carlo models of photon transmission (Humphreys, 2007) we can reliably state

that this cross talk is negligible outside a certain distance.

Figure 6.11 shows a 2D area plot from a Monte-Carlo model of photon migration

through tissue (Humphreys, 2007). Figure 6.12 indicates three areas of activation from

an fMRI scan.

In the Monte-Carlo model, the radiative flux density more than 2cm away from

the injection point is quite low. Generally, in NIRS experiments, a source-detector

distance of 3cm is used, which exhibits a 10−7–10−9 level of attenuation in flux density
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Figure 6.11: Plot of the density of reflected photons from a Monte-carlo model
(Humphreys, 2007). Photons are inserted at (0,0) and model shows the reduction
in the quantity of photons emerging from the tissue in relation to the distance from the
insertion point.

(Soraghan, 2010). With distances beyond 3cm the variation in the signal begins to fall

below the 0.005nW sensitivity of the detector. From the discussion in Section 3 we can

show that source-detector distances above 6cm yield negligible information due to the

extremely low flux density. This indicates that sets of optodes placed greater than this

distance apart will have negligible cross-talk.

In Figure 6.12 it is possible to observe the hemodynamic plume in functional areas

as detected through fMRI. Spatial measurements between these active areas mapped

to the scalp show that the distances between is so far apart as to eliminate crosstalk.
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Figure 6.12: 3D mapping of motor cortex activation regions. Spatial measurement
performed on these regions implies little interference or crosstalk could occur during a
simultaneous NIRS investigation of theses sites.

6.3.3 Spread Spectrum Communication

Spread-spectrum (SS) communications uses wide-band noise-like signals to transmit

information. The result of this are transmissions that are spread in the frequency do-

main. These techniques have a higher narrow-band noise immunity, are less susceptible

to eaves-dropping and other sources of interference like multi-path fading (Viterbi et al.,

1995).

The system uses pseudo random binary sequences to modulate communication

sources. Receivers detect transmissions and use linear algebraic methods to demod-

ulate the signals. Similarly this research investigates the application of this to the

interrogatory signal synthesis problem. Using SS techniques to modulate and demodu-

late optical signals in a NIRS negates the need for analog signal generation and reduces

harmonic and narrow-band interference inherent in FDMA systems.
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6.3.3.1 Pseudo Random Binary Sequences

Pseudo-random binary sequences or pseudo-noise (PN) sequences are required in cryp-

tography and spread spectrum communication. They are “pseudo” random because

after a generated sequence reaches its length of N bits or “chips” it will start to repeat

itself (Helleseth & Kumar, 1999). This differentiates it from true random sequences

like those generated from white noise or radioactive decay. Commonly, these sequences

are generated using hardware or software implementations of Linear feedback shift

registers.

6.3.3.2 Linear Feedback Shift Registers

Linear feedback shift registers are required to generate pseudo-random bit sequences

necessary for applications in SS communications and cryptography (Golomb, 1981). A

shift register is a type of digital logic circuit. In hardware, a chain of flip-flops would

store a single bit state each. According to a common clock, each flip flop would pass

its state on to the next in the chain. In Figure 6.13 the initial state of the register is

passed along the chain and a new input is in place in the next cycle.

Figure 6.13: A four bit digital shift register. Each unit in the chain stores a bit state
and that state is shifted through the chain.

Within linear feedback shift registers (LFSRs) the input to the register is a linear

combination of its previous state. The only linear bit wise operations are XOR and
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inverse XOR so some or all of the bits in the current state are XOR-ed to create the

new input.

There are two common implementations of LFSRs, Fibonacci and Galois. Figure

6.14 shows a Fibonacci implementation. In this implementation the input is an XOR-ed

combination of some or all of the bit sequence. Specifically, Figure 6.14 shows a LFSR

where all the bits in the sequence are used to generate the new input. In most cases

certain elements or taps are chosen to give an output sequence with specific properties.

Galois LFSR performs the XORs during the shifts so internal bits to the registers are

altered in a cycle. The Galois provide faster operation when implemented in hardware

but both types are mathematically equivalent (Sklar, 1988).

Figure 6.14: Fibonacci Linear Feedback Shift Registers

Both methods will produce equivalent outputs in the correct circumstances. While

Fibonacci implementation is the conventional representation of LFSRs, in hardware,

the Galois performs its XORs in parallel giving it an advantage in performance.

In hardware LFSRs can be used as binary counters and the sequences they produce

can be considered valid binary number systems. In this dissertation however we are

concerned with their ability to produce pseudo-random binary sequences. As mentioned

in the start of this section LFSRs are used to generate PRBSs for use in communications

and cryptography.

Careful choice of the placement of the XOR-ed bits or taps allows sequences to be

produced which have a number of properties essential to these applications. With the

correct tap selection a register N bits in length will create a pseudo-random sequence

2n − 1 bits in length before repeating. These sequences are called Maximal Length
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Figure 6.15: Linear Feedback Shift Register implemented in Labview. This example
will generate an M-Sequence (Section 6.3.3.3) 127bits long. A: the seed values. B: The
array of binary values is broken out and shifted, C: Specific taps are XORed. D: The
output is a binary array 127 (2n − 1, N = 7) in length.

Sequences (M-Sequence) (Dinan & Jabbari, 1998). Figure 6.15 is the block diagram

from a labview implementation of a LFSR that generates an M-sequence 127 bits in

length.

6.3.3.3 Maximal Length Sequences

Maximal length sequences (M-sequences) are of particularly importance to this imple-

mentation. A single sequence can provide the codes for multiple transmitters while

also being trivial to generate. M-sequences are defined as binary sequences with the

following properties:

Balance Property There is only one more ‘1’ than ‘0’ in the sequence.

Run Property Runs of 1s or 0s are in specific quantities. eg half of the runs are

length 1, one quarter are length 2, an eighth are length 3, etc...

Auto-correlation Property The auto-correlation of the sequence is only significant

at 0 or multiples of N.
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The auto-correlation property is especially important for this implementation. An

M-sequence that has been shifted is orthogonal to the original unshifted sequence. For

SS communication to be effective the sequence must be orthogonal and hence a sin-

gle M-sequence can provide PN codes to multiple transmitters. M-sequences are no

longer commonly used in telecommunications. They are trivial to predict and hence

communications using them are susceptible to interception. Many telecommunica-

tion implementations like cellular networks and GPS use alternative PN sequences like

Gold or Kasami codes. Most other PN codes are generated using combinations of M-

Sequences. Since a NIRS implementation does not require protection from interception,

M-Sequences provide the simplest solution to assigning codes to transmitters.

6.3.3.4 CDMA formulation

Using M-sequences, we wish to be able to decode the information recorded by the

APDs when the LEDs are modulated with SS techniques. Hence, the problem can be

re framed as such:

We are looking for a least squares solution to Mz = c where M and c are a known

matrix and column vector respectively,

The solution is:

z = argmin
y

‖My − c‖ = M+c

where M+ is the Moore-Penrose generalized inverse of M .

Applying this to the the NIRS communication problem:,

x(t) is a vector of the M-sequence used to modulate the LEDs.

y(t) is the recorded data from the APD.

A is the matrix of attenuation caused by traversing the tissue which is the unknown.
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t is a time constant over which we assume no change in A.

This problem equates to the following. Given the column vectors x(t0), ..., x(tk) and

values for y(t0), ..., y(tk) find A such that,

k∑
i=0

(Ax(ti)− y(ti))
2

is minimized.

This then is equivalent to minimizing,

∥∥XTAT − Y T
∥∥

where X = [x(t0), ..., x(tk)] and Y = [y(t0), ..., y(tk)] and hence, as stated above,

the solution to this is,

AT = (XT )+Y T

The properties of the Moore-Penrose inverse gives us (XT )+ = (X+)T , which makes

A = Y X+

However, it would be extrordiniarily inefficent to compute the matrix X+. Instead

standard methods are used to directly solve for A given X and Y .

6.3.4 System Implementation

AMatlab function was used to supply the predefined taps and generate the m-sequence.

An effective sampling rate for the system was set at 10Hz to match the FDMA system

already in place. A register length of 7 bits was chosen which resulted in a sequence
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length of 2n − 1 or 127 chips. Shorter sequences showed significant crosstalk between

channels. Each LED would then be modulated using 127 chips every 0.1s.

6.3.5 Signal Generation & Source Modulation

During experimental setup using the functions described in Section 6.1.1.2 a graphical

interface provides the researcher the ability to configure the source-detector settings.

These settings specify the number of detectors and the sources each one can detect. The

software uses this configuration to calculate the number of shifted signals required to

adequately multiplex the correct sources for each detector. Correspondingly, a matrix

is produced for each detector which maps each source to a particular shifted sequence.

These shifted sequences are then converted to a digital waveform for the generation

process. This waveform is the length in time of a single period desired for detection,

in this case 100ms. At the end of each waveform a period is allowed where all the

sources are off (approximately 5% of sequence time). This is included to provide a

synchronization point so the detector can phase lock its version of the transmitted

sequences.

Once all the necessary waveforms have been generated this is passed to the NI signal

generation card. The generation voltage is chosen using methods derived from Chapter

5 to allow maximum source brightness while controlling the LED die temperature.

6.3.6 Signal Acquisition and Demodulation

The APD outputs are sampled at 16kHz. This rate was chosen as it allow 12 samples

to be averaged per chip followed by 76 samples where all LED are off. This rate

is significantly lower that the sampling rates of about 100kHz used in the FDMA

implementation. The last 76 samples allow the system to detect the end of the sequence

and synchronize for demodulation.

This signal is then passed in software to the demodulation function. This function
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is a Labview implementation of the CDMA formulation presented in section 6.3.3.4.

The output of this function is the detected light intensities for each LED assigned to

that APD for that time period.

6.3.7 Comparative Analysis Experiment

An experiment was performed where the CDMA method of modulation is performed

on an optical phantom with different levels of optical absorber. Two more systems,

time and frequency division, were used as a comparison .

6.3.7.1 Motivation

This experiment will demonstrate that a CDMA based modulation scheme can be used

within an NIRS-BCI at lower generation and sampling rates than other modulation

methods while still being capable of resolving signal details. During this experiment

data was recorded using two other modulation schemes, time division and frequency

division. These will enable comparative results to be produced.

6.3.7.2 Time Division System

A square wave was generated for each LED and supplied to the generation system.

These waves allowed only one active source at a time. Upon acquisition, the data

collected and samples timed against each LED were averaged to a single value. The

cycle time of all the LEDs was set to 100ms hence the effective sampling rate was 10Hz.

6.3.7.3 Frequency Division System

Using the same software configurable frequency division multiplexing system outlined

in Chapter 5 the system, still sampling at an effective rate of 10Hz, collected data from

each level of absorber.
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6.3.7.4 Experimental Protocol

This experiment aims to demonstrate the validity of using a CDMA system with lower

sampling and generation rates to provide demodulation for a NIRS-BCI. Using the

hardware outlined in Chapter 5 optodes were attached to an optical phantom. Four

LED units were used (760nm & 880nm) in each, eight signals modulated). The phantom

was a cylindrical container filled with water. During the course of the experiment liquid

parachlorometaxylenol (PCMX) was diluted in this water to act as an absorber. Inside

the phantom a controlled agitation was introduced. This agitation could be altered at

a varying rate to simulate a pulsatile signal.

Figure 6.16: Illustration of an optical phantom designed to emulate physiological sig-
nals. Figure reproduced from Soraghan (2010)

Figure 6.16 illustrates the phantom used in this experiment. The arm connected

to the motor introduces agitation in the absorber as well deflecting the optical signal

periodically generating the desired pulsatile output.

With no absorber diluted in the transmission medium, the detectors saturated,
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producing no output. The starting point was to include enough PCMX to reduce the

detector saturation. Each modulation/demodulation method was run in turn and the

result recorded. This first recording was used as a baseline or best-possible result.

Next, the level of absorber was increased and each modulation process was repeated.

This process was continued until the pulsatile signal was visibly almost undetectable.

In all, absorber was increased eleven times and recording were made for each method.

The signal recorded with the least absorber from the frequency division system was

considered the best result. In post processing the signal was correlated to all the rest

of the signals to compare their degradation.

Finally a signal was recorded using all three methods where the LEDs remained

unpowered. This gave a measure of the noise contained within the system and was

used to calculate signal to noise ratios (SNR).

Figure 6.17 shows a selection of demodulated signals from one channel for each

method. The reduction in the quality of the signal is obvious for all methods by the

final absorber level. The TDM method performs poorly throughout.
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6.3.8 Results

The aim of the experiment was to show that a SS method preforming with lower

specification can adequately resolve details in the optical signal. To achieve this the

recordings from each level of absorber are correlated to an ideal signal to give a measure

of degradation.

6.3.8.1 Resolving Signal Detail
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Figure 6.18: The results for each method at every absorber concentration level is nor-
malized and correlated with the standard. This presents the Pearsons R value of
correlation at all absorber levels.

Figure 6.18 shows the CDMA approach compared to frequency and time methods.

Even with the large discrepancy between sampling and generation rates in the frequency

method, the CDMA method was capable of resolving the signal detail through most of

the experiment.

Another comparative measure was to calculate the root mean squared (RMS) power
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of real data over a number of experiments and compare that to the RMS of the frequency

demodulation approach. Using this data it was possible to determine the range of

signal attenuation common in real experiments. This allows an assessment of the level

of absorber vs the general opacity of tissue.

This analysis lead to the assumption that the opacity of the phantom was com-

parable to that of human tissue between the 4th and 6th absorber level. Given this

measure it is possible to assume that if the method performs well within this region it

is suitable for use within a NIRS-BCI modality.

Within this region the CDMA approach only deviates slightly from the frequency

system. Time division performs very poorly at resolving the necessary detail within

the signal.

6.3.8.2 Signal to Noise Ratio

In calculating the signal to noise ratio the difference in data collection techniques be-

comes more apparent. Figure 6.19 is a plot of the SNRs for all method versus the

levels of absorber in the system. The frequency demodulation method maintains a

significantly higher SNR throughout. This highlights the drawback of using a lower

resoloution CDMA over FDMA however the CDMA system still maintains a suitable

SNR within the regions of tissue opacity to resolve necesary signal detail.

6.3.9 System Implications

The implementation of this system in a next generation NIRS-BCI would allow a reduc-

tion in the complexity of the data generation and modulation systems. This particular

implementation reduces the harmonic interference created using frequency systems thus

allowing the running of these systems at a much lower generation and acquisition rates.

Another advantage of this system is the removal of analog signal generation allowing

implementation with an entirely digital system. This also allows simpler LED driver
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Figure 6.19: Signal to Noise analysis of methods. FDMA is understandably higher due
to higher sampling rates.

electronics.

6.4 Chapter Conclusion

This chapter outlined a robust customizable software system designed specifically for

fNIRS-BCI applications. By employing this software and the hardware systems de-

scribed in Chapter 5 it was possible to develop a novel approach to the interrogatory

signal synthesis problem.

We have shown the advantages of a highly configurable software system to inves-

tigate the area of research in BCIs. The importance of the software designed around

any system of this type has been highlighted. The ability to have software configurable

demodulation systems allows significant reduction in hardware cost and complexity.
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Chapter 7

Signal Processing and Analysis

Methods

As discussed in Chapter 3 there is a large quantity of physiological interference to

understand in search of activation data in NIRS. The following chapter examines Em-

pirical Mode Decomposition as a method of signal analysis and removal of physiological

interference. We will also investigate methods of optimizing the approach to real time

signal processing. This is achieved by defining systems to select sources of most rele-

vance to a particular experiment. Finally we will examine a number of simple real-time

classification methods that can be applied.

7.1 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) was developed by Huang et al. (1998a) as an

analysis method for non-linear and non-stationary signals. The basic method decom-

poses a time-series into intrinsic mode functions (IMFs). IMFs can be described as

simple oscillatory modes as a counterpart to the simple harmonic functions although

instead of constant amplitude and frequency,an IMF can have variable amplitude and
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frequency along the time axis.

Formally, IMFs are defined as signals with

• equal numbers of extrema as zero-crossings

• approximately zero-mean, as defined by the stopping criterion.

While extracting IMFs from the original signal the process iterates or sifts each

IMF till it meets the stopping criterion. This process is detailed in the next section.

7.1.1 EMD Process

The algorithm behind EMD is as follows (Rilling et al., 2003):

1. Extract all extrema locations from signal x(t).

2. Interpolate between minima to create lower envelope emin(t) then again between

maxima for higher emax(t).

3. Calculate mean signal between envelopes, m(t) = (emin(t) + emax(t))/2.

4. Subtract this signal from original d(t)1 = x(t)−m(t)

5. Repeat steps 1–4 upon d(t)1 until result matches stopping criterion (sifting pro-

cess). If performed k times the first IMF is d(t)k.

6. Subtract d(t)k from x(t) and repeat again until final residual is monotonic.

Once the process is complete the IMFs produced are the constituent non-linear,

non-stationary signal components of the original.

7.1.1.1 Sifting process

After the calculation of the mean from the upper and lower envelopes and its subtrac-

tion from the data this output should technically be an IMF. This process however
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may generate new extrema indicating new modes lost in the the first iteration. To

incorporate these new modes the sifting process goes over the data repeatedly until

some stopping criteria is met.

7.1.1.2 Stopping Criteria

There are two methods of determining when to stop the sifting process. The first

proposes determining a sum of differences between sifting states d(t)k and d(t)k−1.

Sk =

∑T
t=0 |d(t)k − d(t)k−1|2∑T

t=0 d(t)
2
k−1

(7.1)

For the sifting to complete Sk must fall below a pre-selected threshold. The second

stopping criterion suggests the sifting should complete if the number of extrema doesn’t

change over the course of a set number of sifts.

7.1.2 Hilbert-Huang Transform

The Hilbert-Huang transform is a combination of EMD and the Hilbert transform to

provide view of the instantaneous frequencies contained in the signal. It allows a much

clearer time-frequency analysis for signals composed of non-linear and non-stationary

components (Huang et al., 1998a).

The Hilbert transform is defined as a linear operator that creates a complex function

whose real part corresponds with the original signal while the imaginary part is a

progressive function of the original, i.e. its signal strength is zero for all frequencies

less than zero.

The IMFs produced by EMD are very well behaved under the Hilbert transform

making this an effective analysis method.In the next section we examine an example of

a signal with stationary and non stationary components to outline the advantages of

this type of analysis.
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7.1.3 EMD Example

Below is a common example to test the effectiveness of EMD to remove non-stationary

and nonlinear signals. First, a signal composed of a single sine wave is combined with

a second sweep signal or ‘Chirp’. These signals and their combination can be seen in

Figure 7.1 (Rilling et al., 2003).
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Time Seconds

Figure 7.1: Two signals are combined to investigate the effectiveness of EMD. A simple
sine wave and a chirp signal

This is a basic example of the type of signal separation EMD was designed for.

Unlike many other signal decomposition methods the intrinsic mode functions tend to

represent actual physical signals contained in the original.
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Figure 7.2: Collection of intrinsic mode functions generated from the EMD process.
Analysis of the first two IMFs show the extracted original signals
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(a) Short Time Fourier Transform (b) Hilbert-Haung Transform

Figure 7.3: A good example of the power of EMD and Hilbert analysis. The Hilbert
Huang spectrum provides a much narrower and clearer view of the time frequency
components.

Figure 7.3 takes this example to it’s final destination. After EMD is performed on

a signal the IMFs are well behaved under the Hilbert transform. Using this property it

is possible to build the time-frequency plot in Figure 7.3b. The same signal has been

transformed and plotted using the short-time Fourier transform (STFT). Although it

is still possible to pick out both signals from this spectrum plot they are ‘smeared’ in

both frequency and time.

7.1.4 EMD applied to NIRS

As discussed in Chapter 3 most of the major sources of physiological interference are

both non-linear and non-stationary. Although standard filtering and adaptive filtering

are adequate for the removal the higher frequency components, the low frequency os-

cillations or Mayer waves are spectrally too close to the activation frequency for these

approaches to be effective.

EMD presents a possible solution to this problem. Previous studies have been

performed to examine blood pressure variations measured with an implantable catheter
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in rats where EMD was an invaluable tool (Huang et al., 1998b). From this point we

can see the application of EMD to NIRS has two advantages. Firstly, it allows us to

decompose a signal and investigate the components. The investigation can lead to a

better understanding of the low frequency components. Secondly, for the application of

a NIRS BCI we can use the IMFs to remove these high and low frequency components

with little or no impact on the functional signal.
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Figure 7.4: A raw light intensity gathered from under the motor area. This particular
recoding is the raw 760nm optical intensity recorded from that region.

7.1.4.1 Signal Decomposition

EMD provides a comprehensive analysis tool for NIRS signals. As an example we

will examine a signal of unprocessed data collected from the NIRS equipment. It is

a 90 second excerpt from a initial rest-period of an experiment. From this data, pre-

sented in Figure 7.4, it is possible to discern signals like heart-beat and lower frequency

oscillations.

We will first examine the information we can gather using EMD and Hilbert spectral

analysis. Figure 7.5 shows the original signal, its intrinsic mode functions and the

Hilbert spectrum derived from the IMFs. With this information it is possible to make

a more comprehensive analysis of these lower frequency components. It may also be

possible to use this approach to monitor these oscillations in real-time.
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7.1 Empirical Mode Decomposition

7.1.4.2 Interference Reduction

Standard filtering for the Mayer-waves will introduce a serious attenuation to the ac-

tivation signal of interest. One approach of using EMD to curtail this problem is to

perform a frequency analysis of each IMF. The EMD process is tuned to remove oscil-

lation throughout the signal. It has been shown that the IMFs containing the higher

and lower frequencies unimportant to the experiment can be simply subtracted.

In this implementation an FFT is performed on each IMF. A frequency window is

defined ranging from 0.1Hz to 0.8Hz. Any IMF with more that half its entire power re-

siding within this window is kept. The rest are discarded. The results of this processing

ensures that only unnecessary signals are removed.
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Figure 7.6: A single Raw Light channel filtered using emperical mode decomposition.

Figure 7.6 is an example of a raw NIRS signal decomposed using EMD and re-

combined excluding the IMFs outside the frequency band of interest.Given that EMD

decomposes signals based on discernable and realistic fluctations of the raw signal the

IMFs chosen to form this filtered signal more likey represent the physiological fluctions
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induced by mental activation.
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Figure 7.7: Modes exculded from reconstruction. In this example modes 1-4 are the
higher frequency components while mode 9 is the a low frequency trend.

In post processing it is possible to examine those modes included and excluded

from the final signal. Figure 7.7 is a plot of thos modes excluded. It is possible

to discern specific singals, like heart beat (Mode 1 & 2), from these. This allows a

closer a examination and analysis of the actual physiological processes involved in this

interference.

7.1.4.3 Application to Single Trial Experiments

Extending the technique used in Section 7.1.4.2 it is possible to use EMD during real-

time experiments. This method involves dealing locally with each activation and ap-

plying the above technique. Upon completion of a particular mental task, the raw data

collected during the activation is processed using the Beer-lambert to obtain Absorber

concentrations. Following this each channel is decomposed using EMD over the activa-

tion window. The signals are reconstructed excluding the IMFs outside the frequencies
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of interest.

Single Trial Examples
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Figure 7.8: Processed HbR examples of single Trial activations. Each activation shows
a distinctive reduction is HbR.

After processing these signals can then be passed to a classification system for anal-

ysis. Section 7.2 deals with this important component of the NIRS-BCI data analysis

chain.

7.1.4.4 Implications

EMD offers a wide range of options in NIRS analysis. The ability to decompose the

NIRS signal in a way which best represents underlying physiological processes allows

significant advancment. Real-time processing using this technique for noise reduction

produces the signals most closely correlated with those of interest. Further use of this

technique will also bring better understanding not only to the nature of the heamody-

namic activity but the sources of physiological interference as well.
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7.2 Model Based signal Analysis

7.2 Model Based signal Analysis

7.2.1 Model Creation

Mathematical models are useful in many areas of system analysis. They can be de-

scribed as:

“A representation of the essential aspects of an existing system (or a system to be

constructed) which presents knowledge of that system in usable form.” (Eykhoff,

1974).

These models are common in natural sciences, engineering and social sciences. Cre-

ating a model that attempts to simulate a particular process can help a researcher to

gain further insight into how that process operates. Generally these models are de-

signed to allow systems to be controlled, optimized or predicted. They are also used in

the area of system identification. In the empirical data collected from some black box

process or system is compared against a model with the aim of learning more about

the underlying function of the process.

In this section we aim to create a model that simulates the expected hemodynamic

activity and compare detected data from NIRS. To create a model that simulates this

expected behavior it is first necessary to define the expected behavior. In the same way

as fMRI analysis in Chapter 4 we must decide upon a basis for a modeled Hemodynamic

response function (HRF).

After a decision is made concerning the HRF it can be convolved with a point

process defined by the stimulus onset timings. Figure 7.9 is an example generated from

an experiment

7.2.1.1 Response Function Comparison

The probability density function (PDF) from a Gamma distribution was used in the

same manner for fMRI processing but the PDF for the normal distribution is common
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Figure 7.9: Point process created using the timings gathered from stimulus onsets. This
can be convolved with a HRF kernel to simulate the data.

also.

Inverted Normal Distrubution as HRF Inverted Gamma Distrubution as HRF

Figure 7.10: Modeled Hemodynamic Response function options. Normal distribution
on right and gamma distribution on the left.

Using experimental data it is possible to validate the best choice of HRF. The

experiment described here involved sixteen trials, eight overt left hand and eight right

hand movement on a single subject. Optode groups were placed over the right and

left hemisphere. Using the timing records of the experiment three stimulus trains were

produced. The first contained a spike for all activations.

The next two were stimulus trains that contained only right hand activation (Acti-

vation 1) and left hand activation (Activation 2). Activation models representing the
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Figure 7.11: Point process derived from the timing onsets withing the experiment.

Chan HS Norm All Gam All Norm A1 Gam A1 Norm A2 GamA2

1 L 0.5266 0.5714 0.3077 0.3923 0.3053 0.3647

2 L 0.4445 0.4503 0.3928 0.3975 0.1661 0.2289

3 L 0.3852 0.4024 0.4570 0.4974 -0.0003 0.0673

4 L 0.3162 0.3411 0.2958 0.3142 0.1047 0.1605

5 R 0.2058 0.1426 0.0458 -0.0945 0.2675 0.3529

6 R 0.3641 0.3350 0.1752 0.0551 0.3425 0.4470

7 R 0.3709 0.3596 0.0510 -0.0346 0.4456 0.5466

8 R 0.3162 0.3485 0.0393 0.0127 0.3768 0.4292

9 R 0.2510 0.2798 0.0201 0.0081 0.2761 0.3470

10 R 0.0294 0.0933 -0.1346 -0.0624 0.0552 0.1410

11 R -0.0093 -0.0095 0.0018 0.0111 -0.0247 -0.0128

Table 7.1: Results of a normalized cross-correlation between models and filtered data.
HS indicates over which hemisphere channel was located. A1 is activation 1 or an
Overt right hand activation. A2 is overt Left hand. Norm or Gam represent a normal
or gamma based HRF

experimental data were produced when these trains were convolved with both our HRF

candidates.

In the next section we shall investigate how this process can be used for optimizing

the signals.
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Figure 7.12: Activation model overlayed onto NIRS time-series data.

7.2.2 Optimum Source Selection

Many applications in the area use multi-variate signal analysis to achieve classification.

Given correct placement of optodes and satisfactory signal detection then it is possible

to use only one channel to perform this same classification. This approach significantly

reduces processing overheads in comparison to multi-variate approaches

A multi-channel NIRS-BCI allows an experiment to be conducted over a much

broader area of the cortex. This, as discussed in Chapter 5, helps reduce the uncer-

tainty about optode placement and inter-subject variability in active areas. Once it’s

ascertained that an active area has been located then it should be possible to automati-

cally detect the channel with the best signal. For this purpose the system implemented

takes its cues from fMRI.

Using the basic model of the hemodynamic activity described above we correlate

this with our recorded data. We use the Pearson product-moment correlation coefficient

or Pearson’s R to analyze each channel compared to the model.

Figure 7.13 is an example of this method applied to an experiment on a single

subject. Optodes holders were placed over C3 and C4. Channel 1-4 are recordings

from around C3 and 5-11 surround C4. From this data Channel 1 shows the strongest
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Figure 7.13: 11 Channel experiment correlated with gamma activation model. Channel
1-4 are grouped around C3 while 5-11 are around C4.

correlation to the model. For a single type of activation i.e. left hand, this method will

indicate the channel with the best response.
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7.2.3 Source selection & Multiple Activations

Using this same approach but applying it to a multiple activation type experiment.This

has many advantages. If using a large area optet it is possible to identify relevant source-

detector channels independently of knowing where exactly they are placed. Another

advantage is the ability to locate the best areas for separating bi-lateralized activations.
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Figure 7.14: Right(A1) and Left (A2) hand activations correlated with NIRS time-series
from C3

As discussed in Chapter 3 using right and left hands as separate stimulus type

can prove difficult. It is certainly more difficult when the stimulus type involves the

dominant hand as the both hemispheres tend to respond strongly. Using the multi-

channel optodes and these multi-model approaches it is possible to identify the channels

most effective at separating right from right.

Figure 7.14 is a good example. This data was recorded on the left hemisphere in
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7.2 Model Based signal Analysis

the area of C3. As the subject in this case is right-handed this is the recording from

the dominant side. Channel 1 shows this bi-lateral activation as it correlates nearly

equally well with both activation types. Channel 3 however shows activation 1 (Right

Hand) to dominate significantly. Figure 7.16 displays the time series plots from these

channels and it is possible to see the dips of activations matching the model results.
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Figure 7.15: Right(A1) and Left (A2) hand activations correlated with NIRS time-series
from C4

On the opposite hemisphere Figure 7.15 is more obviously dominated by left hand

activation.
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7.3 Single-Trial Classification

7.3 Single-Trial Classification

Having reduced the complexity of the classification problem to a single channel, it is

possible to use very simple approaches in real-time. Here we will discuss and compare

three methods for single trial classification.

In most cases, as discussed in detail previously, when looking at the motor strip,

an activation results in in a decrease in ∆HbR. Also detected activations in ∆HbR

are more highly localized that ∆HbO2. The following section we will deal exclusively

with ∆HbR activation in the motor strip but these methods are versatile enough to be

applied in other locations and classification using ∆HbO2.

7.3.1 Classification Methods

7.3.1.1 Simple Thresholding

The first approach tested is that of applying simple thresholds to the HbR concentration

data. At the start of an experiment a long initial rest period is first recorded before the

stimuli begin. This is to allow the subject to relax and establish a baseline of non-active

readings.

In this classification method the mean and standard deviation of this long rest

period are recorded. These values are then used to define the thresholds. Figure 7.17

shows an example of this classification. The samples highlighted in red are samples that

fall below some threshold. This threshold is some multiple of the standard deviation

below the mean. The same classification was performed on rest periods to ascertain

rates of false positives.

7.3.1.2 Data Slope Analysis

An investigation of the most obvious activations identified by eye implies that during

an activation ∆HbR reduces at a much higher rate than it varies during rest. It also
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Figure 7.17: Simple threshold applied to processed data.The yellow segments of the top
plot represent actual activation periods. On the bottom the yellow represents activation
periods detected by the classifier.

drops for a longer period of time than its standard variation. In an attempt to take

advantage of this characteristic we make an analysis of the slope of the data.

Instead of finding the empirical derivative of the whole data set we concentrate on

three second windows. Three seconds is chosen because it corresponds generally with

time of steepest descent at the beginning of an activation. Across this window a line is

fitted using a simple LMS operation. The slope of this line is recorded. The window is

moved by a single sample and the process is repeated.

After this processing is done a threshold is applied to the activation periods. Simi-

larly to the simple thresholding, mean and standard deviation of the slope data across

the rest period is recorded and thresholds are defined as multiples of the standard devi-

ation. The same classification was performed on rest periods to ascertain rates of false

positives.
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7.3 Single-Trial Classification

7.3.1.3 Single Trial Gamma Correlation

Given the results presented in Section 7.2 an approach was developed to replicate the

results in a single trial setting. Each active period was extracted and correlated with

a single gamma curve. In this way it was possible to use Pearson’s R value to set a

threshold to classify each activation.

7.3.2 Method Comparison

7.3.2.1 Receiver Operator Characteristic Analysis
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Figure 7.18: An example of ROC analysis. Classifier 1 performs better than Classifier
2. Threshold of best performance is indicated for classifier 1.

Receiver Operator Characteristic (ROC) Curves are used in signal detection theory.
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7.3 Single-Trial Classification

They are defined as a plot of the binary classifiers sensitivity versus its specificity (1-

specificity) as the specified threshold is varied (Egan, 1975; Fawcett, 2006). They have

also been extended to analysing the behavoiur of medical diagnostic systems (Swets,

1988). An equivalent depiction of a ROC curve is to plot the true positive rate (TPR)

against the false positive rate (FPR).

The first two advantages allow the choice of threshold of best performance and an

intuitive classifier comparison. The first is achieved by finding the threshold that gives

the best trade off between TPR and FPR. If a line is drawn from the top left corner

of the graph to the bottom right the point where that line intersects with the curve is

the threshold of best performance.
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7.3.2.2 Results
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Figure 7.19: ROC curves for three classifiers

Figure 7.19 show the ROC analysis of all three methods. The results presented

show that the slope analysis performed best out of the three methods.

n p

p‘ 0.71 0.29 P‘

n‘ 0.29 0.71 N‘

N P

(a) Slope

n p

p‘ 0.56 0.44 P‘

n‘ 0.37 0.63 N‘

N P

(b) Gamma

n p

p‘ 0.52 0.48 P‘

n‘ 0.45 0.55 N‘

N P

(c) Simple Threshold

Table 7.2

7.4 Chapter Conclusions

This chapter has examined signal processing approaches to improve system performance

after demodulation. Empirical mode decomposition has provided a new foundation for
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NIRS signal analysis as well as a method for the attenuation of physiological interfer-

ence. It does so in a way so as to preserve the underlying sources of this interference.

Model based analysis has given the researcher in NIRS-BCI the ability to easily

select optimum sources and ascertain which channels are more sensitive to different

stimulus with less reference to optode placement and biological knowledge.

Finally three simple classification methods were examined for their ability to con-

sistently identify activations in real-time.
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Chapter 8

Conclusions and Future Work

This chapter reviews the contributions presented in this dissertation and suggests the

directions for future research in this area.

8.1 Objectives and Contributions

8.1.1 Objectives

The objectives of this research were:

1. Evaluate current NIRS-BCI assumptions using comparable functional scanning

modality.

2. Propose and implement improvements to the signal analysis and processing meth-

ods of NIRS-BCI.

8.1.2 Contributions

This dissertation detailed advances in the area of NIRS-BCI signal processing and

analysis. The contributions are as follows:
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1. Implementation of a robust and versatile software system to assist the research

in terms of hardware control, signal acquisition, and user feedback.

2. Development and implementation of a spread spectrum communications tech-

nique that maintains sufficient signal quality for NIRS-BCI research while reduc-

ing hardware requirements.

3. Application and validation of a signal decomposition method known as empirical

mode decomposition to NIRS signals to reduce homeostatic physiological inter-

ference and also aid signal analysis.

4. Adaptation of a model based analysis technique from functional magnetic res-

onance imaging to allow optimum channel selection and improve separation of

right hand and left hand functional activity in motor cortex structures.

5. The application of novel real-time feature classification methods to the selected

optimum channels.

8.2 Conclusions

The aim of this work was to re-evaluate the processes behind NIRS-BCI from first

principals and establish methodologies to advance this research. This section will review

the contributions outlined above in the context of the research area as a whole.

8.2.1 Problem Analysis

The initial two chapters examine the motivation and background behind this research.

Specifically, Chapter 2 dealt with the physical, biological and physiological systems

involved in establishing a multi-channel NIRS-BCI and its surrounding structures. The

generalize model of a BCI as communication tool for severely disabled subjects was also

established.
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Chapter 3 outlined the current research in NIRS-BCI examining mental activation

strategies, hemodynamic response to functional activation and activation locations.

The importance of hardware and software systems is also highlighted as well as ap-

proaches to physiological interference reduction.

Given the information acquired in Chapter 2 and 3, Chapter 4 presents a small

scale fMRI study to confirm the assumptions within the NIRS-BCI research community.

This study emphasised the necessity of multi-channel approaches given the high level

of inter-subject variability. The study also validated which mental activation strategies

best suited NIRS-BCI.

8.2.2 Core System Development

Chapter 5 outlined the construction of a flexible and versatile NIRS-BCI system.

This bespoke, multi-channel, system was designed specifically to tackle the challenges

of NIRS-BCI experiments. Multi channel systems not only allow the examination of

multiple functional areas but provide a better ability to select the locations of optimal

response for a given activation. This approach does requires automated systems to

identify optimal sources which are outlined in Section 7.2.3.

Following this, Chapter 6, outlines a robust, customizable software system designed

specifically for NIRS-BCI applications. The development of a spread spectrum mod-

ulation – demodulation technique demonstrates the advantage of using such a highly

configurable system. This demodulation technique aims to reduce the cost and com-

plexity for future NIRS-BCI hardware. Results obtained in Chapter 7 in relation to

source selection and classification were also highly dependant on the validity of these

systems.

8.2.3 Signals Analysis and Processing

Chapter 7 presents signal processing approaches to improve post-demodulation anal-

ysis and classification systems. The non-linear and non-stationary nature of the hemo-
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dynamic signals require new analysis methods to further advance this research. Em-

pirical mode decomposition is used to both analyse and filter hemodynamic signals. It

does so in a way so as to preserve the underlying sources of this interference.

The processing of the fMRI study in Chapter 4 inspired the use of similar classifica-

tion methods to be applied to NIRS data. The model based analysis allows automated

identification of optimum sources.

This system is also employed in discrimination between left and right hand ac-

tivation. These experiments show that bi-lateral activation can interfere with this

discrimination but multiple sources and optimal channel selection significantly reduces

this interference.

Finally three simple classification methods were examined for their ability to con-

sistently identify activations in real-time. Using ROC analysis it is shown that an

examination of the slope of the signal during activation periods out-performs the other

methods as a classifier.

8.3 Future Work

8.3.1 Clinical Evaluations

Evaluation of Motor Imagery within BCI paradigms

In section 3.1.3.2 the use of motor imagery is discussed in its relation to BCI

paradigms. It has been used extensively in BCI modalities such as EEG (Beisteiner

et al., 1995; Neuper et al., 1999), fMRI (Yoo et al., 2004), and NIRS (Coyle et al., 2007;

Ranganatha et al., 2007). Debate still surrounds the functional areas activated during

motor imagery (Decety et al., 1994; Roth et al., 1996) but the author recommends an

extensive study into its value within a BCI paradigm. Studies have shown that overt

motor action in able-bodied subjects is more comfortable, keeps the subject more alert,

and has higher detection rates than imagined action (van de Laar, 2009). A study
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consisting of both able-bodied and disabled subjects should be used to understand if

there is value in instructing able-bodied subjects to perform covert motor action.

Extension of Advances to Stroke Rehabilitation Therapies

A pilot study (Ward et al., 2007) outlined the use of NIRS in conjunction with

constraint induced movement therapy combined with NIRS-BCI paradigms in relation

to stroke rehabilitation. This successful study highlights another possible avenue of

application for the system outlined in this dissertation. The advancements outlined

in this dissertation have the potential to improve the functionality of this application.

There should also be an extended study of these methods with the aim of moving the

research into clinical use.

8.3.2 Direct Extension of Research

Development of lower cost, dedicated NIRS-BCI systems

Section 6.3.3 outlines the use of spread-spectrum communications techniques for

the purpose of optical multiplexing. The results showed that it is possible to develop

NIRS-BCI systems with lower equipment specifications. This implementation would

reduce costs and allow increased use in research and clinical settings.

The Use of EMD to Further Evaluate Localized Low-pressure Trends

Section 7.1 proposed and implemented EMD as a new approach to signal processing

and analysis within NIRS-BCI. This decomposition method produces non-linear and

non-stationary components directly linked to physiological processes. Further analysis
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8.3 Future Work

of these components may allow a deeper understanding of the biological processes

behind the low-frequency oscillations observed in the NIRS signal.
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8.4 Concluding Remarks

8.4 Concluding Remarks

This dissertation describes the development of techniques for NIRS-BCI signal process-

ing and analysis. The re-examination of the cognitive process and assumptions behind

NIRS-BCI have allowed the reporting on marked differences in overt and imagined

motor movement, separable functional areas, and identifying lateralized activations.

The implementation of customized, versatile hardware and software systems enable the

examination of new techniques that aid in standardizing NIRS-BCI paradigms.
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Beisteiner, R., Höllinger, P., Lindinger, G., Lang, W. & Berthoz, A. (1995).

Mental representations of movements. brain potentials associated with imagination

of hand movements. Electroencephalogr. Clin. Neurophysiol., 96, 183–93. 150

Berger, H. (1929). Uber das elektrenkephalogramm des menschen. Arch Psychiatr

Nervenkr , 87, 527–570. 34

154



REFERENCES

Berne, R. & Levy, M. (1996). Principles of physiology . Mosby Elsevier Health Sci-

ence. 16, 18

Bigger, J., Jr, Fleiss, J., Steinman, R., Rolnitzky, L., Kleiger, R. &

Rottman, J. (1992). Frequency domain measures of heart period variability and

mortality after myocardial infarction. Circulation, 85, 164. 51

Billingsley, P. (2008). Probability and measure. Wiley India Pvt. Ltd. 63

Boas, D.A., Chen, K., Grebert, D. & Franceschini, M.A. (2004). Improving

the diffuse optical imaging spatial resolution of the cerebral hemodynamic response

to brain activation in humans. Opt Lett , 29, 1506–8. 85

Boso, M., Politi, P., Barale, F. & Enzo, E. (2006). Neurophysiology and neu-

robiology of the musical experience. Functional neurology , 21, 187. 38

Bozkurt, A. & Onaral, B. (2004). Safety assessment of near infrared light emitting

diodes for diffuse optical measurements. Biomed Eng Online, 3, 9. 81

Brodmann, K. (1994). Localisation in the cerebral cortex. Smith-Gordon, London. 64

Bushberg, J., Seibert, J., Leidholdt Jr, E. & Boone, J. (2002). The essential

physics of medical imaging . Williams & Wilkins. 21

Cao, Y., D’olhaberriague, L., Vikingstad, E., Levine, S. & Welch, K. (1998).

Pilot study of functional MRI to assess cerebral activation of motor function after

poststroke hemiparesis. Stroke, 29, 112. 57

Chappell, M. (1985). Effects of ambient temperature and altitude on ventilation

and gas exchange in deer mice (Peromyscus maniculatus). Journal of Comparative

Physiology B: Biochemical, Systemic, and Environmental Physiology , 155, 751–758.

15

155



REFERENCES

Ciuciu, P., Poline, J., Marrelec, G., Idier, J., Pallier, C. & Benali, H.

(2003). Unsupervised robust non-parametric estimation of the hemodynamic re-

sponse function for any fMRI experiment. IEEE Transactions on medical imaging ,

22, 1235–1251. 62

Clark, S.A. (1997). Design of pulse oximeters, chap. 1. Taylor & Francis. 15

Cohen, M., Kosslyn, S., Breiter, H., DiGirolamo, G., Thompson, W., An-

derson, A., Bookheimer, S., Rosen, B. & Belliveau, J. (1996). Changes

in cortical activity during mental rotation A mapping study using functional MRI.

Brain, 119, 89. 44

Cooley, R.L., Montano, N., Cogliati, C., van de Borne, P., Richenbacher,

W., Oren, R. & Somers, V.K. (1998). Evidence for a central origin of the low-

frequency oscillation in RR-interval variability. Circulation, 98, 556–61. 52

Cope, M. (1991). The application of Near Infrared Spectroscopy to noninvasive moni-

tering of cerebral oxygenation in the newborn infant . Ph.D. thesis, Univerestiy College

London, London, England. 27, 29

Coyle, S. (2005). Near-Infrared Spectroscopy for Brain Computer Interfacing . Ph.D.

thesis, National University of Ireland, Maynooth. 29, 31, 32, 38, 39, 40, 41, 43, 47,

56, 71, 72, 75, 76, 82, 83, 88, 103, 106

Coyle, S., Ward, T. & Markham, C. (2004a). Physiological noise in near-infrared

spectroscopy: Implications for optical brain computer interfacing. In The 26th An-

nual International Conference of the IEEE Engineering in Medicine and Biology

Society , San Francisco, CA. 42, 53, 76, 77, 78

Coyle, S., Ward, T., Markham, C. & McDarby, G. (2004b). On the suitability of

near-infrared (NIR) systems for next-generation brain-computer interfaces. Physiol.

Meas., 25, 815–22. 1, 2, 76

156



REFERENCES

Coyle, S.M., Ward, T.E. & Markham, C.M. (2007). Brain-computer interface

using a simplified functional near-infrared spectroscopy system. Journal of Neural

Engineering , 4, 219–226. 52, 53, 76, 150

Cramer, S., Finklestein, S., Schaechter, J., Bush, G. & Rosen, B. (1999).

Activation of distinct motor cortex regions during ipsilateral and contralateral finger

movements. Journal of neurophysiology , 81, 383. 42, 68

Curtis, H. & Barnes, N. (1989). Biology (5th edn). Worth, New York . 15

Dale, A. (1999). Optimal experimental design for event-related fMRI. Human brain

mapping , 8, 109–114. 59

Damadian, R., Goldsmith, M. & Minkoff, L. (1977). NMR in cancer: XVI.

FONAR image of the live human body. Physiological chemistry and physics, 9, 97.

20

De Villota, E., Carmona, M., Rubio, J. & de Andrés, S. (1981). Equality of

the in vivo and vitro in oxygen-binding capacity of haemoglobin of patients with

severe respiratory disease. British Journal of Anaesthesia, 53, 1325. 15

Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods,

R., Mazziotta, J. & Fazio, F. (1994). Mapping motor representations with

positron emission tomography. 44, 150

Devor, A., Tian, P., Nishimura, N., Teng, I., Hillman, E., Narayanan, S.,

Ulbert, I., Boas, D., Kleinfeld, D. & Dale, A. (2007). Suppressed neuronal

activity and concurrent arteriolar vasoconstriction may explain negative blood oxy-

genation level-dependent signal. Journal of Neuroscience, 27, 4452. 40

Dickerson, R. & Geis, I. (1983). Hemoglobin: structure, function, evolution, and

pathology . Benjamin-Cummings Publishing Company. 15

157



REFERENCES

Dinan, E. & Jabbari, B. (1998). Spreading codes for direct sequence CDMA and

wideband CDMA cellular networks. IEEE communications magazine, 36, 48–54. 111

Dixon, R. (1994). Spread spectrum systems: with commercial applications. John Wiley

& Sons, Inc. New York, NY, USA. 102

Duncan, A., Meek, J.H., Clemence, M., Elwell, C.E., Tyszczuk, L., Cope,

M. & Delpy, D. (1995). Optical pathlength measurements on adult head, calf and

forearm and the head of the newborn infant using phase resolved optical spectroscopy.

Physics in Medicine and Biology , 40, 295–304. 30

Edvinsson, L., MacKenzie, E. & McCulloch, J. (2002). Cerebral blood flow and

metabolism. Lippincott Williams & Wilkins Philadelphia, PA. 31

Egan, J. (1975). Signal detection theory and {ROC} analysis. 144

Elwell, C.E., Springett, R., Hillman, E. & Delpy, D.T. (1999). Oscillations

in cerebral haemodynamics: Implications for functional activation studies. Adv Exp

Med Biol , 471, 57–65. 52, 87

Ersland, L., Rosén, G., Lundervold, A., Smievoll, A., Tillung, T. & Sund-

berg, H. (1996). Phantom limb imaginary fingertapping causes primary motor cor-

tex activation: an fMRI study. Neuroreport , 8, 207. 57

Everdell, N.L., Gibson, A.P., Tullis, I.D.C., Vaithianathan, T., Hebden,

J.C. & Delpy, D.T. (2005). A frequency multiplexed near-infrared topography

system for imaging functional activation in the brain. Review of Scientific Instru-

ments, 76, 093705. 78, 103, 106

Eykhoff, P. (1974). System identification: parameter and state estimation. Chich-

ester, England . 133

158



REFERENCES

Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters ,

27, 861–874. 144

Friedland, R. & Iadecola, C. (1991). Roy and Sherrington (1890): a centennial

reexamination of “On the regulation of the blood-supply of the brain”. Neurology ,

41, 10–4. 20

Friston, K., Holmes, A., Worsley, K., Poline, J., Frith, C., Frackowiak,

R. et al. (1995). Statistical parametric maps in functional imaging: a general linear

approach. Hum Brain Mapp, 2, 189–210. 61

Geller, A., Schleifer, I., Sederberg, P., Jacobs, J. & Kahana, M. (2007).

PyEPL: A cross-platform experiment-programming library. Behavior Research Meth-

ods, 39, 950. 58

Golomb, S. (1981). Shift register sequences. Aegean Park Press Laguna Hills, CA,

USA. 109

Gratton, G. & Corballis, P.M. (1995). Removing the heart from the brain: Com-

pensation for the pulse artifact in the photon migration signal. Psychophysiology , 32,

292–9. 52

Gray, H. (1918). Anatomy of the Human Body . Lea & Febiger. 8, 9, 10
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