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Correlators of N = 1 Superconformal Currents

Steven H. Simon

Alcatel-Lucent Bell Labs, Murray Hill NJ 07974, USA

Abstract. We give an explicit expression for the M -point correlator of the

superconformal current in two dimensional N = 1 superconformal field theories.
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1. Main Result

N = 1 superconformal field theories[1] have a chiral algebra generated by a spin 2 field T

known as the stress energy tensor and a spin 3/2 field G known as the superconformal

current which is the superpartner of T . The singular terms of the operator product

expansion of these fields are given by

T (z)T (z′) =
c/2

(z − z′)4
+

2T (z′)

(z − z′)2
+
∂T (z′)

z − z′
+ O(1) (1)

T (z)G(z′) =
(3/2)G(z′)

(z − z′)2
+
∂G(z′)

z − z′
+ O(1) (2)

G(z)G(z′) =
(2c/3)

(z − z′)3
+

2T (z′)

z − z′
+ O(1) (3)

where c is the central charge. The form written here is generic so long as there are no

further conserved currents[2].

The point of this paper is to give an expression for the correlator

CM = 〈G(z1)G(z2) . . .G(zM )〉 (4)

where M must be even or the correlator will vanish. Obviously the two point correlator

is directly given by the OPE as

C2 =
(2c/3)

(z1 − z2)3
(5)

Using Eq. 2 and 3 we can examine the pole structure with respect to one variable

z1, and derive a recursion relation for this correlator (compare for example with the

discussions in Ref. [2] and [3]) whereby the M point correlator is written in terms of the

M − 2 point correlator

CM = (6)
M∑

i=2

(−1)i( (2c/3)

(z1 − zi)3

︸ ︷︷ ︸

α

+
2

(z1 − zi)

∑

j 6=1,i

[ 3/2

(zi − zj)2

︸ ︷︷ ︸

β

+
1

zi − zj

∂

∂zj
︸ ︷︷ ︸

γ

])CM−2(1̂, î)

where CM−2(1̂, î) is the M − 2 point correlator that excludes coordinates z1 and zi

CM−2(1̂, î) = 〈G(z2) . . . G(zi−1)G(zi+1) . . .G(zM)〉 (7)

The terms in Eq. 6 are labeled α, β, γ for future reference. Thus through this recursion

relation (and starting the recursion with Eq. 5) in principle the M point correlator can

be determined.

We claim that the solution to this recursion relation can be written in a very simple

closed form. We write the correlator in terms of a fully analytic “wavefunction[4]” ψM

CM = ψM V −3
M (8)

where

VM =
∏

1≤i<j≤M

(zi − zj) (9)
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Inspired by the construction of[5], we write the wavefunction as

ψM = N
∑

P∈SM

∏

1≤r<s≤M/2

χ(zP (2r−1), zP (2r); zP (2s−1), zP (2s)) (10)

with the normalization constant

N =
(c/3)(M/4)(3−M/2)

(M/2)!
(11)

Here, P is a permutation of the integers 1 . . .M and the sum is over all such

permutations. The function χ is given by

χ(z1, z2; z3, z4) = A(z1 − z3)
3(z2 − z4)

3(z1 − z4)
3(z2 − z3)

3

+ (z1 − z3)
4(z2 − z4)

4(z1 − z4)
2(z2 − z3)

2 (12)

where A = (c/3)−1. Perhaps a more useful form is given by merging V with ψ to write

directly

CM =
1

(M/2)!

∑

P∈SM

σ(P )




∏

1≤r<s≤M/2

χ̃(zP (2r−1), zP (2r); zP (2s−1), zP (2s))

∏

1≤t≤M/2

(c/3)

(zP (2t−1) − zP (2t))3



 (13)

where σ(P ) is the signature (±1) of the permutation and where χ̃ is given by

χ̃(z1, z2; z3, z4) =
3

c

[

A+
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

]

= 1 + (3/c)
(z1 − z2)(z3 − z4)

(z1 − z4)(z2 − z3)
(14)

Using MathematicaTM, we have been able to verify that this form of the correlator

satisfies the recursion relation for M ≤ 10. Below we sketch a proof that this recursion

relation holds for general M .

We note in passing that correlators of spin 1 and spin 2 fields of chiral algebras

have been found to have somewhat similar (but in some ways even simpler) forms. See

the discussions in Ref. [6] of the work of Ref. [7].

2. Special Cases and Further Checks

There are several special cases where CM may be calculated or tested by other means

to check the validity of our result. These cases are c = 1, 3/2, −6/5, 7/10, −21/4, and

∞.

Free Boson: The c = 1 case is a free boson theory where G is given by

G ∼ [: ei
√

3φ(z) : − : e−i
√

3φ(z) :] (15)

where φ is a free boson (See for example Ref. [8]). To evaluate the correlator of many

G fields, we multiply out the terms in all combinations. The only terms that can be
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nonzero, must have overall charge neutrality[1] so that the number of terms ei
√

3φ must

be the same as the number of terms of e−i
√

3φ. Thus all terms are of the form
∏

i,j∈A;i<j

(zi − zj)
3

∏

i,j∈B;i<j

(zi − zj)
3

∏

i∈A,j∈B

(zi − zj)
−3 (16)

where all of the particles are divided up into two groups A and B of equal size (compare

this form to that used in Ref. [9]). Summing all such terms should be equivalent to our

predicted form of CM for c = 1. This has been verified numerically for M ≤ 12.

Ising Cubed: The c = 3/2 case can be thought of as the cube of the Ising CFT,

the Virasoro minimal model M(3, 4), which has c = 1/2. G is simply the product of

the three Majorana fields, one from each theory. The correlator of Majorana fields in

M(3, 4) is a simple Pfaffian[1] written as Pf[1/(zi − zj)] thus the correlator of the G

fields should be the cube of this Pfaffian. Again we can verify numerically for M ≤ 12

particles that our predicted form for CM is indeed the cube of this Pfaffian for c = 3/2.

M(3, 5) Squared: The case c = −6/5 can be thought of as the square of the Virasoro

minimal model M(3, 5) which has c = −3/5. Each M(3, 5) theory contains a field with

spin 3/4, and the field G is then the product of these two fields. The correlator of

the fields with weight 3/4 in the M(3, 5) theory has been given explicitly in Ref. [10],

and the correlator of the G fields is then the square of this quantity. Again we verify

numerically for M ≤ 12 particles that our predicted form for CM with c = −6/5 agrees

with this quantity.

Tricritical Ising: The case of c = 7/10 is the tricritical Ising[1] model, the Virasoro

minimal model M(4, 5) where G corresponds to the field φ3,1. The four-point correlator

of this field has been calculated in Ref. [11] and indeed agrees with our expression.

Generally, the many-point correlator of this field must satisfy a particular differential

equation corresponding to a null vector condition (See Eq. D8 from BPZ[12]). One can

check that our proposed form for CM with c = 7/10 does indeed satisfy this differential

equation for small M . This has been verified for M ≤ 8 particles using MathematicaTM.

M(3, 8): The Virasoro minimal model M(3, 8) is the c = −21/4 case where G

corresponds to the field φ2,1. This field must similarly satisfy a differential equation

corresponding to a null vector condition (Eq. 5.17 of BPZ[12]). One can again check

that our proposed form for CM satisfies this condition for M ≤ 8 using MathematicaTM.

“Semiclassical” Limit: The limit of c = ∞ is trivial to solve. In this limit, our

proposed expression for the correlator, Eq. 13, takes the form of a Pfaffian Pf[1/(zi−zj)
3].

In the c = ∞ limit only the α term survives in the recursion relation Eq. 6. It is then

easy to see that this proposed Pfaffian form does indeed satisfy this simplified recursion

relation.

3. Sketch of Proof

In this section we prove that the recursion relation Eq. 6 holds for general M (for small

M it is easy to check explicitly). The proof is messy but shows how, with sufficient
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algebra, the recursion relation can be established. It seems likely a more elegant proof

may also be found.

To check the recursion relation in general, we examine the poles that occur when

z1 approaches some other particle zi as in Eq. 6. For simplicity we consider the case of

i = 2.

Examining the form of Eq. 13 and Eq. 14, it is clear that the only way to obtain a

third order pole when 2 approaches 1 is when the permutation pairs particles 1 and 2

so that P (2r) = 1 and P (2r− 1) = 2 or vice versa. Further, from Eq. 14 it is clear that

in the product of χ̃(1, 2;m,n) terms only the “1” term in Eq. 14 can contribute from χ̃

or the pole will be lower order. Counting the number of permutations that contribute,

we see that the coefficient of the third order pole is CM−2(1̂, 2̂) with precisely the right

coefficients to account for the α term of Eq. 6.

We next must show that there is no second order pole as z2 approaches z1 (since

there is no second order pole in Eq. 6). Again, using the form of Eq. 13 and Eq. 14 it

is clear that the only way to obtain a second order pole is again when the permutation

pairs particles 1 and 2 so that P (2r) = 1 and P (2r − 1) = 2 or vice versa, and then

when we multiply out the product of the χ̃ terms we should include exactly one factor

of (z1 − z2)(zm − zn)/(z1 − zn)(z2 − zm). Keeping such terms then taking the limit of

z1 → z2 we see that the resulting expression becomes symmetric under interchange of 1

and 2 to leading order. However the sum in Eq. 13 is antisymmetrized because of the

factor of σ(P ) thus canceling this term.

Finally we turn to the single pole as z1 approaches z2. There are three ways to get

a first order pole. In the first two ways, 1 and 2 are in the same pair, and terms in the

product of χ̃’s give (z1 − z2)
2 which then combines with the 1/(z1 − z2)

3 term in Eq. 13

to give a single pole. One way to get such a quadratic term is by expanding terms of

the form (here we use shorthand notation (12) = z1 − z2)

lim
1→2

χ̃(1, 2; 3, 4) = 1 + (3/c)
(12)(34)

(24)(23)
− (3/c)

(12)2(34)

(24)2(23)
+ . . . (17)

to second order as shown. A second way is via the product of two χ̃’s

lim
1→2

χ̃(1, 2; 3, 4)χ̃(1, 2; 5, 6) = . . .+ (3/c)2 (12)2(34)(56)

(23)(24)(25)(26)
+ . . . (18)

The third way to get a first order pole is when particles 1 and 2 are not paired, in which

case we have terms of the type

lim
1→2

χ̃(1, 4; 3, 2) = 1 + (3/c)
(24)(32)

(12)(43)
+ . . . (19)

Note that in all three equations we have replaced 1 with 2 in all places (since we want

the evaluation at the pole) except to make the (12) factors explicit. The sum of the

coefficients of these residues should give the β and γ terms of the recursion relation

Eq. 6.

Once we have isolated the residues of these poles, we would like to find the further

poles with respect to the approach of a third particle towards the second (the third



Correlators of N = 1 Superconformal Currents 6

particle is j in Eq. 6). In Eq. 17 there is a second order pole for j = 4. Then taking

position 4 to approach 2, the coefficient of this pole is then just the product of all

χ̃ that are not a function of positions 1 or 2 (we use only the “1” term from any

other χ̃(1, 2;n,m) so we do not pick up any more powers of (12)) times the factors

of 1/(z − z)3 not including 1/(12)3. Summing over these obviously gives CM−2(1̂, 2̂)

however the coefficient is only 1/3 that necessary to account for the coefficient of term

β. Let us call this contribution term A.

To evaluate the first order pole as 2 approaches 4, we expand the numerator of

Eq. 17 so that (34) = (32)+(24). Having first taken the (12) residue, and the first order

pole as 4 approaches 2 then gives −1/(43) times all terms not including 1 and 2. There

is obviously another way to get a first order pole from Eq. 17 by taking j = 3 (ie., when

3 approaches 2), in this case the residue is exactly the same as the previous case. Let

us call these contributions terms B.

We now turn to the poles that arise from the form of Eq. 18. Here, there is no

possibility of getting a second order pole as any particle (excluding 1) approaches 2. The

single poles are for example, when 2 approaches 4 we have a residue −(56)/(45)(46) times

factors of χ̃ that do not contain 1 and 2 and times the 1/(z − z)3 factors not including

1/(12)3. Call these terms C. Note that as compared to term B, these terms contain one

additional power of 3/c.

We now examine terms of the type of Eq. 19 which are the most complicated. As

written there, the relevant permutation has P (1) = 1, P (2) = 4, P (3) = 3, P (4) = 2

and let us assume P (i) = i for i > 4 for simplicity here. The relevant term of the

permutation sum is of the form

(c/3)2χ̃(1, 4, 3, 2)

(z1 − z4)3(z3 − z2)3

[
∏

n>2

χ̃(1, 4; 2n− 1, 2n)

] [
∏

n>2

χ̃(3, 2; 2n− 1, 2n)

]

×

[
∏

n>m>2

χ̃(2m− 1, 2m; 2n− 1, 2n)

] [
∏

n>2

(c/3)(z2n−1 − z2n)−3

]

(20)

As 2 approaches 1 there is a single pole, as expressed in Eq. 19. Other than this pole, any

occurance of 1 in this equation is then replaced by 2 (since we are looking at the residue

of the pole). Then due to the factor of 1/(24)3 out front there will be a second order

pole as 4 approaches 2 with a prefactor of −(c/3)/(43)(32)2 times the terms in brackets.

Considering the first term in brackets the 1 is replaced by 2, and in multiplying out

these factors of χ̃ we must only keep the “1” term since the other terms have a factor of

(24) and reduce the order of the (24) pole. The coefficient of the second order pole as 2

approaches 4 then is given by the remaining factors with 2 replaced by 4 everywhere it

occurs. This then results in precisely the same quantity (and same sign once we include

the σ(P ) factor) as in term A above. Further there will be an identical term from

exchanging coordinates 3 and 4, leaving 1 and 2 alone, and exchanging each additional

coordinate with its partner (P (2n) ↔ P (2n − 1)). Adding these two terms with term

A above gives precisely the right coefficient to account for term β in Eq. 6.

In terms of the type of Eq. 19 considering the residue evaluated when 1 approaches
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2, there is also the possibility of a first order pole as particle 2 approaches another

coordinate. There are two ways this may occur. The first way is similar to the above

paragraph, only here we take a subleading term, expanding 2 around the position of

4. (i.e, we consider the second order pole 1/(24)2 as in the previous paragraph, but we

expand coordinate 2 around position 4 so that at first order there is also a factor of (24)

in the numerator). The coefficient of the first order pole of 2 with respect to 4 is then

∂

∂z2

∣
∣
∣
∣
∣
z2→z4

{

(32)

(43)

(c/3)

(32)3

[
∏

n>2

χ̃(2, 4; 2n− 1, 2n)

] [ ] [ ] [ ]}

(21)

where the three empty brackets are the same as the last three brackets in Eq. 20. Let

us see first what happens when the derivative acts on the outside factor of (32). The

derivative is a trivial −1, and we simply replace 2 by 4 everywhere it occurs in the

remaining expression. Note that in the first bracketed expression, when 2 → 4 only

the “1” term survives. The remaining expression looks just like the terms that would

contribute to CM−2(1̂, 2̂) except for the 1/(43) out front. We identify these terms as being

exactly the B terms discussed above with a sign that precisely cancels them. Similarly,

let us examine what happens when the derivative acts on the first bracketed quantity.

Here, we get terms of the form (2n−1, 2n)/(4, 2n−1)(4, 2n) times something that looks

exactly like our previous expression without the 1/(43) and with one additional factor

of 3/c. We similarly identify these terms as being exactly the C terms discussed above

with a sign to cancel them. We now let the derivative act on the remaining terms in

Eq. 21. Once we take 2 to 4, and sum over all terms we realize that this is precisely

∂z4
CM−2(1̂, 2̂) which correctly gives us the final γ term of Eq. 6.

To complete the proof, we realize (as mentioned above) that there is one more

possible source of first order poles as particle 2 approaches other particles in terms of

the type of Eq. 19 (Here we have already taken the residue of the (12) pole and we are

are considering 2 approaching particles other than 1 or 4). Here we note that such terms

all sum to zero. The terms in question are of the type χ̃(1, 4; 3, 2)χ̃(3, 2; 5, 6)χ̃(1, 4; 5, 6).

From the first term there is a single pole as 2 approaches 1, then from the second term

there is then a single pole as, say, 5 approaches 2. However, it is easy to show that this

combination will be precisely canceled by the same poles that occur in the term of the

form χ̃(1, 6; 3, 2)χ̃(3, 2, 5, 4)χ̃(1, 6, 5, 4) (with all remaining coordinates unchanged).
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