

Visibility Path-finding in relation to Hybrid Strategy-based Models in Distributed
Interactive Applications

Dermot Madden, Declan Delaney
Department of Computer Science, National

University of Ireland, Maynooth, Co. Kildare.
decland@cs.may.ie

Séamus McLoone, Tomás Ward
Department of Electronic Engineering, National
University of Ireland, Maynooth, Co. Kildare.
{tomas.ward, seamus.mcloone}@eeng.may.ie

Abstract

The hybrid strategy-based modeling approach is a
method for reducing the number of network packets that
need to be transmitted to maintain global consistency in
Distributed Interactive Applications. It combines a short-
term model such as dead reckoning with a long-term
strategy model. A key aspect of this approach is to
determine strategies that users adopt in navigating the
simulated environment to satisfy some objective or goal.
Computer-generated artificial entities called BOTS,
navigate by employing an Artificial Intelligence technique
called path finding. This paper proposes using the A*
path finding algorithm to automatically compute strategies
that human users might take through the simulated
environment. Since the A* algorithm operates on a graph
representation of the environment and because of the real-
time constraints imposed on Distributed Interactive
Applications, the paper also carries out a comparative
analysis of two extreme graph representations of the
environment – a standard regular grid and a minimal grid
representation. The comparison shows that the minimal
grid leads to an order of magnitude reduction in real-time
computation compared to the regular grid. In addition the
paths computed using the minimal grid and the A*
algorithm are used to determine strategy models as part of
the hybrid strategy-based modeling approach. It is shown
that this reduces the network traffic required to maintain
global consistency of entity dynamics in two simulated
environments.

1. Introduction

Networked computer programs that allow users to

interact in real-time in a simulated environment are known
as Distributed Interactive Applications (DIAs). One of the
major challenges facing the development and deployment
of DIAs is the maintenance of a consistent world view for
all participants in the face of network latency. Several

techniques for combating latency have been documented
and implemented. Among these, the hybrid strategy-based
modeling technique has shown a reduction in the number
of packets that needs to be transmitted across the network
to maintain global consistency [1]. This technique
operates by identifying long-term strategies that users may
adopt in the pursuit of goals and only communicating the
current user strategy to other participants. It is a hybrid
approach in that it combines a short-term dead reckoning
model with one of several possible long-term strategy
models. One key difficulty with this approach is the
automatic determination of possible strategies users may
adopt to achieve a given goal. In existing DIAs such as
computer games, computer-generated artificial entities
called BOTS, face the same difficulty – given an initial
location and an objective, what is the best method to adopt
to reach the objective while minimizing some cost
function? This problem is referred to as path finding [2].

Path finding is an essential component of the artificial
intelligence (AI) that makes BOTs appear more like
human users. In DIAs such as networked games, up to
30% of computational time is spent on AI computations,
predominantly path finding [3]. Path-finding algorithms
consist of two parts:

1. the generation of a search graph that represents the

underlining environment and
2. an algorithm that searches the graph representation

to find a path connecting given initial and target
locations.

The graph representation of a simulated environment

represents the environment by a series of nodes, with paths
through the environment being constrained to pass from
one node to another. A minimal set of nodes can be
achieved by using a points of visibility graph or minimal
grid. Other possible representations of the environment
exist. Probabilistic roadmaps randomly place nodes on a
map, connecting newly placed nodes to nearby nodes [4].
Navigational Meshes split the simulated environment into

mailto:decland@cs.may.ie
mailto:seamus.mcloone}@eeng.may.ie

regions that are free from obstacles, only allowing
navigation between these regions [5]. Potential Field
methods give the target location an attractive force and
obstacles repulsive forces; entities then follow the
potential field to the target [6]. Often nodes are manually
placed within the environment or the computed nodes are
tweaked manually to improve the performance of BOTs,
as in Unreal Tournament [7].

Path finding algorithms compute the path through the
environment under some constraint using the node
representation of the environment. The most widely used
and arguably the best path finding algorithm used in DIAs
is the A* (A star) heuristic search [8], although others
exist such as Breadth-first search, Depth-first search and
Dijkstra’s algorithm [9].

The graph representation of the environment used in
path finding can take many forms. Examples include a
regular grid, a visibility grid or a navigational mesh.
However there is a dearth of comparative results between
various grid representations and path finding algorithms.
The first part of this paper provides an initial contribution
to this area by comparing an implementation of the A*
path finding algorithm on both a visibility graph and
regular graph representation of a simulated environment.
It is shown that the visibility graph provides an order of
magnitude saving in computational time compared to the
same environment represented by a regular grid. The
paper also proposes a novel technique based on the
visibility graph and A* algorithm to automatically
determine strategies users may adopt in navigating a
simulated environment. Two sample environments are
used to illustrate how strategies can be automatically
computed and data will be presented to show that these
strategies lead to a reduction in network packets compared
to pure dead reckoning when used as part of the hybrid
strategy-based modeling technique.

In the following section we describe the regular-grid
and visibility graph representations of the underlying
environment. Section 3 presents a comparative analysis of
the A* algorithm using a regular-graph and a points of
visibility or minimal graph. The application of the A*
algorithm and the minimal grid to the problem of
computing strategy models in a given simulated
environment is described in section 4 and the results of
simulating network traffic using such a strategy model is
given in section 5. The paper then ends with some
concluding remarks and an indication of future work in
section 6.

2. Graph Representations of the Environment

In this section two possible representations of the

simulated environment will be described: a regular search
graph [10] and a minimal grid or visibility graph [11]. In
general these representations are at opposite ends of the

node spectrum, in that the minimal grid represents the
environment by associating nodes with each obstacle,
whereas the regular grid covers all areas of the
environment that are free from obstacles with nodes.
Therefore, the actual number of nodes in each case is a
function of the number and size of obstacles within the
environment.

2.1 Regular Graph

At the simplest level simulated environments consist of

obstacles that must be avoided and obstacle-free or ground
areas that can be freely navigated. Figure 1a shows an
environment with a single rectangular obstacle. A regular
search graph is formed by overlaying a regular grid of
nodes on the ground area. Each node is connected to
adjacent nodes and an entity can move from the node it
currently finds itself to any node connected to that node.
Such a regular grid is illustrated in Figure 1b. The
absolute grid spacing or grid spatial resolution is dictated
by the units of measure within the simulated environment,
each node on the grid being one unit from other nodes in
both a horizontal and vertical direction [10, 12]. Given
such a grid together with both start and target locations,
we can then search for a set of possible paths connecting
the start and target nodes. Figure 1c shows the connected
grid, while Figure 1d shows the shortest path solution
linking the start and target nodes.

(a) (b)

(c) (d)

Start

target

obstacle

(a) (b)

(c) (d)

Start

target

obstacle

Figure 1: (a) Ground area with obstacle; (b) Regular
grid; (c) Connected regular grid with initial and target
nodes; (d) Connected grid with path solution.

2.2 Visibility Graph In the next section the regular and visibility graph
representation of the environment will be used by the A*
path finding algorithm to discover the shortest path
through an environment. This will provide a comparative
analysis and greater understanding of the two
representations.

In contrast to a regular graph, a visibility graph locates

the nodes at the vertices of obstacles, or at locations that
will accurately delimit the obstacle. Each node is then
connected to all other nodes that are visible to it. This
requires checking whether nodes are in line of sight of
each other. Figure 2a shows the environment with a
square obstacle. In Figure 2b nodes representing the
vertices of the obstacle together with both start and target
nodes are shown. Figure 2c demonstrates some of the
paths that might be taken by an entity moving from the
start to target node without going through the obstacle.
The shortest path is indicated in Figure 2d.

3. An Analysis of A* using Two grid Types

A test platform was developed to compare the

performance of the A* algorithm using two graph
representations. This phase of the work aimed to
understand the A* algorithm and the visibility graph
representation of the environment in more detail and
provide experimental evidence of the cost saving achieved
by using the visibility graph with the A* algorithm. This
provided motivation for considering path finding as a
means for automatically determining possible strategies
within a Distributed Interactive Application.

(a) (b)

(c) (d)

Start

target

(a) (b)

(c) (d)

Start

target

The A* search algorithm evaluates each node using the
sum of two cost functions. The first one calculates the
cost of the path from the initial location to the location
being evaluated. The second function provides a heuristic
estimate of the remaining cost to reach the target location.
The sum of these provides an estimate of the total path
cost through the evaluated node. During each iteration of
the search, A* evaluates the nodes connected to the node
with the lowest estimated path cost, expanding the best
node first [8].

In this example the initial and target nodes are

connected to all other visible nodes. Other connection
criteria can be used; the initial and target nodes may be
connected to the nearest visibility graph node, or to the k
nearest nodes, or to all visible nodes within a set distance.
Obviously the possibility of a direct connection between
the initial and target nodes should be tested for. Visibility
graphs themselves are generated offline and it has been
shown that visibility graphs can be generated in O(nlogn +
E) time [13], where n is the number of nodes and E is the
number of edges in the graphs.

Figure 2: (a) Ground area and obstacle; (b)
Visibility graph with start and target nodes; (c)
Connected visibility graph; (d) Connected graph
with path solution.

Figure 3: A sample map with randomly generated
obstacles and the path computed using A* for a
regular graph (left) and a visibility graph (right).

The developed test platform generates a random map

and creates a visibility graph and regular grid; the A*

algorithm is applied to these grid representations and the
results are displayed together for ease of comparison. In
the experiments performed here environments were
randomly generated using varying numbers of obstacles;
each obstacle measured 5 by 5 units. An example of such
an environment is given in Figure 3. A regular grid and
visibility graph were then created for each environment
and the tests were carried out.

The performance of the A* algorithm using each grid
was computed by exploiting the high resolution hardware
counter, which is supported by Microsoft Visual C++
2003. This counter had a frequency of 3,579,545 counts
per second on the test platform employed (AMD Athlon
XP 2600+ with 512MB RAM). The actual counts were
not transformed into absolute time values as again we are
only interested in a relative comparison.

A series of experiments was performed to determine the
computation time using both graphs as the number of
obstacles in the environment was increased from 0 to 140
on a map size of 50 by 50 units. In each case, 1000
random maps with random obstacles and random
start/target positions were generated and the average time
count for A* to finish its search was measured.

Figure 4 illustrates the computation time as a function

of the number of obstacles. When there are 100 obstacles
in the environment a search using the visibility grid is
calculated in 10% of the time required by the regular grid,
demonstrating that the visibility graph is faster by 90%.
However as the number of obstacles increases two effects
are noticed: (1) there is an increase in the search times for
both representations and (2) the visibility grid gets
progressively slower in comparison to the regular grid.

These two effects may be explained as follows. For the
regular grid, an increase in the number of obstacles means
a reduction in the number of nodes and connections as
more ground space is taken up with obstacles. However,
there is also more time wasted in computing dead end
paths. For the visibility graph, an increase in obstacles
results in an increase in the number of nodes and
connections with the number of connections being O(m2),
where m is the number of nodes. Despite this, even with
140 obstacles, the visibility graph is 80% faster.

The experiments performed indicate that the A* path
finding algorithm performs significantly better using a
visibility graph than a regular graph. Currently path
finding is only used by computer-generated characters
navigating in the environment. We use path finding to
automatically generate strategies that human users may
adopt in navigating the environment. These strategies can
be used in the hybrid strategy-based model technique.
These issues are developed in the following section.

4. Strategy Models using Visibility graphs

Motivated by the efficiency of the path finding
algorithm using a visibility graph representation and the
fact that path finding is used by computer generated
characters, it was decided to use path finding to compute
possible strategies that human users might choose when
navigating an environment. Regular Grid

Visibility Graph

Regular Grid

Visibility Graph

The hybrid strategy-based modeling approach reduces
the number of update packets that need to be
communicated between participants of a DIA to maintain
global consistency within a reasonable error threshold.
The hybrid model consists of a short-term dead reckoning
model and at least one long-term strategy model. To
reduce the number of packets that need to be transmitted,
the local user transmits information to inform other users
of the model that best represents their current activity.
Remote users maintain this model until the local user
decides a change is needed based on some threshold
criteria, in this case an error tolerance value. Because the
long-term strategy model may represent a path of any
form, it can be communicated using a single packet in
contrast to a dead reckoning representation of the same
path, which may require several packets. In previous work
strategies were chosen by visually selecting the most
representative user steady-state trajectory [1, 14]. Here the
strategies are computed automatically using the A*
algorithm and visibility graphs. Two test environments
were constructed and strategies for the goal of navigating
from a start to an end location in the shortest time possible
were computed using A* and visibility graphs;
environments 1 and 2 are shown in Figures 5 and 6
respectively.

Figure 4: The time spent by A* to find a path using the
visibility graph and the regular grid, as the number of
obstacles was increased on 50 by 50 maps with
random obstacle positions.

By smoothing the paths the strategies can be made to
match actual user movement more realistically. Figure 7
shows the smoothed paths for both environments after
applying a standard smoothing algorithm that takes entity
dynamics into account [2]. These smoothed paths became
the strategies that were used to simulate the generation of
network packets as part of the hybrid strategy model. This
simulation is described in the following section.

Figure 5: (a) User environment 1 (b) path
generated automatically by A* algorithm.

start

End

(a)

(b)
start

End

start

End

(a)

(b)

 Environment 1

X coordinate

Y
co

or
di

na
te

Environment 2

X coordinate

Y
co

or
di

na
te

(a)

(b)

Environment 1

X coordinate

Y
co

or
di

na
te

Environment 1

X coordinate

Y
co

or
di

na
te

Environment 2

X coordinate

Y
co

or
di

na
te

Environment 2

X coordinate

Y
co

or
di

na
te

(a)

(b)

Figure 6: (a) User environment 2 (b) path
generated automatically by A* algorithm.

start

End

(a)

(b)

start

End

start

End

(a)

(b)

Figure 7: A realistic turns routine was added to
create more realistic strategies, indicated by the solid
line. The dashed line shows the strategy found by
path finding for (a) environment 1 and (b)
environment 2.

5. Simulation Results

User data was gathered from fourteen distinct users.

Each of these users maneuvered an entity through a maze
from a given start position to a given target location.
Users had no prior knowledge of the maze and were
restricted to viewing a circular area of the maze centered
on their current location at any point in time. Users
repeated the task of traveling from the start to the target
node in the shortest time possible. With each attempt their
knowledge of the maze increased until they converged on

a steady-state trajectory. To determine the number of
packets that would have to be sent over the network to
represent a user trajectory a simulation was performed
which took the trajectory as input and then simulated the
number of packets generated in three cases:

1. using a pure dead reckoning model only;
2. using a hybrid strategy model with the strategy

chosen by visual analysis of the user steady-state
trajectories;

3. using a hybrid strategy model with the strategy
computed automatically using the A* path finding
algorithm and the visibility graph as described
earlier.

 User 1 User 2
Hybrid Hybrid Seq DR

Visual Path finding
DR

Visual Path finding
1 31 32 33 16 13 17
2 26 27 27 22 16 19
3 18 15 11 28 28 29
4 8 3 4 15 1 5
5 10 7 5 18 9 17
6 14 4 7 13 8 8
7 13 13 9 13 5 12
8 8 4 7 10 4 1

 User 1 User 2
Hybrid Hybrid Seq DR

Visual Path finding
DR

Visual Path finding
1 35 42 36 52 44 51
2 38 32 34 25 23 24
3 22 6 9 34 23 26
4 18 3 3 21 4 10
5 16 6 3 24 20 21
6 20 3 3 18 7 11

The results of the simulations are presented in Tables 1

and 2 for environment 1 and environment 2 respectively.
Examination of these results shows that there is a
reduction in the number of packets that need to be
transmitted using the hybrid strategy-based model
approach. In addition, there is very little discrepancy
between the number of packets transmitted using a

strategy constructed from visual analysis of recorded user
trajectories and a strategy constructed automatically using
path finding. Two sample trajectories are illustrated in
Figure 8 for user 1 navigating through environment 2. As
their experience within the maze increases their trajectory
converges to the steady-state strategy identified using path
finding. It must be noted that the results presented are for
a threshold of 25 units. This choice was based on the
variance of the recorded user steady-state trajectories.
Results for a lower threshold value have been presented
elsewhere [1, 2].

(a)

(b)

(a)

(b)

Table 1: Environment 1: packets transmitted for pure
dead reckoning and the hybrid method; strategy
model chosen by visual analysis and path finding.
Trial 1 is the initial trial. Threshold value: 25.

Table 2: Environment 2: packets transmitted for both
pure dead reckoning and the hybrid method; strategy
model chosen by visual analysis and path finding.
Trial 1 is the initial trial. Threshold value: 25.

Figure 8: User 1 navigating in environment 2 – (a)
first trajectory - exploratory; (b) final trajectory -
steady-state. The strategy model (solid line), path
finding model (dashed) line and user trajectory (wide
line of circles) are shown.

If all trials of the two users in both environments are

considered, dead reckoning generates 596 packets. In
comparison the hybrid technique (employing a visual
model) generates 402 packets and the hybrid model

(employing a path finding model) generates 438 packets.
This corresponds to reductions of 33% for the visual
heuristic Hybrid model, and 25% for the path finding
Hybrid model. The results show that the reduction in the
number of generated packets compared to dead reckoning
is similar for strategies constructed either visually or using
path finding. The key difference between the two is that
the path finding strategy is generated automatically.

6. Conclusions and Future Work

It has been shown that visibility graphs reduce path
finding computation time by between 80 and 90%,
depending on the number and the density of obstacles in
the simulated environment. The visibility graph is also
insensitive to map size, unlike the regular grid, which
makes it suitable for large virtual environments with few
obstacles.

The A* path finding algorithm was implemented on a
visibility graph and used to automatically generate strategy
models. These were used in the hybrid strategy-based
modeling approach and showed a reduction in the number
of packets needed to maintain global DIA consistency.
The reduction was commensurate with previous work
using heuristic techniques for defining strategies. The
advantage of automatic identification of strategies using
A* and visibility graphs is twofold:

1. by reducing the number of packets that need to be
transmitted network latency is reduced, as
packets only need to be sent when the strategy
changes; if communication is lost for a longer
period of time, remote users can be rendered
locally as continuing on the strategy they were on
before network connection was lost;

2. in the case of dynamic goals, it is proposed that
strategies to satisfy the goal can be recomputed in
real time.

Future work will focus on using path finding techniques

to determine strategies on the fly for dynamic goals. This
will work by pre-computing the visibility grid for all users
and then employing the A* algorithm to search in real time
for a path between a current position and a dynamic target
position. The path finding implementation will be
modified to use Hershberger and Suri's methods, which
provides a shortest path in O(nlogn) time [15].

Acknowledgement

This material is based upon works supported by

Enterprise Ireland under grant no. SC/2002/129/.

References

[1] Delaney, D., T. Ward, and S. Mc Loone. On
Reducing Entity State Update Packets in
Distributed Interactive Simulations using a
Hybrid Model. in Proceeding of the 21st IASTED
International Multi-conference on Applied
Informatics, February 10-13. 2003. Innsbruck,
Austria.

[2] Pinter, M., Toward more realistic Path finding.
Game Developer, 2001: p. 54-64.

[3] Woodcock, S., Game AI: The State of the
Industry 2000-2001: It’s Not Just Art, It’s
Engineering. Game Developer, August 2001.

[4] Kavraki, L.E., et al., Probabilistic Roadmaps for
Path finding in High-Dimensional Space. IEEE
Transactions on Robotics and Automation, 1996.
12(4): p. 556-580.

[5] Tzour, P., Building a Near-Optimal Navigation
Mesh, in AI Game Programming Wisdom. 2002,
Charles River Media. p. 171-185.

[6] Hwang, Y.K. and N. Ahuja, A Potential Field
Approach to Path finding. IEEE Transactions on
Robotics and Automation, 1992. 8(1): p. 23-32.

[7] Epic Games, Unreal Tournament website:
http://www.unrealtournament.com/. 2004.

[8] Russell, S. and P. Norvig, Artificial Intelligence -
A modern Approach. 1995: Prentice Hall.

[9] Stout, B., Smart Moves: Intelligent Path finding.
Game Developer, 1996: p. 28-35.

[10] Yap, P., Grid-based Path finding - Lecture notes
in Artificial Intelligence. 2002. pp. 44-55.

[11] Lozano-Perez, T. and M.A. Wesley, An
Algorithm for planning collision-free paths
among polyhedral obstacles. Communications of
the ACM, 1979. 22(10).

[12] Matthews, J., Basic A* Path finding Made
Simple, in AI Game Programming Wisdom. 2002,
Charles River Media. p. 105-113.

[13] Ghosh, S.K. and D.M. Mount, An Output-
sensitive algorithm for computing visibility
graphs. Society for Industrial and Applied
Mathematics (SIAM) Journal of Computing,
1991. 20(5): p. 888-910.

[14] Delaney, D., T. Ward, and S. Mc Loone.
Reducing Update Packets in Distributed
Interactive Applications using a Hybrid Model. in
16th International Conference on Parallel and
Distributed Computing Systems, August 13-15.
2003. Reno, USA.

[15] Hershberger, J. and S. Suri, An optimal algorithm
for Euclidean shortest paths in the plane. Society
for Industrial and Applied Mathematics (SIAM)
Journal of Computing, 1997. 28(6): p. 2215-2256.

http://www.unrealtournament.com/

