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Abstract 

The hybrid strategy-based modeling approach is a 
method for reducing the number of network packets that 
need to be transmitted to maintain global consistency in 
Distributed Interactive Applications.  It combines a short-
term model such as dead reckoning with a long-term 
strategy model.  A key aspect of this approach is to 
determine strategies that users adopt in navigating the 
simulated environment to satisfy some objective or goal. 
Computer-generated artificial entities called BOTS, 
navigate by employing an Artificial Intelligence technique 
called path finding.  This paper proposes using the A* 
path finding algorithm to automatically compute strategies 
that human users might take through the simulated 
environment. Since the A* algorithm operates on a graph 
representation of the environment and because of the real-
time constraints imposed on Distributed Interactive 
Applications, the paper also carries out a comparative 
analysis of two extreme graph representations of the 
environment – a standard regular grid and a minimal grid 
representation.  The comparison shows that the minimal 
grid leads to an order of magnitude reduction in real-time 
computation compared to the regular grid.  In addition the 
paths computed using the minimal grid and the A* 
algorithm are used to determine strategy models as part of 
the hybrid strategy-based modeling approach.  It is shown 
that this reduces the network traffic required to maintain 
global consistency of entity dynamics in two simulated 
environments. 
 
 
1. Introduction 

 
Networked computer programs that allow users to 

interact in real-time in a simulated environment are known 
as Distributed Interactive Applications (DIAs).  One of the 
major challenges facing the development and deployment 
of DIAs is the maintenance of a consistent world view for 
all participants in the face of network latency.  Several 

techniques for combating latency have been documented 
and implemented.  Among these, the hybrid strategy-based 
modeling technique has shown a reduction in the number 
of packets that needs to be transmitted across the network 
to maintain global consistency [1].  This technique 
operates by identifying long-term strategies that users may 
adopt in the pursuit of goals and only communicating the 
current user strategy to other participants.  It is a hybrid 
approach in that it combines a short-term dead reckoning 
model with one of several possible long-term strategy 
models.  One key difficulty with this approach is the 
automatic determination of possible strategies users may 
adopt to achieve a given goal.  In existing DIAs such as 
computer games, computer-generated artificial entities 
called BOTS, face the same difficulty – given an initial 
location and an objective, what is the best method to adopt 
to reach the objective while minimizing some cost 
function?  This problem is referred to as path finding [2]. 

Path finding is an essential component of the artificial 
intelligence (AI) that makes BOTs appear more like 
human users.  In DIAs such as networked games, up to 
30% of computational time is spent on AI computations, 
predominantly path finding [3].  Path-finding algorithms 
consist of two parts: 

 
1. the generation of a search graph that represents the 

underlining environment and 
2. an algorithm that searches the graph representation 

to find a path connecting given initial and target 
locations. 

 
The graph representation of a simulated environment 

represents the environment by a series of nodes, with paths 
through the environment being constrained to pass from 
one node to another.  A minimal set of nodes can be 
achieved by using a points of visibility graph or minimal 
grid.  Other possible representations of the environment 
exist.  Probabilistic roadmaps randomly place nodes on a 
map, connecting newly placed nodes to nearby nodes [4]. 
Navigational Meshes split the simulated environment into 

mailto:decland@cs.may.ie
mailto:seamus.mcloone}@eeng.may.ie


regions that are free from obstacles, only allowing 
navigation between these regions [5].  Potential Field 
methods give the target location an attractive force and 
obstacles repulsive forces; entities then follow the 
potential field to the target [6].  Often nodes are manually 
placed within the environment or the computed nodes are 
tweaked manually to improve the performance of BOTs, 
as in Unreal Tournament [7]. 

Path finding algorithms compute the path through the 
environment under some constraint using the node 
representation of the environment.  The most widely used 
and arguably the best path finding algorithm used in DIAs 
is the A* (A star) heuristic search [8], although others 
exist such as Breadth-first search, Depth-first search and 
Dijkstra’s algorithm [9]. 

The graph representation of the environment used in 
path finding can take many forms.  Examples include a 
regular grid, a visibility grid or a navigational mesh.  
However there is a dearth of comparative results between 
various grid representations and path finding algorithms.  
The first part of this paper provides an initial contribution 
to this area by comparing an implementation of the A* 
path finding algorithm on both a visibility graph and 
regular graph representation of a simulated environment.  
It is shown that the visibility graph provides an order of 
magnitude saving in computational time compared to the 
same environment represented by a regular grid.  The 
paper also proposes a novel technique based on the 
visibility graph and A* algorithm to automatically 
determine strategies users may adopt in navigating a 
simulated environment.  Two sample environments are 
used to illustrate how strategies can be automatically 
computed and data will be presented to show that these 
strategies lead to a reduction in network packets compared 
to pure dead reckoning when used as part of the hybrid 
strategy-based modeling technique. 

In the following section we describe the regular-grid 
and visibility graph representations of the underlying 
environment.  Section 3 presents a comparative analysis of 
the A* algorithm using a regular-graph and a points of 
visibility or minimal graph.  The application of the A* 
algorithm and the minimal grid to the problem of 
computing strategy models in a given simulated 
environment is described in section 4 and the results of 
simulating network traffic using such a strategy model is 
given in section 5.  The paper then ends with some 
concluding remarks and an indication of future work in 
section 6. 

 
2. Graph Representations of the Environment 

 
In this section two possible representations of the 

simulated environment will be described: a  regular search 
graph [10] and a minimal grid or visibility graph [11].  In 
general these representations are at opposite ends of the 

node spectrum, in that the minimal grid represents the 
environment by associating nodes with each obstacle, 
whereas the regular grid covers all areas of the 
environment that are free from obstacles with nodes.  
Therefore, the actual number of nodes in each case is a 
function of the number and size of obstacles within the 
environment. 

 
2.1 Regular Graph 

 
At the simplest level simulated environments consist of 

obstacles that must be avoided and obstacle-free or ground 
areas that can be freely navigated.  Figure 1a shows an 
environment with a single rectangular obstacle.  A regular 
search graph is formed by overlaying a regular grid of 
nodes on the ground area.  Each node is connected to 
adjacent nodes and an entity can move from the node it 
currently finds itself to any node connected to that node.  
Such a regular grid is illustrated in Figure 1b.  The 
absolute grid spacing or grid spatial resolution is dictated 
by the units of measure within the simulated environment, 
each node on the grid being one unit from other nodes in 
both a horizontal and vertical direction [10, 12].  Given 
such a grid together with both start and target locations, 
we can then search for a set of possible paths connecting 
the start and target nodes.  Figure 1c shows the connected 
grid, while Figure 1d shows the shortest path solution 
linking the start and target nodes. 
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Figure 1: (a) Ground area with obstacle; (b) Regular
grid; (c) Connected regular grid with initial and target
nodes; (d) Connected grid with path solution. 



2.2 Visibility Graph In the next section the regular and visibility graph 
representation of the environment will be used by the A* 
path finding algorithm to discover the shortest path 
through an environment.  This will provide a comparative 
analysis and greater understanding of the two 
representations. 

 
In contrast to a regular graph, a visibility graph locates 

the nodes at the vertices of obstacles, or at locations that 
will accurately delimit the obstacle.  Each node is then 
connected to all other nodes that are visible to it. This 
requires checking whether nodes are in line of sight of 
each other.  Figure 2a shows the environment with a 
square obstacle.  In Figure 2b nodes representing the 
vertices of the obstacle together with both start and target 
nodes are shown.  Figure 2c demonstrates some of the 
paths that might be taken by an entity moving from the 
start to target node without going through the obstacle.  
The shortest path is indicated in Figure 2d. 

 
 
3. An Analysis of A* using Two grid Types 
 
A test platform was developed to compare the 

performance of the A* algorithm using two graph 
representations.  This phase of the work aimed to 
understand the A* algorithm and the visibility graph 
representation of the environment in more detail and 
provide experimental evidence of the cost saving achieved 
by using the visibility graph with the A* algorithm.  This 
provided motivation for considering path finding as a 
means for automatically determining possible strategies 
within a Distributed Interactive Application. 
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The A* search algorithm evaluates each node using the 
sum of two cost functions.  The first one calculates the 
cost of the path from the initial location to the location 
being evaluated. The second function provides a heuristic 
estimate of the remaining cost to reach the target location. 
The sum of these provides an estimate of the total path 
cost through the evaluated node. During each iteration of 
the search, A* evaluates the nodes connected to the node 
with the lowest estimated path cost, expanding the best 
node first [8]. 

 
 
 
 
 
 
 

  
 
 
 
 
 
In this example the initial and target nodes are 

connected to all other visible nodes.  Other connection 
criteria can be used; the initial and target nodes may be 
connected to the nearest visibility graph node, or to the k 
nearest nodes, or to all visible nodes within a set distance.  
Obviously the possibility of a direct connection between 
the initial and target nodes should be tested for.  Visibility 
graphs themselves are generated offline and it has been 
shown that visibility graphs can be generated in O(nlogn + 
E) time [13], where n is the number of nodes and E is the 
number of edges in the graphs. 

 
 
 
 
 
 
 
 
 
 

Figure 2: (a) Ground area and obstacle; (b)
Visibility graph with start and target nodes; (c)
Connected visibility graph; (d) Connected graph
with path solution. 

 
 
 
 

Figure 3: A sample map with randomly generated
obstacles and the path computed using A* for a
regular graph (left) and a visibility graph (right). 

 
The developed test platform generates a random map 

and creates a visibility graph and regular grid; the A* 



algorithm is applied to these grid representations and the 
results are displayed together for ease of comparison.  In 
the experiments performed here environments were 
randomly generated using varying numbers of obstacles; 
each obstacle measured 5 by 5 units.  An example of such 
an environment is given in Figure 3.  A regular grid and 
visibility graph were then created for each environment 
and the tests were carried out. 

The performance of the A* algorithm using each grid 
was computed by exploiting the high resolution hardware 
counter, which is supported by Microsoft Visual C++ 
2003.  This counter had a frequency of 3,579,545 counts 
per second on the test platform employed (AMD Athlon 
XP 2600+ with 512MB RAM).  The actual counts were 
not transformed into absolute time values as again we are 
only interested in a relative comparison. 

A series of experiments was performed to determine the 
computation time using both graphs as the number of 
obstacles in the environment was increased from 0 to 140 
on a map size of 50 by 50 units.  In each case, 1000 
random maps with random obstacles and random 
start/target positions were generated and the average time 
count for A* to finish its search was measured.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 illustrates the computation time as a function 

of the number of obstacles. When there are 100 obstacles 
in the environment a search using the visibility grid is 
calculated in 10% of the time required by the regular grid, 
demonstrating that the visibility graph is faster by 90%.  
However as the number of obstacles increases two effects 
are noticed: (1) there is an increase in the search times for 
both representations and (2) the visibility grid gets 
progressively slower in comparison to the regular grid.  

These two effects may be explained as follows.  For the 
regular grid, an increase in the number of obstacles means 
a reduction in the number of nodes and connections as 
more ground space is taken up with obstacles.  However, 
there is also more time wasted in computing dead end 
paths.  For the visibility graph, an increase in obstacles 
results in an increase in the number of nodes and 
connections with the number of connections being O(m2), 
where m is the number of nodes.  Despite this, even with 
140 obstacles, the visibility graph is 80% faster. 

The experiments performed indicate that the A* path 
finding algorithm performs significantly better using a 
visibility graph than a regular graph.  Currently path 
finding is only used by computer-generated characters 
navigating in the environment.  We use path finding to 
automatically generate strategies that human users may 
adopt in navigating the environment.  These strategies can 
be used in the hybrid strategy-based model technique.  
These issues are developed in the following section. 
 
4. Strategy Models using Visibility graphs 
 

Motivated by the efficiency of the path finding 
algorithm using a visibility graph representation and the 
fact that path finding is used by computer generated 
characters, it was decided to use path finding to compute 
possible strategies that human users might choose when 
navigating an environment. Regular Grid

Visibility Graph

Regular Grid

Visibility Graph

The hybrid strategy-based modeling approach reduces 
the number of update packets that need to be 
communicated between participants of a DIA to maintain 
global consistency within a reasonable error threshold.  
The hybrid model consists of a short-term dead reckoning 
model and at least one long-term strategy model.  To 
reduce the number of packets that need to be transmitted, 
the local user transmits information to inform other users 
of the model that best represents their current activity.  
Remote users maintain this model until the local user 
decides a change is needed based on some threshold 
criteria, in this case an error tolerance value.  Because the 
long-term strategy model may represent a path of any 
form, it can be communicated using a single packet in 
contrast to a dead reckoning representation of the same 
path, which may require several packets.  In previous work 
strategies were chosen by visually selecting the most 
representative user steady-state trajectory [1, 14].  Here the 
strategies are computed automatically using the A* 
algorithm and visibility graphs. Two test environments 
were constructed and strategies for the goal of navigating 
from a start to an end location in the shortest time possible 
were computed using A* and visibility graphs; 
environments 1 and 2 are shown in Figures 5 and 6 
respectively. 

Figure 4: The time spent by A* to find a path using the
visibility graph and the regular grid, as the number of
obstacles was increased on 50 by 50 maps with
random obstacle positions. 

 
 



By smoothing the paths the strategies can be made to 
match actual user movement more realistically.  Figure 7 
shows the smoothed paths for both environments after 
applying a standard smoothing algorithm that takes entity 
dynamics into account [2].  These smoothed paths became 
the strategies that were used to simulate the generation of 
network packets as part of the hybrid strategy model.  This 
simulation is described in the following section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: (a) User environment 1 (b) path
generated automatically by A* algorithm. 
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Figure 6: (a) User environment 2 (b) path
generated automatically by A* algorithm. 
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Figure 7: A realistic turns routine was added to
create more realistic strategies, indicated by the solid
line.  The dashed line shows the strategy found by
path finding for (a) environment 1 and (b)
environment 2. 

5. Simulation Results 
 
User data was gathered from fourteen distinct users.  

Each of these users maneuvered an entity through a maze 
from a given start position to a given target location.  
Users had no prior knowledge of the maze and were 
restricted to viewing a circular area of the maze centered 
on their current location at any point in time.  Users 
repeated the task of traveling from the start to the target 
node in the shortest time possible.  With each attempt their 
knowledge of the maze increased until they converged on 



a steady-state trajectory.  To determine the number of 
packets that would have to be sent over the network to 
represent a user trajectory a simulation was performed 
which took the trajectory as input and then simulated the 
number of packets generated in three cases: 

 
1. using a  pure dead reckoning model only; 
2. using a hybrid strategy model with the strategy 

chosen by visual analysis of the user steady-state 
trajectories; 

3. using a hybrid strategy model with the strategy 
computed automatically using the A* path finding 
algorithm and the visibility graph as described 
earlier. 

 
 
 
 
 
 

 User 1 User 2 
Hybrid Hybrid  Seq DR 

Visual Path finding 
DR 

Visual Path finding 
1 31 32 33 16 13 17 
2 26 27 27 22 16 19 
3 18 15 11 28 28 29 
4 8 3 4 15 1 5 
5 10 7 5 18 9 17 
6 14 4 7 13 8 8 
7 13 13 9 13 5 12 
8 8 4 7 10 4 1 

 
 
 
 
 
 

 User 1 User 2 
Hybrid Hybrid  Seq DR 

Visual Path finding 
DR 

Visual Path finding 
1 35 42 36 52 44 51 
2 38 32 34 25 23 24 
3 22 6 9 34 23 26 
4 18 3 3 21 4 10 
5 16 6 3 24 20 21 
6 20 3 3 18 7 11 

 
 
The results of the simulations are presented in Tables 1 

and 2 for environment 1 and environment 2 respectively.  
Examination of these results shows that there is a 
reduction in the number of packets that need to be 
transmitted using the hybrid strategy-based model 
approach.  In addition, there is very little discrepancy 
between the number of packets transmitted using a 

strategy constructed from visual analysis of recorded user 
trajectories and a strategy constructed automatically using 
path finding.  Two sample trajectories are illustrated in 
Figure 8 for user 1 navigating through environment 2.  As 
their experience within the maze increases their trajectory 
converges to the steady-state strategy identified using path 
finding.  It must be noted that the results presented are for 
a threshold of 25 units.  This choice was based on the 
variance of the recorded user steady-state trajectories.  
Results for a lower threshold value have been presented 
elsewhere [1, 2]. 
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Table 1: Environment 1: packets transmitted for pure
dead reckoning and the hybrid method; strategy
model chosen by visual analysis and path finding.
Trial 1 is the initial trial.  Threshold value: 25. 

Table 2: Environment 2: packets transmitted for both
pure dead reckoning and the hybrid method; strategy
model chosen by visual analysis and path finding.
Trial 1 is the initial trial.  Threshold value: 25. 

 
 
 
 
 
 

Figure 8: User 1 navigating in environment 2 –  (a)
first trajectory - exploratory; (b) final trajectory -
steady-state.  The strategy model (solid line), path
finding model (dashed) line and user trajectory (wide
line of circles) are shown. 

 
If all trials of the two users in both environments are 

considered, dead reckoning generates 596 packets.  In 
comparison the hybrid technique (employing a visual 
model) generates 402 packets and the hybrid model 



(employing a path finding model) generates 438 packets.  
This corresponds to reductions of 33% for the visual 
heuristic Hybrid model, and 25% for the path finding 
Hybrid model.  The results show that the reduction in the 
number of generated packets compared to dead reckoning 
is similar for strategies constructed either visually or using 
path finding.  The key difference between the two is that 
the path finding strategy is generated automatically. 
 
6. Conclusions and Future Work 
 

It has been shown that visibility graphs reduce path 
finding computation time by between 80 and 90%, 
depending on the number and the density of obstacles in 
the simulated environment.  The visibility graph is also 
insensitive to map size, unlike the regular grid, which 
makes it suitable for large virtual environments with few 
obstacles. 

The A* path finding algorithm was implemented on a 
visibility graph and used to automatically generate strategy 
models.  These were used in the hybrid strategy-based 
modeling approach and showed a reduction in the number 
of packets needed to maintain global DIA consistency.  
The reduction was commensurate with previous work 
using heuristic techniques for defining strategies.  The 
advantage of automatic identification of strategies using 
A* and visibility graphs is twofold: 
 

1. by reducing the number of packets that need to be 
transmitted network latency is reduced, as 
packets only need to be sent when the strategy 
changes; if communication is lost for a longer 
period of time, remote users can be rendered 
locally as continuing on the strategy they were on 
before network connection was lost; 

2. in the case of dynamic goals, it is proposed that 
strategies to satisfy the goal can be recomputed in 
real time. 

 
Future work will focus on using path finding techniques 

to determine strategies on the fly for dynamic goals.  This 
will work by pre-computing the visibility grid for all users 
and then employing the A* algorithm to search in real time 
for a path between a current position and a dynamic target 
position.  The path finding implementation will be 
modified to use Hershberger and Suri's methods, which 
provides a shortest path in O(nlogn) time [15]. 
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