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ABSTRACT

We study thermal instability in a magnetized and partially ionized plasma with
charged dust particles. Our linear analysis shows that the growth rate of the unstable
modes in the presence of dust particles strongly depends on the ratio of the cooling
rate and the modified dust-cyclotron frequency. If the cooling rate is less than the mod-
ified dust-cyclotron frequency, then growth rate of the condensation modes does not
modify due to the existence of the charged dust particles. But when the cooling rate
is greater than (or comparable to) the modified dust-cyclotron frequency, the growth
rate of unstable modes increases because of the dust particles. Also, wavenumber of
the perturbations corresponding to the maximum growth rate shifts to the smaller
values (larger wavelengths) as the cooling rate becomes larger than the modified dust-
cyclotron frequency. We show that growth rate of the condensation modes increases
with the electrical charge of the dust particles.
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1 INTRODUCTION

One of the most important dynamical processes in astro-
physical plasmas is thermal instability. A detailed analysis
of thermal instability in the linear regime was given in a
well-know paper by Field (1965), and in large number of
subsequent works (e.g., Heyvaerts 1974; Balbus 1986; Bal-
bus & Soker 1989; Ibáñez & Escalona 1993; Steele & Ibáñez
1999; Burkert & Lin 2000; Dib, Burkert & Hujeirat 2004;
Hennebelle & Audit 2007). The form of net cooling func-
tion is determined by the specific mechanisms of heating
and cooling and it also depends on the degree of ionization
of the gas and so, a more complete analysis of the thermal
instability would require a corresponding equation for the
degree of ionization (Defouw 1970; Goldsmith 1970).

Thermal instability of a plasma in a uniform magnetic
field has also been studied by Field (1965). It is obvious that
for perturbations with wave vectors parallel to the field, the
field does not affect the dynamics. If the wave vector is nor-
mal to the magnetic field, the magnetic field reduces the
growth rate of the unstable modes. Thus, a purely trans-
verse magnetic field can prevent the thermal condensation

⋆ E-mail: mshadmehri@thphys.nuim.ie (MS);
† E-mail:sami.dib@cea.fr

(e.g., Oran, Mariska & Boris 1982; Loewenstein 1990; Pio-
ntek & Ostriker 2004). Hennebelle & Pérault (2000) studied
magneto-thermal instability analytically and numerically in
the general case corresponding to the neutral interstellar
medium. David & Bregman (1989) studied the effects of heat
conduction and magnetic fields on the growth rate of ther-
mal instabilities in cooling flows. Recently, Fukue & Kamaya
(2007) revisited the effect of the ion-neutral friction of the
two fluid on the growth of the thermal instability.

It is also well-known that dust particles constitute an
ubiquitous and important component of many astrophysi-
cal plasmas including interstellar medium, stellar and plan-
etary atmospheres, planetary nebulae and giant HII regions
(e.g., Draine 2003). Dust particles can alter dynamical and
thermodynamical properties of the plasma by transform-
ing part of thermal energy into radiation (e.g., Kopp &
Shchekinov 2007; Bora 2004; Ibáñez & Shchekinov 2002).
Birk & Wiechen (2001) have considered the radiative con-
densation modes in a dense dusty plasma, where electrons
are completely replaced by massive dust particles. However,
in their analysis dust particles were considered only from the
point of view of electrostatic interactions, while cooling pro-
cesses were treated as independent of the presence of dust.
Shukla & Sandberg (2003) studied radiation-condensation
instability in a self-gravitating dusty astrophysical plasma.
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2 M. Shadmehri & S. Dib

Kopp & Shchekinov (2007) showed that positively charged
dust particles strongly destabilize perturbations.

In our model, neutrals are the thermodynamically ac-
tive component and providing conditions for radiative cool-
ing of the system, while ions, electrons and dust particles
are the passive components. We show that when charged
dust particles do not contribute to the cooling of the sys-
tem, thermal stability properties of the system can modify.
In the next section, we present general formulation of a mul-
tifluid system including charged dust particles. Analysis of
the unstable modes are given in section 3. We conclude by
a summary of the results in the final section.

2 GENERAL FORMULATION

2.1 Basic multifluid equations

For the sake of simplicity we will describe in what follows the
dust component as an ensemble of particles of equal masses,
md, and equal charges, i.e. Ze. Our basic equations and
the main assumptions are similar to Pandey & Vladimirov
(2007). We take account of the different bulk velocities and
densities of the neutral, electrons, ions and charged dust
particles in the system. The continuity equation is

∂ρj

∂t
+ ∇.(ρjvj) = 0, (1)

where ρj and vj are the velocity of the various plasma com-
ponents and the neutrals, respectively.

The momentum equations are

0 = −qjnj(E
′ +

vj × B

c
) − ρjνjnvj , (2)

ρn(
∂vn

∂t
+ vn.∇vn) = −∇P +

∑

e,i,d

ρjνjnvj . (3)

Note that velocities vj are written in the neutral frame and
E′ = E + vn ×B/c is the electric field in the neutral frame.
j stands for electrons (qe = −e), ions (qi = e) and dust
(qd = Ze), where Z is the number of charge on the grain.
The other physical variables have their usual meanings.

Also, the collision frequencies is (Draine et al. 1983;
Draine 2003)

νjn =
< σv >jn

mj + mn

ρn, (4)

where < σv >jn is the rate coefficient for the momentum
transfer by the collision of the jth particle with the neutrals:

< σv >in= 1.9 × 10−9cm3s−1, (5)

< σv >en= 4.5 × 10−9(
T

30K
)

1
2 cm3s−1, (6)

and for small grains, we have < σv >dn≈< σv >in, but for
grains ranging between a few Angstrom to a few microns
(Nakano & Umebayashi 1986)

< σv >dn= 2.8 × 10−5(
T

30K
)

1
2

×(
a

10−5cm
)2cm3s−1, (7)

where a is the grain radius. In our calculation, for the ion
mass and mean neutral mass we adopt mi = 30mp and

mn = 2.33mp, where mp = 1.67 × 10−24g is the proton
mass.

Defining the mass density of the bulk fluid and the bulk
velocity as ρ ≈ ρn and u ≈ vn, equations (1), (2) and (3)
give the continuity and the momentum equations for the
bulk fluid as

∂ρ

∂t
+ ∇.(ρu) = 0, (8)

ρ(
∂u

∂t
+ u.∇u) = −∇P +

J × B

c
. (9)

The next simplifying assumption is that electrons and
ions are assumed well coupled to the magnetic field which
implies βe ≫ βi ≫ 1, where βj = ωcj/νjn is the ratio of
cyclotron ωcj = qjB/mjc to the collision frequencies. Based
on this assumption and using quasi-neutrality condition, we
have (Pandey & Vladimirov 2007; Ciolek & Mouschovias
1993)

ve = −1 + Θ

Zend

J, (10)

where

Θ = [1 +
νnd

νni

]β2
d . (11)

Note that equation (11) is valid only for the radial compo-
nent. General expression for Θ contains Hall and Pedersen
conductivities (e.g., Ciolek & Mouschovias 1993). Thus, the
induction equation can be written as (Pandey & Vladimirov
2007)

∂B

∂t
= ∇× [(u × B) − 1 + Θ

Zend

J × B] (12)

We assume that dust particles do not contribute in cool-
ing of the system. One should stress, however, that at tem-
perature 3 × (107 − 108)K dust particles are efficiently de-
stroyed in collisions with the ions and electrons (Draine &
Salpeter 1979), and therefore only in the temperature range
between 106K and 3×107K does dust contribute sufficiently
to the net cooling. So, we write energy equation as

1

γ − 1

dp

dt
− γ

γ − 1

p

ρ

dρ

dt
+ρΩ−∇.[K‖∇‖T +K⊥∇⊥T ] = 0,(13)

where the total time derivative is d/dt = ∂/∂t +u.∇, and γ
is the ratio of specific heats. Also, Ω represents the energy
losses minus energy gains per unit mass. The coefficient of
thermal conductivity K has the values K‖ and K⊥ in di-
rections parallel to and perpendicular to the magnetic field
B.

The net cooling function Ω is written depending on the
physical conditions of the systems. For example, we are in-
terested in the structure formation in a typical H I dusty
region with C II cooling. We assume that T0 = 100 K and
K = 4.9 × 103 ergs cm−1 s−1 K−1 (Ulmschneider 1970).
Then, C II cooling is dominant when the temperature is 100
K, according to Wolfire et al (1995). Thus,

Ω =
1

mH

2.54 × 10−14ACfCII(γ
H0

nH0 + γene)

× exp(−92/T )ergs−1g−1, (14)

where the fluid consists of H atoms with mass mH. Also, nX

is the density of element X, the constant fCII is the fraction
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Magneto-thermal condensation modes including the effects of charged dust particles 3

of C I in C II, and AC = nC/(nH+ + nH0) = 3 × 10−4.
The collisional de-excitation rate coefficients of C II with
neutral hydrogen and electrons are represented by γH0

and
γe, respectively. According to Wolfire et al (1995),

γH0

= 8.86 × 10−10cm3s−1, (15)

γe = 2.1 × 10−7(T/100)−0.5[1.80 + 0.484

×(T/104) + 4.01(T/104)2 − 3.39(T/104)3]. (16)

In writing energy equation, we implicitly assumed that
the equilibrium of the abundances of charged dust particles
is established. Not only the ionization level, but the electrical
charge of the grains and eventually, cooling function, may
change due to the different mechanisms of interactions be-
tween the species. However, as long as the time scales of the
ionization, recombination and the grain charging are much
shorter than the cooling time scale, it is safe to neglect such
complicated processes. In fact, The basic set of equation (1)-
(13) is structurally similar to the single fluid ideal Hall MHD
equations. This structural similarity occurs because of the
collision which glues the weakly ionized medium together as
a single fluid (e.g., Pandey and Wardle 2008) and therefore,
the direct effect of recombination (which occurs on the col-
lisional time scale) on the cooling function can be ignored
(see also, Draine and Sutin 1987). We are interested to study
thermal instability in a typical dusty H I region. For such a
system it has been shown by Stiele, Lesch & Heitsch (2006)
and Ciolek & Mouschovias (1993) that the cooling time scale
is larger than the other important time scales.

Finally, we can write equation of state as

p =
R

µ
ρT, (17)

where R is the gas constant and µ represents the molecular
weight.

Equations (8), (9), (12), (13) and (17) along with the
equation

∇.B = 0, (18)

are our basic equations for magneto-thermal instability in a
partially ionized medium with charged dust particles.

2.2 Linear perturbations

The set of the equations can be linearized in the absence
of gradients in the initial state. We assume that the ini-
tial equilibrium state are characterized by the values ρ0,
P0, T0 and B0, and the velocity is assumed to be zero in
the nonperturbed initial equilibrium state of the fluid and
Ω(ρ0, T0) = 0.

We assume perturbations of the form

Π(r, t) = Π1 exp(ωt + ik · r), (19)

where Π1 is the amplitude of the perturbations, ω is the
growth rate of the perturbations and k is the wavenumber
of the perturbations. A condensation mode occurs when ω
is real and positive. If ω is real and negative, the perturba-
tions damp. But when ω is a complex number, the system
is oscillatory growing or damping depending on the sign of
ℜ(ω). The system is called overstable, if we have ℜ(ω) > 0.
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Figure 1. Growth rate of magneto-thermal condensation mode
versus wavenumber of the perturbations when α = 1, γ = 5/3,
σT/σρ = 1/2 and σρσK = 0.01. Dashed line represents growth
rate in non-magnetized case and without charged dust particles.
Each curve is labeled by the ratio

√
Λ = kρcs/ωmcd.

We mainly interested in the possible effects of the charged
dust particles on the condensation modes.

Then, the linear equations are

ωρ1 + iρ0k · v1 = 0, (20)

ωρ0v1 + ikP1 + i(B0 · B1)
k

4π
− i(k · B0)

B1

4π
= 0, (21)

ω

γ − 1
P1 − ωγP0

(γ − 1)ρ0

ρ1 + ρ0Ωρρ1 + ρ0ΩT T1

+(K‖k
2
‖ + K⊥k2

⊥)T1 = 0, (22)

ωB1 + iB0(k · v1) − i(k · B0)v1 −

− c

4π

1 + Θ

Zend

(k · B0)(k ×B1) = 0, (23)

P1

P0

− ρ1

ρ0

− T1

T0

= 0. (24)

Note that the derivative Ωρ = (∂Ω/∂ρ)T and ΩT =
(∂Ω/∂T )ρ are evaluated for the equilibrium state.
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4 M. Shadmehri & S. Dib

2.3 Dispersion relation

We introduce the coordinate system ex, ey, and ez specified
by

ez =
B0

B0

, ey =
B0 × k

|B0 × k| , ex = ey × ez. (25)

Also, we introduce the following wavenumbers

kρ = µ(γ − 1)ρ0Ωρ(RcsT0)
−1, kT = µ(γ − 1)ΩT (Rcs)

−1,

kK‖
= [µ(γ − 1)K‖]

−1(Rcsρ0),

kK⊥ = [µ(γ − 1)K⊥]−1(Rcsρ0). (26)

Then, we can write the dispersion equation using the follow-
ing non-dimensional quantities,

Γ =
ω

kcs

, σρ =
kρ

k
, σT =

kT

k
, σK‖

=
k

kK‖

, σK⊥ =
k

kK⊥

.

Thus, the characteristic equation becomes

Γ7 + P6Γ
6 + P5Γ

5 + P4Γ
4 + P3Γ

3 + P2Γ
2

+P1Γ + P0 = 0, (27)

where the coefficients are

P0 = α2ζ2γ−1(σT + σK − σρ),

P1 = ζ2α2,

P2 = α2ζ(σT + σK) − αζγ−1(σρ − σT − σK)

×[2 + αΛ(k/kρ)2],

P3 = αζ[2 + α + αΛ(k/kρ)2],

P4 = α(σT + σK)[1 + ζ + αζΛ(k/kρ)2]

−γ−1(σρ − σT − σK),

P5 = 1 + α + αζ[1 + αΛ(k/kρ)2],

P6 = σT + σK, (28)

and ζ = cos2 θ and θ is the angle between B0 and k and
α = (vA/cs)

2 where vA is the Alfven velocity. Also, we have
σK = σK‖

ζ + σK⊥(1 − ζ). However, we note that thermal
conductivity in a plasma is suppressed perpendicular to the
magnetic field if the electron gyroradius is much smaller than
the collisional mean free path (Spitzer 1962), as is gener-
ally true under interstellar conditions. Also, we have Λ =
(kρcs/ωmcd)2, where ωmcd = (ρd/ρ0)(1/1 + Θ)(ZeB/mdc)
is the modified dust-cyclotron frequency and (kρcs)

−1 rep-
resents the cooling time-scale. Thus, parameter

√
Λ is ra-

tio of the cooling rate and the modified dust-cyclotron fre-
quency. We see that possible effects of the charged dust
particles on the unstable modes of equation (27) appears
through parameter Λ. If we set Λ = 0, our dispersion equa-
tion (27) reduces to the standard characteristic equation of
the magneto-thermal instability, but without dust particles
(Field 1965). In this case, dispersion equation (27) becomes

(Γ2 + αζ){Γ5 + (σT + σK)Γ4 + (1 + α)Γ3 + [α(σT + σK)

+(σK +σT−σρ)/γ]Γ2 +αζΓ+αζ(σT+σK−σρ)/γ} = 0.(29)

The expression inside the above parenthesis describes stable
modes. But fifth order polynomial that has been obtained
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Figure 2. Modified dust-cyclotron frequency ωmcd versus radius
of the dust particles (in Angstrom) with various electrical charge.
We assume the level of the ionization is ρi/ρ0 = 10−6 and the
magnetic field strength is B0 = 10−6 G. Also, ρ0/mp = 100 cm−3

and ρd/ρ0 = 0.01. Each curve is labeled by |Z|.

by many authors (e.g., Field 1965; Stiele et al 2006) gives us
magnetothermal condensation modes without charged dust
particles.

3 ANALYSIS

Now, we can study the effects of charged dust particles
on the condensation modes in typical plasma containing
charged dust particles. Equation (27) is of odd degree in Γ
and must therefore admit at least one positive real root for
non-perpendicular perturbations (i.e., ζ 6= 0) if the last term
P0 is negative. But when ζ becomes zero (i.e, wavevector is
transverse to the magnetic field) the dispersion equation (27)
reduces to the classical case of the transverse perturbations
(see Field 1965, Eq. 61). In this case, Hall like term (due to
the existence of the charged dust particles) in equation (12)
does not contribute to the problem and the criterion of the
instability becomes P4 < 0 that is consistent to the previous
studies (e.g., Field 1965). Thus, we see that the condition
for a positive real root (implying monotonic instability) for
a transverse field is independent of the presence of charged
dust particles. Note that in our analysis, we assumed that
dust particles do not contribute to the net cooling of the
system. The other roots may be complex conjugates of each
other correspond to either damped waves or growing waves.
If all roots of equation (27) have negative real parts, then
the system is stable magneto-thermally. Using Hurwitz anal-
ysis, we determined conditions under which all roots have
negative real parts. We noticed that conditions of the stabil-
ity are the same as magnetized case without dust particles.
In other words, dust particles do not change criteria of the
stability of the system.

In the absence of dust particles, the maximum effect
of magnetic field occurs for perturbations perpendicular to

c© 0000 RAS, MNRAS 000, 000–000
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Figure 3. Growth rates of the magneto-thermal unstable mode
in the typical dusty H I region, where T = 100 K, fCII = 0.01,
ρ0 = 100 cm−3, ρi/ρ = 10−6, ρd/ρ0 = 0.01 and B0 = 10−6.
Also, we have α = 0.048, γ = 5/3, σT/σρ = 0.92. Black curves
are corresponding to a case with σρσK = 2.19 × 10−6, and for
comparison, red curves are for σρσK = 2.19× 10−4. Solid curves
are representing unstable modes without charged dust particles.
Radius of dust particles is a = 1Å and the electrical charge is
|Z| = 1. It is evaluated kρcs = 9.28× 10−14 s and ωmcd = 6.68×
10−20 s.

the initial magnetic field, i.e ζ = 0. For such perturbations,
dust particles do not change growth rate of the condensation
modes because all terms including Λ vanish when ζ = 0.
So, nearly perpendicular perturbations are considered in our
analysis.

We solve numerically the roots of dispersion equation
(27) for some values of the nondimensional parameters and
taking γ = 5/3. We take the parameters α = 1, σT/σρ = 1/2
and σρσK = 0.01 for comparison to Field (1965). Figure 1
shows growth rate of the condensation modes for nearly per-
pendicular perturbations, i.e. ξ = 0.1 and 0.01. Each curve is
labeled by corresponding ratio kρcs/ωmcd =

√
Λ. For com-

parison, growth rate of the non-magnetized condensation
mode without dust particles is shown by dashed lines in
Figure 1. We can see that growth rate in the magnetized
case without dust particles (i.e. Λ = 0) is lower than the
growth rate in the non-magnetized case. Charged dust par-
ticles enhance growth rate of the condensation mode and
parameter Λ has a vital role. When cooling rate is smaller
than the modified dust-cyclotron frequency, enhancement of
the growth rate due to the dust particles is negligible. But
as the cooling rate becomes larger than the modified dust-
cyclotron frequency, growth rate of the unstable mode sig-
nificantly increases and tends to the non-magnetized growth
rate when parameter Λ is large.

Profile of the growth rate reaches to a maximum value
for a wavenumber kmax which depends on the input param-
eters. Wavenumber kmax corresponding to the maximum
growth rate increases because of the magnetic field in the
absence of the dust particles. In other words, the most un-
stable mode occurs at a smaller wavelength because of the
magnetic field. But wavenumber kmax decreases because of
the charged dust particles. Note that growth rate of the per-
turbation parallel to the initial magnetic field line does not
modify because of the charged dust particles. But as pertur-
bations tend to the perpendicular direction to the field line,
the influence of charged dust particles on the growth rate
becomes more significant.

Figure 2 shows the modified dust-cyclotron frequency,
ωmcd, versus the grain radius a for different electrical charge.
We assumed the number density of the neutral component
and the magnetic field strength are about 100 cm−3 and
about 10−6 G, respectively. Also, the ionization degree is
assumed to be ρi/ρ0 = 10−6. We see that the modified dust-
cyclotron frequency decreases with the electrical charge.
Based on the definition of the modified dust-cyclotron fre-
quency, we see that ωmcd ∝ |Z|/Θ. On the other hand, we
have Θ ∝ |Z|2. Thus, we can conclude ωmcd ∝ |Z|−1. For in-
creasing values of |Z| the modified dust-cyclotron frequency
ωmcd decreases which implies less magnetic coupling and
larger Λ for a fixed cooling rate. Since growth rate increases
with Λ, we can conclude that a larger electrical charge |Z|
implies greater growth rate. We note that the dust grains
can only respond to variations of the magnetic field with
frequency less than ωmcd.

Dependence of the dust-cyclotron frequency on the
grain radius is interesting. While for the grains with radii
between 1 and 30 Angstrom the modified dust-cyclotron fre-
quency is constant more or less, we see that ωmcd increases
with the grain radius for a < 1Å, and, ωmcd decreases with
the grain radius for a > 30Å. So, the level of magnetic cou-
pling of the charged dust particles highly depends on the
grain radius. Since ωmcd increases with a for the grains with
radii smaller than 1Å, the particles are more well-coupled
magnetically and moreover parameter Λ decreases for a fixed
cooling rate which implies smaller growth rate according to
Figure 1. Minimum influence of the grains on the growth rate
occurs for the grains with radii between 1 and 30 Angstrom,
for which dust-cyclotron frequency reaches to a maximum
value. In this case, growth rate is independent of the grain
radius more or less as long as the cooling rate is kept fixed.
But as the grain radius becomes larger than 30Å, the fre-
quency ωmcd decreases with radius a and the dust particles
become less coupled to the field lines. Then, parameter Λ
increases with the radius a and the growth rate increases
according to Figure 1.

Now, we can study magneto-thermal instability in a
typical H I region with charged dust particles. Our input
parameters are similar to Fukue & Kamaya (2007) who
analyzed thermal instability in a typical H I by consider-
ing ions and neutrals, separately. But they neglected dust
particles. Our analysis is restricted to weakly ionized case
and the bulk density and velocity are determined by the
neutrals. Figure 3 shows the growth rates of the unstable
modes when the ionization degree of a typical H I with

c© 0000 RAS, MNRAS 000, 000–000



6 M. Shadmehri & S. Dib

temperature around 100 K and the density 100 cm−3 is as-
sumed to be 10−6. The strength of the magnetic field is
B0 = 10−6 G. Having the net cooling function (14), we
can simply calculate that kρcs = 9.28 × 10−14 s. Also, we
have fCII = 0.01, ρd/ρ0 = 0.01, α = 0.048, γ = 5/3,
σT/σρ = 0.92. Black curves are corresponding to a case with
σρσK = 2.19× 10−6, and for comparison, red curves are for
σρσK = 2.19 × 10−4. Solid curves are representing unsta-
ble modes without charged dust particles. Radius of dust
particles is a = 1Å and the electrical charge is |Z| = 1.
We can also simply calculate that ωmcd = 6.68 × 10−20 s.
Figure 3 shows that the existence of the charged dust par-
ticles enhances the growth rate of the unstable modes. This
enhancement is more significant as thermal conduction be-
comes more effective. Also, because of the charged dust par-
ticles the maximum wavenumber kmax shifts to the smaller
values. It implies that in a typical H I region one may expect
formation of larger structures due to the thermal instabil-
ity with charged dust particles. Not only the structures are
bigger, but they are forming faster comparing to a similar
system without charged dust particles.

Although Fukue & Kamaya (2007) did not give a simple
physical explanation for their findings, we think stabilization
of ions via drag force is understandable and it will help us
to explain our results. First, we consider a two-fluid (i.e.,
ion and neutral) system without magnetic field. Direction
of the exerted drag force on each charged species is oppo-
site to the direction of its velocity. So, it acts as a restoring
force in response to any perturbations. Obviously, the effect
is much stronger for ions because of their mean molecular
weight comparing to the neutrals as was shown in Figure 1
of Fukue & Kamaya (2007). This effect is survived even in
the presence of magnetic field lines. Because the magnetic
tension vanishes for purely transverse perturbations and the
magnetic pressure adds up to the thermal pressure which
implies a more thermally stable system. In our analysis, as
we discuss, the drag force is not significant comparing to the
magnetic force at least for ions and electrons. So, response
of the system to the perturbations is mainly determined by
the distribution of the magnetic field lines. There is a drift
velocity between charged dust particles and the neutrals.
This fact is shown by a modified induction equation with
an extra term similar to the Hall term. Therefore, we can
expect dissipation of the magnetic field and reduction to the
magnetic pressure due to the presence of charge dust par-
ticles. Charged dust particles are well tied to the magnetic
field lines, i.e. Λ ≈ 0. When this parameter increases due to
the reduction of ωmcd (for a fixed cooling rate), the dust par-
ticles are less coupled to the field lines comparing to a case
with Λ ≈ 0. Thus, the coefficient of the Hall term increases
that is proportional to the inverse of ωmcd.

There are also more points before comparing our re-
sults to Fukue & Kamaya (2007). In our approach that is
based on Pandey & Vladimirov (2007), ions and electrons
are strongly tied to the magnetic field lines and the den-
sity of the charged species are neglected comparing to the
bulk density of the system that is controlled by the neutrals.
Also, bulk velocity of the system is determined by the neu-
tral particles. But analysis of Fukue & Kamaya (2007) is
within ambipolar regime by considering the complete sets of

equations for a two-fluid (i.e., ion and electron) system. In
other words, although we are studying a multifluid system
(including charged dust particles), our main equations are
still single fluid equations. More importantly, our equations
are valid as long as ions and electrons are coupled to the
magnetic field lines. It implies that the drag force is negligi-
ble comparing to the electromagnetic force. For this reason
collision does not seem to play a significant role in dynam-
ics of ions and electrons. On the other hand, behavior of
charged dust particles to the perturbations is understood
by the modified cyclotron frequency. There is also another
important point: Our result does not contradict Fukue &
Kamaya (2007) regarding to the reduction of the growth
rate due to collision. Actually, our results are supportive
to them. Let’s explain how. First of all, Fukue & Kamaya
(2007) mentioned (in the abstract of their paper) that the
instability is suppressed via the friction. But it is true for
ions as they clearly discussed in section 4.2.3 of Fukue &
Kamaya (2007). So, significant reduction in growth rate is
actually for ions (not neutrals). But in our analysis, we are
employing a single fluid approach and what we observe as
(in)stability is for neutrals.

4 CONCLUSION

We studied magneto-thermal instability in the presence of
charged dust particles with little mobility. Although dust
particles may contribute to the net cooling function, their
contribution can be neglected for some ranges of tempera-
ture (e.g., Draine & Salpeter 1979). The relative drift be-
tween the plasma and the charged dust grains lead to the
Hall term in the resulting induction equation. It is know
that this feature is a generic property of the multifluid plas-
mas (e.g., Wardle 1999; Pandey & Vladimirov 2007). The
inclusion of charged dust particles does not alter the crite-
rion for magneto-thermal stability, but the growth rate of
the unstable modes are significantly modified.

We showed that the growth rate of the condensation
mode depends on the ratio of the cooling rate and the mod-
ified dust-cyclotron frequency. Growth rate increases with
the ratio. Thus, as charged dust particles become less well-
coupled to the field lines, the growth rate becomes larger
and the system is more stable to the perturbations as long
as the cooling rate does not change. Also, the growth rate
increases with the electrical charge. While the growth rate
increases with the grain radius when they are larger than 30
Angstrom, we see opposite behavior when grains are smaller
than 1 Angstrom. Magneto-thermal condensation mode is
independent of the grain radius, when they are between 1
and 30 Angstrom. Note that these critical sizes may change
for the another set of input parameters, but the profile of
ωmcd is something similar to Figure 2 for the other input
parameters.

Our analysis shows that even a small amount of the
charged dust particles may modify magneto-thermal con-
densation modes. However, a more detailed analysis is
needed which should also take into account the dynamics
of the dust and neutral particles.
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