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ABSTRACT

We study effects of winds on the time evolution of isothermal, self-gravitating
accretion discs by adopting a radius dependent mass loss rate because of the existence
of the wind. Our similarity and semi-analytical solution describes time evolution of
the system in the slow accretion limit. The disc structure is distinct in the inner and
outer parts, irrespective of the existence of the wind. We show that existence of wind
will lead to a reduction of the surface density in the inner and outer parts of the disc
in comparison to a no-wind solution. Also, the radial velocity significantly increases
in the outer part of the disc, however, the accretion rate decreases due to the reduced
surface density in comparison to the no-wind solution. In the inner part of the disc,
mass loss due to the wind is negligible according to our solution. But the radial size
of this no-wind inner region becomes smaller for stronger winds.
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1 INTRODUCTION

The existence of outflow or wind in many accreting systems
is supported by strong observational evidences. Outflows
from Active Galactic Nuclei (AGN) are much more com-
mon than previously thought: the overal fraction of AGNs
with outflows is fairly constant, approximately 60%, over
many order of magnitude in luminosity (Ganguly & Broth-
erton 2008). These mass-loss mechanisms are also observed
in microquasars, Young Stellar Object (YSO) and even from
brown dwarfs (Ferrari 1998; Bally, Reipurth & Davis 2007;
Whelan et al 2005). About 30% of T Tauri stars present
bipolar ejection and this percentage increases to 100% for
class 0 objects, the earliest stage of star formation. It is now
widely accepted that winds or outflows have their origin in
accretion flows (e.g., Blandford & Payne 1982). They may
provide an additional important sink of mass, angular mo-
mentum and energy which their dynamical influence to the
accretion flow can not be neglected. However, it remains
unclear as how some part of the accreting gas can be trans-
ferred into winds or outflows.

Nevertheless, deviations from Keplerian rotation in
some AGNs and the flat infrared spectrum of some T Tauri
stars can both be described by self-gravitating discs. Ver-
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tical structure of an accretion disc under the influence of
self-gravity was studied by Paczyński (1978). Some authors
studied the effects related to self-gravity of the disc in the
radial direction (e.g., Bodo & Curir 1992). New class of self-
gravitating discs has also been proposed, in which the energy
equation is replaced by a self-regulation condition (Bertin &
Lodato 1999; Lodato & Bertin 2001). Mineshige & Umemura
(1997) extended the previous steady state solutions to the
time-dependent case while the effect of the self-gravity of the
disc was taken into account. They used an isothermal equa-
tion of state, and so their solutions describe a viscous ac-
cretion disc in the slow accretion limit. Also, Tsuribe (1999)
studied the self-similar collapse of an isothermal viscous ac-
cretion disc.

For simplicity, outflow is neglected in most of the
steady-state or time-dependent theoretical models of the
self-gravitating discs. However, some authors studied the
effect of wind or outflow on the radial structure of non-
self-gravitating accretion discs (e.g., Knigge 1999). Recently,
Combet & Ferreira (2008) studied the structure of YSO ac-
cretion discs in an approach that takes into account the pres-
ence of the protostellar jets. They showed that discs with jet
presents structure different from the standard accretion disc
because of the influences of jets on the radial structure of
the disc. Ruden (2004) studied the physics of protoplanetary
disc evolution in the presence of a photoevaporative wind.

In this paper, we generalize time-dependent solutions
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2 M. Shadmehri

of Mineshige & Umemura (1997) for a self-gravitating ac-
cretion disc to include winds or outflows. Our paramet-
ric model describes mass and angular momentum loss by
wind in an isothermal, self-gravitating disc, yet applicable
to many types of dynamical disc-wind models. Basic equa-
tions are presented in the next section. Properties of our
semi-analytical are discussed in section 3. A summary of
implications of the results are given in section 4.

2 GENERAL FORMULATION

We consider an accretion disc that is axisymmetric and ge-
ometrically thin, i.e. H/R < 1. Here R and H are, respec-
tively, the disk radius and the half-thickness. The disc is
supposed to be turbulent and possesses an effective turbu-
lent viscosity. In our model, a central object has not yet been
formed and the radial component of the gravitational force
is provided by the self-gravity of the disc. The continuity
equations reads

∂Σ

∂t
+

1

r

∂

∂r
(rΣvr) +

1

2πr

∂Ṁw

∂r
= 0, (1)

where vr is the accretion velocity (vr < 0) and Σ = 2ρH
is the surface density at a cylindrical radius r. Also, ρ is
the midplane density of the disc and the mass loss rate by
outflow/wind is represented by Ṁw. So,

Ṁw(R) =

∫

4πR′ṁw(R′)dR′, (2)

where ṁw(R) = ρv+
z is mass loss rate per unit area from

each disc face. Here, v+
z is a mean vertical velocity at the

disc surface, i.e., at the base of a wind.
The radial momentum equation is

∂vr

∂t
+ vr

∂vr

∂r
= − c2

s

Σ

∂Σ

∂r
− GMr

r2
+

v2
ϕ

r
, (3)

where vϕ is the rotational velocity. As in Mineshige &
Umemura (1997), we adopt the monopole approximation for
the radial gravitational force due to the self-gravity of the
disc, which considerably simplify the calculations and are
not expected to introduce any significant errors as long as
the surface density profile is steeper than 1/r (e.g., Li & Shu
1997; Saigo & Hanawa 1998; Tsuribe 1999; Krasnopolsky &
Königl 2002). Also, we assume that the disc is vertically self-
gravitating and so, the half thickness of the disc, H , becomes
H = c2

s/(2πGΣ).
Similarly, integration over z of the azimuthal equation

of motion gives (e.g., Knigge 1999)

∂

∂t
(rvϕ) + vr

∂

∂r
(rvϕ) =

1

rΣ

∂

∂r
(r3νΣ

∂Ω

∂r
)

− (lr)2Ω

2πrΣ

∂Ṁw

∂r
, (4)

where the last term of right hand side represents angular
momentum carried by the outflowing material. Here, l = 0
corresponds to a non-rotating wind and l = 1 to outflowing
material that carries away the specific angular momentum
it had at the point of ejection and it should be most ap-
propriate for radiation-driven outflows (Knigge 1999). Cen-
trifugally driven MHD winds are corresponding to l > 1 as

has been discussed in Knigge (1999). In this case, we have
l = RA/R where RA is Alfven radius (e.g., Knigge 1999).
Also, ν is a kinematic viscosity coefficient and we assume
ν = αcsH = α(H/r)csr, where cs is the sound speed. As in
Mineshige & Umemura (1997), we assume α′ = α(H/r) is
constant in space. Thus, in our model the viscosity coeffi-
cient is in proportion to the radius which has also been used
by some other authors (e.g., Hartmann et al 1998).

We introduce similarity variable x ≡ r/(cst) and the
physical quantities as

Σ(r, t) =
cs

2πGt
σ(x), (5)

vr(r, t) = csu(x), (6)

vϕ(r, t) = csv(x), (7)

j = xv(x), (8)

ṁw =
cs

4πGt2
σ(x)Γ(x). (9)

Thus, the accretion rate becomes Ṁacc = −2πrΣvr =
(c3

s/G)ṁ, where ṁ = x(−u)σ is the non-dimensional simi-
larity accretion rate. Now, we can write equations (1), (3)
and (4) as

−σ − x
dσ

dx
+

1

x

d

dx
(xσu) + σΓ = 0, (10)

2

σ

dσ

dx
+ (u − x)

du

dx
− σ

u − x

x
− v2

x
= 0, (11)

(l2Γ + 1)j + (u − x)
dj

dx
= α′ 1

σx

d

dx
[σx(−2j + x

dj

dx
)]. (12)

We can solve the above differential equations numeri-
cally subject to appropriate asymptotic behaviors as bound-
ary conditions. But we restrict to solution in slow accretion
limit which implies v ≫ 1, σ ≫ 1 and |u| ≪ 1. Then, equa-
tion (11) gives v = σ1/2(x − u)1/2 or

j = σ1/2x(x − u)1/2. (13)

On the other hand, equation (10) can be rewritten as

d ln σ

d ln x
=

1

x − u

du

d ln x
− 1 − xΓ

u − x
. (14)

Also, after mathematical manipulation, from equation
(13) we have

d ln j

d ln x
= 1 +

1

2

1

x − u
(x − du

d ln x
) +

1

2

d ln σ

d ln x
. (15)

Substituting equation (14) into equation (15), we obtain

d ln j

d ln x
=

2x − u + xΓ

2(x − u)
. (16)

Using equation (16) the similarity angular momentum
equation (12) is written as

u

x
+ (2l2 − 1)Γ = α′ 1

σxj

d

dx
[σxj(

3u − 2x + xΓ

x − u
)]. (17)

Equations (14) and (16) give

d ln(σxj)

d ln x
=

1

x − u

du

d ln x
+

2x − u + 3xΓ

2(x − u)
. (18)

The above relation helps us to simplify equation (17) as
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du

dx
= −Ax2 + Bux + 3u2

2(x − 3u − 2xΓ)x
− (x − u)2[u + (2l2 − 1)xΓ)]

α′(x − 3u − 2xΓ)x
,(19)

where

A = 4 + 6Γ − 2
d

dx
(xΓ) − 3Γ2,

B = −2[3 + 4Γ − d

dx
(xΓ)].

First order differential equation (19) is the main equation of
our analysis which can be solved numerically. Having pro-
file of u(x) from equation (19), the similarity surface den-
sity variable is calculated using equation (14) numerically.
Clearly, the effect of wind or outflows appears by the term Γ.
If we set this parameter equal to zero, equation (19) reduces
to equation (18) of Mineshige & Umemura (1997) which de-
scribes no-wind solution.

Behavior of the solutions with winds highly depends on
the profile of the mean vertical velocity at the disc surface,
i.e. Γ. However, asymptotic behavior of the solutions near
to the central part of the disc, i.e. x → 0, is similar to a case
without wind/outflow according to equations (14) and (19).
When x tends to zero, we have

|u| ∝ x, σ ∝ x−5/3, v ∝ x−1/3. (20)

Appropriate boundary condition at x = 0 is determined us-
ing the above asymptotic behavior. For starting the integra-
tion of equation (19), we assume u = 0 at x = 0. But in
order to determine surface density profile, we can integrate
equation (14) from outer boundary of the disc, i.e. x = 1, to-
wards the center for a given σ(x = 1) = σ0. But we consider
a series of models where the accretion rate at the outer edge
(i.e., the inflow rate from the parent cloud) is kept constant,
which appears a natural requirement. Thus, our boundary
conditions are u = 0 at x = 0, and, ṁ = ṁ0 at x = 1. So,
there is another input parameter for our model, i.e. ṁ0. For
the mass loss profile, we consider a simple power-law form
for Γ as Γ = Γ0x

s. We find two different regimes according
to our similarity solution: inner no-wind part and an outer
region with the surface density profile in proportion to x−1.
Thus, our prescription for v+

z /cs = Γ/σ gives us a power law
mass loss rate for the wind as Ṁw ∝ xs+1. In steady state
case, this prescription for mass loss by wind has been used
widely by many authors (e.g., Quataert & Narayan 1999;
Beckert 2000; Turolla & Dullemond 2000; Misra & Taam
2001; Fukue 2004).

3 ANALYSIS

Note that we are doing a purely parametric approach to take
into account effects of wind on a self-gravitating accretion
disc. So, this does not ensure that a self-consistent solution
exists for any given set of the specified parameters. For solv-
ing the equations, we check out that solutions do not violate
two important constraints: (a) the mass loss rate by the wind
must be less than the accretion rate, (b) the slow accretion
limit is satisfied. We restrict our study to positive values for
the exponent s, because for s < 0 we found qualitatively
similar results. Note that in our model we have Ṁw ∝ xs+1

and x ≤ 1 which imply a stronger outflow for a smaller pos-
itive index s . Our parameterized approach is nevertheless

useful, because it illustrates the possible effects of winds on
the time-dependent structure of a self-gravitating disc.

Figure 1 shows the change in the profiles of the phys-
ical variables with the mass loss power-law index s. Each
curve is labeled by corresponding index s. Also, we adopt
α′ = 0.1, ṁ0 = 0.2, Γ0 = 0.1 and l = 1 (i.e., rotating wind).
The surface density and the rotational velocity for the no-
wind solution are represented by Σ0 and v0,ϕ. We find that
the structure is represented by an inner region with a density
profile in proportion to x−5/3 and an outer part with density
profile proportional to x−1, irrespective of the existence of
wind or outflow. The transition radius at xtr ∼ α′ separates
the inner and outer parts. However, the surface density de-
creases at all parts of the disc because of the wind. In order
to make an easier comparison, the ratio (Σ − Σ0)/Σ0 ver-
sus the similarity variable x is shown in Figure 1 (top, left).
The surface density reduction is more significant for smaller
values of the exponent s. As the wind becomes stronger and
more mass is extracted from the disc, reduction to the sur-
face density is more significant.

Profile of the rotational velocity versus the similarity
variable is also shown in Figure 1 (top, right). Generally,
solutions with winds will rotate slower than those without
winds. So, the viscous dissipation per unit mass in the flow
is expected to be smaller in the presence of a wind. The
reduced rotational velocity of the disc is sensitive to the
variations of the exponent s. Also, profile of the radial ve-
locity in Figure 1 (middle, left) shows significant deviations
from no-wind solution because of the presence of winds. The
radial velocity is approximately uniform in the outer parts
of a disc without winds. But when the wind carries away the
angular momentum appropriate to the radius from which it
is launched, the remaining gas in the outer parts of the disc
has much larger radial velocity in comparison to the no-wind
solution. As wind becomes stronger, deviations of the radial
velocity from the no-wind solution is occurring over a larger
region of the disc. Velocity of the wind at the surface of the
disc is shown in Figure 1 (middle, right). We can simply
show that v+

z /cs ∝ xs+1 at the outer part of the disc. When
the exponent s increases, velocity of the wind at the surface
of the disc decreases.

Profile of the accretion rate, Ṁacc, is shown in Figure 1
(bottom, left). Accretion rate for the no-wind solution is rep-
resented by the dotted lines. We can see that the accretion
rate decreases at all parts of the disc due to the existence of
the wind. However, the accretion rate is not very sensitive
to the variations of the exponent s. Ratio of the mass loss
rate due to the wind to the accretion rate, i.e. Ṁw/Ṁacc, is
represented in Figure 1 (bottom, right). In the inner part
of the disc, the mass loss by wind is negligible except for a
strong wind corresponding to s = 0.1. We adopted the input
parameters so that the ratio is less than one at all radii of
the disc. But most of the mass loss by wind is occurring at
large radii, i.e. outer part of the disc. For a stronger wind,
a larger fraction of the mass carries away by the wind.

We explore possible effects of extraction of angular mo-
mentum in Figure 2 by changing the parameter l. In this
figure, we assume α′ = 0.1, ṁ0 = 0.2 and l = 0.0, 0.5,
1.0, 1.5 with Γ0 = 0.1 and s = 0.7. Obviously, angular mo-
mentum is not extracted by the wind when we have l = 0.
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Figure 1. The profiles of the physical variables for α′ = 0.1, ṁ0 = 0.2 and s = 0.1, 0.3, 0.5, 0.7 with Γ0 = 0.1 and l = 1 (i.e,
rotating wind). Surface density and the rotational velocity for no-wind solution are represented by Σ0 and v0,ϕ. Each curve is labeled
by corresponding s. No-wind solution is shown by dotted curves.
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Figure 2. The profiles of the physical variables for α′ = 0.1, ṁ0 = 0.2 and l = 0.0, 0.5, 1.0, 1.5 with Γ0 = 0.1 and s = 0.7. Surface
density and the rotational velocity for no-wind solution are represented by Σ0 and v0,ϕ. Each curve is labeled by corresponding l. No-wind
solution is shown by dotted curves.
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Figure 3. The profiles of the physical variables for α′ = 0.1, ṁ0 = 0.2 and Γ0 = 0.1, 0.05, 0.01 with l = 1.0 and s = 0.7. Surface density
and the rotational velocity for no-wind solution are represented by Σ0 and v0,ϕ. Each curve is labeled by corresponding Γ0. No-wind
solution is shown by dotted curves.

c© 0000 RAS, MNRAS 000, 000–000



The influence of winds on the time-dependent behaviour of self-gravitating accretion discs 7

Actually, this case corresponds to a non-rotating wind and
the disc losses only mass because of the wind. However, we
found that for l2 < 1/2 the mass of the disc increases in
the presence of the winds that is obviously unphysical. It is
partly because of the limitations of similarity method that
there is not a self-consistent solution for any given set of
the input parameters, and more importantly, our model is
valid in the slow accretion limit (i.e., v ≫ 1), and so it is
very unlikely to accept that winds are lunched without ex-
tracting a certain amount of angular momentum of the disc.
Although solutions with l = 0 and 0.5 are represented in Fig-
ure 2 for making a comparison, we think, these solutions are
not physically acceptable. Surface density profile is shown in
Figure 2 (top, left). Again, we see reduction to the surface
density because of the wind. Also, rotational velocity of the
disc decreases when there is significant angular momentum
loss by the wind (top, right). Although the radial velocity
of the inner disc does not change because of the wind, ex-
istence of the a rotating wind enhances the radial velocity
at the outer part of the disc in comparison to a no-wind so-
lution (middle, left). Typical behavior of velocity v+

z is also
sensitive to the amount of the extracted angular momentum
(middle, right). Profile of the accretion rate (bottom, left)
shows that the accretion rate decreases due to the existence
of a rotating wind. However, as more angular momentum is
carried away by the wind (i.e. larger l), not only the surface
density and the rotational velocity are reduced at all regions
of the disc, but the radial velocity is increases significantly
at the outer part of the disc.

Another input parameter of our model is Γ0 that its
possible effects are explored in Figure 3. We assume that
α′ = 0.1, ṁ0 = 0.2 and Γ0 = 0.1, 0.05, 0.01 with l = 1.0
and s = 0.7. Again, the surface density and the rotational
and radial velocities are significantly decreasing with Γ0.
The velocity of the wind at the surface of the disc is highly
affected by the parameter Γ0 (middle, right). Thus, the ac-
cretion rate and the mass loss by the wind are decreased
with the parameter Γ0.

The effect of the disc self-gravity in this paper is limited
to provide the radial gravitational field to keep the disc in
centrifugal equilibrium. On the other hand, it is well known
that self-gravitating discs can be unstable if they are too
cold. We can study gravitational stability of the solutions
using the Toomre criteria (Toomre 1964),

Q =
csκ

πGΣ
, (21)

where κ =
√

2(vϕ/r2)d(rvϕ)/dr is the epicyclic frequency.
We calculate Toomre parameter Q using our solutions and
the disc is gravitationally stable if Q > 1. We can rewrite
Toomre parameter in terms of the similarity quantities as

Q =
2
√

2

xσ

√

j

x

dj

dx
. (22)

Figure 4 shows profile of Toomre parameter for the so-
lutions which are presented in Figures 1, 2 and 3. Here, we
assumed that the nondimensional similarity accretion rate
at the outer boundary is 0.2, i.e. ṁ0 = 0.2. To make an
easier comparison, Toomre parameter for a case without
wind/outflow is represented in Figure 4. This plot shows
that Toomre parameter increases due to the existence of

5

3

4

2

3

no-wind solution

Q

-4 -3 -2 -1 0
0

1

log (x)log (x)

Figure 4. The profile of Toomre parameter versus similarity vari-
able for the solutions which are represented in Figures 1, 2 and
3. It is assumed that ṁ0 = 0.2. Red curves are corresponding to
the solutions for α′ = 0.1 and s = 0.1, 0.3, 0.5, 0.7 with Γ0 = 0.1
and l = 1. Toomre parameter for the solutions with α′ = 0.1 and
l = 0.0, 0.5, 1.5 with Γ0 = 0.1 and s = 0.7 are represented by
green curves. Also, blue curves are showing Toomre parameter
when α′ = 0.1 and Γ0 = 0.01, 0.05 with l = 0.1 and s = 0.7.

winds or outflows, except for the cases with l = 0 and 0.5
which are unphysical solutions, as we discussed. But except
to the very inner part of the disc, generally, Toomre param-
eter is still larger than one even in the presence of winds.
However, we note that similarity solutions are not valid at
the regions very close to the inner or outer parts of the sys-
tem. Larger the accretion rate at the outer edge of discs
(i.e. larger ṁ0), the disc becomes more massive and the size
of the gravitationally unstable inner region increases due to
the existence of wind/outflow.

4 DISCUSSION

Our similarity solution show that the transition radius in-
creases linearly with time, i.e. rtr ≈ α′cst. Assuming that
the radius rtr is very close to the central part of the disc ini-
tially, there is not ”no-wind” region initially and wind exists
at all radii of the disc. At early times of evolution, wind does
not modify the surface density significantly. As gas accretes
toward the central parts, the surface density profile changes
from inside. However, the accretion rate is reduced initially
because of the wind, in comparison to the no-wind solution.
Some fraction of the accreted mass and the angular mo-
mentum can be carried away to infinity by the wind, while
leaving the remaining flow with smaller density at all parts
and enhanced radial velocity at the outer part of the disc.

We can apply our similarity solutions to a self-
gravitating disc just before forming a central star, namely, in
the runaway collapse phase. This phase of evolution would
correspond to the very early (class 0) stage. A molecu-
lar cloud core can be approximated by an isothermal gas
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Table 1. Integrals I and J for the solutions with different input parameters. In the absence of winds/outflows, we
have I = 1.28 and J = 0.

(Γ0, l) = (0.1, 1) (Γ0, s) = (0.1, 0.7) (l, s) = (1.0, 0.7)

s I 100J l I 100J Γ0 I 100J
0.1 0.83 7.19 0.0 1.84 9.81 0.01 0.88 4.49
0.5 0.87 5.08 1.0 0.88 4.49 0.05 1.04 2.66

0.7 0.88 4.49 1.5 0.58 2.86 0.1 1.22 0.06

with sound speed cs ∼ 0.2Km s−1 (e.g., Hayashi & Nakano
1965). Typical age is considered to be 5×104 yr. The radius
r = 0.01 pc at t0 = 5 × 104 yr corresponds to x = 1 in our
similarity variable. Then, the radius of the disc rd becomes

rd = 0.01pc(
x

1
)(

cs

0.2Kms−1
)(

t

5 × 104yr
). (23)

Now, we can calculate the mass of the disc as follows

Mdisc =

∫ rd

0

2πΣrdr, (24)

or

Mdisc = (9.51 × 10−2M⊙)(
t

5 × 104yr
)I, (25)

where I =
∫ 1

0
xσdx. Having our similarity solutions, we can

simply calculate this integral for different set of input pa-
rameters. When there is not a wind or outflow, the integral
becomes I = 1.28. But existence of a wind or outflow de-
creases the integral by a factor up to 2 depending on the
input parameters (see Table 1). In other words, the mass of
a self-gravitating disc with wind is reduced comparing to a
similar disc but without wind. So, reduction to the mass of
a disc with wind is mainly due to the decreased surface den-
sity at all regions of the disc. This implies that the central
mass object is forming up to two times slower than a sys-
tem without wind. Of course, this factor may increase if we
consider cases, in which more angular momentum is carried
away by wind (i.e., larger l). We can determine how long is
needed to increase the mass of the disc by one solar mass.
According to equation (25), we can write

τ ≃ 0.52 × 106

I yr. (26)

For a disc without wind, the mass of the disc increases by
one solar mass within approximately τ ≃ 4.0 × 105yr. But
the integral I decreases by a factor up to 2 according to
Table 1. This allows the formation of a central core with
one solar mass in 2 times slower than a similar system with-
out wind, i.e. τ ≃ 9 × 105yr. This result is consistent with
numerical simulations of early stages of massive discs with
winds/outflows (e.g., Banerjee & Pudritz 2007). Numerical
study of Banerjee & Pudritz (2007) is concentrated towards
analyzing massive star formation and inseparable links be-
tween gravitational collapse and early wind-driven outflows.
They showed that the disc, in the early stages of formation of
a high mass star, is more massive than the protostar that is
forming within it (see also Banerjee & Pudritz 2006). Domi-
nance of mass of the disc is kept within 7×104yr according to
the simulations of Banerjee & Pudritz (2006). In our paper,
we neglected mass of the central protostar at early stages

evolution which is a good approximation at early stages of
formation. Also, the other analytical studies show that the
central core grows to one solar mass in 1.6 × 106 yr if other
effects are ignored (e.g., Tsuribe 1999)

Although we presented the ratio of the total mass loss
rate by wind to the accretion rate at each radius of the
disc in Figures 1, 2 and 3, it is desirable to calculate how
much mass is lost by wind during the early stages. Actually,
observations of different systems show that the ratio of mass
loss rate by wind to the accretion rate is around 0.1 (e.g.,
Konigl & Pudritz 2000). Having the self-similar solutions,
one can simply show that the total mass-loss rate by the
wind is

Ṁw = (1.9 × 10−6M⊙/yr)J , (27)

where J =
∫ 1

0
xσΓdx. Obviously, exact value of this integral

depends on the profiles of the physical quantities of the disc,
i.e. σ and Γ. Table 1 shows this integral for the solutions
with different sets of the input parameters. We can simply
show that during formation of a core with one solar mass the
amount of mass loss by the wind is J /I times the accreted
mass. This ratio varies approximately from 0.001 to 0.05
according to Table 1. Thus, our mass loss rate is consistent
with observations of protostellar systems.

Our solutions are valid as long as a central mass has
not been formed and the outer disc is not depleted with
gas. Thus, there is no surprise that the similarity solution
demands a diverging total mass like a solution without wind,
if x tends to infinity (Mineshige & Umemura 1997). But we
restricted our solutions within x ≤ 1, and so, the total mass
of the disc is finite. Once the outer part of the disc is depleted
with gas and a central mass is formed, we can not apply our
similarity solution with wind. However, the effects of wind on
the early evolution of self-gravitating discs are remarkably
worth to be considered, in particular reduced surface density
and the accretion rate at all parts of the disc.
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